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Hybrid neural–cognitive models reveal how 
memory shapes human reward learning
 

Maria K. Eckstein    1  , Christopher Summerfield    2, Nathaniel D. Daw    1,3 & 
Kevin J. Miller    1,4 

A long-standing challenge for psychology and neuroscience is to 
understand the transformations by which past experiences shape future 
behaviour. Reward-guided learning is typically modelled using simple 
reinforcement learning (RL) algorithms. In RL, a handful of incrementally 
updated internal variables both summarize past rewards and drive future 
choice. Here we describe work that questions the assumptions of many RL 
models. We adopt a hybrid modelling approach that integrates artificial 
neural networks into interpretable cognitive architectures, estimating a 
maximally general form for each algorithmic component and systematically 
evaluating its necessity and sufficiency. Applying this method to a large 
dataset of human reward-learning behaviour, we show that successful 
models require independent and flexible memory variables that can track 
rich representations of the past. Using a modelling approach that combines 
predictive accuracy and interpretability, these results call into question an 
entire class of popular RL models based on incremental updating of scalar 
reward predictions.

Reward-guided decisions are widely assumed to depend on a small num-
ber of latent variables that concisely summarize the history of actions 
and rewards and are calculated using simple incremental updates after 
each experience. For example, within the framework of reinforcement 
learning (RL), standard cognitive models posit that choices are based 
on ‘Q-values’, which approximate the expected reward associated with 
each action and are calculated by repeatedly applying an incremen-
tal learning rule that compares the actual outcome to its previous 
estimate1,2. Such models are often simply called ‘RL models’, and they 
form the foundation for many studies investigating the psychology and 
neuroscience of reward-guided learning. These models have achieved 
an impressive record of success, providing computational explanations 
for basic as well as complex learning phenomena3–9 and for neural cor-
relates of reward-guided learning in a variety of tasks and species10–12.

However, the literature has also accumulated a number of observa-
tions that these models do not easily account for. For example, indi-
vidual events in the past can disproportionately affect behaviour13–17, 
suggesting that task-relevant memory contains more than Q-value-like 

summary statistics of the reward history. Additionally, behaviour is 
often sensitive to global statistics of the past (for example, the range of 
rewards or the grouping of choice options) that are not easily captured 
by standard RL models18–21. Lastly, neural signals previously thought to 
relate straightforwardly to Q-values have been found to show marked 
diversity that is in tension with standard RL models22–26. These findings 
collectively suggest that the memory representations that humans and 
animals use to make reward-based choices go beyond incrementally 
learned summary statistics and may rely on a variety of additional 
internal memory mechanisms. However, a coherent computational 
account of such a learning algorithm is lacking.

Artificial neural networks (ANNs) are able to model highly expres-
sive functions27. Sequential tasks can be modelled using recurrent 
neural networks (RNNs), which can learn to represent the past using 
high-dimensional internal states; these states are derived by mem-
ory mechanisms that are implemented in a potentially large number 
of trainable network parameters. With the ability to learn complex, 
time-dependent mapping functions, RNNs seem able to capture both the 
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were rewarded according to noisy reward magnitudes that drifted 
over time (a non-stationary ‘bandit’ task; Fig. 1e)37. On each trial of the 
task, the participants selected one of the four actions and were given 
the corresponding reward (Fig. 1d). We collected the dataset online 
(880 participants, 862 of whom passed the inclusion criteria; 4,134 
task blocks; 617,871 valid trials; all participants provided informed 
consent in accordance with Google DeepMind’s Human Behavioural 
Research Ethics Committee, and the study complied with all relevant 
ethical regulations), which is comparable in size to the largest exist-
ing datasets from related tasks38,39. Participants tended to choose the 
actions with larger rewards, indicating that they successfully learned 
the task (average rewards exceeded chance (t861 = 149.2; P < 0.001; 
d = 5.09; 95% confidence interval (CI) of relative rewards, (66.2, 67.9)) 
and were numerically above chance on 4,085/4,134 task blocks; Fig. 1f). 
Both the large size of our dataset and the variability of reward contin-
gencies between participants were crucial to our approach because 
they allowed RNNs and hybrid models to extract additional variance 
compared with basic RL models (Supplementary Fig. 7).

We first modelled this dataset using the two extreme approaches, 
a classic RL-based incremental-update model and a generic RNN. We 
identified the best RL model (Fig. 2a) through systematic comparison 
between many RL model variants, using standard methods40,41 (Sup-
plementary Table 2; implementation details are provided in ‘Model 
architectures’ in Methods). Specifically, we started with the simplest 
model (called ‘Simple RL’), a tabular Q-learner with two free model 
parameters (learning rate and inverse decision temperature), and 
fitted it to participant behaviour by identifying the parameter val-
ues that maximized the negative log-likelihood of human behaviour 
under the model in the training split of the dataset. We then tested a 
variety of modifications to Simple RL that have been explored in the 
literature, including Q-value forgetting4,42 and a parallel perseveration 

long-term dependencies and the potentially complex learning mecha-
nisms that underlie human behaviour during reward-based learning28–31. 
These networks have the advantage that they typically capture more 
behavioural variance than handcrafted cognitive models, provid-
ing an estimate of the model performance that is possible for a given 
dataset30,32,33. However, fitting behaviour with RNNs typically comes at 
the expense of interpretability—unlike in classic cognitive modes such as 
RL, in which each parameter serves a prescribed role, their computations 
typically require substantial additional work to interpret34,35.

A budding research field has started to combine ANNs and classic 
cognitive models28,31–33,36. Whereas handcrafted cognitive models are 
interpretable but frequently underfit the data, ANNs are sufficiently 
expressive to model complex behaviours but usually hard to under-
stand. For example, Peterson et al.36 iteratively replaced components of 
a classic computational model with more expressive ANN counterparts 
to test increasingly general theories of human decision-making, using 
gambling tasks. Here we extend this approach to study reward-based 
learning and memory, which requires modelling both how informa-
tion about the past is integrated into memory and how the contents 
of memory are used to guide choice. To do this, we created a hybrid 
neural–cognitive method that flexibly interpolates between a classic 
RL model (Fig. 1b) and an RNN (Fig. 1c). Iteratively replacing RL model 
components with flexible ANNs, we measured which relaxation of con-
straints improved the model’s ability to capture human behaviour. We 
then inspected the best model’s fitted ANN modules to shed light on 
the underlying mechanisms and to understand how experience shapes 
memory representations and how these representations drive choice.

Results
We collected a large dataset from a reward-learning task in which human 
participants repeatedly chose among four possible actions, which 
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Fig. 1 | Overview. a–c, Cognitive modelling. Panel a illustrates reward-based 
learning. Reward-based learning tasks involve choosing one action at a time to 
win a reward, in an iterative fashion involving many trials. Panel b illustrates an 
incremental-learning model. Variants of RL, specifically Q-learning, are popular 
behavioural models for such tasks. Q-values approximate the expected reward 
associated with each action on the basis of an incremental, trial-wise delta-rule 
update. Panel c illustrates an ANN model. While classic cognitive models facilitate 
understanding of the underlying mechanism, ANNs typically predict empirical 
behaviour more accurately. d–f, Experimental design. Panel d shows the task 
procedure. On each trial, participants saw the same four stimuli, pressed a key 
to select one and obtained the corresponding reward (1–100 points). Each task 

lasted for 150 trials. Panel e shows examples of procedurally generated protocols. 
Each row shows the protocol for one of three example participants. The number 
of points available for each action diffused over time (left), independently for 
each action (colour). A different reward schedule was used for each participant 
and each task block. Participants’ choices (right) reflected individual reward 
schedules. Panel f shows aggregate performance. Each participant (grey dots) 
performed multiple task blocks (horizontal axis). ‘Relative reward’ is a measure 
of task performance that is comparable across different reward schedules (see 
‘Behavioural analyses’ in Methods). The black dots show means over participants, 
and the error bars (almost invisible) indicate standard errors.
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module that learns from actions rather than rewards7,43,44. Among all 
tested RL model variants, we identified a winning model with six free 
parameters, called ‘Best RL’. Best RL consists of two submodules. The 
‘reward module’ takes as inputs the observed reward, denoted rt, and 
the value, Qt(at), of the action at that led to this reward, and calculates an 
updated Q-value, Qt+1(at), for this action, using the equations specified 
in Fig. 2a (left). In Best RL, Q-values Qt+1(at) hence are linear in both the 
reward rt and the previous value Qt(at), such that larger rewards and 
larger previous values lead to monotonically larger updated values 
(Fig. 2e). Best RL’s forgetting mechanism gradually decays Q-values 
back to the initial value Qinit. The reward module hence captures pure 
reward-based learning. In addition, Best RL has an ‘action module’, 
which takes as input the previous action, at, and sets its persevera-
tion indicator ct+1(at) to a value determined by a free parameter. This 
allows the model to express either action repetition (ct(at) > 0) or action 
switching (ct(at) < 0). Perseveration for all other actions, ct+1(a ≠ at), is 
0 (Fig. 2a, right). The outputs of both modules, ‘reward logits’ Qt+1 and 
‘action logits’ ct+1, are combined additively before sampling the action 
at+1 that is taken on the next trial (for the model details and equations, 
see ‘Model architectures’ in Methods).

Best RL is a prime example of a classic handcrafted cognitive 
model: each mechanism is clearly defined by simple equations, which 
are modified by just a small number of interpretable model parameters 
(for example, the inverse decision temperature, β). However, these 
constraints limit the model’s expressivity and potentially its ability to 
capture human behaviour. To assess whether this is the case, we com-
pared Best RL to a highly expressive ‘Vanilla RNN’, which can employ a 
large number of free parameters to model increasingly complex func-
tions. At the core of Vanilla RNN is a recurrent memory module that 
allows the model to directly share its high-dimensional hidden-layer 
activations, the latent state st, with itself on subsequent trials (for 
details and equations, see ‘Model architectures’ in Methods; Fig. 2c). 
This allows Vanilla RNN to rely on a rich and flexible memory of past 
trials when making choices. Compared with Best RL, Vanilla RNN has 
the additional advantage of processing all inputs (at, rt and sst) jointly, 
allowing it to identify arbitrarily complex interactions between them. 
(Besides the basic RNN architecture, we also fitted more sophisticated 
sequence models such as long short-term memory networks (LSTMs45 
and transformers46, which led to qualitatively similar results; see ‘Addi-
tional model fits’ in the Supplementary Information.)
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Fig. 2 | Best RL and RL-like models. a–c, Model architectures. Best RL (a) is the 
best handcrafted model based on Q-learning, identified using extensive model 
comparison (Supplementary Results and Supplementary Table 2). It contains 
a standard Q-value update (left oval) with decay of unchosen action values (left 
oval, dotted recurrent arrows for Q(¬a)), as well as a reward-agnostic choice 
perseveration mechanism (right oval). The outputs of both computations 
are combined additively to sample the next choice. RL-ANN (b) has the same 
architecture as Best RL, consisting of a reward module that computes Q-values 
(left oval) and an action module that computes a perseveration kernel (right 
oval). However, RL-ANN uses ANNs to allow each module to perform any update 
rule, making it a generalization of linear update models that encompasses Best 
RL as a special case. Vanilla RNN (c) is a standard RNN and the most flexible 
model. It provides an upper bound in terms of behavioural prediction. d, Model 

fits. Predictive accuracy was derived from the loss of each fitted model to held-
out participants not seen during training (see ‘Model training’ in Methods). Best 
RL and RL-ANN predicted human choices significantly worse than Vanilla RNN, 
with no significant difference between them, according to two-sided t-tests (see 
the main text for statistics). The data are presented as mean values over held-out 
blocks (n = 413) plus/minus s.e.m. e,f, Reward processing. In classic Q-learning 
as modelled by Best RL (e), updated values Qt+1(at) increase monotonically both 
in the observed reward rt and in the previous value Qt(at) (colour), with strictly 
linear relationships (for model details and equations, see ‘Model architectures’ in 
Methods). After fitting to human behaviour, RL-ANN (f) acquired a qualitatively 
similar update rule with monotonically increasing and near-linear relationships. 
For ease of visualization, we averaged sampled values Qt(at) (colour) within 
quantile groups to obtain discrete lines.
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We fit both models to our human data using a cross-entropy 
loss (equivalent to negative log-likelihood) that quantified how well 
each model predicted human choices. Note that the models were not 
trained to find the reward-maximizing policy for the task but to recre-
ate the observed human data as accurately as possible. This approach 
is sometimes referred to as ‘system identification’ in engineering47 or 
‘behavioural cloning’ in machine learning48,49. We evaluated all models 
by cross-validating over participants. This amounts to using a subset of 
participants to identify the algorithm that best predicted the behaviour 
of the remaining participants, who completed a different set of task 
schedules. We trained all models on the same 80% of participants 
(690 participants; 3,302 task blocks) and tested all models’ predictive 
performance on the same held-out 10% (86 participants; 413 blocks), 
using the remaining 10% (86 participants; 419 blocks) to select the best 
hyperparameters for each model (for example, the number of hidden 
units). Training, validating and testing on different sets of partici-
pants eliminates the risk that increasingly flexible models overfit to 
the training data, and it makes models with different numbers of free 
parameters directly comparable (see ‘Model training’ in Methods and 
Supplementary Table 1). We confirmed that different models were 
behaviourally distinguishable by generating synthetic behaviour from 
each model and confirming that the correct model could be identified; 
this was generally possible because less-flexible models were unable to 
imitate more-flexible ones (Supplementary Fig. 1). In terms of model 
comparison, we found that Vanilla RNN predicted the behaviour of 
unseen participants substantially better than Best RL, correctly antici-
pating 68.3% (95% CI, (66.9%, 69.7%)) of unseen participants’ choices, 
compared with just 60.6% (95% CI, (59.2%, 62.0%)) by Best RL (chance 
is 25%; Vanilla RNN versus Best RL, paired t-test: t412 = 28.9, P < 0.001, 
d = 1.39; Fig. 2d). This confirms that, as expected, Vanilla RNN can pre-
dict human behaviour more accurately than the best classic RL model. 
A data sensitivity analysis (Supplementary Fig. 7a) showed that Vanilla 
RNN’s advantage became increasingly prominent for increasing sizes 
of training data, indicating that collecting more data can improve the 
extraction of systematic behavioural variance.

Next, we created a series of models that interpolate between the 
extremes of Best RL and Vanilla RNN. We first created a hybrid model 
that inherits the architecture of Best RL (Fig. 2a) but replaces its hand-
crafted equations with flexible ANNs (Fig. 2b). As in Best RL, the reward 
module is responsible for updating the chosen action’s Q-value at 
each time step. The module has access to the previous reward rt (for 
example, ‘received 70 points’) and value Qt(at) (for example, ‘expected 
50 points’), but not the identity of the chosen action at (for example, 
‘pressed the D key’). In turn, the action module updates the chosen 
action’s perseveration indicator, for which it has access only to the 
previous action at (for example, ‘pressed the D key’). Unlike Best RL, 
both modules use flexible ANNs to map their respective inputs to the 
corresponding updated output. This model, which we call ‘RL-ANN’, is 
motivated by the insight that Best RL’s strictly linear Q-value updates 
(Fig. 2e) (in conjunction with Best RL’s restrictive perseveration 
mechanism; Supplementary Fig. 6) might be insufficient to capture 
human learning. For example, existing models propose that value 
updates might depend on reward in various nonlinear ways19,50, but 
the strictly linear Q-learning model does not account for possibili-
ties like these. Similarly, values might depend nonlinearly—or even 
non-monotonically—on previous values and rewards, but the model 
does not express this possibility. By replacing Best RL’s linear update 
equations with generic ANNs, we were able to simultaneously test all 
nonlinear model variants of this kind, without the necessity of speci-
fying each one by hand. During training, RL-ANN’s value and action 
modules have the flexibility to acquire update rules of any functional 
form and will settle on the one that allows the model as a whole to best 
match human behaviour. In this sense, RL-ANN represents a whole class 
of cognitive models: any model that shares Best RL’s architecture can 
in principle be instantiated by RL-ANN, independent of the specific 

functional form of its updates (for an example, see Supplementary 
Fig. 1). When we assessed how well RL-ANN predicts the behaviour of 
unseen participants, however, this added flexibility did not close the 
gap to Vanilla RNN (RL-ANN: 60.8%; 95% CI, (59.4%, 62.3%); Vanilla RNN: 
68.3%; 95% CI, (66.9%, 69.7%); paired t-test: t412 = 32.7, P < 0.001, d = 1.35; 
Fig. 2d; also see Supplementary Fig. 3 for additional variants of Best 
RL). This suggests that there is no RL-like model—defined as a model 
that shares Best RL’s cognitive architecture, albeit with complete flex-
ibility in terms of the implemented functions—that can predict human 
behaviour on our task as well as Vanilla RNN. This shows that there exist 
no modifications to Best RL’s update rules that improve the prediction 
of human task behaviour.

Perhaps surprisingly, RL-ANN did not significantly improve pre-
dictions compared to Best RL (RL-ANN: 60.8%; 95% CI, (59.4%, 62.3%); 
Best RL: 60.6%; 95% CI, (59.2%, 62.0%)); paired t-test: t412 = 1.54, P = 0.12, 
d = 0.70), suggesting that Best RL’s original update rules might already 
be the best in its class. To see if this was the case, we conducted two 
analyses. We first inspected RL-ANN’s learned update functions and 
compared them to their handcrafted counterparts in Best RL. This analy-
sis can reveal whether among all possible mechanisms RL-ANN could 
implement, human behaviour lent the most support to the special case 
of Best RL. We visualized Best RL’s Q-value update (Fig. 2e) by calculating 
the updated values Qt+1(at) for every combination of inputs (0 < rt < 100 
points; 0 < Qt(at) < 1), using the standard Q-value equations (Fig. 2a, left; 
see ‘Model analysis’ in Methods). We also visualized RL-ANN’s Q-value 
update by extracting the fitted reward module and probing it across 
its range of inputs (0 < rt < 100 points; Qt(at) between the 5th and the 
95th percentile of observed Q-values), while recording its outputs 
Qt+1(at). Indeed, RL-ANN showed an update rule that was monotonic and 
approximately linear in both rt and Qt, similar to Best RL (Fig. 2f), sug-
gesting that human behaviour was best approximated by an algorithm 
very similar to RL. The corresponding analysis of the action module is 
shown in the Supplementary Results (Supplementary Fig. 6a). Second, 
we generated and analysed synthetic behavioural data from both Best 
RL and RL-ANN, assessing whether the slight differences in the update 
rule between both would lead to meaningful differences in behaviour. 
We used each trained model to simulate a behavioural dataset with 
the same characteristics as the human dataset (the same sample size, 
reward schedules and train–test–validation split; see ‘Model analysis’ in 
Methods). We found that behavioural datasets from both models were 
qualitatively similar (Supplementary Figs. 10 and 11) but differed from 
human behaviour (Fig. 4). Thus, even when given the opportunity to 
learn new, more expressive operations for updating Q-values, RL-ANN 
approximately recovers the simple solution found in classic RL models 
and, like them, falls short in predicting human behaviour (Fig. 2d).

Our second hybrid model aims to address this issue by gener-
alizing the architecture further and considering a broader space of 
models. It is inspired by the finding that learning is affected not only 
by properties of the chosen option but also by those of options that 
were available but not chosen, a notion commonly referred to as 
‘context’18,19,21,51,52. For example, an action that won 50 points might be 
processed differently depending on whether other available actions 
were expected to win 10 points or 90. To allow for this possibility, we 
provided the ‘Context-ANN’ model with additional connections that 
allow learned information about unchosen actions to modify the learn-
ing rule (Fig. 3b). Context-ANN’s reward module receives as additional 
input its own value estimates Qt (the previous trial’s Q-values of all four 
actions); the action module receives as additional modulatory input ct 
(the previous trial’s perseveration indicators for all four actions). These 
modulatory inputs allow Context-ANN to adopt any learning algorithm 
that can be expressed as a function of the primary input (rt, at) and the 
corresponding choice variables for all available actions (Qt, ct). In model 
comparison, Context-ANN fit human behaviour substantially better 
than RL-ANN, increasing the percentage of correctly predicted choices 
from 60.8% (95% CI, (59.4%, 62.3%)) to 65.4% (95% CI, (63.9%, 66.9%); 
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paired t-test: t412 = 28.3, P < 0.001, d = 1.27; Fig. 3d). Each module played 
a unique role in improving the prediction accuracy (Supplementary 
Tables 3 and 4). Nevertheless, Context-ANN still fell short of Vanilla 
RNN (68.3%; 95% CI, (66.9%, 69.7%); paired t-test: t412 = 16.8, P < 0.001, 
d = 0.83), indicating that the inclusion of context processing was not 
sufficient to capture human behaviour on our task and that an even 
more flexible architecture is required.

We hence turned to the role of memory processing, testing 
whether a model that can retain a richer representation of the past can 

explain human behaviour better than previous models. Indeed, several 
studies have shown that both recent53 and distant13,17 outcomes affect 
human learning in ways that cannot be explained by incremental updat-
ing alone. It has also been suggested that humans keep track of addi-
tional latent variables beyond Q-values—for example, remembering 
past prediction errors to adapt the future speed of learning54. (We 
implemented several versions of such variable-learning-rate models, 
which showed slightly better performance than Best RL but still fell far 
short of Vanilla RNN; see ‘Model architectures’ in Methods and 
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Fig. 3 | Interpretability. a–c, Model architectures. Context-ANN (b) and 
Memory-ANN (c) were incremental extensions of RL-ANN (a). d, Model fits. Both 
Context-ANN and Memory-ANN provided significant improvements, with 
Memory-ANN not differing from the predictive accuracy of Vanilla RNN, 
according to two-sided t-tests (see the main text for statistics). The data are 
presented as mean values over held-out blocks (n = 413) plus/minus s.e.m.  
e–i, Model algorithms. Panel e shows the Best RL Q-value update (details in Fig. 2e).  
Panel f shows the Memory-ANN Q-value calculation. Memory-ANN implements a 
monotonic but nonlinear, sigmoidal function (Supplementary Fig. 8b), mapping 
higher rewards onto higher values. The colours show the first principal 
component (PC1) of the memory state s(r)t , which we interpret as reward 
sensitivity. The reference point (Qinit) indicates the initial Q-value, towards which 
values of non-chosen actions gradually decayed. As shown in g, Q-values change 
over time. When iteratively probed with the same reward magnitude rtest (colour), 
Memory-ANN produces different Q-values Qt+1(at) depending on the trial t. Panel 
h shows how Q-values are based on prior history. Different states s(r) were 
obtained by subjecting Memory-ANN to 150 different iterations of observing 
reward rprime (colour). Injecting different states s(r) led to wide variations in the 

response to the same rtest, which was given for 150 time steps. As shown in i, the 
state encodes the reward history at multiple timescales. Coefficients were 
obtained from regressing past rewards r1:t−1 against each PC of s(r)t  (see 
‘Behavioural analyses’ in Methods). Some PCs showed sensitivity to the most 
recent history of rewards, while others showed sensitivity to the long-term 
history of rewards. j, PC1 update. The memory representation s(r)t  is affected by 
incoming rewards rt. PC1 of s(r)t  exhibits monotonic, near-linear, incremental 
integration. k,l, Behavioural relevance. PC1 modulates the behavioural response 
(k). The mapping from reward magnitudes to action reselection (‘Percent stay’) is 
modulated by PC1 of s(r)t  (colour). P < 0.001 in paired, within-participant, 
Bonferroni-corrected, two-sided t-tests comparing stay frequency between 
PC1 ≤ 0 and PC1 > 0, separately for each bin of reward magnitudes (x axis). PC1 
also predicts response times (l). The relation between PC1 of s(r)t  (fitted to human 
behaviour) and response times (RTs) (log-transformed; both mean-centred 
within blocks) is shown. The data are presented as mean values over all blocks 
(n = 4,134) for each PC1 bin, plus/minus 95% bootstrapped CIs. P < 0.001 in 
mixed-effects linear regression (see the main text).
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Supplementary Results). To test whether the ability to retain richer 
representations of the past is crucial to explain learning in our task, we 
created our final hybrid model: Memory-ANN. Whereas Context-ANN 
receives the modulatory inputs Qt and ct to account for unchosen 
actions, Memory-ANN requires inputs that have potential access to the 
entire task history and could represent any summary statistic thereof, 
including high-dimensional and nonlinear ones. The latent states of 
an RNN have precisely these properties. We hence replaced the reward 
module’s inputs, Qt and Qt(at), with the activities of the reward module’s 
hidden units from the previous time step, which we denote s(r)t  (this 
turns the reward ANN into a reward RNN). Likewise, we replaced the 
action module’s input ct with the previous activities of its hidden units, 
s(a)t  (turning the action ANN into an action RNN; Fig. 3c). These modi-
fications have the effect of explicitly separating memory variables (s(r)t  
and s(a)t ) from choice variables (Qt and ct), which in previous models 
were assumed to be identical. Hence, Memory-ANN has the ability to 
express a wide range of memory-based learning models that are based 
on modulating reward (and action) processing on the basis of any 
learned features of the reward (and action) history. Note, however, that 
Memory-ANN is still more constrained than Vanilla RNN: the same 
update applies regardless of which action is being updated, the values 
of all unchosen actions decay strictly exponentially, reward processing 
does not have access to past or present actions and vice versa for action 
processing, and the outputs of reward and action processing are com-
bined by simple addition. Memory-ANN improved the prediction of 
human behaviour substantially compared with Context-ANN 
(Context-ANN: 65.4%; 95% CI, (63.9%, 66.9%); Memory-ANN: 68.3%; 95% 
CI, (66.9%, 69.7%); paired t-test: t412 = 17.9, P < 0.001, d = 0.95; Fig. 3d). 
Most importantly, Memory-ANN’s predictions were not significantly 
different from those of Vanilla RNN, the most general model we tested 
(Memory-ANN: 68.3%; 95% CI, (66.9%, 69.7%); Vanilla RNN: 68.3%; 95% 
CI, (66.9%, 69.7%); paired t-test: t412 = 0.32, P = 0.75, d = 0.14). This indi-
cates that Memory-ANN extracted all systematic variance in the dataset 
that can be extracted by an RNN, suggesting that its architectural 
constraints (Fig. 3c) identified relevant biases in human behaviour. 
Indeed, there was no constraint whose removal improved model pre-
diction (Supplementary Tables 4, 5, 7 and 8). Taken together, these 
results suggest that our participants performed the task by creating 
rich memories of reward and action history and used them to guide 
reward learning.

What mechanisms underlie the learning processes in 
Memory-ANN? To answer this question, we inspected the functions 

learned by the neural network modules during model fitting. We first 
considered reward processing, evaluating the reward module by prob-
ing it across its range of inputs (rt and s(r)t ) while recording its outputs 
Qt+1(at) (see ‘Model analysis’ in Methods). We found that the reward 
module maps rewards rr onto new values Qt+1(at) in a monotonic, 
roughly sigmoidal way (Fig. 3f and Supplementary Fig. 8b). Notably, 
the reward module does not have access to previous values Qt(at) (nor 
can it reconstruct them using its hidden state input s(r)t ), which means 
that Memory-ANN does not take into account previous values Qt(at) 
when calculating new values Qt+1(at). This is in stark contrast to most 
RL models, which posit that values are learned incrementally. Instead, 
Memory-ANN simply maps large rewards onto large Q-values and small 
rewards onto small Q-values, without calculating reward prediction 
errors or incremental updates. If Memory-ANN’s latent state s(r)t  was 
fixed over time (Supplementary Fig. 12a), this simple mapping mecha-
nism would lead to somewhat rigid choice behaviour (Supplementary 
Fig. 12b). However, the flexibility of the latent state enables adaptive 
choices: s(r)t  follows a stereotypical trajectory over the time course of 
a task (Supplementary Fig. 5f), which leads to a gradual change in the 
assignment of Q-values to rewards as the task progresses. To assess 
this, we initialized a fresh reward module and probed it with sequences 
of identical rewards, recording the resulting Q-values. Across the range 
of rewards, earlier trials lead to smaller Q-values than later ones, which 
can support a behavioural shift from more ‘exploratory’ to more 
‘exploitative’ choices (Fig. 3g and Supplementary Results). s(r)t  also 
adapts the calculation of future Q-values by encoding complex 
moments summarizing the history of rewards. We forced a fresh reward 
module into several extreme states by priming it with different reward 
sequences and tested its responses to a new reward. This reward elicited 
tremendously different Q-values depending on the injected state, an 
effect that took up to several dozen trials to disappear (Fig. 3h). We 
finally causally probed the role of state s(r) by injecting activity into 
different principal components (PCs), observing the corresponding 
short- and long-term perturbations in the calculation of Q-values (Sup-
plementary Fig. 12e), and testing the effects of individual trigger 
rewards (Supplementary Fig. 12c) or reward sequences (Supplementary 
Fig. 12d) on state s(r).

We next identified the mechanisms by which s(r)t  biases the calcula-
tion of Q-values. We conditioned the trained Memory-ANN on each 
participant’s action sequence to obtain, for each participant, the 
trial-by-trial sequence of latent variables Q, c, s(r) and s(a) (Supplemen-
tary Fig. 5a–g), and applied principal component analysis to s(r). The 

Fig. 4 | Behavioural model validation. a–g, Comparison of human and simulated 
model behaviour. As shown in a, humans prefer increasing rewards. Humans 
(top left) repeated a choice (‘stayed’; y axis) more often when the rewards for 
this choice had increased (positive reward change; x axis) rather than decreased 
(negative reward change) on the previous two trials. Best-RL (Supplementary Fig. 11a)  
and RL-ANN (top right) showed the inverse pattern, whereas Context-ANN and 
Memory-ANN qualitatively reproduced the effect. The data are presented as 
mean values over blocks (n = 4,134) for each reward change bin, plus/minus 
95% bootstrapped CIs. Panel b shows example action sequences. These are 
raw sequences of chosen actions (coloured circles) from humans and models 
performing the reward schedule shown in the top row of Supplementary Fig. 5a.  
Humans showed two common patterns: multiple repeats, extended periods 
of the same action (grey lines); and cyclic responses, sets of four sequential 
trials in which each action was sampled once (black lines). Panel c shows the 
effect of reward change on stay probability (see a). The data are presented as 
the regression coefficients from the model stay ~ reward × reward_change 
(n = 862 participants), plus/minus standard errors of the coefficient estimates. 
As indicated in d, humans showed longer sequences of identical actions (average 
length, 6.9; 95% CI, (6.1, 7.6)) than expected by chance (chance length, 1.3; 
t861 = 14.6, P < 0.001, d = 0.50) or seen in RL-ANN (average length, 4.5; 95% CI, 
(3.9, 5.1); t861 = 9.4, P < 0.001, d = 0.32) and Context-ANN (average length, 5.5; 95% 
CI, (4.8, 6.1); t861 = 5.4, P < 0.001, d = 0.19). Memory-ANN sequence length did 
not differ from that of humans (average length, 7.5; 95% CI, (6.8, 8.3); t861 = −1.8, 

P = 0.075, d = 0.06). As shown in e, human choices contained more cyclic 
sequences than synthetic data (human mean, 5.37; 95% CI, (5.01, 5.68); RL-ANN 
mean, 2.68; 95% CI, (2.59, 2.76), t861 = 10.9, P < 0.001, d = 0.37; Context-ANN mean, 
3.87; 95% CI, (3.77, 3.97), t861 = 7.77, P < 0.001, d = 0.26). Memory-ANN produced 
the qualitatively closest number of cyclic sequences compared to humans 
(Memory-ANN mean, 4.62; 95% CI, (4.48, 4.76), t861 = 5.7, P < 0.001, d = 0.19). As 
shown in f, we used the Lempel–Ziv–Welch algorithm to compress human and 
model action sequences (see ‘Behavioural analyses’ in Methods), quantifying 
systematic temporal structure. Human sequences were substantially more 
compressible than those of RL-ANN and Context-ANN (human mean, 1.73; 95% CI, 
(1.70, 1.76); RL-ANN mean, 1.45; 95% CI, (1.44, 1.45), t861 = 20.48, P < 0.001, d = 0.70; 
Context-ANN mean, 1.60; 95% CI, (1.59, 1.61), t861 = 9.47, P < 0.001, d = 0.322). 
Memory-ANN compressibility did not differ from that of humans (mean, 1.74; 95% 
CI, (1.72, 1.76), t861 = 0.69, P = 0.49, d = 0.02). In d–f, the data are presented as violin 
plots of the raw data distribution (n = 862 participants) and error bars indicating 
95% CIs of the mean. P < 0.001 in paired, two-sided t-tests. Panel g shows the 
integration timescale. Weights of trial-history regression models trained to 
predict future choices on the basis of past choices and rewards (see ‘Behavioural 
analyses’ in Methods) are plotted. Only Memory-ANN reproduced the patterns 
seen in human behaviour qualitatively. The data are presented as mean values 
over participants (n = 862) for each trial, plus/minus 95% bootstrapped CIs. (The 
corresponding plots for Simple RL, Best RL and Vanilla RNN for all these measures 
are shown in Supplementary Figs. 10 and 11).

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02324-0

first component (PC1) modified the gain of the sigmoidal mapping 
from rewards to Q-values, effectively controlling the sensitivity of 
Q-values to reward magnitude (Fig. 3f). At high gains (blue), even small 

reward differences lead to large differences in Q-values, whereas at 
small gains (yellow), large reward differences are required to produce 
moderate differences (Fig. 3f). We therefore interpreted PC1 as tracking 
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the model’s current sensitivity to reward. Confirming this interpreta-
tion, we found that large values of PC1 are associated with a high prob-
ability of repeating a choice that led to a large reward and a small 
probability of repeating a choice that led to a small reward, while low 
values of PC1 are associated with a shallower relationship (Fig. 3k). The 
value of PC1 also correlated with participants’ response times, showing 
that a model-derived variable predicted behaviour in a dimension that 
was not included in the training data (mixed-effects regression, 
slope = −0.968.9, z = −13.3, P < 0.001; Fig. 3l). These modulations 
occurred within participants, showing that fluctuations in reward 
sensitivity captured gradual changes in participants’ behavioural 
strategies, rather than individual differences between participants. 
(For more discussion of individual differences, see Supplementary 
Results.) Subsequent PCs affected the gain, range, bias and scale of the 
sigmoid (Supplementary Fig. 8). This mechanism enables Memory-ANN 
to flexibly adapt its behaviour to the current reward context. The cor-
responding analysis for Memory-ANN’s action module is shown in the 
Supplementary Results (Supplementary Fig. 6a).

How does s(r)t  represent the past history? We first determined how 
new information alters existing representations. We probed the reward 
module across its range of inputs (rt and s(r)t ), this time collecting the 
latent state s(r)t+1 as the output. We found that PC1 (reward sensitivity) 
integrated rewards in a monotonic, near-linear way, increasing slightly 
after big rewards and decreasing slightly after small ones (Fig. 3j). Several 
other state PCs showed similar monotonic, near-linear integration pat-
terns, exhibiting steeper (for example, PC3 and PC4) or shallower slopes 
(for example, PC5) (Supplementary Fig. 8). This supports the notion 
that s(r)t  integrates new rewards using parallel update rules with a variety 
of integration timescales (see also Supplementary Fig. 12). We next 
assessed the contents of the representations, using a decoding analysis. 
For each delay i, we used lagged regression to predict each state PC from 
the reward rt−i. We found that a subset of PCs showed large regression 
weights to just a handful of the most recent rewards, consistent with the 
idea that these PCs track individual recent outcomes while being insensi-
tive to all earlier events (Fig. 3i, left). Some other PCs were sensitive to 
the entire history of rewards, potentially providing a baseline for how 
reward-rich the environment is overall, and whether this is changing for 
better or for worse (Fig. 3i, right). These results were consistent across 
multiple independent runs of Memory-ANN (Supplementary Fig. 2) and 
were recoverable when Memory-ANN was fit to synthetic data (Sup-
plementary Fig. 1). These findings indicate that Memory-ANN flexibly 
modulates the mapping from rewards and Q-values, continuously 
adjusting to the time on task and the reward history.

Finally, we tested whether Memory-ANN captured qualitative 
features of human behaviour that more restricted models were unable 
to capture55. We used each fitted model to simulate task behaviour 
‘open-loop’ (without knowledge of human choices), and on the same 
tasks as humans (see ‘Model analysis’ in Methods). First, we sought a 
behavioural signature of the history-dependent processing of reward 
sequences. For this, we considered pairs of trials in which the same 
action was selected twice in a row, and we quantified the tendency to 
select that action again on the following trial as a function of the change 
in reward magnitudes (Fig. 4a). Best-RL (Supplementary Fig. 11a) and 
RL-ANN preferred actions for which the second-most-recent reward rt−1 
was larger than the most recent reward rt (colour), on which we condi-
tioned. This arises because these models make choices on the basis of 
running averages, and a larger reward in the past increases this average. 
Humans, in contrast, preferred actions whose second-most-recent 
rewards were lower56,57, as if anticipating that a recent increase in 
reward magnitudes will continue in the future. Only Context-ANN 
and Memory-ANN reproduced this effect qualitatively (Fig. 4a,c). This 
shows that memory representations need to contain information 
about unchosen actions or task history to capture how participants 
modify their responses. Second, we assessed behavioural patterns 
related to the history-dependent processing of actions. We focused 

on stereotyped action sequences, such as multiple repeats (AAAA) and 
cyclic responses (ABCD), in which the time horizon extends for multiple 
trials58. Memory-ANN was able to capture the strong human preference 
for such multi-trial patterns, while no other model was able to do so 
(Fig. 4b,d–f). The prevalence of these behavioural motifs implies that 
human participants committed to stretches of exploiting an action they 
believed was best (AAAA), interspersed with brief episodes of system-
atically exploring whether a different action might be better (ABCD)59. 
We then characterized the overall structure within the observed choice 
patterns, computing the compressibility of all action sequences using 
a standard algorithm (see ‘Behavioural analyses’ in Methods) and com-
paring humans to model predictions (Fig. 4f). Only Memory-ANN 
achieved a similarly high compression ratio as humans; Context-ANN 
showed intermediate compressibility, and RL-ANN showed the low-
est compressibility. This reveals that the choices of humans and of 
Memory-ANN had structured relationships with other choices nearby, 
which was less the case in simpler models. Finally, we assessed the his-
tory dependence of actions using lagged regression60. We found that 
participants showed shallow and non-monotonic history dependence 
that was reproduced by Memory-ANN but not by other models (Fig. 4g). 
Memory-ANN hence captures a range of patterns that are characteristic 
of human behaviour, including many that violate classic models. While 
some of these patterns have been described in the past14,56–59,61, they 
have not previously been captured in a single model. It is a challenge 
in computational cognitive science that the identification of new pat-
terns often leads to the creation of idiosyncratic model features and 
a multiplication of model architectures, rather than consolidation in 
a single framework.

Discussion
In psychology and neuroscience, reward-learning behaviour is com-
monly understood using computational models based on Q-learning, 
in which memory consists entirely of a set of incrementally updated 
decision variables. We have shown that this family of models cannot 
adequately account for reward-guided learning in humans, using a large 
dataset from a classic reward-learning task and a systematic model 
comparison approach that integrates deep neural networks into clas-
sic cognitive architectures. We identify instead a model that contains 
both decision variables that drive choice directly and a set of latent 
memory variables that modulate the update of these decision vari-
ables but do not directly drive choice. These memory variables track 
a complex history of rewards and choices over multiple timescales. 
We show that this model captures human behaviour in detail, both 
reproducing a number of intricate features of the dataset and matching 
generic neural networks in quantitative quality of fit. At the same time, 
it is interpretable as an algorithmic model of human reward learning.

Recent work implicitly recognizes the complexity of how humans 
use memory in reward-learning tasks, highlighting that learning pro-
cesses often operate at multiple different timescales. This has been 
framed as a multiplicity of memory mechanisms13,14,53,62–65 and is consist-
ent with evidence that the brain represents task-history information 
at a diversity of timescales26,66–68. Memory beyond decision variables 
is also present in several handcrafted models of human reward learn-
ing. For example, Bayesian inference models37,69,70 track a measure of 
the model’s uncertainty that creates non-Markovian dependencies 
between choice variables, variable-learning-rate models71,72 track a 
measure of environmental volatility, and actor-critic models73,74 and 
reference-point models75 track an action-independent measure of 
expected value. However, all these models are based on handcrafted 
equations, and the ones we have tested here fall short compared with 
more flexible ANN-based models. Memory-ANN reveals that learning 
at different timescales is supported by a flexible recurrent memory 
system that is one step removed from behavioural choice, and it shows 
that the way in which observed outcomes are mapped to future choices 
is a complex, yet interpretable, function of task history.
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The cognitive architecture of Memory-ANN is modular in two 
ways. First, reward-based learning and action-based learning are 
divided into two parallel modules. This idea has origins in early 
work on the psychology of learning—for example, in the distinction 
between Thorndike’s76 law of effect (actions that lead to good outcomes 
should be repeated) and law of exercise (actions that have been taken 
in the past should be repeated). A separation of reward-based from 
action-based learning is present in a number of computational models 
of behaviour5,43,70,77, and evidence from neuroscience suggests that the 
brain may incorporate such modularity78–81. These models typically 
imagine that action-based learning takes the form of perseveration, 
in which actions that have been taken in the past are more likely to be 
taken in the future43, and that reward-based learning takes the form of 
incremental RL1,2. Memory-ANN retains the basic separation between 
reward-based and action-based learning but allows for each module to 
implement substantially more sophisticated mechanisms. This uses 
Memory-ANN’s second kind of modularity: both reward-based and 
action-based learning are divided into a ‘deep’ memory component, 
which learns rich hidden representations of the past but does not drive 
choice, and a ‘shallow’ choice component that guides action selec-
tion. This architecture shares features with models of more complex 
reward-learning tasks, many of which draw on hierarchical cognitive 
architectures6,82–85. Evidence from neuroscience also supports the idea 
of a gradient of abstraction in the neural architecture82,86,87. Our results 
suggest that humans may use hierarchically structured algorithms even 
in superficially simple reward-learning tasks.

One limitation of the current work is a lack of focus on individual 
differences. We fit a single model to the whole population, which allows 
us to infer the likely mechanisms that characterize the behaviour of all 
participants but does not provide insight into individual differences 
between them. Others have modelled individual differences within 
RNN-based frameworks31,88, and similar approaches could be used to 
extend the current work. However, RNN-like models implicitly capture 
individual differences even when they are not modelled explicitly89, 
which means that in principle, some of our results concerning differen-
tial performance between Memory-ANN and Best RL might reflect the 
network better capturing aspects of between-participant differences, 
rather than (as we interpret it) improved modelling of the progression 
of learning within each participant. While additional analyses ruled out 
the possibility that this difference between the models accounts for 
our key results (for example, that Memory-ANN outperforms Best RL 
and that aspects of its architecture and latent state dynamics capture 
within-participant learning), it remains possible that some of our con-
clusions reflect a contribution of both between- and within-participant 
effects. Additional work, both experimental and analytical, will be 
required to fully tease apart these possibilities. Overall, this direction 
offers intriguing new prospects for studying individual differences 
as well as the dynamic fluctuations that occur within individuals over 
time (Supplementary Information).

Science faces a theory discovery problem: it is fundamentally more 
difficult to create new models than to evaluate existing ones90,91. In psy-
chology and neuroscience, new laboratory technologies have enabled 
scientists to collect larger datasets than ever before, a development 
that might provide new solutions to this problem5,32,92–95. We used a 
combination of hypothesis-driven architecture search and data-driven 
function approximation36 to successfully identify a predictive yet inter-
pretable model of human reward-based learning. With the rich tradition 
of classic cognitive modelling providing the theoretical framework to 
guide our model search, machine learning tools contributed the ability 
to approximate any functional form on the basis of sufficient data. This 
approach allowed us to compare the most relevant model classes in the 
most general case. The same approach could be applied to a wide range 
of open questions, both within the cognitive sciences and beyond. 
There is a ubiquitous need for models that can capture the complexity 
in rich datasets and also provide interpretable explanations.

Methods
Dataset
Participants. We recruited 880 participants on Prolific (app.prolific.co). 
No statistical methods were used to predetermine the sample size, but our 
sample size is orders of magnitude larger than those of most traditional 
lab-based human experimental studies and similar to those reported 
in previous publications focused on large-scale experiments36,39,96,97. In 
agreement with the ethical guidelines of the Google DeepMind Human 
Behavioral Research Ethics Committee, all participants were local to the 
UK and fluent in English. The participants provided informed consent and 
were paid at a rate of 12 pounds per hour; there was no performance-based 
bonus payment. The study was not preregistered.

Experimental procedure. The participants completed one training 
block and several testing blocks of our bandit paradigm (see below), 
each using different visual stimuli. After each block, the participants 
were truthfully informed how many points they had won, how many 
points they could have won (the sum of points from each trial’s best 
choice option) and how many points they would have won by choosing 
randomly (the average points of all choice options). At the end of the 
study, the participants were asked for their highest level of education 
and offered the opportunity to voice thoughts and concerns. The exper-
imental task was written using jsPsych98 and served on cognition.run.

Exclusion criteria. Eighty participants were asked to complete one 
training and three testing blocks of 150 trials each. The remaining 800 
participants were asked to complete one training block of 50 trials and 
five testing blocks of 150 trials, for a total of 4,240 task blocks. Four 
participants in the first (5%) and 14 participants (1.75%) in the second 
sample failed to finish the experiment and were excluded, leading to an 
initial sample of 880 − 18 = 862 participants who collectively finished 
(80 − 4) × 3 + (800 − 14) × 5 = 4,158 task blocks. We further excluded 
blocks in which participants missed more than 15 of the 150 trials (10%), 
24 blocks in total (0.58%). Hence, our final dataset comprised 4,134 
blocks (with 617,871 valid trials) from 862 participants. Of these 862 
participants, 858 (99.5%) provided valid demographic information: 341 
(39.7%) were female, and 517 (60.3%) were male; the average age was 
39.7 years, with a range of 18–88 and a standard deviation of 13.1 years.

Task
The participants performed a classic four-armed drifting bandit 
task37,99. On each trial t of this task, participants chose one of four 
bandits and observed the corresponding reward rt. At the first trial 
t = 1, each arm was initialized independently and uniformly at random 
between 1 and 100 points. The mean reward μt,i at each trial t and arm i 
was determined by a Gaussian random walk that evolved according to 
standard deviation σd and centrality λ:

μt,i ∼ N(λ × μt−1,i + (1 − λ) × 50,σd)

The actual reward rt,i observed by participants was sampled from 
a Gaussian distribution with mean μt,i and standard deviation σo:

rt,i ∼ N(μt,i,σo)

Following prior work37,99, we used λ = 0.9836, σd = 2.8 and σo = 4. 
Unlike prior work37,99, we created a new reward schedule for each partici-
pant for each task to increase the behavioural variation in the dataset 
and facilitate the fitting of neural network models.

On each trial, the participants saw four visual stimuli on the screen, 
one representing each bandit (Fig. 1d). Each bandit was presented in 
the same location on each trial, but new stimuli were used on each task 
iteration, and their positions were randomly shuffled between partici-
pants. Participants had four seconds to select a bandit using the keys 
‘D’, ‘F’, ‘J’ and ‘K’. When participants failed to make a response within this 
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time window, they were encouraged to respond faster on the next trial 
and reminded of the response keys. The participants were also told that 
they had received zero points for that trial. Only a very small percent-
age of trials in the final sample were missed (0.36%). When participants 
made a valid selection, the chosen bandit remained on the screen for 
400 milliseconds while the others disappeared. The trial outcome was 
then presented in addition to the chosen bandit (for example, ‘You won 
79 points.’). After another 800 milliseconds, an inter-trial interval of 
500 milliseconds began, after which the next trial started.

Behavioural analyses
Task performance. We first aimed to assess participant performance. 
The raw number of points is not a good measure of performance 
because each task block is based on a different reward schedule (see 
above), and hence the same number of points can indicate good or bad 
performance. To obtain a performance measure that is comparable 
between blocks, we calculated relative rewards. The relative reward 
rrel,t is the number of points rt obtained on trial t, normalized between 
the maximum number of points available on that trial (max(pt)) and the 
number of points expected on that trial by random selection (mean(pt)):

rrel,t =
rt −mean(pt)

max(pt) −mean(pt)

Averaging rrel,t across all trials t gives the relative reward of a block 
rrel, shown in Fig. 1f. A block’s relative reward would be 1 if a partici-
pant chose the best bandit on each trial (which is impossible); the 
relative reward is close to 0 when a participant chooses randomly and 
smaller than 0 when a participant systematically prefers bandits with 
smaller-than-average rewards.

Lagged regression. We next focused on learning, assessing how 
past task events affected participants’ future behaviour. Following a 
model-free approach, we used logistic regression to quantify the effects 
of past actions at−i and outcomes rt−i on participant choices at and to 
compare the time courses of these effects between cognitive models 
(Fig. 4g). For each cognitive model, we calculated four regression 
models, one per bandit. There was no reason to respond differently 
to the four bandits, and indeed, the four regression models produced 
nearly identical results in all cases; hence, we averaged the results for 
visualization. Each regression model predicted the time course of 
choices for one particular bandit, a1:n (number of trials n = 150), coding 
trials as 1 when the bandit was chosen and 0 otherwise. We used two sets 
of regressors to predict a1:n. ‘Bandit-reward’ regressors contain the time 
course of the number of points obtained in the past after choosing the 
current bandit: ri:n+i × a1:n. For example, the bandit-reward regressor at 
t − 1 contains the sequence of points obtained on the previous trial for 
those trials in which participants had chosen the current bandit; trials in 
which a different bandit was chosen contain the value 0. The second set 
of regressors are ‘other-reward’ regressors, which indicate the number 
of points obtained in the past after choosing a bandit other than the cur-
rent bandit: ri:n+i × (1 − a1:n). We predicted choices a1:n from past events 
up to 20 trials in the past, 1 < i < 21, such that our models contained 40 
regressors (20 bandit-reward and 20 other-reward regressors).

Mixed-effects regression. We next assessed how PC1 of participants’ 
reward state s(r)t  (reward sensitivity) affected subsequent choices at+1 
and response times rt+1. To this aim, we ran a mixed-effects regression 
model specifying random effects of participants, including trial num-
ber and block number as nuisance predictors. For Fig. 3i, we preproc-
essed response times by log-transforming and then centring on the 
mean, individually for each participant and each block. We preproc-
essed PC1 of s(r)t  by centring on the mean, individually for each partici-
pant and each block. Centring both measures across participants allows 
us to directly test for within-participant differences. This rules out the 

possibility that all observed differences arose from differences between 
participants, such that different participants occupied different states, 
which were also associated with differences in response times. Instead, 
the same participants transitioned through different regions of the 
space, which also captured differences in response times.

Multiple repeats and cyclic responses. We then focused on the 
structure within participants’ choice sequences. We calculated the 
average length of multiple repeats (continuous streaks that repeat the 
same action; Fig. 4d), and we counted the number of cyclic responses 
(four subsequent trials in which each of the four available actions is 
chosen once; Fig. 4e).

Compressibility ratio. We finally quantified the structure within par-
ticipants’ choice sequences by estimating sequence compressibility 
(Fig. 4f). We used the Lempel–Ziv–Welch (LZW) algorithm, a relatively 
simple standard compression algorithm for sequential data100,101. LZW 
first identifies the subsequences (for example, ABCD or AAAA) that an 
original sequence is composed of and then re-expresses the original 
sequence in terms of these subsequences, hence reducing the sequence 
length by taking advantage of repetitions. Sequences that are composed 
of a small number of subsequences (for example, ABCDABCD) are more 
compressible than random sequences without such structure (for 
example, DADDCBDB). To estimate the compressibility of participants’ 
choice sequences, we first compressed each block’s original choice 
sequence using LZW, obtaining the compressed sequence length lLZW. 
For comparison, we also sampled random sequences of the same length 
as the original blocks (n = 150) using the same four elements (A, B, C and 
D). We also compressed these random sequences to obtain the baseline 
compressibility, bLZW, expected for sequences of the same length and 
with the same number of elements, just by chance. Finally, we calculated 
the ratio between the length of compressed random sequences and that 
of participants’ blocks, obtaining the compressibility score bLZW

lLZW
.

Model architectures
Q-learning model architectures. We obtained our Best RL model 
by comparing many variants of Q-learning41. In (tabular) Q-learning, 
each action a is associated with a value Q(a), which approximates the 
expected reward of a (ref. 2). Values are learned incrementally over 
trials, on the basis of the observed reward. On each trial t, the value of 
the chosen action is updated by a fraction α (called the ‘learning rate’) 
of the reward prediction error, the discrepancy between the reward rt 
and the action value going into this trial, Qt(a):

Qt+1(a) = Qt(a) + α × (rt −Qt(a)) (1)

The standard formulation of Q-learning applies to environments 
with multiple states, where taking an action a in state s leads the agent 
to state s′. In such environments, the Q-value update includes a term 
corresponding to the Q-value of the subsequent state, including a 
discount factor 0 < γ < 1. For example, the on-policy SARSA algorithm 
performs the following Q-value update:

Qt+1(s,a) = Qt(s,a) + α × (rt + γ ×Qt(s′,a′) −Qt(s,a))

In this paper, because the environment does not provide state transi-
tions (for example, the subsequent state s′ does not depend on the previ-
ous state s and action a), we use a simplified algorithm without the term 
γ × Qt(s′, a′), following standard conventions in cognitive modelling40,41.

We compared our RL models head-to-head with neural networks. 
To make this comparison fair, we included a bias parameter b in the RL 
models. b allows a linear offset in value updates, a freedom that the 
neural-network models have by design:

Qt+1(a) = Qt(a) + α × (rt −Qt(a)) + b (2)
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On any trial t, Q-learning agents select an action by transforming 
the vector Qt of all four action values into a vector of choice probabili-
ties pt of the same length, using the softmax function. This transfor-
mation can have a ‘lower temperature’, leading to more deterministic 
choices by exaggerating differences between action values, or a ‘higher 
temperature’, leading to increasingly random choice. The inverse deci-
sion temperature β is a free parameter of the model:

pt = softmax(β ×Qt) (3)

We call the model based on just equations (1) and (3) ‘Basic RL’. 
With only two free parameters (α and β), a Basic RL model typically 
does not predict human choices very accurately. Many extensions have 
been proposed to improve behavioural fit. We focus on three here: 
perseveration, forgetting and variable learning rates. Perseveration 
enables action repetition (or switching) independently of rewards and 
is the simplest form of reward-independent action-history processing. 
The perseveration term c adds a small bonus (of size ϰ) to the value of 
the action a that was chosen on the previous time step, but not to all 
other actions ⌐a:

0)
)
(

(

Q-learning agents that track both perseveration and action values 
have an additive choice rule. The vectors of action values and persevera-
tion are added (to form ‘choice logits’ ht) and pass through the softmax 
rule for action selection:

ht = Qt + ct

pt = softmax(β × ht)

Forgetting was implemented as the exponential decay of each 
action value back to Qinit, at which each action value is initialized on 
the first trial. Qinit is a free model parameter that is fitted to participant 
behaviour. The decay parameter f, a free model parameter, determined 
the rate of decay. On each trial, all action values underwent forgetting, 
according to:

Qt(a) = (1 − f) ×Qt(a) + f ×Qinit (5)

Variable learning rates were implemented following a variant of 
the classic Pearce–Hall learning rule102, adapted to instrumental tasks54. 
In this model, each trial t’s learning rate αt is updated on the basis of 
the previous trial’s reward prediction error δt. The larger the absolute 
value of δt, that is, the greater the ‘surprise’ about an outcome, the 
larger the learning rate:

δt = rt −Qt(a) (6)

Qt+1(a) = Qt(a) + αt × δt (7)

αt+1 = w × |δt| + (1 −w) × αt (8)

w, a free parameter of the model, is a weighting parameter that deter-
mines how variable (larger w) versus stable (smaller w) αt is over time—a 
learning rate on the learning rate. At w = 0, learning rates are stable, and 
the model reduces to simpler RL model variants. Variable-learning-rate 
model variants replace the standard learning rate parameter α with αinit, 
the model’s initial learning rate on the first trial.

In the main text, we sometimes obliterate the subscript t in 
equations for better readability. Following common practice, we 
restricted the ranges of the free parameters of our Q-learning models 
to ensure interpretability. For example, a negative learning rate or 

(4)

negative forgetting would not be interpretable. We used common 
transforms (sigmoid, relu and tanh) to enforce the following ranges 
for RL models’ free parameters:

Learning rate / initial learning rate: 0 < α < 1, 0 < αinit < 1
Update bias: −1 < b < 1
Inverse decision temperature: 0 < β < ∞
Perseveration: −1 < ⌐ < 1
Forgetting: 0 < f < 1
Weighting parameter: 0 < w < 1
The initial value Qinit was not restricted.

Q-learning model comparison. To identify the best Q-learning model 
for our data, we performed a systematic model comparison. We cre-
ated 72 − 1 = 48 model variants based on all parameter combinations. 
Supplementary Table 2 shows the results for the most relevant subset 
of model variants. Basic RL included only two parameters, α and β. Best 
RL included six parameters (α, β, f, ⌐, b and Qinit). We fitted all models 
to the training split of our dataset, using the methods described in the 
following sections, and selected the winner on the basis of the model 
fit on the held-out test data.

RL-ANN architecture. RL-ANN has the same structure as Best RL but 
contains two neural networks instead of Best RL’s value update and 
perseveration operations (Fig. 2b). We first focus on the value update 
module, the model’s Reward ANN, and then turn to the perseveration 
network, the model’s Action-History ANN. The Reward ANN receives the 
same inputs as the classic value update (equation (1)), Qt−1(a) and rt−1, and 
produces the same output, Qt(a). On each trial t, the Reward ANN’s input 
layer vector i(r)t  contains the concatenation of its two scalar inputs:

i(a)t = [Qt−1(a), rt−1]

The activations in the hidden layer (the state vector s(r)t ) are 
obtained by passing the input vector through the first fully-connected 
layer of the network. Inputs are multiplied with the matrix of weights 
W( r)

1 , the bias vector b(r)1  is added and the result is passed through a tanh 
nonlinearity:

s(r)t = tanh (W (r)
1 i(r)t + b(r)1 )

The output of the network, Qt(a), is obtained by passing the state 
through a second fully connected layer, parameterized by weights W (r)

2  
and bias b(r)2  (there is no nonlinearity in the second layer; hence, values 
Q can be interpreted as logits):

Qt(a) = W (r)
2 s(r)t + b(r)2 (9)

Like Best RL, RL-ANN maintains a vector Qt over trials, which con-
tains one value per action. Qt(a) is replaced by the output of equation 
(9). All actions in Qt undergo forgetting according to equation (8). 
The Reward ANN’s input layer has size 2 (containing Qt−1(a) and rt−1), 
and the output layer has size 1 (Qt(a)). The size of the hidden layer was 
determined by a hyperparameter sweep (see below).

RL-ANN’s Action-History ANN also is a three-layer, fully connected 
Multi-Layer Perceptron (MLP). The Action-History ANN receives the 
same input as classic perseveration (equation (4)), at−1, and returns the 
same output, a vector ct with one perseveration scalar per action. The 
network is parameterized by weight matrices W (a)

1  and W (a)
2 , and biases 

b(a)1  and b(a)2 :

i(a)t = at−1

s(a)t = tanh (W (a)
1 × i(a)t + b(a)1 )

ct = W (a)
2 s(a)t + b(a)2
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The Action-History ANN’s input layer has size 1, and the output 
layer has size 4 (one per action). The size of the hidden layer was identi-
cal to the reward module’s hidden layer.

Like before, values Qt and perseveration ct are combined additively 
before passing through the softmax for action selection:

ht = Qt + ct

pt = softmax(ht)

Context-ANN architecture. Context-ANN is an extension of RL-ANN 
that adds the ability to condition operations on the context (Fig. 3b). 
Context-ANN represents the reward context with the vector Qt−1 and 
the action context with the vector ct−1. We chose Qt−1 and ct−1 as context 
representations because they are the most succinct summaries of the 
past history and represent all four actions. Conditioning is performed 
by adding Qt−1 and ct−1 as inputs to the reward module and choice-MLP, 
respectively. In this way, the networks can learn to modify their opera-
tions on the basis of the additional context information (if this is sup-
ported by human behaviour):

i(r)t = [Qt−1(a), rt−1,Qt−1]

i(a)t = [at−1, ct−1]

Everything else remains the same as in RL-ANN (see above).

Memory-ANN architecture. Memory-ANN is our winning model. It is 
an extension of Context-ANN that allows a more flexible context rep-
resentation. Instead of conditioning on the output vectors Qt−1 and ct−1, 
Memory-ANN conditions on their precursors, the hidden states s(r)t−1 
and s(a)t−1. As a simplification, it removes the dependence on Qt−1(a):

i(r)t = [rt−1, s(r)t−1]

The remaining processing steps are unchanged:

s(r)t = tanh (W (r)
1 i(r)t + b(r)1 )

Qt(a) = W (r)
2 s(r)t + b(r)2

Vanilla RNN model architecture. Vanilla RNN is a basic RNN. On each 
trial t, the model receives information about the most recent action at−1 
and the reward received after choosing this action, rt−1, and returns a 
vector of choice logits ht, with one element for each action. Like before, 
choice logits guide the selection of the next action at, after transforma-
tion into action probabilities using the softmax function:

pt = softmax(ht)

Vanilla RNN is a simple, fully connected, recurrent three-layer 
network. It concatenates the inputs at−1 (a one-hot vector indicating 
the chosen action with 1 and all others with 0) and rt−1 (a scalar) into a 
joint vector it, the input activations of the network:

it = [at−1, rt−1]

The hidden layer (or recurrent state st) is obtained by passing the 
input activations through the first layer of fully connected neurons, 
parameterized by weight matrix W1 and biases b1, in the same way as 
above:

st = tanh(W1it + b1)

The final output, the vector of logits ht, is the result of passing the 
state through another fully connected layer, parameterized by weight 
matrix W2 and biases b2:

ht = W2st + b2

Action choices are made like before, by passing choice logits 
through a softmax function to determine choice probabilities:

pt = softmax(ht)

Model training
Data splits. We randomly split our dataset into three partitions: train-
ing (80% (690) of participants; 3,302 blocks), testing (10% (86) of par-
ticipants; 413 blocks) and validation (10% (86) of participants; 419 
blocks). We used the same train–validation–test splits for testing all 
models. In other words, the same exact sessions went into the training 
split for each model, a different set of sessions went into the testing set 
for each model and a third set was used for validation of all models. 
We did this to ensure that the resulting model fits were comparable 
between models.

The training data were used to fit the model parameters (for exam-
ple, α, β, W1 and b2) of a wide range of models, including all combinations 
of all hyperparameters (for example, the number of hidden units; see 
below). The validation data were used to identify the optimal set of 
hyperparameters for each model. The test data were used to determine 
the fit of each selected model (Figs. 2d and 3c). The three-way split was 
necessary for two reasons. The validation split allowed us to find the best 
hyperparameters for each model. This ensured that differences in model 
fits reflected differences between model architectures rather than differ-
ences in the optimality of the chosen hyperparameters. For example, we 
can be sure that no Context-ANN—whatever its hyperparameters—could 
ever beat Memory-ANN, because there is no Context-ANN that fits the 
data better than the one we report. The test split was necessary to ensure 
that models did not overfit to the training data.

Model fitting. All models, both classic variants of Q-learning and 
neural networks, were trained with the Adam optimizer, using the 
optax package (https://github.com/google-deepmind/optax) for jax 
(https://github.com/google/jax). The optimizer learning rate, batch 
size, number of training steps, weight decay and number of hidden 
units (if applicable) for each model were determined by a hyperpa-
rameter sweep. Each training batch was sampled randomly and with 
replacement from the training data. We systematically assessed the 
following space of hyperparameters: learning rate, 1 × 10−3, 1 × 10−4, 
1 × 10−5; L2 weight decay, 1 × 10−3, 1 × 10−4, 1 × 10−5; number of the hid-
den units, 16, 32, 64; batch size, 32, 64, 128. We trained each model for 
1,000,000 steps on the training data, using five instantiations of each 
combination of hyperparameters, and identified the number of train-
ing steps (≤1,000,000) and hyperparameters that led to the best fit on 
the validation data. The chosen hyperparameters for each model are 
shown in Supplementary Table 1.

Fitting objective. The goal of training was to create models that behave 
as similarly as possible to humans (rather than to perform the task as 
well as possible). We followed standard practices41 to achieve this. We 
minimized the negative log-likelihood loss (also called cross-entropy) 
of each model with respect to the training data. This loss incentiv-
izes model parameters that maximize the (log) probability of jointly 
predicting the choices a{t,i} of each participant p on each trial t in a 
training batch (of size bs), by following stochastic gradient descent 
over training batches:

L = −
bs
∑
i=1

ntrials

∑
t=1

log(p(at,i))
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The optimal batch size bs was determined individually for each 
model on the basis of a hyperparameter sweep (see above). Each task 
had ntrials = 150.

To obtain the final fit for each model (Figs. 2d and 3c), we cal-
culated the loss of the variant with the best hyperparameters on the 
held-out test data. We calculated the loss separately for each task 
block, so that we could assess the variability between participants. 
We also transformed model losses into the trial-wise prediction accu-
racy, an estimate of what percentage of human choices are predicted 
accurately:

acc = exp ( −L
bs × ntrials

)

Model analysis
Qualitative model fit. We created a synthetic dataset for each model, 
using the hyperparameters (for example, batch size; Supplementary 
Table 1) and parameters (for example, learning rate α and connection 
weights W1) we obtained in model fitting. We simulated behaviour on 
the same 4,134 tasks (with the same reward schedules) as human partici-
pants, using ‘open-loop’ simulation (which means that human choices 
are unknown to the behaving models). We then subjected human and 
model behaviour to the same statistical analyses to uncover qualitative 
similarities and differences (Fig. 4).

Model dynamics. We also created ‘closed-loop’ simulations for each 
model. Also called ‘teacher forcing’, this means that a model is forced 
to make the same choices as a participant. The model does not sample 
its action from the action probabilities it calculates on each trial but 
instead automatically selects the teacher’s choice. We used this method 
to inspect the internal dynamics (for example, trial-by-trial trajectories 
of values Q and choice kernel c or memory states s) that our models 
assigned to individual participants (Supplementary Fig. 5).

Model inspection. The reward module (described above) determines 
how observed rewards rt−1 map onto values Qt. We analysed this map-
ping by probing reward modules with the full range of inputs and 
measuring their output (Fig. 2e). We first extracted the relevant param-
eters (W(r)

1 , W(r)
2 , b(r)1  and b(r)2 ) from the fitted model (RL-ANN or 

Memory-ANN). We then initialized a new MLP with the same shape as 
the original reward module (for example, for Memory-ANN: 2 input 
units, 32 hidden units and 1 output unit) and injected the fitted param-
eters. We uniformly sampled rewards rt−1 between 1 and 100 points. For 
RL-ANN, we also sampled values Qt−1(a) between the 10% and 90% quan-
tiles of the values observed in the closed-loop dataset. For 
Memory-ANN, we sampled hidden state vectors s(r)t−1 along the first (or 
a different) principal component of the hidden states visited in the 
closed-loop data; samples were taken up to 1.5 standard deviations 
from the mean. We finally collected the outputs Qt(a) of this MLP in 
response to each combination of inputs.

The same method was used to analyse the action-history module. 
We obtained the corresponding fitted parameters (W(a)

1 , W(a)
2 , b(a)1  and 

b(a)2 ) and injected them into a newly initialized MLP. We sampled actions 
a uniformly; for Memory-ANN, we also sampled hidden state vectors 
s(r)t−1, using the same method as above. We then collected the output c(a)t  
of the network and visualized the relationship between inputs and 
outputs (Supplementary Fig. 6).

To assess the contents of s(r)t  (Fig. 3j,k), we calculated a separate 
regression model for each delay i, predicting the reward observed on 
trial t − i on the basis of a PC of the current state s(r)t . We repeated this 
analysis individually for each PC.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The dataset generated for this study is available via the Open Science 
Framework at https://osf.io/8xz3w/.

Code availability
The code generated for this study is available via GitHub at https://
github.com/google-deepmind/hybrid_rnns_reward_learning. Please 
refer to the Colab provided for a simple demo of how to fit the models 
presented here.
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