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N E U R O S C I E N C E

From sensory to perceptual manifolds: The twist of 
neural geometry
Heng Ma1†, Longsheng Jiang1,2†, Tao Liu1†, Jia Liu1*

Classification constitutes a fundamental cognitive challenge for both biological and artificial intelligence systems. 
Here, we investigated how the brain categorizes stimuli that are not linearly separable in the physical world by 
analyzing the geometry of neural manifolds formed by macaque V2 neurons during a classification task involving 
motion-induced illusory contours. We identified two related but distinct neural manifolds: the sensory and per-
ceptual manifolds. The sensory manifold was embedded in a three-dimensional subspace defined by three 
stimulus features, where contour orientations remained linearly inseparable. However, through a sequence of 
geometric transformations equivalent to twist operations, this three-dimensional sensory manifold expanded 
into a seven-dimensional perceptual manifold, enabling the linear separability of contour orientations. Computa-
tional modeling further demonstrated that this dimension expansion was facilitated by neurons exhibiting non-
linear mixed selectivity with heterogeneous response profiles. These findings provide insights into how biological 
neural networks enhance the dimensionality of representational spaces, illuminating the geometric mechanism 
underlying the transformation from sensation to perception.

INTRODUCTION
Imagine a person trying to identify various objects such as a cup, a 
book, and a pen on a clustered desk. The brain must process com-
plex and overlapping sensory inputs with variations in light, angles, 
and occlusions by neurons encoding different features of the objects 
and their combinations to classify ultimately each object accurately 
(1–3). One primary challenge in this classification task lies in the 
prevalence of linearly inseparable problems, where perfectly segre-
gating data points into their respective classes using a linear bound-
ary is infeasible (4, 5). Machine learning algorithms often resort to 
complex, nonlinear decision boundaries to address this issue, using 
techniques such as kernel methods and deep learning (6, 7). Here, we 
asked how the brain addresses linearly inseparable problems pres-
ent in the physical world from the perspective of neural geometry 
(8–10) constituted by the collective activity of large groups of neu-
rons, an approach recently applied to various domains such as vision 
(11, 12), memory (13, 14), decision (15–17), navigation (18, 19), and 
motor execution (20–23) to explore their characteristics in a high-
dimensional neural space.

To do this, we first designed a set of stimuli that cannot be lin-
early classified along one stimulus feature or linear combination of 
stimulus features. Specifically, we used a visual illusion of motion-
induced contours [MICs; (24–26)] (Fig. 1B). MIC is a second-order 
contour, similar to other well-documented illusory contours, such as 
contrast-defined contours (27), disparity-defined contours (28, 29), 
and texture-defined contours (30). This stimulus is not defined by 
luminance edges but arises mostly from the coherent spatial-temporal 
patterns of dot motion. There are three independent stimulus fea-
tures of moving dots that are more basic. They determine a particular 
instance of MIC stimuli (26, 31, 32): Dots move (i) either horizon-
tally or vertically, (ii) outwardly or inwardly, and (iii) clockwise-like 

or anticlockwise-like (Fig. 1C). Accordingly, a three-dimensional (3D) 
stimulus space is thus constructed (Fig. 1D), with each axis corre-
sponding to a stimulus feature of moving dots. Although each stimu-
lus feature of moving dots is linearly separable, the orientations of 
illusory boundaries, constructed by combining these three features, 
become linearly inseparable in this stimulus space. That is, MIC stim-
uli sharing the same contour orientation (e.g., right-tilted, red) are 
interspersed among those with the opposing orientation (i.e., left-
tilted, blue; see detailed explanation in Results). This shows that the 
classification of contour orientations presents a linearly inseparable 
problem in the physical world.

In the mental world, however, the linear classification of con-
tour orientations becomes feasible, as previous neurophysiological 
studies have revealed that single neurons in macaques’ V2 exhibit 
selectivity for cue-invariant contour orientations (24,  32). Ac-
cordingly, we analyzed neuronal activity data recorded in the V2 
area (32), aiming to elucidate how the linearly inseparable prob-
lem in the stimulus space becomes linearly separable in the high-
dimensional neural space constructed by the collective activity 
of V2 neurons. According to the contours that do not exist in the 
physical world and being created by the brain when integrating 
individual motions and interpreting symmetrical movement pat-
terns, we examined two types of neural manifolds embedded in 
this high-dimensional space: the sensory and perceptual manifolds. 
The sensory manifold, which arises from the sensation process, 
directly responds to physical stimuli without involving interpreta-
tion and provides the raw sensory data that the brain uses to build 
perceptual experiences. Given its correspondence to external stim-
uli, contour orientations likely remain linearly inseparable in the 
sensory manifold. In contrast, the perceptual manifold reflects the 
brain’s effort to interpret and make sense of the sensory data, where 
neural states for MIC stimuli may be separately clustered on the 
basis of contour orientations. Therefore, understanding the geo-
metric difference between the sensory and perceptual manifolds 
and further deriving potential mechanisms that create such a dif-
ference provide a mechanistic perspective on how perception arises 
from sensation.
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RESULTS
Stimulus space and linearly inseparable problems
Two macaque monkeys were trained to perform a classification task 
by executing a saccade toward the side corresponding to the orienta-
tion of a second-order MIC. The MIC stimuli used in this study 
were generated by moving dots in a circular viewing area where dots 
in opposing half areas moved in opposite directions (Fig. 1A).

Using two parameters describing motion patterns and spatial ar-
rangement, we could systematically determine the MIC stimuli. 
One parameter was the motion axes. As illustrated in Fig. 1B, dots in 
opposing half areas moved in opposite directions along a motion 
axis (e.g., dot I and dot II in Fig. 1B, left). The motion axis could 
rotate within a range of [ 0, π ], creating a circular structure (fig. S1A). 
The other parameter was the sheared configuration. It quantified the 
angular location of one dot (e.g., dot IV in Fig. 1B, right) relative to 
the adjacent other (e.g., dot III), with respect to their moving direc-
tion. This configuration was especially salient at locations where the 
two halves of the coherently moving dots met (fig. S2, A and B). The 
sheared configuration varies periodically over [ 0, 2π ] (fig. S1B). Giv-
en the values of the motion axis and sheared configuration, we de-
termined an MIC orientation in the range [ 0, π].

Accordingly, these two periodic parameters together define a 
stimulus manifold with a torus topology (fig. S3, left), where each 
point represents a stimulus generated by a unique combination of 
the motion axis and sheared configuration. In this study, we only 
used a subset of this stimulus manifold. Specifically, we first pro-
jected the 2D circular structure of the motion axis onto the 1D axis, 
which included values of 0 (horizontal) and π∕2 (vertical; Fig. 1C, 
left). This 1D axis was referred to as the HV (horizontal versus verti-
cal) dimension. We then retained the 2D circular structure of the 
sheared configuration (Fig. 1C, right), with the two dimensions, 
respectively, referred to as OI (outward versus inward) and CA 
(clockwise-like versus anticlockwise-like), according to the ap-
pearance of the stimuli (fig. S2C). Consequently, the subset stimu-
lus manifold has a cylindrical topology, embedded in the stimulus 
space spanned by the HV, OI, and CA dimensions (Fig.  1D and 
fig. S3, right).

Eight MIC stimuli were sampled from the stimulus space to cov-
er two conditions in each dimension (Fig. 1D; see movie S1 for the 
eight stimuli). These MIC stimuli had two orientations, either right-
tilted ( π∕4 , no. 1 to no. 4, red) or left-tilted ( 3π∕4 , no. 5 to no. 8, 
blue). The stimuli of opposite orientations interspersed with each 
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Fig. 1. Stimulus space. (A) Left: Schematic of the discrimination task. Right: Example of a right-tilted contour orientation formed by surrounding moving dots. Modified 
from [(32) changes include: Refined the borders of each event-window schematic, explicitly indicated the time range of the sample event window, adjusted the position 
of the receptive-field schematic, added additional arrows to the moving dots in the stimulus example, and added an arrow from the stimulus example to the spatial loca-
tion at which the stimulus was presented (http://creativecommons.org/licenses/by/4.0/)]. RF: array population receptive field. (B) Example stimulus characterized by the 
motion axis and sheared configuration. (C) Stimulus feature axes. Left: HV axis. Right: OI and CA axes. The red circle highlights a horizontal, outward, and anticlockwise-like 
stimulus. (D) 3D stimulus space. The eight stimuli used in the experiment, numbered and color-coded by contour orientation (red: right-tilted; blue: left-tilted).
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other, resulting in MIC orientations being linearly inseparable with-
in this stimulus space. However, both macaques adeptly performed 
the task with an accuracy exceeding 90% at 100% motion coherence 
(32). Next, we investigated how neurons in macaques’ V2 tackle this 
linearly inseparable problem particularly from the perspective of 
neural geometry.

Sensory and perceptual manifolds
To investigate how the brain addressed this linearly inseparable 
problem, we used neural activity data from V2 neurons of two mon-
keys (93 neurons in total) to construct a high-dimension neural 
space (see Materials and Methods; for neurons’ receptive fields and 
selectivity, see fig. S4). First, we used linear support vector machines 
(SVMs) to analyze the collective activity to all the eight stimuli to 
determine whether the three feature axes of the stimulus space 
(Fig.  1D)—HV ( {1,2,5,6} versus {3,4,7,8} ), OI ( {1,3,5,7} versus 
{2,4,6,8} ), and CA ( {2,3,5,8} versus {1,4,6,7})—could be decoded. 
We found that classifications along all three axes were linearly sepa-
rable, with accuracies above 75% and significantly higher than the 
shuffled baseline (bootstrap t tests, all Ps < 0.001) (Fig. 2A). This 
finding was replicated with other methods such as the analysis on 
population average responses and the principal components anal-
ysis (PCA) (fig.  S5). Critically, the optimal separation direction 

vectors (determined by SVM, see Materials and Methods) for HV, 
OI, and CA were mutually orthogonal. That is, the distribution of 
the subtended angles between these vectors was significantly more 
concentrated around 90° than the distribution of angles between 
two random direction vectors and also significantly larger than an-
gle distributions between the same classification vectors (fig. S6).

To visualize the dynamic encoding of the stimuli by the neuronal 
population, we projected the neural states in the high-dimensional 
neural space into a 3D neural subspace formed by the direction 
vectors for HV, OI, and CA (see Materials and Methods). Figure 2B 
shows that, before stimulus onset, neural states for the stimuli were 
closely clustered and inseparable. Following the onset, these states 
gradually spread and became completely separable along the HV 
axis. They then remained in a steady phase for the duration of stim-
ulus presentation before returning to their original locations after 
stimulus offset (see movie S2 and fig. S11). Similar dynamic patterns 
were observed for the OI (Fig. 2C) and CA (Fig. 2D) axes as well. To 
further illustrate the neural geometry constructed by the neural 
states at the steady phase, we used the activity magnitude of neurons 
from 200 to 500 ms poststimulus onset as the neural states, which 
were then projected to this 3D subspace (see Materials and Meth-
ods). Figure 2E shows that the neural states were located at eight 
vertices of a slightly distorted cube, corresponding to the geometric 
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Fig. 2. Neural representation of stimulus features and contour orientations. (A) Time-resolved classification accuracy for different stimulus features (HV, OI, and CA) 
and contour orientation (LR). Shaded gray area denotes chance-level performance estimated by shuffled control (mean ± 3 SDs). Vertical dashed lines mark stimulus onset 
(0 ms). Vertical graded regions mark stimulus offset (randomly in 700 to 850 ms for different trials). (B to D) Dynamic trajectories of neural states projected onto the neural 
subspace defined by the HV (B), OI (C), and CA (D) axes. Lighter colors indicate earlier time points; more saturated colors indicate later time points. Arrows indicate the 
direction of trajectory evolution. Neural states prior to stimulus onset are marked in gray. Blue and red colors indicate categorizations along the HV, OI, and CA axes, re-
spectively. The motion coherence level shown here is 7. (E) Sensory manifold. The point cloud centers of the eight stimuli in the steady phase (200 to 500 ms). Dashed lines 
highlight geometric structure of the centers. Cool and warm colors indicate the two contour orientations. All motion coherence levels were used. (F) Projection of popula-
tion neural activity onto the task-relevant decision axis (L versus R orientation discrimination). Same color code as in (E). Motion strength ( r  ) quantifying Euclidean dis-
tance between the neural states and the origin in (E) is included for display purposes only.
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relation among stimuli in the original stimulus space (Fig. 1D). This 
neural manifold embedded in the high-dimensional neural space is 
referred to as the “sensory manifold” because it directly responded 
to the stimulus space without involving interpretation, as contour 
orientations remain linearly inseparable in this manifold. To further 
demonstrate that this manifold was associated with sensory pro-
cessing, we examined the relationship between its geometry and the 
intensity of sensory signals. We found that the sensory manifold 
was sensitive to variations in the coherence of moving dots in the 
stimuli, giving rise to a series of concentric sensory manifolds, with 
higher coherence levels eliciting manifolds of larger size (fig. S8). 
Together, the sensory manifold faithfully represented the stimulus 
space, with HV, OI, and CA serving as the axes of the neural sub-
space that embedded this manifold.

Based on previous studies showing that individual neurons that 
are sensitive to contour orientation (24, 32), we used the SVM anal-
ysis to explore axes in this high-dimensional neural space that could 
linearly decode contour orientations. We identified an axis that can 
differentiate left-tilted orientation from the right-tilted orientation, 
referred to as the LR axis, with an accuracy comparable to that of 
decoding the stimuli’s features (i.e., HV, OI, and CA) (Fig. 2A, or-
ange line). Figure 2F illustrates the neural states along the LR axis, 
where contour orientations became linearly separable (for dynamic 
trajectories, see fig. S11 and movie S2), consistent with the finding 
from studies on single neurons (24, 32). Furthermore, this LR axis 
was orthogonal to the three stimulus feature axes of the sensory 
manifold (fig. S6A), suggesting that the LR axis emerged not direct-
ly from the stimuli but from the interpretation of the sensory data. 
Evidence supporting this conjecture comes from the analysis on the 
latency of the emergence of the LR axis, which occurred about 30 ms 
after the emergence of the axes encoding the stimuli’s features (i.e., 
HV, OI, and CA) (Fig. 2A). This observation aligns with previous 
findings on visual motion segregation (24, 26, 33–35), implying that 
extra time may be needed to form this new axis. This new neural 
manifold, embedded in the high-dimensional neural space includ-
ing the LR axis for representing contour orientations and the axes 
for stimulus features (i.e., HV, OI, and CA), is referred as the percep-
tual manifold, where the linearly inseparable problem was ad-
dressed. Next, we explored how this LR axis was formed through 
geometric transformation.

NMS neurons and twist operations
Traditional solutions to linearly inseparable problems such as the 
exclusive-or (XOR) problem involve expanding dimensions of the 
original representational space (4, 5). Previous studies have shown that 
neurons with nonlinear mixed selectivity (NMS) can expand dimen-
sions by responding to combinations of input features (5, 36–38) and 
using nonlinear activation functions (39, 40) to capture higher-order 
interactions. All the V2 neurons analyzed in this study showed inter-
active responsiveness to the three stimulus features (significant three-
way interactions: minimum F1,2200 = 18.25 , P < 0.001 ), consistent 
with the characteristic response patterns of nonlinear mixed selective 
neurons previously identified by analysis of variance (ANOVA)–based 
methods (38, 41). These findings suggest that these NMS neurons in 
the V2 area may contribute to generating the LR dimension.

To reveal how NMS neurons expand the dimensionality of repre-
sentational spaces, we examined this phenomenon from two comple-
mentary yet interconnected perspectives: (i) a neural network– 
based (implementation-level) perspective and (ii) a mathematical 

(algorithmic-level) perspective. From the neural network perspec-
tive, we explicitly decomposed NMS of neurons into two distinct op-
erations—linear mixing and nonlinear transformation—performed 
by the network connections. We examined how each step contributes 
to dimensional expansion of the representations. We used a minimal-
ist one-layer network consisting of three neurons, s1 , s2 , and s3 . These 
neurons receive inputs consisting of two continuous features, a and b , 
that form a 2D feature sheet (Fig. 3A). In this context, the XOR prob-
lem is defined as categorizing points located at diagonally opposite 
corners (i.e., red versus blue points). The neurons in this network (i) 
receive either pure (either a or b ) or mixed (the combination of a and 
b ) inputs, and (ii) have either linear or nonlinear (e.g., rectified linear 
unit, i.e., ReLU) activation functions, leading to four distinct output 
patterns (Fig. 3B).

Neurons with pure selectivity and the linear activation function 
(i.e., linear pure selectivity) afford only a simple affine transforma-
tion, including rotation and shifting, of the original feature sheet 
(Fig. 3C, left). Because the rotation axis is aligned with the orange 
and black edges, the edges remain parallel after the transformation. 
The parallel edges are more obvious in the principal component (PC) 
space obtained by PCA of the four corner points (Fig. 3C, right). For 
neurons with nonlinear pure selectivity, the feature sheet undergoes 
bending due to the nonlinear activation function (Fig. 3D, left). This 
bending occurs along an axis parallel to the orange and black edges, 
so the edges remain parallel after bending, and the four corner points 
still lie on the same plane as evidenced in the PC space (Fig.  3D, 
right). For neurons with linear mixed selectivity (Fig. 3E, left), the 
feature sheet experiences a complex affine transformation, with the 
rotation axis not aligning with the three main axes. However, even 
after this rotation, the edges remain parallel (Fig. 3E, right). In these 
three scenarios, neither bending nor rotation alone suffices to make 
the red and blue points linearly separable.

In contrast, NMS neurons perform both bending and rotation 
operations on the feature sheet, making the orange and black edges 
no longer parallel (Fig. 3F, left). When displaying it in the PC space 
(Fig. 3F, right), it becomes more obvious that the orange and black 
edges appear to be twisted from their original parallel configuration. 
The twisting creates a new axis perpendicular to the original orange 
and black edges. In this newly constructed representational space, 
the XOR problem becomes linearly separable. Here, the combined 
effects of bending and rotation operations equalize a “twist” opera-
tion. Accordingly, we refer to this characteristic of NMS neurons 
acting on the geometry of input features as the twist operation [for a 
similar idea, see (42)].

Building on this implementation-level explanation, we further 
sought a mathematical description of neurons’ NMS that concisely 
expresses both the mixing operation and nonlinear transformation 
on the stimulus features. Inspired by the multiplicative terms used to 
represent factor interaction in ANOVA (43), we observed the corre-
spondence between the quadratic terms in algebra and the twist op-
eration in geometry. Specifically, we used x , y , and z to denote the 
three original feature dimensions (HV, OI, and CA, respectively). 
The four vertices {1,3,5,7} in the z–x plane exemplify a standard pla-
nar XOR problem (Fig. 4A, left). The quadratic product v = zx de-
scribes the geometric twist operation on the z–x plane (Fig.  4A, 
middle). That is, it transforms the original 2D z–x plane into a curved 
surface in a 3D space (Fig. 4A, right), creating a new, orthogonal axis 
v . Thus, this quadratic expression succinctly captures the core geo-
metric transformation, enabling solutions to XOR-type problems.
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The quadratic product also corresponds to the XOR operation in 
logic. When letting the two levels on one axis represent the true 
and false values of a Boolean variable, the axes are equivalent to 
Boolean variables (see text S11). Also, the Boolean variable V  of 
the v axis is equal to the XOR operation of the Boolean variables 
Z of the original z axis and X of the original x axis, expressed as 
V = Z ⊕ X . Therefore, the twist operation in neural geometry equals 
the XOR operator in logic, further explaining its efficacy in solving 
XOR problems.

To examine whether this theoretically derived v axis was actually 
present in the high-dimensional neural space, we trained linear SVMs 
to classify three sets of vertex pairs among the four vertices shown 
in Fig. 4A. As expected, the vertex pair of {1, 5} versus {3, 7} and that of 
{1, 7} versus {3, 5} were linearly separable along the x and z axes, re-
spectively, with accuracies greater than 75%. Critically, the vertex pair 
of {1, 3} versus {5, 7} , a standard planar XOR problem, was also lin-
early separable along the v axis with accuracy greater than 75%. That 
is, the v axis, theoretically derived from the twist operation, was in-
deed present in the high-dimensional neural space (Fig. 4B).

To examine whether this twist operation can generalize from 
the planar XOR problem to address the cubic XOR problem (i.e., 

{1, 2, 3, 4} versus {5, 6, 7, 8}; Fig. 4C, left), in addition to one twist op-
eration equivalent to V = Z ⊕ X (Fig. 4C, middle), we incorporate a 
second twist of the manifold’s y-v projection around the y axis to 
make the vertex pair of {1, 2, 3, 4} versus {5, 6, 7, 8} linearly separable 
(Fig.  3C, right). In this second twist, a new axis, denoted as 
p = vy = zxy , is constructed. Logically, this axis is equivalent to 
P = V ⊕ Y = Z ⊕ X ⊕ Y  , meaning the true and false values of P is 
obtained by concatenating Z , X , and Y  through two XOR operators.

According to our double-twist model, successfully solving the cu-
bic XOR classification problem would indicate a theoretical predic-
tion, which is the emergence of an intermediate axis, referred to as 
the v axis (Fig. 4C, middle). To empirically test this prediction, we 
assessed linear separability of a specific classification problem of dis-
tinguishing neural responses to vertices {1, 3, 6, 8} versus {2, 4, 5, 7} , 
which should become linear separable if axis v really exists in neural 
space. The linear separability revealed by this independent analysis 
thus serves as empirical validation of the theoretically predicted in-
termediate axis v. The SVM analysis showed that these two sets of 
vertices were indeed linearly separable (Fig. 4D, middle). This finding 
confirms the existence of the v axis in the high-dimensional neural 
space. In addition, the theoretically derived p axis through double 
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twist operations on the given sensory manifold is indeed the LR axis, 
as the p axis was approximately parallel to the LR axis (fig. S13). Last, 
the theoretically derived manifolds from twist operations (Fig. 4C) 
closely matched the neural manifolds derived from actual neural 
states (Fig. 4D) [all R2 (coefficient of determination) ≥ 0.8; for details, 
see Materials and Methods]. Note that the empirical v and p axes, as 

well as the z , x , and y axes, were mutually orthogonal, as prescribed 
by twist operations (Fig. 4E). This suggests that the perceptual mani-
fold observed in the macaques’ V2 may undergo geometric transfor-
mations equivalent to the twist operations from the sensory manifold.

Evidence supporting this conjecture comes from the analysis on 
the latency of the emergence of the intermediate v axis, which should 
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Fig. 4. Twist operations on the classification of contour orientations. (A) Illustration of a twist operation on planar XOR problems. Left: Coplanar vertices {1, 3, 5, 7} are 
colored on the basis of contour orientations, forming a standard XOR problem on the z-x plane. Middle: A twist operation around the x axis resolves the XOR problem by 
rotating two parallel edges in opposite directions. Right: This twist operation generates the v axis orthogonal to the z-x plane. (B) SVM classification accuracy over time. 
Shaded gray region (mean ± three SDs) denotes chance-level performance (shuffled control). (C) Illustration of double twist operations on a cubic XOR problem. Left: 
Theoretical sensory manifold in the x-y-z space. Middle: Intermediate manifold achieved after one twist operation on the z-x plane, with the emergence of the v axis. 
Right: Task-relevant p axis emerges after the second twist operation on the y-v plane. (D) Neural manifolds corresponding to the theoretical manifolds achieved through 
twist operations. The centers of the eight clouds of neural states were used to depict the geometry of neural manifolds through linear fitting. (E) Angle distribution among 
x, y, z, v, and p axes. (F) Emergence latencies of the z, y, x, v, and p axes. Triangles indicate averaged classification accuracies consistently exceed their corresponding 
baselines. Shaded gray regions denote the chance-level performance (shuffle control). (G) Left: Mean emergence latencies of the sensory axes (0-twist, blue, N = 300), the 
intermediate axes (1-twist, green, N = 300), and the contour axis (2-twist, red, N = 100). **: bootstrapped t test P < 0.001 . Right: The 95% bootstrapped confidence intervals 
of the latency differences between axes of two different categories.
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emerge after the sensory axes of z and x , upon which the first twist 
operation acts, and before the task-relevant p axis, which relies on 
the v axis for the second twist. Consistent with this prediction, the 
empirical v axis emerged (i.e., consistently exceeded the baseline) at 
65 ms poststimulus onset, later than the emergence of the empirical 
z , x , and y axes (at 43, 57, and 53 ms, respectively), and yet earlier 
than that of the empirical p axis (at 87 ms) (Fig. 4F; for the time 
courses of all intermediate axes, see fig. S14, C and D).

Together, the presence of the intermediate v axis predicted 
by twist operations, not by the classification task itself, suggests 
that the perceptual manifold is the product of mentally process-
ing sensory data with the involvement of NMS neurons. Next, 
we examined the neural geometry of the perceptual manifold 
and its functionality.

Dimensionality of perceptual manifold
Given the commutative nature of the equivalent logical computa-
tion, that is P = Z ⊕ X ⊕ Y = X ⊕ Y ⊕ Z = Y ⊕ Z ⊕ X , we pre-
dicted the existence of two additional intermediate axes of u and w , 
which correspond to U = X ⊕ Y  and W = Y ⊕ Z , respectively. Spe-
cifically, the u axis can differentiate vertices {1, 4, 5, 8} from vertices 
{2, 3, 6, 7} , and the w axis can differentiate vertices {1, 2, 7, 8} from 
vertices {3, 4, 5, 6} (fig. S12, A and C). Consistent with this predic-
tion, the SVM analysis showed significantly higher classification ac-
curacies for these vertex sets compared to the baseline, confirming 
the existence of these two intermediates u and w axes in the 
high-dimensional neural space (fig. S14A). Moreover, the u and w 
axes were orthogonal to each other and to other axes (fig. S14B).

Consequently, we identified seven mutually orthogonal axes, 
which can be grouped into three categories based on the number of 
twist operations required to derive them: the 0-twist axes (sensory 
axis: x , y , and z ), the 1-twist axes (intermediate axes: u , v , and w ), 
and the 2-twist axis (perceptual axis: p ). According to our theoreti-
cal predictions, the emergence latencies should follow the sequence: 
the 0-twist axes first, then the 1-twist axes, and, lastly, the 2-twist 
axis. To verify this prediction, we performed a bootstrap analysis 
(100 iterations) to calculate the emergence latency of each axis with 
the 95% confidence interval (Fig. 4G, left). The mean emergence la-
tency of the 1-twist axes was 65.4 ms (SD: 8.7 ms) significantly later 

than the 0-twist axes (mean: 50.9 ms, SD: 6.0 ms, bootstrapped t 
testP < 0.001 ) but significantly earlier than the 2-twist axis (mean: 
87.0 ms, SD: 3.8 ms, bootstrapped t test P < 0.001 ). The latency dif-
ferences were statistically significant and robust, with the 95% con-
fidence interval for the 1-twist minus 0-twist difference at [13.8 ms, 
16.2 ms] and the 2-twist minus 1-twist difference at [19.0 ms, 21.6 ms], 
both excluding zero (Fig. 4G, right). These results confirm that the 
geometric transformations occur in distinct and sequential tempo-
ral stages, consistent with the predictions of the double-twist model. 
This pattern was replicated in the analysis of the emergence latencies 
of individual axes (fig. S14, C and D) and in the data of single mon-
keys (fig. S15).

In addition, these seven axes were present in each of three cyto-
chrome oxidase stripes (i.e., thin, thick, and pale) in the V2 area, 
suggesting that the twist operation is likely a general property of V2 
neurons (fig.  S16). Together, the dimensionality of the perceptual 
manifold was at least 7, much higher than that of the sensory mani-
fold (i.e., 3).

An intriguing question arises: Why was the perceptual manifold 
embedded in a 7D space when a 4D space, constructed by x , y , z , 
and p axes, is sufficient to satisfy the task demand of classifying con-
tour orientations? One possibility is that the availability of multiple 
alternative pathways to construct the task-relevant p axis enhances 
the robustness for the classification. Alternatively, the perceptual 
manifold may not be task specific; rather, the classification of con-
tour orientations could be just one of its many possible applications. 
For the stimulus space with eight vertices, there are 28 = 256 possi-
ble classifications. Some are linearly separable in the stimulus space, 
such as vertex {2} versus {1,3, 4, 5, 6, 7, 8} or vertices {2,5} versus 
{1,3,4,6, 7,8} (Fig.  5A), while others are not, such as {2,3} versus 
{1, 4,5,6,7,8} (Fig. 5B). In total, in the stimulus space, 104 classifica-
tions are linearly separable, and 152 are not (for a full list, see fig. S17 
and table S1). Notably, all linearly inseparable classifications in the 
stimulus space become linearly separable in the 7D space. For ex-
ample, the vertex pair of {2,3} versus {1,4,5, 6,7,8} becomes linearly 
separable in the y-z-p subspace (Fig. 5C). In total, there are C7

3
= 35 

3D subspaces embedded in the 7D perceptual space (fig. S18), and 
each of the 152 linearly inseparable classifications becomes linearly 
separable in at least one of these 35 subspaces (table  S2). That is, 

A

B

Double twist

C

Fig. 5. Linearly separable and inseparable classifications in the stimulus space. (A) Examples of linearly separable but non-axial classifications in the stimulus space. 
The classification separates a subset of vertices (with the set size of 0, 1, 2, 3, and 4, red) from the rest (blue). (B) Examples of linearly inseparable classifications in the 
stimulus space, including the classification of contour orientations (right). (C) Classifications in (B) become linearly separable in new subspaces through twist operations.
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every possible classification in the stimulus space is linearly separa-
ble in this 7D perceptual manifold.

This indicates that the perceptual manifold may not directly cor-
respond to decision-making or action; rather, it may provide a reser-
voir of all possible candidates (in our case, solutions for all possible 
classifications) for higher-order cognitive processes. Consistent with 
this conjecture, after excluding task-relevant neurons that showed 
high sensitivity to contour orientations from the V2 neuron popula-
tion, the remaining neurons retained the ability to classify contour 
orientations at the population level (fig. S7).

The necessity and sufficiency of NMS neurons in 
dimension expansion
The aforementioned analyses showed the important role of NMS 
neurons in expanding dimensions of representational spaces through 
twist operations. Here, we further examined the necessity and suffi-
ciency of NMS neurons in dimension expansion. To do this, we first 
compared NMS neurons with pure selectivity neurons in carrying 
out all possible classifications in the stimulus space. We generated 
synthetic neurons exclusively tuned to one of the three stimulus fea-
tures (fig. S21) based on real recorded data in V2 to simulate neurons 
with pure selectivity (36). For example,  Fig.  6 (A and B) shows a 
typical NMS neuron in the V2 area responding differently to HV and 
CA and showing no sensitivity to OI (top) and a typical synthetic 
neuron with pure selectivity to OI (bottom).

To evaluate the classification performance for 152 linearly in-
separable problems (table S1) and 104 linearly separable problems 
(table S2), we used a population-increment procedure (36), where 
the population size was progressively increased from a single neu-
ron to the entire set of 93 neurons, adding one randomly selected 
neuron each time. During each iteration, we trained SVMs with 
neural activities for all possible classifications, and a classification 
accuracy threshold of 75% was set as the criterion for successful 
classification (for details, see Materials and Methods).  Figure  6C 
shows the number of successful linear classifications as a function of 
neuron population size. With NMS neurons, we succeeded in all 
possible classifications (256 in total), for both linearly separable and 
inseparable problems (Fig. 6C, black curve), when the number of 
NMS neurons exceeded 81. In contrast, using the synthetic neurons 
with pure selectivity, the total number of successful classifications 
plateaued at 104 (Fig. 6C, gray curve) when the population size ex-
ceeded 49. That is, additional increase in neuron population size did 
not further improve classification performance.

Moreover, the problems successfully classified by pure selectivity 
neurons were all linearly separable in the stimulus space (table S1), 
and none came from the set of linear inseparable problems (ta-
ble S2). That is, neurons with pure selectivity can only address lin-
early separable problems, as they alone cannot expand the sensory 
manifold to a higher dimensionality. Together, this finding suggests 
that regardless of neuron population size, NMS neurons are neces-
sary in expanding the dimensionality of neural manifolds, hereby 
transforming the sensory manifold into the perceptual manifold.

The finding that at least 81 neurons were needed for forming the 
7D perceptual manifold, as shown in Fig. 6C, highlights the impor-
tance of population-level activity in dimension expansion. Previ-
ous studies have shown that neurons’ diverse response play an 
important role in computational capacity (44–46). To quantify how 
diversity in response profiles of NMS neurons influences dimen-
sion expansion of the representational space, we built a two-layer 

feedforward neural network tasked with processing the stimuli used 
in the macaques’ experiment (for details on the network, see Materi-
als and Methods). In this network, each output neuron receives the 
combination of all three stimulus features (i.e., HV, OI, and CA) 
from the input neurons and uses a nonlinear activation function 
(i.e., ReLU), with connectivity weights independently sampled from 
a multivariate Gaussian distribution. As a result, all output neurons 
in this neural network demonstrate a response profile of NMS.

In this network, the response profiles of NMS neurons are con-
trolled by a parameter d , which denotes the degree of diversity in 
connection patterns between the two layers (Fig. 6D). This diversity 
ranges from identical patterns ( d = 0 ) to completely uncorrelated 
patterns ( d = 1 ) (see Materials and Methods). Whend = 1 , each 
NMS neuron generates a distinct response because the connection 
pattern from the input neurons is unique (Fig. 6D, right), and there-
fore, the matrix of connectivity weights is full rank. SVM analysis, 
similar to that performed on the macaques’ data, was carried out to 
identify the 7D perceptual manifold. For visualization, neurons’ ac-
tivations are projected into 3D subspaces (Fig. 6E), where each dot 
denotes the neural state of a stimulus, with red and blue colors rep-
resenting the two contour orientations, respectively. Within this 7D 
perceptual manifold, we can identify the sensory manifold embed-
ded in a 3D subspace constructed by axes corresponding to the 
three stimulus features (Fig. 6E, left), the intermediate manifold in a 
3D subspace with a new axis v after one twist operation (Fig. 6E, 
middle), and the subspace achieved after the second twist operation 
where linearly separating contour orientations becomes possible 
(Fig.  6E, right). In addition, continuous stimuli that spanned the 
entire sheared configuration ring (Fig. 1C, right) produced similar 
results (fig.  S22). In summary, the 7D perceptual manifold con-
structed by the network of NMS neurons with random connectivity 
patterns (i.e., d = 1 ) is comparable to the 7D perceptual manifold 
identified in the macaque’s V2 (Fig. 4D).

In contrast, when d = 0 , all NMS neurons have the same inputs 
and thus generate identical responses. Accordingly, the matrix of con-
nectivity weights in the network is rank 1 (or 0 if all weights are 0), 
resulting in low dimensionality of the neural manifold (inferred di-
mension = 1.3, SD = 0.70, see Materials and Methods). This low di-
mensionality was also revealed by PCAof the variance in neuron 
activation (Fig. 6G). When d = 0 , the first PC explained 99.84% of the 
total variance, leaving nearly no variance for the remaining PCs. As a 
result, the neural states of the stimuli were confined to an approxi-
mately 1D space (Fig. 6F). Therefore, the neural manifold constructed 
by the network with no diversity (i.e., d = 0 ) shows substantial limita-
tions in performing either linear or nonlinear classification (the num-
ber of linearly separable problems successfully addressed: 9.16 or 
8.8% of the whole set, SD = 2.89; the number of linearly inseparable 
problems successfully addressed: 2.74 or 1.8%, SD = 2.23). In con-
trast, when d = 1 , the first six PCs (99.78%) were required to explain 
the same amount of variance as the first PC when d = 0 . Thus, when 
d = 1 , the neural states of the stimuli were dispersed into a higher di-
mensional neural space. These findings suggest that networks consist-
ing of NMS neurons with an identical response profile have limited 
computational capacity and thus hardly encode sufficient informa-
tion, even when the response profile exhibits NMS.

To systematically investigate how diversity in the response pro-
files of NMS neurons influenced the dimensionality of repre-
sentational spaces, we constructed a series of neural networks with 
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different parameters d and then measured the dimensionality and 
the classification performances (see Materials and Methods). We 
found that as the diversity in response profiles increased, the dimen-
sionality increased monotonically (Fig. 6H, red curve). The network 
did not need to have complete diversity to form the perceptual man-
ifold. With d > 0.5 , the dimensionality reliably expanded to 7 (see 

Materials and Methods and text S16). In parallel, the number of suc-
cessful classifications increased monotonically, finally capable of 
successfully carrying out all possible classifications (i.e., 256) once 
the dimensionality reliably reached 7 (Fig.  6H, blue curve). Note 
that the linearly inseparable problems were resolved in parallel with 
the linearly separable ones (fig. S23).
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Fig. 6. Necessity of NMS neurons and heterogeneous connectivity structure. (A) Time courses of an NMS neuron (top) and a synthetic neuron with pure selectivity 
(bottom). Colors and numbers denote different stimuli and their associated neural responses. (B) Average activity of the NMS neuron (top) and the synthetic neuron (bot-
tom) from 200 to 750 ms after stimulus onset. Colors denote different conditions of a feature, and error bars denote the SE. (C) The number of successful linear classifica-
tions increased as a function of neuron population size for both pure selectivity neurons (gray) and NMS neurons (dark). Real neuron: neurons recorded in the V2. Pure 
neuron: synthetic neuron with pure selectivity. Error bar: SD. (D) Schematic illustration of a two-layer feedforward neural network. Letters x , y , and z represent stimulus 
features HV, OI, and CA. Line thickness indicates magnitudes of weights. Line colors highlight weight distribution from one neuron. Letter d : levels of diversities. (E) Visu-
alization of neural manifolds when d = 1. Left: Sensory manifold that corresponds to the stimulus space. Middle: Intermediate manifold after one twist operation. Right: 
The subspace where linear classification of contour orientations is achieved. Red and blue represent the two contour orientations. (F) Visualization of the neural manifold 
when d = 0. The subspace is constructed by the first three PCs of neurons’ activation. (G) Variance explained by PCs of neurons’ activation with different levels of diversity. 
(H) Dimensionality and number of successful classifications as a function of heterogeneity in response profiles for each diversity level d . Error bar: SD.
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On the other hand, heterogeneity in response profiles alone 
seems insufficient, as neural networks consisting of pure selectivity 
neurons with identical parameter d were only capable of addressing 
linearly separable problems (fig.  S24). Together, the synergy be-
tween twist operations on input feature vectors by NMS neurons 
and the heterogeneous response profiles among NMS neurons is 
critical, which optimally leverages neural networks to construct a 
more complex, higher-dimensional neural space.

DISCUSSION
In this study, we investigated how macaque V2 neurons solve linearly 
inseparable problems encountered in the physical world through the 
lens of neural geometry. By analyzing the neural geometry embedded 
in the high-dimensional neural space formed by collective V2 neuro-
nal activities, we identified two related but distinct neural manifolds: 
the sensory and perceptual manifolds. The sensory manifold, embed-
ded in a 3D subspace defined by the stimulus features, faithfully reflect-
ed raw sensory input, where contour orientations remained linearly 
inseparable. However, through a sequence of geometric transfor-
mations equivalent to twist operations, this 3D sensory manifold ex-
panded into a 7D perceptual manifold, adding four additional axes 
that enabled linear separability of contour orientations. Furthermore, 
this dimensional expansion was achieved through the combined ac-
tion of twist operations performed on input feature vectors by NMS 
neurons at the individual neuron level and the diverse, heterogeneous 
response profiles of NMS neurons at the population level. In sum-
mary, our findings offer mechanistic insight into how biological neu-
ral networks dynamically expand representational dimensionality, 
elucidating the transition from sensory to perceptual manifolds and 
thus advancing our understanding of how information progresses from 
sensation to perception.

Previous studies on neural geometry have shown that neural 
manifolds can faithfully represent both stimulus (13, 18, 47) and ac-
tion spaces (20, 21, 48). In line with these findings, our study identi-
fied a neural manifold embedded in a 3D subspace defined by three 
mutually orthogonal axes corresponding to the HV, OI, and CA fea-
tures of the MIC stimuli. Along with the finding that the size of this 
manifold was found to correlate with the intensity of motion coher-
ence, this manifold reflects the raw sensory input (i.e., the stimulus 
space) and is therefore termed the sensory manifold. Although flick-
er features from discontinuity motion may slightly contribute to per-
ception [see (25), but also see (26, 32)], this study did not focus on it. 
Our theoretical predictions, derived from the geometric transforma-
tion of input feature vectors by NMS neurons, led to the identifica-
tion of four additional axes that encode features absent from physical 
stimuli. Specifically, one of these axes, resulting from double twist 
operations on the three feature axes of the sensory manifold, encod-
ed the perceived orientations of illusory contours, allowing for linear 
separability of contour orientations that were not linearly separable 
in the sensory manifold. This manifold was not specific to the task at 
hand, as it potentially accomplishes all 256 possible classifications 
present in the stimulus space. This manifold likely functions as an 
intermediary between the sensory manifold and those associated 
with decision-making or action, hence its designation as the percep-
tual manifold. Note that the perceptual manifold observed in the V2 
does not necessarily originate and terminate within the V2. It likely 
inherits characteristics by feedforward from the V1 and is further 
shaped by feedback from downstream cortical regions such as the V3 

and V4. Future research using simultaneous recordings across mul-
tiple areas would be valuable to elucidate the transformation from 
the sensory to the perceptual manifold.

The creation of these perception-related axes was attributed to 
NMS neurons, which have the unique ability to transform geometri-
cally input feature vectors. The definition of mixed selectivity can, in 
principle, be dependent on how stimulus features and their associ-
ated axes are initially defined. However, the concept of NMS used in 
our study specifically denotes neuronal responses that exhibit non-
linear interactions among defined stimulus features, rather than re-
sponses that could be transformed or redefined by a linear rotation 
of axes. These nonlinear interacting neurons, as identified by signifi-
cant higher-order interactions (e.g., via ANOVA), provide a critical 
computational advantage, which enables neural systems to represent 
and solve linearly inseparable tasks. This transformation is equiva-
lent to twist operations, expanding the dimensions of representa-
tional spaces (5, 36). In contrast, neurons exclusively selective for a 
single feature or those exhibiting a linear combination of selectivity 
for multiple features are unable to change dimensionality. Therefore, 
NMS neurons appear to be necessary for interpreting sensory inputs 
into perceptual experiences by generating latent variables from inter-
mediate axes without direct semantic descriptions (49, 50). However, 
the mere presence of NMS neurons is not sufficient; their functional 
efficacy depends on the heterogeneity of their response profiles at the 
population level (45, 51). Through simulations of neural networks 
consisting of NMS neurons, we found that homogeneous response 
profiles among NMS neurons limited their capacity of expanding di-
mensions, thereby constraining the network’s computational power 
in addressing both linearly separable and inseparable problems. 
Conversely, increasing the heterogeneity of the response profiles en-
hanced dimension expansion, effectively transforming linearly in-
separable problems into linearly separable ones. In summary, our 
study reveals the symbiotic relationship between the geometric 
transformation capability of individual NMS neurons and the het-
erogeneity in the response profiles at the population level, under-
scoring the importance of both individual neuron properties and 
population dynamics in achieving dimension expansion.

The high dimensionality of the perceptual manifold functions as 
a reservoir of computational solutions, enabling flexible classifica-
tions according to downstream task demands. That is, one key func-
tion of dimension expansion is apparently to facilitate parallel 
processing, allowing multiple computations (such as classifications 
in this study) to occur simultaneously across different dimensions. 
As these computations are distributed across multiple dimensions in 
parallel, they become less reliant on conscious control and more au-
tomatic. However, this parallel processing comes with a cost, as the 
number of potential solutions increases exponentially with the num-
ber of dimensions. In our study, downstream cortical regions in-
volved in decision-making, which is usually sequential processing, 
must select the appropriate classification from 256 possibilities to 
meet the task demands. While the mechanism for effectively navi-
gating these potential solutions based on task demands remains 
largely unknown, the modulation of NMS neurons’ response profiles 
through Hebbian (“fire together wire together”) and anti-Hebbian 
(“out of sync, lose the link”) rules (52) might offer insights into re-
ducing dimensionality and thus narrowing the range of potential 
solutions. In networks governed by Hebbian plasticity, neurons fre-
quently coactivated by similar tasks or stimuli develop more homo-
geneous response profiles, leading to the formation of specialized 
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modules with relative lower dimensionality (53–55). This idea is 
supported by recent findings showing that sequences of contextually 
related images (e.g., natural video) are represented in a neural space 
with lower dimensionality, evidenced by straighter neural popula-
tion trajectories, compared to sequences of contextually unrelated 
stimuli (56).

Conversely, under anti-Hebbian rule, task-relevant features are 
disentangled from task-irrelevant ones, which may result in the com-
pression of axes representing these task-irrelevant features, thereby 
reducing effective dimensionality (57–59). This type of geometric 
transformation reshapes the representational space to focus on task-
relevant features (60). This conjecture is supported by our findings 
that although the perceptual manifold can accomplish all 256 classi-
fications, the accuracy along some dimensions (such as CA axis) was 
lower than others, suggesting that not all features are equally repre-
sented in the neural space. Our findings highlight that the dimen-
sionality of perceptual neural manifolds, such as the 7D manifold 
identified here, inherently depends on specific task demands, stimu-
lus sets, and learning history. Although the precise dimensionality 
we describe here (7D) is likely task and stimulus specific, we propose 
that the general computational strategy, the expansion of neural rep-
resentation dimensionality through geometric twist operations via 
NMS, represents a flexible neural coding mechanism that is broadly 
applicable across diverse tasks and brain regions. Future research us-
ing learning paradigms and novel stimuli will be crucial to directly 
test how representational dimensionality dynamically adapts over 
training, how rapidly the brain can adjust its dimensional structure 
in response to novel computational demands, and how generalizable 
these neural geometric principles are across tasks and cortical areas. 
Together, along the hierarchy of the ventral visual stream, the amount 
of information encoded in each dimension varies (61), and the rela-
tional structure between representations evolves from relatively sim-
ple and straightforward to more abstract and complex, reflecting the 
integration of multiple features and the emergence of high-level per-
ceptual categories (61, 62). The observed drop in classifier perfor-
mance during the blank interval after stimulus offset suggests that 
the sensory and perceptual information alone may not sufficiently 
support the full decision-making process needed for action execu-
tion. Instead, it is likely that after initial sensory processing and per-
ceptual formation within the V2, this information is subsequently 
transferred and maintained by downstream regions specialized in 
working memory, decision-making, and motor preparation, such as 
higher-order visual, parietal, and prefrontal cortices. Future studies 
incorporating longer intervals between stimulus offset and response 
initiation (63, 64) and potentially using simultaneous multiarea re-
cordings would be particularly beneficial in clarifying the respective 
roles and temporal dynamics of the V2 and other cortical regions 
during memory and decision-making processes. This intensive in-
terplay of multiple cortical regions likely orchestrates the progres-
sion from sensory to perceptual and to decision-making manifolds 
and ultimately to action-oriented manifolds, which enables us to act 
upon the physical world in response to stimuli that has acted upon us.

MATERIALS AND METHODS
Four hemispheres from two adult male macaque monkeys (Macaca 
mulatta) were used in this study. All procedures were performed in 
accordance with the National Institutes of Health Guidelines and 

were approved by the Institutional Animal Care and Use Committee 
of the Beijing Normal University [protocol number: IACUC(BNU)-
NKCNL2013-13].

Visual stimuli, behavioral tasks, and recordings
The data used in this study was from our previous work, and for 
more details on stimuli, tasks, and recordings, see (32).

Stimuli were generated with ViSaGe using MATLAB scripts and 
presented on a 21-inch cathode ray tube (CRT) display. MIC stimu-
li had seven levels of dot motion coherence. The size of the MIC was 
a 4° diameter circular, and the position of MIC was consistent with 
array population receptive field (RF).

Two monkeys performed an MIC orientation-discrimination task 
after headpost task training and optical imaging guided 32-channel 
Utah array implant. This task was a two-alternative forced-choice dis-
crimination task, and the monkeys were trained to make an eye saccade 
choice based on MIC orientations. The monkeys made a saccade to the 
right target if the orientation was tilted to the right of the vertical axis 
and vice versa. The monkeys received a water reward for correct choices.

The electrophysiological recording system is AlphaLab SnR 
64-channel system. Neural signals were sampled at 22 kHz and with 
an 800- to 7500-Hz band-pass filter. Recordings were performed on 
multiple days. In this study, we only used single neurons in the 
unique-unit dataset (32). This dataset was generated by excluding 
potential duplicated units (i.e., similar waveforms or tunings) that 
were recorded from the same electrodes on different days. There-
fore, the neurons in this dataset were either from different electrodes 
or from the same electrode but had different waveforms or tunings. 
In addition, we further refined our selection to include only single 
neurons from this dataset.

Data analysis
Data preprocessing
For all single neurons selected as previously described, they passed 
the RF test. Briefly, we used two types of RF mapping stimuli. One is 
grid-like RF mapping, where a 0.8° square wave grating is presented 
at different positions on the grid. We fit the neuronal response in 
two dimensions using a 2D Gaussian function. The other is 4° long 
and 0.2° wide bars presented at different horizontal and vertical po-
sitions, for which we use a 1D Gaussian for fitting. A goodness of fit 
greater than 0.7 is considered as passing the RF test [see (32)]. Then, 
to build a high-dimensional neural space, we identified all V2 neu-
rons that participated in the MIC orientation-discrimination task. 
In total, we obtained 93 V2 single neurons, with 47 neurons from 
Monkey S and 46 neurons from Monkey W.

We sorted all trials into 112 conditions to analyze each neuron’s 
response (two motion-axis orientation conditions, four sheared 
configuration conditions, seven coherence levels, and two perfor-
mance outcomes). Subsequently, we calculated each neuron’s trial-
averaged response (from −200 ms before stimulus onset to 200 ms 
after stimulus offset) with a Gaussian window (a 10-ms sliding win-
dow with a 2-ms step size). We then combined all neuron responses 
after z -scoring each neuron’s trial average response (15, 65). In ad-
dition, we excluded conditions with fewer than three trials for some 
neurons, so we totally got 61 useful conditions. Following these 
steps, we constructed a data matrix of dimensions 61 (useful condi-
tions) × T (trial time) × 93 (neuron number) from the MIC orienta-
tion discrimination task.
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Support vector machine
We used SVM for two purposes: first, to decode categorical infor-
mation from the neural data, and second, to provide a well-defined 
vector, which represents a distinct dimension in the neural space. 
In the analysis, we used the fitcsvm function with a linear kernel in 
MATLAB. We retained the default hyperparameter values of the 
function, except for customizing the box constraint. In the neural 
geometry part, the box constraint was set at 0.001, whereas for the 
binary classification part, it was set at 1 (for an explanation of box 
constraints, see text S12). Then, the SVMs were trained and tested 
using data points in the neural space.

Since our population data are composed of multiple sessions 
with varying trial numbers, we followed previous methods (15, 65) 
and used trial-averaged data (as described in the “Data prepro-
cessing” section). So here, we divided the data at different time 
points into training and testing sets. First, we partitioned the com-
plete time range from −200 to 1000 ms relative to stimulus onset 
into tiled 12-ms-wide time bins. Within each time bin, we ran-
domly selected half of the time steps for training and the other 
half for testing. To train a single SVM classifier, the selected 
training data from time bins were pooled together. To generate 
time courses of classifier accuracy, the classifier was tested with-
in each time bin using the testing data. We also tried another 
method where, instead of using tiled 12-ms time window, we ran-
domly selected half of the time points from the entire time span 
as training data and the other half as test data. The classification 
accuracies were consistent. However, in this way, we could not ob-
tain time courses of classification accuracy, so we did not use it in 
this text.
Angle analysis
To calculate the angle subtended between two n-dimensional unit 
vectors βi and βj , we used the following formula

The vectors were from SVM classifications. For the neural geom-
etry and twist model parts, we performed SVM analysis once for 
each classification. For control analyses, we ran SVM analysis 200 
times for each classification (see text S5 and fig. S6, A and B). The 
orthogonality of the angle was tested by examining whether it sig-
nificantly differed from the angle distribution constructed by ran-
domly selecting two vectors in a 93D space (see text S5 and fig. S6C).
Low-pass filter
To smooth the temporal profiles of the neuron activities, we applied 
customized simple discrete-time RC low-pass filters. Let the tempo-
ral profile of a neuron be x(t) . The filtering is applied using a sliding 
window starting from N time steps before the current moment. In 
this window, the filtered temporal profile x(t) is

where α is the smoothing factor. The factor α is computed from the 
sampling time interval Δt and the required cutoff frequency fc as

Essentially, the low-pass filter computes the exponentially weight-
ed moving average of the original temporal profile. In our study, 
Δt = 0.002 s, fc = 2 Hz and N = 5.

3D visualization
The main axes identified by SVM must be perfectly mutually or-
thogonal for creating Cartesian coordinate systems. So here, we first 
created an arbitrary full rank matrix A . Its first few columns were 
replaced by the identified main axes by SVM. We then applied QR 
decomposition on matrix A to obtain an orthogonal matrix Q . The 
transformation matrix was T = Q

T (see text S13 for details). Then, 
we used this transformation matrix to linearly transform the origi-
nal neural space to a new coordinate system where the identified 
main axes by SVM were the first several axes.

To neatly visualize the neural states in a 3D subspace, we first 
applied low-pass filter to the data in the original neural space. We 
chose cutoff frequency fc = 2 Hz because we wanted to smooth the 
curve for better visualization and clearer depiction of the dynamic 
process. Low-pass filtering was not used in other quantitative calcu-
lations. We then used matrix T to transform the filtered data into a 
high-dimensional coordinate system. Last, the transformed data 
were projected into a 3D subspace constructed by the main axes 
identified for visualization.
Double-twist model
The double-twist model transformed the continuous cylindrical stim-
ulus manifold depicted in Fig. 4C (left) to a continuous perceptual 
manifold embedded in a 7D space. Its projections into 3D subspaces 
were shown in gray in  Fig.  4C (middle and right). The perceptual 
manifold arose from the correspondence between the XOR operator 
and the arithmetic product. Let the true value be represented by −1 
and the false value by 1. The truth table of the XOR operator aligns 
with that of the arithmetic product (see fig. S25). That is,

where X and Y are Boolean variables and x and y are the coordinates on 
the x and y axes, respectively. Therefore, after two twist operations, the 
7D coordinates of a point in the perceptual manifold corresponding to 
a point 

[
x, y, z

]
 in the stimulus manifold are 

[
x, y, z, xy, yz, xz, xyz

]
.

The derived perceptual manifold was fit to the neural data using 
affine transformation for visualization. Because the neural data con-
tained noise, we first applied a low-pass filter (cutoff frequency of 2 Hz) 
and then calculated the steady-state averages (from 300 to 500 ms 
relative to stimulus onset) of neural activities for the eight stimuli to 
determine eight centers. These centers were then projected into var-
ious 3D subspaces (Fig. 4). In each subspace, we located the neural 
states for the eight stimuli based on the derived perceptual mani-
fold. Using the least square method, we obtained the transformation 
matrix F . The mean of the residuals was represented as a vector e . 
For any point x on the 3D projections of the derived perceptual 
manifold, we applied the transformation

to fit the model to the data (see text S14 for detailed formulation). 
The goodness of fit was measured by R2.
Binary classification
Binary classification entailed sorting stimulus conditions into two 
classes based on all possible classification rules. With eight stimulus 
conditions, we had a total of 256 classification rules. For each classi-
fication, the criterion for linear separability was set at 75% accuracy 
within each stimulus condition. Each neuron pool was randomly se-
lected from the entire set of 93 neurons, one at a time, and we then 
conducted SVM analysis 10 times for each neuron pool (see text S15).

θ = acos
(
βT
i
βj
)

x(t) = α x(t) + (1−α) x(t−1)

α =
2π Δt fc

2π Δt fc + 1

X ⊕ Y ⇔ xy

ŷ = Fx + e
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To infer the dimensionality from binary classifications, we used 
the approach developed by Rigotti et al. (36). Briefly, we calculated 
the ratio of the actual number of linearly separable classifications 
and the theoretical number of binary classifications for each condi-
tion number n ( n ∈ {2, … , 8} ). The last n whose ratio > 0.8 was 
selected as the dimensionality (see text S16).
Connectivity patterns of neural networks
We created a simple two-layer feedforward neural network; the first 
layer contained three units representing the three feature dimen-
sions, respectively, and the second layer contained 93 NMS neurons. 
Each neuron received the input signals of all the three feature di-
mensions (mixed): x(HV), y(OI), and z(CA) and used a ReLU acti-
vation function (nonlinearity). The input signals represented the 
eight corners of the cube in the x-y-z stimulus space, each corre-
sponding to a specific stimulus. The activity ri  of the i th neuron was 
defined as

where γj ∈ {x, y, z } is the input signal of the j th stimulus feature 
with wij as the weight, bi is a random bias sampled from the uniform 
distribution �(0, 1) , and ϵ is a noise term drawn from the Gaussian 
distribution �(0, 1∕3).

The weights wij were randomly sampled from standard Gaussian 
distributions. The covariance between the weights controlled the 
structure of the network and thus determined the heterogeneity of 
the output activities. Hence, we used a diversity parameter d ∈ [0, 1] 
to define the 93D × 93D covariance matrix K for sampling the weights 
of feature x

The covariance matrix K was fed into the multivariate_normal func-
tion in Python’s numpy.random package to generate the weights. The 
procedure for generating the weights of features y and z was identical.

We ran multiple simulations on the network. In each simulation, 
input stimuli were repeated 100 times to allow the added random 
noise for generating point clusters. We applied the same analyses for 
the network’s output activities as we did for the neural data. One 
hundred simulations were conducted to calculate the dimensional-
ity of the neural geometry.
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