nature human behaviour

Article

https://doi.org/10.1038/s41562-025-02324-0

Hybrid neural-cognitive models reveal how
memory shapes humanreward learning

Received: 4 October 2024

Accepted: 19 September 2025

Published online: 05 February 2026

% Check for updates

Maria K. Eckstein® ', Christopher Summerfield ® 2, Nathaniel D. Daw ®'* &
Kevin J. Miller®"*

Along-standing challenge for psychology and neuroscience is to
understand the transformations by which past experiences shape future
behaviour. Reward-guided learning is typically modelled using simple
reinforcement learning (RL) algorithms. In RL, a handful of incrementally
updated internal variables both summarize past rewards and drive future
choice. Here we describe work that questions the assumptions of many RL
models. We adopt a hybrid modelling approach that integrates artificial
neural networks into interpretable cognitive architectures, estimating a
maximally general form for each algorithmic component and systematically
evaluating its necessity and sufficiency. Applying this method to alarge
dataset of human reward-learning behaviour, we show that successful
modelsrequireindependent and flexible memory variables that can track
rich representations of the past. Using a modelling approach that combines
predictive accuracy and interpretability, these results callinto question an
entire class of popular RL models based on incremental updating of scalar
reward predictions.

Reward-guided decisions are widely assumed to depend onasmall num-
ber of latent variables that concisely summarize the history of actions
andrewards and are calculated using simpleincremental updates after
each experience. Forexample, within the framework of reinforcement
learning (RL), standard cognitive models posit that choices are based
on‘Q-values’, whichapproximate the expected reward associated with
each action and are calculated by repeatedly applying an incremen-
tal learning rule that compares the actual outcome to its previous
estimate'” Such models are often simply called ‘RL models’, and they
form the foundation for many studies investigating the psychology and
neuroscience of reward-guided learning. These models have achieved
animpressive record of success, providing computational explanations
for basic as well as complex learning phenomena®* and for neural cor-
relates of reward-guided learning in a variety of tasks and species'® 2.

However, theliterature has also accumulated anumber of observa-
tions that these models do not easily account for. For example, indi-
vidual events in the past can disproportionately affect behaviour™,
suggesting that task-relevant memory contains more than Q-value-like

summary statistics of the reward history. Additionally, behaviour is
oftensensitive to global statistics of the past (for example, the range of
rewards or the grouping of choice options) that are not easily captured
by standard RL models'®?'. Lastly, neural signals previously thought to
relate straightforwardly to Q-values have been found to show marked
diversity thatisintension with standard RL models* 2. These findings
collectively suggest that the memory representations that humans and
animals use to make reward-based choices go beyond incrementally
learned summary statistics and may rely on a variety of additional
internal memory mechanisms. However, a coherent computational
accountofsuch alearning algorithmis lacking.

Artificial neural networks (ANNs) are able to model highly expres-
sive functions”. Sequential tasks can be modelled using recurrent
neural networks (RNNs), which can learn to represent the past using
high-dimensional internal states; these states are derived by mem-
ory mechanisms that are implemented in a potentially large number
of trainable network parameters. With the ability to learn complex,
time-dependent mapping functions, RNNs seemable to capture both the
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Fig.1| Overview. a-c, Cognitive modelling. Panel aillustrates reward-based
learning. Reward-based learning tasks involve choosing one action at atime to
winareward, inaniterative fashion involving many trials. Panel billustrates an
incremental-learning model. Variants of RL, specifically Q-learning, are popular
behavioural models for such tasks. Q-values approximate the expected reward
associated with each action on the basis of an incremental, trial-wise delta-rule
update. Panel cillustrates an ANN model. While classic cognitive models facilitate
understanding of the underlying mechanism, ANNs typically predict empirical
behaviour more accurately. d-f, Experimental design. Panel d shows the task
procedure. On each trial, participants saw the same four stimuli, pressed a key
toselect one and obtained the corresponding reward (1-100 points). Each task

lasted for 150 trials. Panel e shows examples of procedurally generated protocols.
Each row shows the protocol for one of three example participants. The number
of points available for each action diffused over time (left), independently for
each action (colour). A different reward schedule was used for each participant
and each task block. Participants’ choices (right) reflected individual reward
schedules. Panel fshows aggregate performance. Each participant (grey dots)
performed multiple task blocks (horizontal axis). ‘Relative reward’ is ameasure
of task performance that is comparable across different reward schedules (see
‘Behavioural analyses’ in Methods). The black dots show means over participants,
and the error bars (almost invisible) indicate standard errors.

long-term dependencies and the potentially complex learning mecha-
nisms that underlie humanbehaviour during reward-based learning® ',
These networks have the advantage that they typically capture more
behavioural variance than handcrafted cognitive models, provid-
ing an estimate of the model performance that is possible for a given
dataset’**>*, However, fitting behaviour with RNNs typically comes at
the expense of interpretability—unlike in classic cognitive modes suchas
RL,inwhich eachparameter servesaprescribedrole, their computations
typically require substantial additional work to interpret®**,
Abuddingresearch field has started tocombine ANNs and classic
cognitive models®*'****, Whereas handcrafted cognitive models are
interpretable but frequently underfit the data, ANNs are sufficiently
expressive to model complex behaviours but usually hard to under-
stand. For example, Peterson et al.* iteratively replaced components of
aclassiccomputational model with more expressive ANN counterparts
totestincreasingly general theories of human decision-making, using
gambling tasks. Here we extend this approach to study reward-based
learning and memory, which requires modelling both how informa-
tion about the past is integrated into memory and how the contents
of memory are used to guide choice. To do this, we created a hybrid
neural-cognitive method that flexibly interpolates between a classic
RL model (Fig.1b) and an RNN (Fig. 1c). Iteratively replacing RL model
components with flexible ANNs, we measured which relaxation of con-
straintsimproved the model’s ability to capture humanbehaviour. We
then inspected the best model’s fitted ANN modules to shed light on
the underlying mechanisms and to understand how experience shapes
memory representations and how these representations drive choice.

Results
We collected alarge dataset fromareward-learning task in which human
participants repeatedly chose among four possible actions, which

were rewarded according to noisy reward magnitudes that drifted
over time (a non-stationary ‘bandit’ task; Fig.1e)*’. On each trial of the
task, the participants selected one of the four actions and were given
the corresponding reward (Fig. 1d). We collected the dataset online
(880 participants, 862 of whom passed the inclusion criteria; 4,134
task blocks; 617,871 valid trials; all participants provided informed
consent in accordance with Google DeepMind’s Human Behavioural
Research Ethics Committee, and the study complied with all relevant
ethical regulations), which is comparable in size to the largest exist-
ing datasets from related tasks®**’. Participants tended to choose the
actions with larger rewards, indicating that they successfully learned
the task (average rewards exceeded chance (tg; =149.2; P< 0.001;
d=5.09;95% confidence interval (CI) of relative rewards, (66.2, 67.9))
and were numerically above chance on 4,085/4,134 task blocks; Fig. 1f).
Both the large size of our dataset and the variability of reward contin-
gencies between participants were crucial to our approach because
they allowed RNNs and hybrid models to extract additional variance
compared with basic RL models (Supplementary Fig. 7).

We first modelled this dataset using the two extreme approaches,
aclassic RL-based incremental-update model and a generic RNN. We
identified the best RL model (Fig. 2a) through systematic comparison
between many RL model variants, using standard methods*®* (Sup-
plementary Table 2; implementation details are provided in ‘Model
architectures’ in Methods). Specifically, we started with the simplest
model (called ‘Simple RL’), a tabular Q-learner with two free model
parameters (learning rate and inverse decision temperature), and
fitted it to participant behaviour by identifying the parameter val-
ues that maximized the negative log-likelihood of human behaviour
under the model in the training split of the dataset. We then tested a
variety of modifications to Simple RL that have been explored in the
literature, including Q-value forgetting***and a parallel perseveration
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Fig.2|Best RL and RL-like models. a-c, Model architectures. Best RL (a) is the
best handcrafted model based on Q-learning, identified using extensive model
comparison (Supplementary Results and Supplementary Table 2). It contains
astandard Q-value update (left oval) with decay of unchosen action values (left
oval, dotted recurrent arrows for Q(-~a)), as well as areward-agnostic choice
perseveration mechanism (right oval). The outputs of both computations

are combined additively to sample the next choice. RL-ANN (b) has the same
architecture as Best RL, consisting of areward module that computes Q-values
(left oval) and an action module that computes a perseveration kernel (right
oval). However, RL-ANN uses ANNs to allow each module to perform any update
rule, making it a generalization of linear update models that encompasses Best
RL as aspecial case. VanillaRNN (c) is astandard RNN and the most flexible
model. It provides an upper bound in terms of behavioural prediction. d, Model

fits. Predictive accuracy was derived from the loss of each fitted model to held-
out participants not seen during training (see ‘Model training’ in Methods). Best
RL and RL-ANN predicted human choices significantly worse than VanillaRNN,
with nosignificant difference between them, according to two-sided ¢-tests (see
the main text for statistics). The data are presented as mean values over held-out
blocks (n =413) plus/minus s.e.m. e,f, Reward processing. In classic Q-learning
as modelled by Best RL (e), updated values Q,,,(a,) increase monotonically both
inthe observed reward r,and in the previous value Q,(a,) (colour), with strictly
linear relationships (for model details and equations, see ‘Model architectures’in
Methods). After fitting to human behaviour, RL-ANN (f) acquired a qualitatively
similar update rule with monotonically increasing and near-linear relationships.
For ease of visualization, we averaged sampled values Q (a,) (colour) within
quantile groups to obtain discrete lines.

modaule that learns from actions rather than rewards”****, Among all
tested RL model variants, we identified a winning model with six free
parameters, called ‘Best RL". Best RL consists of two submodules. The
‘reward module’ takes as inputs the observed reward, denoted r,, and
thevalue, Q,(a,), of theaction a,that led to this reward, and calculates an
updated Q-value, Q.,;(a,), for thisaction, using the equations specified
inFig.2a (left).In Best RL, Q-values Q,,;(a,) hence arelinearinboth the
reward r, and the previous value Q,(a,), such that larger rewards and
larger previous values lead to monotonically larger updated values
(Fig. 2e). Best RL's forgetting mechanism gradually decays Q-values
back to theinitial value Q,,. The reward module hence captures pure
reward-based learning. In addition, Best RL has an ‘action module’,
which takes as input the previous action, a,, and sets its persevera-
tion indicator c,,;(a,) to a value determined by a free parameter. This
allows the model to express either action repetition (c/(a,) > 0) or action
switching (c(a,) < 0). Perseveration for all other actions, c,.;(a # a,), is
0 (Fig.2a, right). The outputs of both modules, ‘reward logits’ Q,,;and
‘actionlogits’ c,,;, are combined additively before sampling the action
a,,, thatis taken on the next trial (for the model details and equations,
see ‘Model architectures’in Methods).

Best RL is a prime example of a classic handcrafted cognitive
model: each mechanismis clearly defined by simple equations, which
aremodified by just asmallnumber ofinterpretable model parameters
(for example, the inverse decision temperature, ). However, these
constraints limit the model’s expressivity and potentially its ability to
capture human behaviour. To assess whether this is the case, we com-
pared Best RL to a highly expressive ‘VanillaRNN’, which can employ a
large number of free parameters to model increasingly complex func-
tions. At the core of Vanilla RNN is a recurrent memory module that
allows the model to directly share its high-dimensional hidden-layer
activations, the latent state s,, with itself on subsequent trials (for
details and equations, see ‘Model architectures’ in Methods; Fig. 2c).
This allows Vanilla RNN to rely on a rich and flexible memory of past
trials when making choices. Compared with Best RL, Vanilla RNN has
the additional advantage of processing all inputs (a,, r,and ss,) jointly,
allowingittoidentify arbitrarily complexinteractions between them.
(Besides the basic RNN architecture, we also fitted more sophisticated
sequence models suchaslong short-term memory networks (LSTMs*
and transformers*¢, which led to qualitatively similar results; see ‘Addi-
tional model fits’in the Supplementary Information.)
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We fit both models to our human data using a cross-entropy
loss (equivalent to negative log-likelihood) that quantified how well
each model predicted human choices. Note that the models were not
trained to find the reward-maximizing policy for the task but to recre-
atethe observed humandataas accurately as possible. Thisapproach
is sometimes referred to as ‘system identification’ in engineering® or
‘behavioural cloning’in machine learning***°, We evaluated all models
by cross-validating over participants. Thisamounts to using a subset of
participantstoidentify the algorithmthat best predicted the behaviour
of the remaining participants, who completed a different set of task
schedules. We trained all models on the same 80% of participants
(690 participants; 3,302 task blocks) and tested all models’ predictive
performance on the same held-out 10% (86 participants; 413 blocks),
using the remaining 10% (86 participants; 419 blocks) to select the best
hyperparameters for eachmodel (for example, the number of hidden
units). Training, validating and testing on different sets of partici-
pants eliminates the risk that increasingly flexible models overfit to
the training data, and it makes models with different numbers of free
parameters directly comparable (see ‘Model training’in Methods and
Supplementary Table 1). We confirmed that different models were
behaviourally distinguishable by generating synthetic behaviour from
eachmodel and confirming that the correct model could be identified;
this was generally possible because less-flexible models were unable to
imitate more-flexible ones (Supplementary Fig. 1). In terms of model
comparison, we found that Vanilla RNN predicted the behaviour of
unseen participants substantially better than Best RL, correctly antici-
pating 68.3% (95% Cl, (66.9%, 69.7%)) of unseen participants’ choices,
compared with just 60.6% (95% Cl, (59.2%, 62.0%)) by Best RL (chance
is 25%; Vanilla RNN versus Best RL, paired ¢-test: t,;, =28.9, P< 0.001,
d=1.39;Fig.2d). This confirms that, as expected, VanillaRNN can pre-
dict human behaviour more accurately than the best classic RL model.
Adatasensitivity analysis (Supplementary Fig. 7a) showed that Vanilla
RNN’s advantage became increasingly prominent for increasing sizes
of training data, indicating that collecting more data canimprove the
extraction of systematic behavioural variance.

Next, we created a series of models that interpolate between the
extremes of Best RL and Vanilla RNN. We first created a hybrid model
thatinherits the architecture of Best RL (Fig. 2a) but replacesits hand-
crafted equations with flexible ANNs (Fig. 2b). Asin BestRL, the reward
module is responsible for updating the chosen action’s Q-value at
each time step. The module has access to the previous reward r, (for
example, ‘received 70 points’) and value Q,(a,) (for example, ‘expected
50 points’), but not the identity of the chosen action a, (for example,
‘pressed the D key’). In turn, the action module updates the chosen
action’s perseveration indicator, for which it has access only to the
previous action a, (for example, ‘pressed the D key’). Unlike Best RL,
both modules use flexible ANNs to map their respective inputs to the
corresponding updated output. This model, which we call ‘RL-ANN’, is
motivated by the insight that Best RL’s strictly linear Q-value updates
(Fig. 2e) (in conjunction with Best RL’s restrictive perseveration
mechanism; Supplementary Fig. 6) might be insufficient to capture
human learning. For example, existing models propose that value
updates might depend on reward in various nonlinear ways'*, but
the strictly linear Q-learning model does not account for possibili-
ties like these. Similarly, values might depend nonlinearly—or even
non-monotonically—on previous values and rewards, but the model
does not express this possibility. By replacing Best RL’s linear update
equations with generic ANNs, we were able to simultaneously test all
nonlinear model variants of this kind, without the necessity of speci-
fying each one by hand. During training, RL-ANN'’s value and action
modules have the flexibility to acquire update rules of any functional
formand will settle on the one that allows the model as awhole tobest
match humanbehaviour. Inthis sense, RL-ANN represents awhole class
of cognitive models: any model that shares Best RL’s architecture can
in principle be instantiated by RL-ANN, independent of the specific

functional form of its updates (for an example, see Supplementary
Fig.1). When we assessed how well RL-ANN predicts the behaviour of
unseen participants, however, this added flexibility did not close the
gapto VanillaRNN (RL-ANN: 60.8%; 95% Cl, (59.4%, 62.3%); VanillaRNN:
68.3%;95% Cl, (66.9%, 69.7%); paired t-test: t,,, = 32.7, P< 0.001,d = 1.35;
Fig. 2d; also see Supplementary Fig. 3 for additional variants of Best
RL). This suggests that there is no RL-like model—defined as a model
that shares Best RL’s cognitive architecture, albeit with complete flex-
ibility interms of theimplemented functions—that can predict human
behaviour onour task as well as VanillaRNN. This shows that there exist
no modifications to Best RL's update rules thatimprove the prediction
of human task behaviour.

Perhaps surprisingly, RL-ANN did not significantly improve pre-
dictions compared to Best RL (RL-ANN: 60.8%; 95% Cl, (59.4%, 62.3%);
BestRL: 60.6%; 95% Cl, (59.2%, 62.0%)); paired t-test: t,,, = 1.54,P=0.12,
d=0.70),suggesting that Best RL's original update rules might already
be the best in its class. To see if this was the case, we conducted two
analyses. We first inspected RL-ANN’s learned update functions and
compared themto their handcrafted counterpartsin Best RL. This analy-
sis can reveal whether among all possible mechanisms RL-ANN could
implement, humanbehaviour lent the most support to the special case
of Best RL. We visualized Best RL's Q-value update (Fig. 2e) by calculating
theupdated values Q,,,(a,) for every combination of inputs (0 <r,<100
points; 0 < Q[(a,) <1), using the standard Q-value equations (Fig. 2a, left;
see ‘Model analysis’ in Methods). We also visualized RL-ANN’s Q-value
update by extracting the fitted reward module and probing it across
its range of inputs (0 < r, <100 points; Q,(a,) between the 5th and the
95th percentile of observed Q-values), while recording its outputs
Q..(a,).Indeed, RL-ANN showed an update rule that was monotonic and
approximately linear in both r,and Q,, similar to Best RL (Fig. 2f), sug-
gesting that human behaviour was best approximated by analgorithm
very similar to RL. The corresponding analysis of the action module is
showninthe Supplementary Results (Supplementary Fig. 6a). Second,
we generated and analysed synthetic behavioural data from both Best
RL and RL-ANN, assessing whether the slight differences in the update
rule between both would lead to meaningful differences in behaviour.
We used each trained model to simulate a behavioural dataset with
the same characteristics as the human dataset (the same sample size,
reward schedules and train-test-validation split; see ‘Model analysis’in
Methods). We found that behavioural datasets from both models were
qualitatively similar (Supplementary Figs. 10 and 11) but differed from
human behaviour (Fig. 4). Thus, even when given the opportunity to
learn new, more expressive operations for updating Q-values, RL-ANN
approximately recovers the simple solution found in classic RL models
and, like them, falls short in predicting human behaviour (Fig. 2d).

Our second hybrid model aims to address this issue by gener-
alizing the architecture further and considering a broader space of
models. It is inspired by the finding that learning is affected not only
by properties of the chosen option but also by those of options that
were available but not chosen, a notion commonly referred to as
‘context”81%?5152 For example, an action that won 50 points might be
processed differently depending on whether other available actions
were expected to win 10 points or 90. To allow for this possibility, we
provided the ‘Context-ANN’ model with additional connections that
allowlearned information about unchosen actions to modify the learn-
ingrule (Fig.3b). Context-ANN’s reward module receives as additional
inputits own value estimates Q, (the previous trial’s Q-values of all four
actions); theaction module receives as additional modulatoryinputc,
(the previous trial’s perseverationindicators for all four actions). These
modulatory inputs allow Context-ANN to adopt any learning algorithm
that canbe expressed as afunction of the primary input (r,, a,) and the
corresponding choice variables for all available actions (Q,, c,). In model
comparison, Context-ANN fit human behaviour substantially better
than RL-ANN, increasing the percentage of correctly predicted choices
from 60.8% (95% Cl, (59.4%, 62.3%)) to 65.4% (95% Cl, (63.9%, 66.9%);
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Fig. 3 | Interpretability. a-c, Model architectures. Context-ANN (b) and
Memory-ANN (c) were incremental extensions of RL-ANN (a). d, Model fits. Both
Context-ANN and Memory-ANN provided significantimprovements, with
Memory-ANN not differing from the predictive accuracy of VanillaRNN,
according to two-sided t-tests (see the main text for statistics). The data are
presented as mean values over held-out blocks (n = 413) plus/minus s.e.m.

e-i, Model algorithms. Panel e shows the Best RL Q-value update (details in Fig. 2e).
Panel fshows the Memory-ANN Q-value calculation. Memory-ANN implements a
monotonic but nonlinear, sigmoidal function (Supplementary Fig. 8b), mapping
higher rewards onto higher values. The colours show the first principal
component (PC1) of the memory state sg'), whichweinterpretas reward
sensitivity. The reference point (Q,,;,) indicates the initial Q-value, towards which
values of non-chosen actions gradually decayed. As shownin g, Q-values change
over time. When iteratively probed with the same reward magnitude . (colour),
Memory-ANN produces different Q-values Q,,,(a,) depending on the trial ¢. Panel
h shows how Q-values are based on prior history. Different states s” were
obtained by subjecting Memory-ANN to 150 different iterations of observing
reward r,. (colour). Injecting different states s led to wide variations in the

response to the same r.,,, which was given for 150 time steps. As shown ini, the
state encodes the reward history at multiple timescales. Coefficients were
obtained from regressing past rewards .., against each PC ofsgr) (see
‘Behavioural analyses’ in Methods). Some PCs showed sensitivity to the most
recent history of rewards, while others showed sensitivity to the long-term
history of rewards. j, PC1update. The memory representation sﬁ’) is affected by
incoming rewards r,. PC1 of sg') exhibits monotonic, near-linear, incremental
integration. kI, Behavioural relevance. PC1 modulates the behavioural response
(k). The mapping from reward magnitudes to action reselection (‘Percent stay’) is
modulated by PC1 ofsg') (colour). P<0.001in paired, within-participant,
Bonferroni-corrected, two-sided ¢-tests comparing stay frequency between
PC1<0andPC1> 0, separately for each bin of reward magnitudes (x axis). PC1
also predicts response times (I). The relation between PC1 of sf') (fitted to human
behaviour) and response times (RTs) (log-transformed; both mean-centred
within blocks) is shown. The data are presented as mean values over all blocks
(n=4,134) for each PC1bin, plus/minus 95% bootstrapped Cls. P < 0.001in
mixed-effects linear regression (see the main text).

paired t-test: ¢,;, = 28.3,P < 0.001, d = 1.27; Fig. 3d). Eachmodule played
a unique role in improving the prediction accuracy (Supplementary
Tables 3 and 4). Nevertheless, Context-ANN still fell short of Vanilla
RNN (68.3%; 95% Cl, (66.9%, 69.7%); paired t-test: t,,=16.8, P< 0.001,
d=0.83), indicating that the inclusion of context processing was not
sufficient to capture human behaviour on our task and that an even
more flexible architectureis required.

We hence turned to the role of memory processing, testing
whetheramodelthat canretainaricher representation of the past can

explainhumanbehaviour better than previous models. Indeed, several
studies have shown that both recent™ and distant™" outcomes affect
humanlearninginways that cannotbe explained by incremental updat-
ing alone. It has also been suggested that humans keep track of addi-
tional latent variables beyond Q-values—for example, remembering
past prediction errors to adapt the future speed of learning**. (We
implemented several versions of such variable-learning-rate models,
which showed slightly better performance than Best RL but still fell far
short of Vanilla RNN; see ‘Model architectures’ in Methods and
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Supplementary Results). To test whether the ability to retain richer
representations of the past is crucial to explainlearningin our task, we
created our final hybrid model: Memory-ANN. Whereas Context-ANN
receives the modulatory inputs Q, and c, to account for unchosen
actions, Memory-ANNrequiresinputs that have potential access to the
entire task history and could represent any summary statistic thereof,
including high-dimensional and nonlinear ones. The latent states of
anRNN have precisely these properties. We hence replaced the reward
module’sinputs, Q,and Q.(a,), with the activities of the reward module’s
hidden units from the previous time step, which we denote sg') (this
turns the reward ANN into a reward RNN). Likewise, we replaced the
actionmodule’sinput c,with the previous activities of its hidden units,
sga) (turning the action ANN into an action RNN; Fig. 3¢). These modi-
fications have the effect of explicitly separating memory variables (sg’)
and sﬁ“)) from choice variables (Q, and c,), which in previous models
were assumed to be identical. Hence, Memory-ANN has the ability to
express awide range of memory-based learning models that are based
on modulating reward (and action) processing on the basis of any
learned features of the reward (and action) history. Note, however, that
Memory-ANN is still more constrained than Vanilla RNN: the same
update applies regardless of which actionis being updated, the values
ofallunchosenactions decay strictly exponentially, reward processing
doesnot have accessto past or presentactions and vice versaforaction
processing, and the outputs of reward and action processing are com-
bined by simple addition. Memory-ANN improved the prediction of
human behaviour substantially compared with Context-ANN
(Context-ANN: 65.4%; 95% Cl, (63.9%, 66.9%); Memory-ANN: 68.3%; 95%
Cl, (66.9%, 69.7%); paired t-test: t,;,=17.9, P< 0.001, d = 0.95; Fig. 3d).
Most importantly, Memory-ANN’s predictions were not significantly
different from those of VanillaRNN, the most general model we tested
(Memory-ANN: 68.3%; 95% Cl, (66.9%, 69.7%); VanillaRNN: 68.3%; 95%
Cl, (66.9%, 69.7%); paired t-test: t,;, = 0.32, P= 0.75,d = 0.14). This indi-
catesthat Memory-ANN extracted all systematic variance inthe dataset
that can be extracted by an RNN, suggesting that its architectural
constraints (Fig. 3¢) identified relevant biases in human behaviour.
Indeed, there was no constraint whose removal improved model pre-
diction (Supplementary Tables 4, 5, 7 and 8). Taken together, these
results suggest that our participants performed the task by creating
rich memories of reward and action history and used them to guide
reward learning.

What mechanisms underlie the learning processes in
Memory-ANN? To answer this question, we inspected the functions

learned by the neural network modules during model fitting. We first
considered reward processing, evaluating the reward module by prob-
ingitacrossits range of inputs (r,and sg’)) while recording its outputs
Q,..(a,) (see ‘Model analysis’ in Methods). We found that the reward
module maps rewards r, onto new values Q,,;(a,) in a monotonic,
roughly sigmoidal way (Fig. 3f and Supplementary Fig. 8b). Notably,
thereward module does not have access to previous values Q,(a,) (nor
canitreconstructthemusingits hiddenstateinput si’)), whichmeans
that Memory-ANN does not take into account previous values Q/(a,)
when calculating new values Q,.,(a,). This is in stark contrast to most
RLmodels, which posit that values are learned incrementally. Instead,
Memory-ANN simply maps large rewards onto large Q-values and small
rewards onto small Q-values, without calculating reward prediction
errors or incremental updates. If Memory-ANN'’s latent state sf’) was
fixed over time (Supplementary Fig.12a), this simple mapping mecha-
nismwould lead to somewhat rigid choice behaviour (Supplementary
Fig.12b). However, the flexibility of the latent state enables adaptive
choices: sg’) follows a stereotypical trajectory over the time course of
atask (Supplementary Fig. 5f), which leads to a gradual change in the
assignment of Q-values to rewards as the task progresses. To assess
this, weinitialized a fresh reward module and probed it with sequences
ofidentical rewards, recording the resulting Q-values. Across the range
of rewards, earlier trials lead to smaller Q-values than later ones, which
can support a behavioural shift from more ‘exploratory’ to more
‘exploitative’ choices (Fig. 3g and Supplementary Results). sﬁr) also
adapts the calculation of future Q-values by encoding complex
moments summarizing the history of rewards. We forced afresh reward
moduleinto several extreme states by priming it with different reward
sequences and tested its responses toanew reward. This reward elicited
tremendously different Q-values depending on the injected state, an
effect that took up to several dozen trials to disappear (Fig. 3h). We
finally causally probed the role of state s” by injecting activity into
different principal components (PCs), observing the corresponding
short-andlong-term perturbationsin the calculation of Q-values (Sup-
plementary Fig. 12e), and testing the effects of individual trigger
rewards (Supplementary Fig.12¢) or reward sequences (Supplementary
Fig.12d) onstate s®.

We nextidentified the mechanisms by which sf')biases the calcula-
tion of Q-values. We conditioned the trained Memory-ANN on each
participant’s action sequence to obtain, for each participant, the
trial-by-trial sequence of latent variables Q, ¢, s" and s’ (Supplemen-
tary Fig. 5a-g), and applied principal component analysis to s®. The

Fig. 4 |Behavioural model validation. a-g, Comparison of human and simulated
model behaviour. As shown in a, humans prefer increasing rewards. Humans
(top left) repeated a choice (‘stayed’; y axis) more often when the rewards for

this choice had increased (positive reward change; x axis) rather than decreased
(negative reward change) on the previous two trials. Best-RL (Supplementary Fig. 11a)
and RL-ANN (top right) showed the inverse pattern, whereas Context-ANN and
Memory-ANN qualitatively reproduced the effect. The data are presented as
mean values over blocks (n = 4,134) for each reward change bin, plus/minus

95% bootstrapped Cls. Panel b shows example action sequences. These are

raw sequences of chosen actions (coloured circles) from humans and models
performing the reward schedule shown in the top row of Supplementary Fig. 5a.
Humans showed two common patterns: multiple repeats, extended periods
ofthe same action (grey lines); and cyclic responses, sets of four sequential

trials in which each action was sampled once (black lines). Panel ¢ shows the
effect of reward change on stay probability (see a). The data are presented as

the regression coefficients from the model stay ~ reward x reward change
(n=862 participants), plus/minus standard errors of the coefficient estimates.
Asindicated ind, humans showed longer sequences of identical actions (average
length, 6.9;95% Cl, (6.1, 7.6)) than expected by chance (chance length, 1.3;

tg1 =14.6,P<0.001,d = 0.50) or seenin RL-ANN (average length, 4.5; 95% Cl,
(3.9,5.1); tgs, = 9.4,P< 0.001,d = 0.32) and Context-ANN (average length, 5.5; 95%
Cl, (4.8,6.1); tg,; =5.4,P < 0.001,d = 0.19). Memory-ANN sequence length did

not differ from that of humans (average length, 7.5;95% Cl, (6.8, 8.3); tg,, = —1.8,

P=0.075,d=0.06).As shownin e, human choices contained more cyclic
sequences than synthetic data (human mean, 5.37;95% Cl, (5.01, 5.68); RL-ANN
mean, 2.68; 95% Cl, (2.59,2.76), s, =10.9, P< 0.001, d = 0.37; Context-ANN mean,
3.87,95%Cl, (3.77,3.97), tg,, = 7.77,P< 0.001, d = 0.26). Memory-ANN produced
the qualitatively closest number of cyclic sequences compared to humans
(Memory-ANN mean, 4.62; 95% Cl, (4.48,4.76), ts.;=5.7, P< 0.001,d = 0.19). As
showninf, we used the Lempel-Ziv-Welch algorithm to compress human and
model action sequences (see ‘Behavioural analyses’in Methods), quantifying
systematic temporal structure. Human sequences were substantially more
compressible than those of RL-ANN and Context-ANN (human mean, 1.73; 95% CI,
(1.70,1.76); RL-ANN mean, 1.45; 95% Cl, (1.44,1.45), ts, = 20.48,P<0.001,d = 0.70;
Context-ANN mean, 1.60; 95% Cl, (1.59, 1.61), tg,; = 9.47, P< 0.001, d = 0.322).
Memory-ANN compressibility did not differ from that of humans (mean, 1.74; 95%
Cl, (1.72,1.76), tge; = 0.69, P= 0.49,d = 0.02). Ind-f, the data are presented as violin
plots of the raw data distribution (n = 862 participants) and error bars indicating
95% Cls of the mean. P < 0.001in paired, two-sided ¢-tests. Panel g shows the
integration timescale. Weights of trial-history regression models trained to
predict future choices on the basis of past choices and rewards (see ‘Behavioural
analyses’ in Methods) are plotted. Only Memory-ANN reproduced the patterns
seen in human behaviour qualitatively. The data are presented as mean values
over participants (n = 862) for each trial, plus/minus 95% bootstrapped Cls. (The
corresponding plots for Simple RL, Best RL and Vanilla RNN for all these measures
areshownin Supplementary Figs.10 and 11).

Nature Human Behaviour


http://www.nature.com/nathumbehav

Article https://doi.org/10.1038/s41562-025-02324-0

first component (PC1) modified the gain of the sigmoidal mapping reward differences lead to large differences in Q-values, whereas at
from rewards to Q-values, effectively controlling the sensitivity of  smallgains (yellow), large reward differences are required to produce
Q-valuestoreward magnitude (Fig. 3f). At high gains (blue),evensmall  moderate differences (Fig. 3f). We therefore interpreted PClas tracking
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the model’s current sensitivity to reward. Confirming this interpreta-
tion, we found that large values of PC1are associated with a high prob-
ability of repeating a choice that led to a large reward and a small
probability of repeating a choice that led to a small reward, while low
values of PClare associated with ashallower relationship (Fig. 3k). The
value of PClalso correlated with participants’ response times, showing
thatamodel-derived variable predicted behaviourinadimension that
was not included in the training data (mixed-effects regression,
slope =-0.968.9, z=-13.3, P< 0.001; Fig. 31). These modulations
occurred within participants, showing that fluctuations in reward
sensitivity captured gradual changes in participants’ behavioural
strategies, rather than individual differences between participants.
(For more discussion of individual differences, see Supplementary
Results.) Subsequent PCs affected the gain, range, bias and scale of the
sigmoid (Supplementary Fig. 8). This mechanismenables Memory-ANN
to flexibly adapt its behaviour to the current reward context. The cor-
responding analysis for Memory-ANN’s action moduleis showninthe
Supplementary Results (Supplementary Fig. 6a).

How does sg’) represent the past history? We first determined how
new information alters existing representations. We probed the reward
module across its range of inputs (r,and s§'>), this time collecting the
latent state 55?1 as the output. We found that PC1 (reward sensitivity)
integrated rewardsin amonotonic, near-linear way, increasing slightly
afterbigrewards and decreasing slightly after small ones (Fig. 3j). Several
other state PCs showed similar monotonic, near-linear integration pat-
terns, exhibiting steeper (forexample, PC3 and PC4) or shallower slopes
(for example, PC5) (Supplementary Fig. 8). This supports the notion
that si’) integrates new rewards using parallel update rules with a variety
of integration timescales (see also Supplementary Fig. 12). We next
assessed the contents of the representations, using a decoding analysis.
Foreachdelay i, weusedlagged regressionto predict each state PC from
the reward r,_,. We found that a subset of PCs showed large regression
weights tojustahandful ofthe mostrecent rewards, consistent withthe
ideathat these PCstrackindividual recent outcomes while beinginsensi-
tive to all earlier events (Fig. 3i, left). Some other PCs were sensitive to
the entire history of rewards, potentially providing a baseline for how
reward-richtheenvironmentis overall, and whether this is changing for
better or for worse (Fig. 3i, right). These results were consistent across
multipleindependent runs of Memory-ANN (Supplementary Fig.2) and
were recoverable when Memory-ANN was fit to synthetic data (Sup-
plementary Fig. 1). These findings indicate that Memory-ANN flexibly
modulates the mapping from rewards and Q-values, continuously
adjusting to the time on task and the reward history.

Finally, we tested whether Memory-ANN captured qualitative
features of human behaviour that more restricted models were unable
to capture®. We used each fitted model to simulate task behaviour
‘open-loop’ (without knowledge of human choices), and on the same
tasks as humans (see ‘Model analysis” in Methods). First, we sought a
behavioural signature of the history-dependent processing of reward
sequences. For this, we considered pairs of trials in which the same
action was selected twice in arow, and we quantified the tendency to
select thataction again onthe followingtrial as afunction of the change
inreward magnitudes (Fig. 4a). Best-RL (Supplementary Fig. 11a) and
RL-ANN preferred actions for which the second-most-recentrewardr,_,
was larger than the most recent reward r, (colour), on which we condi-
tioned. This arises because these models make choices on the basis of
running averages, and alarger reward inthe pastincreases this average.
Humans, in contrast, preferred actions whose second-most-recent
rewards were lower**¥, as if anticipating that a recent increase in
reward magnitudes will continue in the future. Only Context-ANN
and Memory-ANN reproduced this effect qualitatively (Fig. 4a,c). This
shows that memory representations need to contain information
about unchosen actions or task history to capture how participants
modify their responses. Second, we assessed behavioural patterns
related to the history-dependent processing of actions. We focused

onstereotyped action sequences, such as multiple repeats (AAAA) and
cyclicresponses (ABCD), in whichthe time horizon extends for multiple
trials*®. Memory-ANN was able to capture the strong human preference
for such multi-trial patterns, while no other model was able to do so
(Fig.4b,d-f). The prevalence of these behavioural motifs implies that
human participants committed to stretches of exploiting an action they
believed was best (AAAA), interspersed with brief episodes of system-
atically exploring whether a different action might be better (ABCD)*’.
We then characterized the overall structure within the observed choice
patterns, computing the compressibility of all action sequences using
astandard algorithm (see ‘Behavioural analyses’in Methods) and com-
paring humans to model predictions (Fig. 4f). Only Memory-ANN
achieved a similarly high compression ratio as humans; Context-ANN
showed intermediate compressibility, and RL-ANN showed the low-
est compressibility. This reveals that the choices of humans and of
Memory-ANN had structured relationships with other choices nearby,
which waslessthe caseinsimpler models. Finally, we assessed the his-
tory dependence of actions using lagged regression®’. We found that
participants showed shallow and non-monotonic history dependence
thatwas reproduced by Memory-ANNbut not by other models (Fig. 4g).
Memory-ANN hence captures arange of patterns that are characteristic
of human behaviour, including many that violate classic models. While
some of these patterns have been described in the past'***°¢, they
have not previously been captured in a single model. It is a challenge
incomputational cognitive science that the identification of new pat-
terns often leads to the creation of idiosyncratic model features and
amultiplication of model architectures, rather than consolidation in
asingle framework.

Discussion
In psychology and neuroscience, reward-learning behaviour is com-
monly understood using computational models based on Q-learning,
in which memory consists entirely of a set of incrementally updated
decision variables. We have shown that this family of models cannot
adequately account for reward-guided learninginhumans, using alarge
dataset from a classic reward-learning task and a systematic model
comparison approachthatintegrates deep neural networks into clas-
sic cognitive architectures. We identify instead amodel that contains
both decision variables that drive choice directly and a set of latent
memory variables that modulate the update of these decision vari-
ables but do not directly drive choice. These memory variables track
a complex history of rewards and choices over multiple timescales.
We show that this model captures human behaviour in detail, both
reproducinganumber of intricate features of the dataset and matching
generic neural networks in quantitative quality of fit. At the same time,
itisinterpretable as an algorithmic model of human reward learning.
Recent work implicitly recognizes the complexity of how humans
use memory in reward-learning tasks, highlighting that learning pro-
cesses often operate at multiple different timescales. This has been
framed as amultiplicity of memory mechanisms™"****** and is consist-
ent with evidence that the brain represents task-history information
at a diversity of timescales?*°*~*%, Memory beyond decision variables
isalso present in several handcrafted models of human reward learn-
ing. For example, Bayesian inference models®“*’® track a measure of
the model’s uncertainty that creates non-Markovian dependencies
between choice variables, variable-learning-rate models’’* track a
measure of environmental volatility, and actor-critic models””* and
reference-point models” track an action-independent measure of
expected value. However, all these models are based on handcrafted
equations, and the ones we have tested here fall short compared with
more flexible ANN-based models. Memory-ANN reveals that learning
at different timescales is supported by a flexible recurrent memory
systemthatis one step removed frombehavioural choice, and it shows
that the way in which observed outcomes are mapped to future choices
isacomplex, yetinterpretable, function of task history.
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The cognitive architecture of Memory-ANN is modular in two
ways. First, reward-based learning and action-based learning are
divided into two parallel modules. This idea has origins in early
work on the psychology of learning—for example, in the distinction
between Thorndike’s™ law of effect (actions thatlead to good outcomes
should be repeated) and law of exercise (actions that have been taken
in the past should be repeated). A separation of reward-based from
action-based learning is presentin anumber of computational models
of behaviour®*’°”7, and evidence from neuroscience suggests that the
brain may incorporate such modularity”® *. These models typically
imagine that action-based learning takes the form of perseveration,
inwhich actions that have been taken in the past are more likely to be
takenin the future*, and that reward-based learning takes the form of
incremental RL"”>. Memory-ANN retains the basic separation between
reward-based and action-based learning butallows for eachmodule to
implement substantially more sophisticated mechanisms. This uses
Memory-ANN’s second kind of modularity: both reward-based and
action-based learning are divided into a ‘deep’ memory component,
whichlearnsrich hiddenrepresentations of the pastbut does not drive
choice, and a ‘shallow’ choice component that guides action selec-
tion. This architecture shares features with models of more complex
reward-learning tasks, many of which draw on hierarchical cognitive
architectures®®>®, Evidence from neuroscience also supports the idea
ofagradient of abstraction in the neural architecture®>**¥, Our results
suggest thathumans may use hierarchically structured algorithms even
insuperficially simple reward-learning tasks.

One limitation of the current work is alack of focus on individual
differences. We fit a single model to the whole population, which allows
ustoinfer thelikely mechanisms that characterize the behaviour of all
participants but does not provide insight into individual differences
between them. Others have modelled individual differences within
RNN-based frameworks®*, and similar approaches could be used to
extend the current work. However, RNN-like models implicitly capture
individual differences even when they are not modelled explicitly®’,
whichmeansthatin principle, some of our results concerning differen-
tial performance between Memory-ANN and Best RL might reflect the
network better capturing aspects of between-participant differences,
rather than (as we interpretit) improved modelling of the progression
oflearning within each participant. While additional analyses ruled out
the possibility that this difference between the models accounts for
our key results (for example, that Memory-ANN outperforms Best RL
and that aspects of its architecture and latent state dynamics capture
within-participantlearning), it remains possible that some of our con-
clusions reflecta contribution of both between- and within-participant
effects. Additional work, both experimental and analytical, will be
required to fully tease apart these possibilities. Overall, this direction
offers intriguing new prospects for studying individual differences
as well as the dynamic fluctuations that occur within individuals over
time (Supplementary Information).

Science facesatheory discovery problem:itis fundamentally more
difficult to create new models than to evaluate existing ones’*”’. In psy-
chology and neuroscience, new laboratory technologies have enabled
scientists to collect larger datasets than ever before, a development
that might provide new solutions to this problem®>**°>*>, We used a
combination of hypothesis-driven architecture search and data-driven
functionapproximation® to successfully identify a predictive yet inter-
pretable model of humanreward-based learning. With the rich tradition
of classic cognitive modelling providing the theoretical framework to
guide our model search, machine learning tools contributed the ability
to approximate any functional form on the basis of sufficient data. This
approach allowed us to compare the most relevant model classesin the
most general case. The same approach could be applied to awide range
of open questions, both within the cognitive sciences and beyond.
Thereis aubiquitous need for models that can capture the complexity
inrich datasets and also provide interpretable explanations.

Methods

Dataset

Participants. We recruited 880 participants on Prolific (app.prolific.co).
Nostatisticalmethods were used to predetermine the samplesize, but our
sample size is orders of magnitude larger than those of most traditional
lab-based human experimental studies and similar to those reported
in previous publications focused on large-scale experiments®*****”, In
agreement with the ethical guidelines of the Google DeepMind Human
Behavioral Research Ethics Committee, all participants werelocal tothe
UKand fluentin English. The participants provided informed consentand
were paid atarate of 12 pounds per hour; there was no performance-based
bonus payment. The study was not preregistered.

Experimental procedure. The participants completed one training
block and several testing blocks of our bandit paradigm (see below),
each using different visual stimuli. After each block, the participants
were truthfully informed how many points they had won, how many
points they could have won (the sum of points from each trial’s best
choice option) and how many points they would have won by choosing
randomly (the average points of all choice options). At the end of the
study, the participants were asked for their highest level of education
and offered the opportunity to voice thoughts and concerns. The exper-
imental task was written using jsPsych” and served on cognition.run.

Exclusion criteria. Eighty participants were asked to complete one
training and three testing blocks of 150 trials each. The remaining 800
participants were asked to complete one training block of 50 trials and
five testing blocks of 150 trials, for a total of 4,240 task blocks. Four
participants in the first (5%) and 14 participants (1.75%) in the second
sample failed to finish the experiment and were excluded, leading to an
initial sample of 880 - 18 = 862 participants who collectively finished
(80-4)x3+ (800 -14) x5=4,158 task blocks. We further excluded
blocksinwhich participants missed more than 15 of the 150 trials (10%),
24 blocks in total (0.58%). Hence, our final dataset comprised 4,134
blocks (with 617,871 valid trials) from 862 participants. Of these 862
participants, 858 (99.5%) provided valid demographicinformation: 341
(39.7%) were female, and 517 (60.3%) were male; the average age was
39.7years, with arange of 18-88 and astandard deviation of 13.1years.

Task

The participants performed a classic four-armed drifting bandit
task®’. On each trial t of this task, participants chose one of four
bandits and observed the corresponding reward r,. At the first trial
t=1,eacharmwasinitialized independently and uniformly atrandom
between1and 100 points. The meanreward y,;at each trialtand arm
was determined by a Gaussian randomwalk that evolved according to
standard deviation o4and centrality A:

Hei ~NAX phe_1;+ (1 =2) x 50,04)

The actual reward r,;observed by participants was sampled from
aGaussian distribution with mean y,;and standard deviation o,,:

Iei~ N(I'lt,i’ UO)

Following prior work®”*°, we used A= 0.9836, 0,=2.8 and 0, = 4.
Unlike prior work®®’, we created anew reward schedule for each partici-
pant for each task to increase the behavioural variationin the dataset
and facilitate the fitting of neural network models.

Oneachtrial, the participants saw four visual stimulionthescreen,
one representing each bandit (Fig. 1d). Each bandit was presented in
the samelocation oneach trial, but new stimuli were used on each task
iteration, and their positions were randomly shuffled between partici-
pants. Participants had four seconds to select a bandit using the keys
‘D’,‘F’, ) and ‘K. When participants failed to make aresponse within this
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time window, they were encouraged to respond faster on the next trial
and reminded of the response keys. The participants were also told that
they had received zero points for that trial. Only a very small percent-
age of trialsin the final sample were missed (0.36%). When participants
made a valid selection, the chosen bandit remained on the screen for
400 milliseconds while the others disappeared. The trial outcome was
then presented inaddition to the chosen bandit (for example, ‘Youwon
79 points.). After another 800 milliseconds, an inter-trial interval of
500 milliseconds began, after which the next trial started.

Behavioural analyses

Task performance. We first aimed to assess participant performance.
The raw number of points is not a good measure of performance
because each task block is based on a different reward schedule (see
above), and hence the same number of points canindicate good or bad
performance. To obtain a performance measure that is comparable
between blocks, we calculated relative rewards. The relative reward
I, is the number of points r,obtained on trial ¢, normalized between
the maximum number of points available on that trial (max(p,)) and the
number of points expected on that trial by random selection (mean(p,)):

r, — mean(p,)

frelt = max(p,) — mean(p,)

Averagingr,, .acrossall trials tgives the relative reward of ablock
r., shown in Fig. 1f. A block’s relative reward would be 1 if a partici-
pant chose the best bandit on each trial (which is impossible); the
relative rewardis close to O when a participant chooses randomly and
smaller than O when a participant systematically prefers bandits with
smaller-than-average rewards.

Lagged regression. We next focused on learning, assessing how
past task events affected participants’ future behaviour. Following a
model-free approach, we used logistic regression to quantify the effects
of past actions a,_; and outcomes r,_; on participant choices a, and to
compare the time courses of these effects between cognitive models
(Fig. 4g). For each cognitive model, we calculated four regression
models, one per bandit. There was no reason to respond differently
tothe fourbandits, andindeed, the four regression models produced
nearly identical results in all cases; hence, we averaged the results for
visualization. Each regression model predicted the time course of
choices for one particular bandit, a,., (number of trials n =150), coding
trialsas1when the bandit was chosen and O otherwise. We used two sets
ofregressorsto predict a;.,. ‘Bandit-reward’ regressors contain the time
course of the number of points obtained in the past after choosing the
current bandit: r,,,; X a,.,. For example, the bandit-reward regressor at
t - 1contains the sequence of points obtained on the previous trial for
those trialsinwhich participants had chosen the current bandit; trialsin
whichadifferent bandit was chosen contain the value 0. The second set
ofregressors are ‘other-reward’ regressors, whichindicate the number
of points obtainedinthe past after choosing abandit other thanthe cur-
rent bandit: r.,.; x (1- a,,,). We predicted choices a,., from past events
up to20trialsinthe past,1<i<21,suchthatour models contained 40
regressors (20 bandit-reward and 20 other-reward regressors).

Mixed-effects regression. We next assessed how PC1 of participants’
reward state sﬁ’) (reward sensitivity) affected subsequent choices a,,,
and response times r,,;. To this aim, we ran a mixed-effects regression
model specifying random effects of participants, including trial num-
ber and block number as nuisance predictors. For Fig. 3i, we preproc-
essed response times by log-transforming and then centring on the
mean, individually for each participant and each block. We preproc-
essed PC1of s\” by centring on the mean, individually for each partici-
pantand each block. Centring both measures across participants allows
ustodirectly test for within-participant differences. Thisrules out the

possibility that all observed differences arose from differences between
participants, such that different participants occupied different states,
whichwere also associated with differences in response times. Instead,
the same participants transitioned through different regions of the
space, which also captured differences in response times.

Multiple repeats and cyclic responses. We then focused on the
structure within participants’ choice sequences. We calculated the
average length of multiple repeats (continuous streaks that repeat the
same action; Fig. 4d), and we counted the number of cyclic responses
(four subsequent trials in which each of the four available actions is
chosenonce; Fig. 4e).

Compressibility ratio. We finally quantified the structure within par-
ticipants’ choice sequences by estimating sequence compressibility
(Fig. 4f). We used the Lempel-Ziv-Welch (LZW) algorithm, a relatively
simple standard compression algorithm for sequential data'°>'*, LZW
firstidentifies the subsequences (forexample, ABCD or AAAA) thatan
original sequence is composed of and then re-expresses the original
sequence interms of these subsequences, hence reducing the sequence
length by taking advantage of repetitions. Sequences that are composed
ofasmallnumber of subsequences (for example, ABCDABCD) are more
compressible than random sequences without such structure (for
example, DADDCBDB). To estimate the compressibility of participants’
choice sequences, we first compressed each block’s original choice
sequence using LZW, obtaining the compressed sequence length [, ,,.
For comparison, we also sampled random sequences of the same length
asthe original blocks (n =150) using the same four elements (A, B, Cand
D). We also compressed these random sequences to obtain the baseline
compressibility, b, ,y, expected for sequences of the same length and
withthe same number of elements, just by chance. Finally, we calculated
theratiobetweenthe length of compressed random sequences and that
of participants’ blocks, obtaining the compressibility score %

Model architectures

Q-learning model architectures. We obtained our Best RL model
by comparing many variants of Q-learning®. In (tabular) Q-learning,
eachaction ais associated with a value Q(a), which approximates the
expected reward of a (ref. 2). Values are learned incrementally over
trials, on the basis of the observed reward. On each trial ¢, the value of
thechosenactionisupdated by afraction a (called the ‘learning rate’)
of the reward prediction error, the discrepancy between the reward r,
and the action value going into this trial, Q,(a):

Q1(a) = Q@) + a x (r; — Qi(a)) @

The standard formulation of Q-learning applies to environments
with multiple states, where taking an action a in state s leads the agent
to state s’. In such environments, the Q-value update includes a term
corresponding to the Q-value of the subsequent state, including a
discountfactor O <y <1.Forexample, the on-policy SARSA algorithm
performs the following Q-value update:

Qe11(8,@) = Qu(s, @) + a X (re + ¥ X Q(s', @) — Q(s, @)

Inthis paper, because the environment does not provide state transi-
tions (forexample, the subsequent state s’does not depend onthe previ-
ousstatesand action a), we use asimplified algorithm without the term
yxQ(s’,a’),following standard conventions in cognitive modelling*>*'.

We compared our RLmodels head-to-head with neural networks.
To make this comparison fair, we included a bias parameter b inthe RL
models. b allows a linear offset in value updates, a freedom that the
neural-network models have by design:

Q@) = Q@) + ax (1, — Q@) + b 2
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Onany trial t, Q-learning agents select an action by transforming
the vector Q,of all four action valuesinto a vector of choice probabili-
ties p, of the same length, using the softmax function. This transfor-
mation can have a ‘lower temperature’, leading to more deterministic
choices by exaggerating differences between action values, or a“‘higher
temperature’, leading to increasingly random choice. Theinverse deci-
sion temperature fis a free parameter of the model:

p; = softmax(f x Q;,) 3)

We call the model based on just equations (1) and (3) ‘Basic RL..
With only two free parameters (a and ), a Basic RL model typically
doesnot predicthuman choices very accurately. Many extensions have
been proposed to improve behavioural fit. We focus on three here:
perseveration, forgetting and variable learning rates. Perseveration
enables actionrepetition (or switching) independently of rewards and
isthe simplest form of reward-independent action-history processing.
The perseveration term c adds a small bonus (of size ») to the value of
the action a that was chosen on the previous time step, but not to all
otheractions ~a:

cla) = »
c;(-—a) =0 )

Q-learning agents that track both perseverationand actionvalues
have anadditive choicerule. The vectors of action values and persevera-
tionare added (to form‘choicelogits’ h,) and pass through the softmax
rule for action selection:

h,=Q,+c,
p; = softmax(8 x h,)

Forgetting was implemented as the exponential decay of each
action value back to Q,;, at which each action value is initialized on
thefirsttrial. Q,,.is afree model parameter that is fitted to participant
behaviour. The decay parameter f, afree model parameter, determined
therate of decay. On each trial, all action values underwent forgetting,
according to:

Q@) = (1) x Q@) + f X Qi 5

Variable learning rates were implemented following a variant of
the classic Pearce-Halllearning rule'*?, adapted to instrumental tasks™.
In this model, each trial ¢’s learning rate a, is updated on the basis of
the previous trial’s reward prediction error 6,. The larger the absolute
value of §,, that is, the greater the ‘surprise’ about an outcome, the
larger the learning rate:

6 =r—Q(a) (6)
Qui1(@) = Q@) + a; x 6, 7)
A1 = WX |6 + (1 —w) x a; (8)

w, afree parameter of the model, is a weighting parameter that deter-
mines how variable (larger w) versus stable (smaller w) a,is over time—a
learning rate onthelearning rate. Atw = 0, learning rates are stable, and
the model reduces to simpler RL model variants. Variable-learning-rate
model variants replace the standard learning rate parameter a with a;,,
the model’sinitial learning rate on the first trial.

In the main text, we sometimes obliterate the subscript ¢ in
equations for better readability. Following common practice, we
restricted the ranges of the free parameters of our Q-learning models
to ensure interpretability. For example, a negative learning rate or

negative forgetting would not be interpretable. We used common
transforms (sigmoid, relu and tanh) to enforce the following ranges
for RLmodels’ free parameters:

Learningrate/initiallearningrate:0<a<1,0 <a,; <1

Updatebias:-1<b<1

Inverse decision temperature: 0 < S <

Perseveration:-1<r~<1

Forgetting: 0 <f<1

Weighting parameter:0<w<1

The initial value Q,,;; was not restricted.

Q-learning model comparison. To identify the best Q-learning model
for our data, we performed a systematic model comparison. We cre-
ated 72 -1=48 model variants based on all parameter combinations.
Supplementary Table 2 shows the results for the most relevant subset
of model variants. Basic RLincluded only two parameters, a and 8. Best
RL included six parameters («a, B,f, —, b and Q,;,). We fitted all models
tothetrainingsplit of our dataset, using the methods describedinthe
following sections, and selected the winner on the basis of the model
fiton the held-out test data.

RL-ANN architecture. RL-ANN has the same structure as Best RL but
contains two neural networks instead of Best RL’s value update and
perseveration operations (Fig. 2b). We first focus on the value update
module, the model’s Reward ANN, and then turn to the perseveration
network, the model’s Action-History ANN. The Reward ANN receives the
sameinputsasthe classic value update (equation (1)), Q. (a) andr,_;,and
produces the same output, Q,(a). Oneachtrial ¢, the Reward ANN’sinput

layer vector ig’) contains the concatenation of its two scalar inputs:

i = [Q1(@). o]

The activations in the hidden layer (the state vector s.”) are
obtained by passing the input vector through the first fully-connected
layer of the network. Inputs are multiplied with the matrix of weights
WA?, the bias vector b’ is added and the resultis passed through atanh
nonlinearity:

(r) (r)s(r) (r)
s = tanh(Wl’ i, +b1’)

The output of the network, Q/(a), is obtained by passing the state
through asecond fully connected layer, parameterized by weights W2(’>
andbias bg’) (thereisnononlinearity in the second layer; hence, values
Qcanbeinterpreted as logits):

Q@) = Ws? + by ©)

Like Best RL, RL-ANN maintains a vector Q,over trials, which con-
tains one value per action. Q/(a) is replaced by the output of equation
(9). All actions in Q, undergo forgetting according to equation (8).
The Reward ANN’s input layer has size 2 (containing Q,;(a@) and r,;),
and the output layer has size 1(Q,(a)). The size of the hidden layer was
determined by a hyperparameter sweep (see below).

RL-ANN’s Action-History ANN alsois a three-layer, fully connected
Multi-Layer Perceptron (MLP). The Action-History ANN receives the
same input as classic perseveration (equation (4)), a,.;, and returns the
same output, a vector ¢, with one perseveration scalar per action. The
network is parameterized by weight matrices w(® and w.”, and biases
b and b{":

i@Df = a;_
(@) (@) , a) (@)
s, =tanh (W1 x i +b; )

¢, = Ws? + bl
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The Action-History ANN’s input layer has size 1, and the output
layer hassize 4 (one per action). The size of the hidden layer was identi-
caltothe reward module’s hidden layer.

Like before, values Q,and perseveration ¢, are combined additively
before passing through the softmax for action selection:

h,=Q,+c¢,

p; = softmaxch,)

Context-ANN architecture. Context-ANN is an extension of RL-ANN
that adds the ability to condition operations on the context (Fig. 3b).
Context-ANN represents the reward context with the vector Q,_; and
theaction context with the vectorc, ;. We chose Q,_; and c,; as context
representations because they are the most succinct summaries of the
past history and represent all four actions. Conditioning is performed
byadding Q,;and c,_;asinputs to the reward module and choice-MLP,
respectively. Inthis way, the networks can learn to modify their opera-
tions on the basis of the additional context information (if this is sup-
ported by human behaviour):

i = [Q1(@), 11, Q]

iga) = [a_1. €]

Everything else remains the same asin RL-ANN (see above).

Memory-ANN architecture. Memory-ANN is our winning model. Itis
an extension of Context-ANN that allows a more flexible context rep-
resentation. Instead of conditioning on the output vectorsQ, ;andc,;,
Memory-ANN conditions on their precursors, the hidden states s

-1
and sgf)l. As asimplification, it removes the dependence on Q,,(a):

i = [r.s0,)

The remaining processing steps are unchanged:

(r) (r)s(r) (r
s, = tanh (Wl’ i,” +b" )

Q@ = Ws? + b

Vanilla RNN model architecture. VanillaRNNis abasic RNN. Oneach
trial ¢, the model receivesinformation about the mostrecentactiona,,
and the reward received after choosing this action, r,;, and returns a
vector of choice logits h,, with one element for each action. Like before,
choicelogits guide the selection of the next action a,, after transforma-
tion into action probabilities using the softmax function:

p, = softmax(h,)

Vanilla RNN is a simple, fully connected, recurrent three-layer
network. It concatenates the inputs a,; (a one-hot vector indicating
the chosen action with 1 and all others with 0) and r,; (a scalar) into a
jointvectori, theinput activations of the network:

i =[a,, 1]

The hiddenlayer (or recurrent states,) is obtained by passing the
input activations through the first layer of fully connected neurons,
parameterized by weight matrix W, and biases b,, in the same way as
above:

s, = tanh(Wji, + b))

Thefinal output, the vector of logits h,, is the result of passing the
state through another fully connected layer, parameterized by weight
matrix W, and biases b,:

h,=W,s, +b,

Action choices are made like before, by passing choice logits
through a softmax function to determine choice probabilities:

p; = softmaxch,)

Model training

Data splits. We randomly split our dataset into three partitions: train-
ing (80% (690) of participants; 3,302 blocks), testing (10% (86) of par-
ticipants; 413 blocks) and validation (10% (86) of participants; 419
blocks). We used the same train-validation-test splits for testing all
models. In other words, the same exact sessions went into the training
splitforeachmodel, adifferent set of sessions went into the testing set
for each model and a third set was used for validation of all models.
We did this to ensure that the resulting model fits were comparable
between models.

Thetraining datawere used to fit the model parameters (for exam-
ple,a, 8, W;and b,) of awide range of models, including allcombinations
of all hyperparameters (for example, the number of hidden units; see
below). The validation data were used to identify the optimal set of
hyperparameters foreach model. The test datawere used to determine
thefit of each selected model (Figs. 2d and 3c). The three-way split was
necessary fortworeasons. The validation split allowed us to find the best
hyperparameters for eachmodel. This ensured that differences in model
fitsreflected differences between model architectures rather than differ-
encesinthe optimality of the chosen hyperparameters. For example, we
canbesurethat no Context-ANN—whatever its hyperparameters—could
ever beat Memory-ANN, because there is no Context-ANN that fits the
databetter thanthe one wereport. The test split was necessary toensure
that models did not overfit to the training data.

Model fitting. All models, both classic variants of Q-learning and
neural networks, were trained with the Adam optimizer, using the
optax package (https://github.com/google-deepmind/optax) for jax
(https://github.com/google/jax). The optimizer learning rate, batch
size, number of training steps, weight decay and number of hidden
units (if applicable) for each model were determined by a hyperpa-
rameter sweep. Each training batch was sampled randomly and with
replacement from the training data. We systematically assessed the
following space of hyperparameters: learning rate, 1 102,1x 107,
1x1075; L2 weight decay, 1x1073,1x10™,1x107; number of the hid-
denunits, 16,32, 64; batch size, 32, 64,128. We trained each model for
1,000,000 steps onthe training data, using five instantiations of each
combination of hyperparameters, and identified the number of train-
ing steps (<1,000,000) and hyperparametersthatled to the best fiton
the validation data. The chosen hyperparameters for each model are
shownin Supplementary Table1.

Fitting objective. The goal of training was to create models that behave
as similarly as possible to humans (rather than to perform the task as
well as possible). We followed standard practices* to achieve this. We
minimized the negative log-likelihood loss (also called cross-entropy)
of each model with respect to the training data. This loss incentiv-
izes model parameters that maximize the (log) probability of jointly
predicting the choices a,; of each participant p on each trial tina
training batch (of size bs), by following stochastic gradient descent
over training batches:

bs Ayials

L=-%% log(pa,))

i=1 t=1

Nature Human Behaviour


http://www.nature.com/nathumbehav
https://github.com/google-deepmind/optax
https://github.com/google/jax

Article

https://doi.org/10.1038/s41562-025-02324-0

The optimal batch size bs was determined individually for each
model on the basis of a hyperparameter sweep (see above). Each task
had n;,s = 150.

To obtain the final fit for each model (Figs. 2d and 3c), we cal-
culated the loss of the variant with the best hyperparameters on the
held-out test data. We calculated the loss separately for each task
block, so that we could assess the variability between participants.
We also transformed model losses into the trial-wise prediction accu-
racy, an estimate of what percentage of human choices are predicted
accurately:

—L
acc=exp| ————
P (bS X Nerigls )

Model analysis

Qualitative model fit. We created a synthetic dataset for each model,
using the hyperparameters (for example, batch size; Supplementary
Table1) and parameters (for example, learning rate « and connection
weights W,) we obtained in model fitting. We simulated behaviour on
the same 4,134 tasks (with the same reward schedules) as human partici-
pants, using ‘open-loop’ simulation (which means that human choices
are unknown to the behaving models). We then subjected human and
model behaviour to the same statistical analyses to uncover qualitative
similarities and differences (Fig. 4).

Model dynamics. We also created ‘closed-loop’ simulations for each
model. Also called ‘teacher forcing’, this means that amodel is forced
to make the same choices asa participant. The model does not sample
its action from the action probabilities it calculates on each trial but
instead automatically selects the teacher’s choice. We used this method
toinspecttheinternal dynamics (for example, trial-by-trial trajectories
of values Q and choice kernel c or memory states s) that our models
assigned toindividual participants (Supplementary Fig. 5).

Modelinspection. The reward module (described above) determines
how observed rewards r,_;, map onto values Q,. We analysed this map-
ping by probing reward modules with the full range of inputs and
measuringtheir output (Fig. 2e). We first extracted the relevant param-
eters (W7, W4, b” and bY’) from the fitted model (RL-ANN or
Memory-ANN). We then initialized a new MLP with the same shape as
the original reward module (for example, for Memory-ANN: 2 input
units, 32 hidden units and 1 output unit) and injected the fitted param-
eters. We uniformly sampled rewardsr,,between1and 100 points. For
RL-ANN, we also sampled values Q,;(a) between the 10% and 90% quan-
tiles of the values observed in the closed-loop dataset. For
Memory-ANN, we sampled hidden state vectors sﬁ?l along thefirst (or
a different) principal component of the hidden states visited in the
closed-loop data; samples were taken up to 1.5 standard deviations
from the mean. We finally collected the outputs Q,(a) of this MLP in
response to each combination of inputs.

The same method was used to analyse the action-history module.
We obtained the corresponding fitted parameters (W\”, A%, b® and
b;“)) andinjected theminto anewlyinitialized MLP. We sampled actions
a uniformly; for Memory-ANN, we also sampled hidden state vectors
s\, using the same method as above. We then collected the output ¢
of the network and visualized the relationship between inputs and
outputs (Supplementary Fig. 6).

To assess the contents of sﬁ’) (Fig. 3j,k), we calculated a separate
regression model for each delay i, predicting the reward observed on
trial £ i on the basis of a PC of the current state s\”. We repeated this
analysis individually for each PC.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The dataset generated for this study is available via the Open Science
Framework at https://osf.io/8xz3w/.

Code availability

The code generated for this study is available via GitHub at https://
github.com/google-deepmind/hybrid_rnns_reward_learning. Please
refer to the Colab provided for asimple demo of how to fit the models
presented here.
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