SCIENCE ADVANCES | RESEARCH ARTICLE

'.) Check for updates

NEUROSCIENCE

From sensory to perceptual manifolds: The twist of

neural geometry

Heng Ma't, Longsheng Jiang"*t, Tao Liu't, Jia Liu'*

Classification constitutes a fundamental cognitive challenge for both biological and artificial intelligence systems.
Here, we investigated how the brain categorizes stimuli that are not linearly separable in the physical world by
analyzing the geometry of neural manifolds formed by macaque V2 neurons during a classification task involving
motion-induced illusory contours. We identified two related but distinct neural manifolds: the sensory and per-
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ceptual manifolds. The sensory manifold was embedded in a three-dimensional subspace defined by three
stimulus features, where contour orientations remained linearly inseparable. However, through a sequence of
geometric transformations equivalent to twist operations, this three-dimensional sensory manifold expanded
into a seven-dimensional perceptual manifold, enabling the linear separability of contour orientations. Computa-
tional modeling further demonstrated that this dimension expansion was facilitated by neurons exhibiting non-
linear mixed selectivity with heterogeneous response profiles. These findings provide insights into how biological
neural networks enhance the dimensionality of representational spaces, illuminating the geometric mechanism

underlying the transformation from sensation to perception.

INTRODUCTION

Imagine a person trying to identify various objects such as a cup, a
book, and a pen on a clustered desk. The brain must process com-
plex and overlapping sensory inputs with variations in light, angles,
and occlusions by neurons encoding different features of the objects
and their combinations to classify ultimately each object accurately
(1-3). One primary challenge in this classification task lies in the
prevalence of linearly inseparable problems, where perfectly segre-
gating data points into their respective classes using a linear bound-
ary is infeasible (4, 5). Machine learning algorithms often resort to
complex, nonlinear decision boundaries to address this issue, using
techniques such as kernel methods and deep learning (6, 7). Here, we
asked how the brain addresses linearly inseparable problems pres-
ent in the physical world from the perspective of neural geometry
(8-10) constituted by the collective activity of large groups of neu-
rons, an approach recently applied to various domains such as vision
(11, 12), memory (13, 14), decision (15-17), navigation (18, 19), and
motor execution (20-23) to explore their characteristics in a high-
dimensional neural space.

To do this, we first designed a set of stimuli that cannot be lin-
early classified along one stimulus feature or linear combination of
stimulus features. Specifically, we used a visual illusion of motion-
induced contours [MICs; (24-26)] (Fig. 1B). MIC is a second-order
contour, similar to other well-documented illusory contours, such as
contrast-defined contours (27), disparity-defined contours (28, 29),
and texture-defined contours (30). This stimulus is not defined by
luminance edges but arises mostly from the coherent spatial-temporal
patterns of dot motion. There are three independent stimulus fea-
tures of moving dots that are more basic. They determine a particular
instance of MIC stimuli (26, 31, 32): Dots move (i) either horizon-
tally or vertically, (ii) outwardly or inwardly, and (iii) clockwise-like

"Department of Psychological and Cognitive Sciences & Tsinghua Laboratory of
Brain and Intelligence, Tsinghua University, Beijing 100084, China. 2Beijing Acade-
my of Artificial Intelligence (BAAI), Beijing 100085, China.

*Corresponding author. Email: liujiathu@tsinghua.edu.cn

tThese authors contributed equally to this work.

Ma et al., Sci. Adv. 11, eadv0431 (2025) 10 December 2025

or anticlockwise-like (Fig. 1C). Accordingly, a three-dimensional (3D)
stimulus space is thus constructed (Fig. 1D), with each axis corre-
sponding to a stimulus feature of moving dots. Although each stimu-
lus feature of moving dots is linearly separable, the orientations of
illusory boundaries, constructed by combining these three features,
become linearly inseparable in this stimulus space. That is, MIC stim-
uli sharing the same contour orientation (e.g., right-tilted, red) are
interspersed among those with the opposing orientation (i.e., left-
tilted, blue; see detailed explanation in Results). This shows that the
classification of contour orientations presents a linearly inseparable
problem in the physical world.

In the mental world, however, the linear classification of con-
tour orientations becomes feasible, as previous neurophysiological
studies have revealed that single neurons in macaques’ V2 exhibit
selectivity for cue-invariant contour orientations (24, 32). Ac-
cordingly, we analyzed neuronal activity data recorded in the V2
area (32), aiming to elucidate how the linearly inseparable prob-
lem in the stimulus space becomes linearly separable in the high-
dimensional neural space constructed by the collective activity
of V2 neurons. According to the contours that do not exist in the
physical world and being created by the brain when integrating
individual motions and interpreting symmetrical movement pat-
terns, we examined two types of neural manifolds embedded in
this high-dimensional space: the sensory and perceptual manifolds.
The sensory manifold, which arises from the sensation process,
directly responds to physical stimuli without involving interpreta-
tion and provides the raw sensory data that the brain uses to build
perceptual experiences. Given its correspondence to external stim-
uli, contour orientations likely remain linearly inseparable in the
sensory manifold. In contrast, the perceptual manifold reflects the
brain’s effort to interpret and make sense of the sensory data, where
neural states for MIC stimuli may be separately clustered on the
basis of contour orientations. Therefore, understanding the geo-
metric difference between the sensory and perceptual manifolds
and further deriving potential mechanisms that create such a dif-
ference provide a mechanistic perspective on how perception arises
from sensation.
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Fig. 1. Stimulus space. (A) Left: Schematic of the discrimination task. Right: Example of a right-tilted contour orientation formed by surrounding moving dots. Modified
from [(32) changes include: Refined the borders of each event-window schematic, explicitly indicated the time range of the sample event window, adjusted the position
of the receptive-field schematic, added additional arrows to the moving dots in the stimulus example, and added an arrow from the stimulus example to the spatial loca-
tion at which the stimulus was presented (http://creativecommons.org/licenses/by/4.0/)]. RF: array population receptive field. (B) Example stimulus characterized by the
motion axis and sheared configuration. (C) Stimulus feature axes. Left: HV axis. Right: Ol and CA axes. The red circle highlights a horizontal, outward, and anticlockwise-like

stimulus. (D) 3D stimulus space. The eight stimuli used in the experiment, numbered and color-coded by contour orientation (red: right-tilted; blue: left-tilted).

RESULTS
Stimulus space and linearly inseparable problems
Two macaque monkeys were trained to perform a classification task
by executing a saccade toward the side corresponding to the orienta-
tion of a second-order MIC. The MIC stimuli used in this study
were generated by moving dots in a circular viewing area where dots
in opposing half areas moved in opposite directions (Fig. 1A).
Using two parameters describing motion patterns and spatial ar-
rangement, we could systematically determine the MIC stimuli.
One parameter was the motion axes. As illustrated in Fig. 1B, dots in
opposing half areas moved in opposite directions along a motion
axis (e.g., dot I and dot II in Fig. 1B, left). The motion axis could
rotate within a range of [0, 7], creating a circular structure (fig. S1A).
The other parameter was the sheared configuration. It quantified the
angular location of one dot (e.g., dot IV in Fig. 1B, right) relative to
the adjacent other (e.g., dot III), with respect to their moving direc-
tion. This configuration was especially salient at locations where the
two halves of the coherently moving dots met (fig. S2, A and B). The
sheared configuration varies periodically over [0, 2x] (fig. S1B). Giv-
en the values of the motion axis and sheared configuration, we de-
termined an MIC orientation in the range [0, x].
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Accordingly, these two periodic parameters together define a
stimulus manifold with a torus topology (fig. 3, left), where each
point represents a stimulus generated by a unique combination of
the motion axis and sheared configuration. In this study, we only
used a subset of this stimulus manifold. Specifically, we first pro-
jected the 2D circular structure of the motion axis onto the 1D axis,
which included values of 0 (horizontal) and = /2 (vertical; Fig. 1C,
left). This 1D axis was referred to as the HV (horizontal versus verti-
cal) dimension. We then retained the 2D circular structure of the
sheared configuration (Fig. 1C, right), with the two dimensions,
respectively, referred to as OI (outward versus inward) and CA
(clockwise-like versus anticlockwise-like), according to the ap-
pearance of the stimuli (fig. S2C). Consequently, the subset stimu-
lus manifold has a cylindrical topology, embedded in the stimulus
space spanned by the HV, OI, and CA dimensions (Fig. 1D and
fig. S3, right).

Eight MIC stimuli were sampled from the stimulus space to cov-
er two conditions in each dimension (Fig. 1D; see movie S1 for the
eight stimuli). These MIC stimuli had two orientations, either right-
tilted (x /4, no. 1 to no. 4, red) or left-tilted (3 /4, no. 5 to no. 8,
blue). The stimuli of opposite orientations interspersed with each
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other, resulting in MIC orientations being linearly inseparable with-
in this stimulus space. However, both macaques adeptly performed
the task with an accuracy exceeding 90% at 100% motion coherence
(32). Next, we investigated how neurons in macaques’ V2 tackle this
linearly inseparable problem particularly from the perspective of
neural geometry.

Sensory and perceptual manifolds

To investigate how the brain addressed this linearly inseparable
problem, we used neural activity data from V2 neurons of two mon-
keys (93 neurons in total) to construct a high-dimension neural
space (see Materials and Methods; for neurons’ receptive fields and
selectivity, see fig. S4). First, we used linear support vector machines
(SVMs) to analyze the collective activity to all the eight stimuli to
determine whether the three feature axes of the stimulus space
(Fig. ID)—HV ({1,2,5,6} versus {3,4,7,8}), OI ({1,3,5,7} versus
{2,4,6,8}), and CA ({2,3,5,8} versus {1,4,6,7})—could be decoded.
We found that classifications along all three axes were linearly sepa-
rable, with accuracies above 75% and significantly higher than the
shuffled baseline (bootstrap ¢ tests, all Ps < 0.001) (Fig. 2A). This
finding was replicated with other methods such as the analysis on
population average responses and the principal components anal-
ysis (PCA) (fig. S5). Critically, the optimal separation direction

vectors (determined by SVM, see Materials and Methods) for HV,
O], and CA were mutually orthogonal. That is, the distribution of
the subtended angles between these vectors was significantly more
concentrated around 90° than the distribution of angles between
two random direction vectors and also significantly larger than an-
gle distributions between the same classification vectors (fig. S6).
To visualize the dynamic encoding of the stimuli by the neuronal
population, we projected the neural states in the high-dimensional
neural space into a 3D neural subspace formed by the direction
vectors for HV, OI, and CA (see Materials and Methods). Figure 2B
shows that, before stimulus onset, neural states for the stimuli were
closely clustered and inseparable. Following the onset, these states
gradually spread and became completely separable along the HV
axis. They then remained in a steady phase for the duration of stim-
ulus presentation before returning to their original locations after
stimulus offset (see movie S2 and fig. S11). Similar dynamic patterns
were observed for the OI (Fig. 2C) and CA (Fig. 2D) axes as well. To
further illustrate the neural geometry constructed by the neural
states at the steady phase, we used the activity magnitude of neurons
from 200 to 500 ms poststimulus onset as the neural states, which
were then projected to this 3D subspace (see Materials and Meth-
ods). Figure 2E shows that the neural states were located at eight
vertices of a slightly distorted cube, corresponding to the geometric
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Fig. 2. Neural representation of stimulus features and contour orientations. (A) Time-resolved classification accuracy for different stimulus features (HV, Ol, and CA)
and contour orientation (LR). Shaded gray area denotes chance-level performance estimated by shuffled control (mean + 3 SDs). Vertical dashed lines mark stimulus onset
(0 ms). Vertical graded regions mark stimulus offset (randomly in 700 to 850 ms for different trials). (B to D) Dynamic trajectories of neural states projected onto the neural
subspace defined by the HV (B), Ol (C), and CA (D) axes. Lighter colors indicate earlier time points; more saturated colors indicate later time points. Arrows indicate the
direction of trajectory evolution. Neural states prior to stimulus onset are marked in gray. Blue and red colors indicate categorizations along the HV, Ol, and CA axes, re-
spectively. The motion coherence level shown here is 7. (E) Sensory manifold. The point cloud centers of the eight stimuli in the steady phase (200 to 500 ms). Dashed lines
highlight geometric structure of the centers. Cool and warm colors indicate the two contour orientations. All motion coherence levels were used. (F) Projection of popula-
tion neural activity onto the task-relevant decision axis (L versus R orientation discrimination). Same color code as in (E). Motion strength (r) quantifying Euclidean dis-
tance between the neural states and the origin in (E) is included for display purposes only.
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relation among stimuli in the original stimulus space (Fig. 1D). This
neural manifold embedded in the high-dimensional neural space is
referred to as the “sensory manifold” because it directly responded
to the stimulus space without involving interpretation, as contour
orientations remain linearly inseparable in this manifold. To further
demonstrate that this manifold was associated with sensory pro-
cessing, we examined the relationship between its geometry and the
intensity of sensory signals. We found that the sensory manifold
was sensitive to variations in the coherence of moving dots in the
stimuli, giving rise to a series of concentric sensory manifolds, with
higher coherence levels eliciting manifolds of larger size (fig. S8).
Together, the sensory manifold faithfully represented the stimulus
space, with HV, OI, and CA serving as the axes of the neural sub-
space that embedded this manifold.

Based on previous studies showing that individual neurons that
are sensitive to contour orientation (24, 32), we used the SVM anal-
ysis to explore axes in this high-dimensional neural space that could
linearly decode contour orientations. We identified an axis that can
differentiate left-tilted orientation from the right-tilted orientation,
referred to as the LR axis, with an accuracy comparable to that of
decoding the stimuli’s features (i.e., HV, OI, and CA) (Fig. 2A, or-
ange line). Figure 2F illustrates the neural states along the LR axis,
where contour orientations became linearly separable (for dynamic
trajectories, see fig. S11 and movie S2), consistent with the finding
from studies on single neurons (24, 32). Furthermore, this LR axis
was orthogonal to the three stimulus feature axes of the sensory
manifold (fig. S6A), suggesting that the LR axis emerged not direct-
ly from the stimuli but from the interpretation of the sensory data.
Evidence supporting this conjecture comes from the analysis on the
latency of the emergence of the LR axis, which occurred about 30 ms
after the emergence of the axes encoding the stimuli’s features (i.e.,
HYV, OI, and CA) (Fig. 2A). This observation aligns with previous
findings on visual motion segregation (24, 26, 33-35), implying that
extra time may be needed to form this new axis. This new neural
manifold, embedded in the high-dimensional neural space includ-
ing the LR axis for representing contour orientations and the axes
for stimulus features (i.e., HV, OI, and CA), is referred as the percep-
tual manifold, where the linearly inseparable problem was ad-
dressed. Next, we explored how this LR axis was formed through
geometric transformation.

NMS neurons and twist operations

Traditional solutions to linearly inseparable problems such as the
exclusive-or (XOR) problem involve expanding dimensions of the
original representational space (4, 5). Previous studies have shown that
neurons with nonlinear mixed selectivity (NMS) can expand dimen-
sions by responding to combinations of input features (5, 36-38) and
using nonlinear activation functions (39, 40) to capture higher-order
interactions. All the V2 neurons analyzed in this study showed inter-
active responsiveness to the three stimulus features (significant three-
way interactions: minimum F, 5,4, = 18.25, P < 0.001), consistent
with the characteristic response patterns of nonlinear mixed selective
neurons previously identified by analysis of variance (ANOVA)-based
methods (38, 41). These findings suggest that these NMS neurons in
the V2 area may contribute to generating the LR dimension.

To reveal how NMS neurons expand the dimensionality of repre-
sentational spaces, we examined this phenomenon from two comple-
mentary yet interconnected perspectives: (i) a neural network-
based (implementation-level) perspective and (ii) a mathematical
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(algorithmic-level) perspective. From the neural network perspec-
tive, we explicitly decomposed NMS of neurons into two distinct op-
erations—linear mixing and nonlinear transformation—performed
by the network connections. We examined how each step contributes
to dimensional expansion of the representations. We used a minimal-
ist one-layer network consisting of three neurons, s,, s,, and s;. These
neurons receive inputs consisting of two continuous features, a and b,
that form a 2D feature sheet (Fig. 3A). In this context, the XOR prob-
lem is defined as categorizing points located at diagonally opposite
corners (i.e., red versus blue points). The neurons in this network (i)
receive either pure (either a or b) or mixed (the combination of a and
b) inputs, and (ii) have either linear or nonlinear (e.g., rectified linear
unit, i.e., ReLU) activation functions, leading to four distinct output
patterns (Fig. 3B).

Neurons with pure selectivity and the linear activation function
(i.e., linear pure selectivity) afford only a simple affine transforma-
tion, including rotation and shifting, of the original feature sheet
(Fig. 3C, left). Because the rotation axis is aligned with the orange
and black edges, the edges remain parallel after the transformation.
The parallel edges are more obvious in the principal component (PC)
space obtained by PCA of the four corner points (Fig. 3C, right). For
neurons with nonlinear pure selectivity, the feature sheet undergoes
bending due to the nonlinear activation function (Fig. 3D, left). This
bending occurs along an axis parallel to the orange and black edges,
so the edges remain parallel after bending, and the four corner points
still lie on the same plane as evidenced in the PC space (Fig. 3D,
right). For neurons with linear mixed selectivity (Fig. 3E, left), the
feature sheet experiences a complex affine transformation, with the
rotation axis not aligning with the three main axes. However, even
after this rotation, the edges remain parallel (Fig. 3E, right). In these
three scenarios, neither bending nor rotation alone suffices to make
the red and blue points linearly separable.

In contrast, NMS neurons perform both bending and rotation
operations on the feature sheet, making the orange and black edges
no longer parallel (Fig. 3F, left). When displaying it in the PC space
(Fig. 3E right), it becomes more obvious that the orange and black
edges appear to be twisted from their original parallel configuration.
The twisting creates a new axis perpendicular to the original orange
and black edges. In this newly constructed representational space,
the XOR problem becomes linearly separable. Here, the combined
effects of bending and rotation operations equalize a “twist” opera-
tion. Accordingly, we refer to this characteristic of NMS neurons
acting on the geometry of input features as the twist operation [for a
similar idea, see (42)].

Building on this implementation-level explanation, we further
sought a mathematical description of neurons’ NMS that concisely
expresses both the mixing operation and nonlinear transformation
on the stimulus features. Inspired by the multiplicative terms used to
represent factor interaction in ANOVA (43), we observed the corre-
spondence between the quadratic terms in algebra and the twist op-
eration in geometry. Specifically, we used x, y, and z to denote the
three original feature dimensions (HV, OI, and CA, respectively).
The four vertices {1,3,5,7} in the z—x plane exemplify a standard pla-
nar XOR problem (Fig. 4A, left). The quadratic product v = zx de-
scribes the geometric twist operation on the z-x plane (Fig. 4A,
middle). That is, it transforms the original 2D z-x plane into a curved
surface in a 3D space (Fig. 4A, right), creating a new, orthogonal axis
v. Thus, this quadratic expression succinctly captures the core geo-
metric transformation, enabling solutions to XOR-type problems.
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the four corner points.

The quadratic product also corresponds to the XOR operation in
logic. When letting the two levels on one axis represent the true
and false values of a Boolean variable, the axes are equivalent to
Boolean variables (see text S11). Also, the Boolean variable V' of
the v axis is equal to the XOR operation of the Boolean variables
Z of the original z axis and X of the original x axis, expressed as
V = Z @ X. Therefore, the twist operation in neural geometry equals
the XOR operator in logic, further explaining its efficacy in solving
XOR problems.

To examine whether this theoretically derived v axis was actually
present in the high-dimensional neural space, we trained linear SVMs
to classify three sets of vertex pairs among the four vertices shown
in Fig. 4A. As expected, the vertex pair of {1, 5} versus {3, 7} and that of
{1, 7} versus {3, 5} were linearly separable along the x and z axes, re-
spectively, with accuracies greater than 75%. Critically, the vertex pair
of {1, 3} versus {5, 7}, a standard planar XOR problem, was also lin-
early separable along the v axis with accuracy greater than 75%. That
is, the v axis, theoretically derived from the twist operation, was in-
deed present in the high-dimensional neural space (Fig. 4B).

To examine whether this twist operation can generalize from
the planar XOR problem to address the cubic XOR problem (i.e.,

Ma et al., Sci. Adv. 11, eadv0431 (2025) 10 December 2025

{1,2, 3,4} versus {5, 6, 7, 8}; Fig. 4C, left), in addition to one twist op-
eration equivalent to V = Z @ X (Fig. 4C, middle), we incorporate a
second twist of the manifold’s y-v projection around the y axis to
make the vertex pair of {1, 2, 3, 4} versus {5, 6, 7, 8} linearly separable
(Fig. 3C, right). In this second twist, a new axis, denoted as
p = vy =2zxy, is constructed. Logically, this axis is equivalent to
P=V@®Y=Z®X®Y, meaning the true and false values of P is
obtained by concatenating Z, X, and Y through two XOR operators.

According to our double-twist model, successfully solving the cu-
bic XOR classification problem would indicate a theoretical predic-
tion, which is the emergence of an intermediate axis, referred to as
the v axis (Fig. 4C, middle). To empirically test this prediction, we
assessed linear separability of a specific classification problem of dis-
tinguishing neural responses to vertices {1, 3, 6, 8} versus {2, 4, 5, 7},
which should become linear separable if axis v really exists in neural
space. The linear separability revealed by this independent analysis
thus serves as empirical validation of the theoretically predicted in-
termediate axis v. The SVM analysis showed that these two sets of
vertices were indeed linearly separable (Fig. 4D, middle). This finding
confirms the existence of the v axis in the high-dimensional neural
space. In addition, the theoretically derived p axis through double
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Fig. 4. Twist operations on the classification of contour orientations. (A) lllustration of a twist operation on planar XOR problems. Left: Coplanar vertices {1, 3,5, 7} are
colored on the basis of contour orientations, forming a standard XOR problem on the z-x plane. Middle: A twist operation around the x axis resolves the XOR problem by
rotating two parallel edges in opposite directions. Right: This twist operation generates the v axis orthogonal to the z-x plane. (B) SVM classification accuracy over time.
Shaded gray region (mean + three SDs) denotes chance-level performance (shuffled control). (C) lllustration of double twist operations on a cubic XOR problem. Left:
Theoretical sensory manifold in the x-y-z space. Middle: Intermediate manifold achieved after one twist operation on the z-x plane, with the emergence of the v axis.
Right: Task-relevant p axis emerges after the second twist operation on the y-v plane. (D) Neural manifolds corresponding to the theoretical manifolds achieved through
twist operations. The centers of the eight clouds of neural states were used to depict the geometry of neural manifolds through linear fitting. (E) Angle distribution among
X, ¥, z,v, and p axes. (F) Emergence latencies of the z, y, x, v, and p axes. Triangles indicate averaged classification accuracies consistently exceed their corresponding
baselines. Shaded gray regions denote the chance-level performance (shuffle control). (G) Left: Mean emergence latencies of the sensory axes (0-twist, blue, N =300), the
intermediate axes (1-twist, green, N = 300), and the contour axis (2-twist, red, N = 100). **: bootstrapped t test P < 0.001. Right: The 95% bootstrapped confidence intervals
of the latency differences between axes of two different categories.

twist operations on the given sensory manifold is indeed the LR axis,
as the p axis was approximately parallel to the LR axis (fig. S13). Last,
the theoretically derived manifolds from twist operations (Fig. 4C)
closely matched the neural manifolds derived from actual neural
states (Fig. 4D) [all R? (coefficient of determination) > 0.8; for details,
see Materials and Methods]. Note that the empirical v and p axes, as
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well as the z, x, and y axes, were mutually orthogonal, as prescribed
by twist operations (Fig. 4E). This suggests that the perceptual mani-
fold observed in the macaques’ V2 may undergo geometric transfor-
mations equivalent to the twist operations from the sensory manifold.

Evidence supporting this conjecture comes from the analysis on
the latency of the emergence of the intermediate v axis, which should
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emerge after the sensory axes of z and x, upon which the first twist
operation acts, and before the task-relevant p axis, which relies on
the v axis for the second twist. Consistent with this prediction, the
empirical v axis emerged (i.e., consistently exceeded the baseline) at
65 ms poststimulus onset, later than the emergence of the empirical
z, x, and y axes (at 43, 57, and 53 ms, respectively), and yet earlier
than that of the empirical p axis (at 87 ms) (Fig. 4F; for the time
courses of all intermediate axes, see fig. S14, C and D).

Together, the presence of the intermediate v axis predicted
by twist operations, not by the classification task itself, suggests
that the perceptual manifold is the product of mentally process-
ing sensory data with the involvement of NMS neurons. Next,
we examined the neural geometry of the perceptual manifold
and its functionality.

Dimensionality of perceptual manifold
Given the commutative nature of the equivalent logical computa-
tion, that s P=Z@XPY=XDYBZ=Y D Z DX, we pre-
dicted the existence of two additional intermediate axes of u and w,
which correspondtoU =X @ Yand W =Y @ Z, respectively. Spe-
cifically, the u axis can differentiate vertices { 1,4, 5, 8 } from vertices
{2,3,6,7}, and the w axis can differentiate vertices { 1,2,7, 8 } from
vertices { 3,4, 5,6 } (fig. S12, A and C). Consistent with this predic-
tion, the SVM analysis showed significantly higher classification ac-
curacies for these vertex sets compared to the baseline, confirming
the existence of these two intermediates u and w axes in the
high-dimensional neural space (fig. S14A). Moreover, the u and w
axes were orthogonal to each other and to other axes (fig. S14B).
Consequently, we identified seven mutually orthogonal axes,
which can be grouped into three categories based on the number of
twist operations required to derive them: the 0-twist axes (sensory
axis: x, y, and z), the 1-twist axes (intermediate axes: u, v, and w),
and the 2-twist axis (perceptual axis: p). According to our theoreti-
cal predictions, the emergence latencies should follow the sequence:
the O-twist axes first, then the 1-twist axes, and, lastly, the 2-twist
axis. To verify this prediction, we performed a bootstrap analysis
(100 iterations) to calculate the emergence latency of each axis with
the 95% confidence interval (Fig. 4G, left). The mean emergence la-
tency of the 1-twist axes was 65.4 ms (SD: 8.7 ms) significantly later
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than the 0-twist axes (mean: 50.9 ms, SD: 6.0 ms, bootstrapped ¢
testP < 0.001) but significantly earlier than the 2-twist axis (mean:
87.0 ms, SD: 3.8 ms, bootstrapped t test P < 0.001). The latency dif-
ferences were statistically significant and robust, with the 95% con-
fidence interval for the 1-twist minus 0-twist difference at [13.8 ms,
16.2 ms] and the 2-twist minus 1-twist difference at [19.0 ms, 21.6 ms],
both excluding zero (Fig. 4G, right). These results confirm that the
geometric transformations occur in distinct and sequential tempo-
ral stages, consistent with the predictions of the double-twist model.
This pattern was replicated in the analysis of the emergence latencies
of individual axes (fig. S14, C and D) and in the data of single mon-
keys (fig. S15).

In addition, these seven axes were present in each of three cyto-
chrome oxidase stripes (i.e., thin, thick, and pale) in the V2 area,
suggesting that the twist operation is likely a general property of V2
neurons (fig. S16). Together, the dimensionality of the perceptual
manifold was at least 7, much higher than that of the sensory mani-
fold (i.e., 3).

An intriguing question arises: Why was the perceptual manifold
embedded in a 7D space when a 4D space, constructed by x, y, z,
and p axes, is sufficient to satisfy the task demand of classifying con-
tour orientations? One possibility is that the availability of multiple
alternative pathways to construct the task-relevant p axis enhances
the robustness for the classification. Alternatively, the perceptual
manifold may not be task specific; rather, the classification of con-
tour orientations could be just one of its many possible applications.
For the stimulus space with eight vertices, there are 28 = 256 possi-
ble classifications. Some are linearly separable in the stimulus space,
such as vertex {2} versus {1,3,4,5,6,7,8} or vertices {2,5} versus
{1,3,4,6,7,8} (Fig. 5A), while others are not, such as {2,3} versus
{1,4,5,6,7,8} (Fig. 5B). In total, in the stimulus space, 104 classifica-
tions are linearly separable, and 152 are not (for a full list, see fig. S17
and table S1). Notably, all linearly inseparable classifications in the
stimulus space become linearly separable in the 7D space. For ex-
ample, the vertex pair of {2,3} versus {1,4,5,6,7,8} becomes linearly
separable in the y-z-p subspace (Fig. 5C). In total, there are C] = 35
3D subspaces embedded in the 7D perceptual space (fig. S18), and
each of the 152 linearly inseparable classifications becomes linearly
separable in at least one of these 35 subspaces (table S2). That is,
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Fig. 5. Linearly separable and inseparable classifications in the stimulus space. (A) Examples of linearly separable but non-axial classifications in the stimulus space.
The classification separates a subset of vertices (with the set size of 0, 1, 2, 3, and 4, red) from the rest (blue). (B) Examples of linearly inseparable classifications in the
stimulus space, including the classification of contour orientations (right). (C) Classifications in (B) become linearly separable in new subspaces through twist operations.
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every possible classification in the stimulus space is linearly separa-
ble in this 7D perceptual manifold.

This indicates that the perceptual manifold may not directly cor-
respond to decision-making or action; rather, it may provide a reser-
voir of all possible candidates (in our case, solutions for all possible
classifications) for higher-order cognitive processes. Consistent with
this conjecture, after excluding task-relevant neurons that showed
high sensitivity to contour orientations from the V2 neuron popula-
tion, the remaining neurons retained the ability to classify contour
orientations at the population level (fig. S7).

The necessity and sufficiency of NMS neurons in

dimension expansion

The aforementioned analyses showed the important role of NMS
neurons in expanding dimensions of representational spaces through
twist operations. Here, we further examined the necessity and suffi-
ciency of NMS neurons in dimension expansion. To do this, we first
compared NMS neurons with pure selectivity neurons in carrying
out all possible classifications in the stimulus space. We generated
synthetic neurons exclusively tuned to one of the three stimulus fea-
tures (fig. S21) based on real recorded data in V2 to simulate neurons
with pure selectivity (36). For example, Fig. 6 (A and B) shows a
typical NMS neuron in the V2 area responding differently to HV and
CA and showing no sensitivity to OI (top) and a typical synthetic
neuron with pure selectivity to OI (bottom).

To evaluate the classification performance for 152 linearly in-
separable problems (table S1) and 104 linearly separable problems
(table S2), we used a population-increment procedure (36), where
the population size was progressively increased from a single neu-
ron to the entire set of 93 neurons, adding one randomly selected
neuron each time. During each iteration, we trained SVMs with
neural activities for all possible classifications, and a classification
accuracy threshold of 75% was set as the criterion for successful
classification (for details, see Materials and Methods). Figure 6C
shows the number of successful linear classifications as a function of
neuron population size. With NMS neurons, we succeeded in all
possible classifications (256 in total), for both linearly separable and
inseparable problems (Fig. 6C, black curve), when the number of
NMS neurons exceeded 81. In contrast, using the synthetic neurons
with pure selectivity, the total number of successful classifications
plateaued at 104 (Fig. 6C, gray curve) when the population size ex-
ceeded 49. That is, additional increase in neuron population size did
not further improve classification performance.

Moreover, the problems successfully classified by pure selectivity
neurons were all linearly separable in the stimulus space (table S1),
and none came from the set of linear inseparable problems (ta-
ble S2). That is, neurons with pure selectivity can only address lin-
early separable problems, as they alone cannot expand the sensory
manifold to a higher dimensionality. Together, this finding suggests
that regardless of neuron population size, NMS neurons are neces-
sary in expanding the dimensionality of neural manifolds, hereby
transforming the sensory manifold into the perceptual manifold.

The finding that at least 81 neurons were needed for forming the
7D perceptual manifold, as shown in Fig. 6C, highlights the impor-
tance of population-level activity in dimension expansion. Previ-
ous studies have shown that neurons’ diverse response play an
important role in computational capacity (44-46). To quantify how
diversity in response profiles of NMS neurons influences dimen-
sion expansion of the representational space, we built a two-layer

Ma et al., Sci. Adv. 11, eadv0431 (2025) 10 December 2025

feedforward neural network tasked with processing the stimuli used
in the macaques’ experiment (for details on the network, see Materi-
als and Methods). In this network, each output neuron receives the
combination of all three stimulus features (i.e., HV, OI, and CA)
from the input neurons and uses a nonlinear activation function
(i.e., ReLU), with connectivity weights independently sampled from
a multivariate Gaussian distribution. As a result, all output neurons
in this neural network demonstrate a response profile of NMS.

In this network, the response profiles of NMS neurons are con-
trolled by a parameter d, which denotes the degree of diversity in
connection patterns between the two layers (Fig. 6D). This diversity
ranges from identical patterns (d = 0) to completely uncorrelated
patterns (d =1) (see Materials and Methods). Whend = 1, each
NMS neuron generates a distinct response because the connection
pattern from the input neurons is unique (Fig. 6D, right), and there-
fore, the matrix of connectivity weights is full rank. SVM analysis,
similar to that performed on the macaques’ data, was carried out to
identify the 7D perceptual manifold. For visualization, neurons’ ac-
tivations are projected into 3D subspaces (Fig. 6E), where each dot
denotes the neural state of a stimulus, with red and blue colors rep-
resenting the two contour orientations, respectively. Within this 7D
perceptual manifold, we can identify the sensory manifold embed-
ded in a 3D subspace constructed by axes corresponding to the
three stimulus features (Fig. 6E, left), the intermediate manifold in a
3D subspace with a new axis v after one twist operation (Fig. 6E,
middle), and the subspace achieved after the second twist operation
where linearly separating contour orientations becomes possible
(Fig. 6E, right). In addition, continuous stimuli that spanned the
entire sheared configuration ring (Fig. 1C, right) produced similar
results (fig. $22). In summary, the 7D perceptual manifold con-
structed by the network of NMS neurons with random connectivity
patterns (i.e., d = 1) is comparable to the 7D perceptual manifold
identified in the macaque’s V2 (Fig. 4D).

In contrast, when d = 0, all NMS neurons have the same inputs
and thus generate identical responses. Accordingly, the matrix of con-
nectivity weights in the network is rank 1 (or 0 if all weights are 0),
resulting in low dimensionality of the neural manifold (inferred di-
mension = 1.3, SD = 0.70, see Materials and Methods). This low di-
mensionality was also revealed by PCAof the variance in neuron
activation (Fig. 6G). When d = 0, the first PC explained 99.84% of the
total variance, leaving nearly no variance for the remaining PCs. As a
result, the neural states of the stimuli were confined to an approxi-
mately 1D space (Fig. 6F). Therefore, the neural manifold constructed
by the network with no diversity (i.e.,d = 0) shows substantial limita-
tions in performing either linear or nonlinear classification (the num-
ber of linearly separable problems successfully addressed: 9.16 or
8.8% of the whole set, SD = 2.89; the number of linearly inseparable
problems successfully addressed: 2.74 or 1.8%, SD = 2.23). In con-
trast, when d = 1, the first six PCs (99.78%) were required to explain
the same amount of variance as the first PC when d = 0. Thus, when
d = 1, the neural states of the stimuli were dispersed into a higher di-
mensional neural space. These findings suggest that networks consist-
ing of NMS neurons with an identical response profile have limited
computational capacity and thus hardly encode sufficient informa-
tion, even when the response profile exhibits NMS.

To systematically investigate how diversity in the response pro-
files of NMS neurons influenced the dimensionality of repre-
sentational spaces, we constructed a series of neural networks with
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Fig. 6. Necessity of NMS neurons and heterogeneous connectivity structure. (A) Time courses of an NMS neuron (top) and a synthetic neuron with pure selectivity
(bottom). Colors and numbers denote different stimuli and their associated neural responses. (B) Average activity of the NMS neuron (top) and the synthetic neuron (bot-
tom) from 200 to 750 ms after stimulus onset. Colors denote different conditions of a feature, and error bars denote the SE. (C) The number of successful linear classifica-
tions increased as a function of neuron population size for both pure selectivity neurons (gray) and NMS neurons (dark). Real neuron: neurons recorded in the V2. Pure
neuron: synthetic neuron with pure selectivity. Error bar: SD. (D) Schematic illustration of a two-layer feedforward neural network. Letters x, y, and z represent stimulus
features HV, Ol, and CA. Line thickness indicates magnitudes of weights. Line colors highlight weight distribution from one neuron. Letter d: levels of diversities. (E) Visu-
alization of neural manifolds when d = 1. Left: Sensory manifold that corresponds to the stimulus space. Middle: Intermediate manifold after one twist operation. Right:
The subspace where linear classification of contour orientations is achieved. Red and blue represent the two contour orientations. (F) Visualization of the neural manifold
when d = 0.The subspace is constructed by the first three PCs of neurons’activation. (G) Variance explained by PCs of neurons’ activation with different levels of diversity.
(H) Dimensionality and number of successful classifications as a function of heterogeneity in response profiles for each diversity level d. Error bar: SD.

different parameters d and then measured the dimensionality and
the classification performances (see Materials and Methods). We
found that as the diversity in response profiles increased, the dimen-
sionality increased monotonically (Fig. 6H, red curve). The network
did not need to have complete diversity to form the perceptual man-
ifold. With d > 0.5, the dimensionality reliably expanded to 7 (see

Ma et al., Sci. Adv. 11, eadv0431 (2025) 10 December 2025

Materials and Methods and text S16). In parallel, the number of suc-
cessful classifications increased monotonically, finally capable of
successfully carrying out all possible classifications (i.e., 256) once
the dimensionality reliably reached 7 (Fig. 6H, blue curve). Note
that the linearly inseparable problems were resolved in parallel with
the linearly separable ones (fig. S23).
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On the other hand, heterogeneity in response profiles alone
seems insufficient, as neural networks consisting of pure selectivity
neurons with identical parameter d were only capable of addressing
linearly separable problems (fig. S24). Together, the synergy be-
tween twist operations on input feature vectors by NMS neurons
and the heterogeneous response profiles among NMS neurons is
critical, which optimally leverages neural networks to construct a
more complex, higher-dimensional neural space.

DISCUSSION

In this study, we investigated how macaque V2 neurons solve linearly
inseparable problems encountered in the physical world through the
lens of neural geometry. By analyzing the neural geometry embedded
in the high-dimensional neural space formed by collective V2 neuro-
nal activities, we identified two related but distinct neural manifolds:
the sensory and perceptual manifolds. The sensory manifold, embed-
ded in a 3D subspace defined by the stimulus features, faithfully reflect-
ed raw sensory input, where contour orientations remained linearly
inseparable. However, through a sequence of geometric transfor-
mations equivalent to twist operations, this 3D sensory manifold ex-
panded into a 7D perceptual manifold, adding four additional axes
that enabled linear separability of contour orientations. Furthermore,
this dimensional expansion was achieved through the combined ac-
tion of twist operations performed on input feature vectors by NMS
neurons at the individual neuron level and the diverse, heterogeneous
response profiles of NMS neurons at the population level. In sum-
mary, our findings offer mechanistic insight into how biological neu-
ral networks dynamically expand representational dimensionality,
elucidating the transition from sensory to perceptual manifolds and
thus advancing our understanding of how information progresses from
sensation to perception.

Previous studies on neural geometry have shown that neural
manifolds can faithfully represent both stimulus (13, 18, 47) and ac-
tion spaces (20, 21, 48). In line with these findings, our study identi-
fied a neural manifold embedded in a 3D subspace defined by three
mutually orthogonal axes corresponding to the HV, OI, and CA fea-
tures of the MIC stimuli. Along with the finding that the size of this
manifold was found to correlate with the intensity of motion coher-
ence, this manifold reflects the raw sensory input (i.e., the stimulus
space) and is therefore termed the sensory manifold. Although flick-
er features from discontinuity motion may slightly contribute to per-
ception [see (25), but also see (26, 32)], this study did not focus on it.
Our theoretical predictions, derived from the geometric transforma-
tion of input feature vectors by NMS neurons, led to the identifica-
tion of four additional axes that encode features absent from physical
stimuli. Specifically, one of these axes, resulting from double twist
operations on the three feature axes of the sensory manifold, encod-
ed the perceived orientations of illusory contours, allowing for linear
separability of contour orientations that were not linearly separable
in the sensory manifold. This manifold was not specific to the task at
hand, as it potentially accomplishes all 256 possible classifications
present in the stimulus space. This manifold likely functions as an
intermediary between the sensory manifold and those associated
with decision-making or action, hence its designation as the percep-
tual manifold. Note that the perceptual manifold observed in the V2
does not necessarily originate and terminate within the V2. It likely
inherits characteristics by feedforward from the V1 and is further
shaped by feedback from downstream cortical regions such as the V3
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and V4. Future research using simultaneous recordings across mul-
tiple areas would be valuable to elucidate the transformation from
the sensory to the perceptual manifold.

The creation of these perception-related axes was attributed to
NMS neurons, which have the unique ability to transform geometri-
cally input feature vectors. The definition of mixed selectivity can, in
principle, be dependent on how stimulus features and their associ-
ated axes are initially defined. However, the concept of NMS used in
our study specifically denotes neuronal responses that exhibit non-
linear interactions among defined stimulus features, rather than re-
sponses that could be transformed or redefined by a linear rotation
of axes. These nonlinear interacting neurons, as identified by signifi-
cant higher-order interactions (e.g., via ANOVA), provide a critical
computational advantage, which enables neural systems to represent
and solve linearly inseparable tasks. This transformation is equiva-
lent to twist operations, expanding the dimensions of representa-
tional spaces (5, 36). In contrast, neurons exclusively selective for a
single feature or those exhibiting a linear combination of selectivity
for multiple features are unable to change dimensionality. Therefore,
NMS neurons appear to be necessary for interpreting sensory inputs
into perceptual experiences by generating latent variables from inter-
mediate axes without direct semantic descriptions (49, 50). However,
the mere presence of NMS neurons is not sufficient; their functional
efficacy depends on the heterogeneity of their response profiles at the
population level (45, 51). Through simulations of neural networks
consisting of NMS neurons, we found that homogeneous response
profiles among NMS neurons limited their capacity of expanding di-
mensions, thereby constraining the network’s computational power
in addressing both linearly separable and inseparable problems.
Conversely, increasing the heterogeneity of the response profiles en-
hanced dimension expansion, effectively transforming linearly in-
separable problems into linearly separable ones. In summary, our
study reveals the symbiotic relationship between the geometric
transformation capability of individual NMS neurons and the het-
erogeneity in the response profiles at the population level, under-
scoring the importance of both individual neuron properties and
population dynamics in achieving dimension expansion.

The high dimensionality of the perceptual manifold functions as
a reservoir of computational solutions, enabling flexible classifica-
tions according to downstream task demands. That is, one key func-
tion of dimension expansion is apparently to facilitate parallel
processing, allowing multiple computations (such as classifications
in this study) to occur simultaneously across different dimensions.
As these computations are distributed across multiple dimensions in
parallel, they become less reliant on conscious control and more au-
tomatic. However, this parallel processing comes with a cost, as the
number of potential solutions increases exponentially with the num-
ber of dimensions. In our study, downstream cortical regions in-
volved in decision-making, which is usually sequential processing,
must select the appropriate classification from 256 possibilities to
meet the task demands. While the mechanism for effectively navi-
gating these potential solutions based on task demands remains
largely unknown, the modulation of NMS neurons’ response profiles
through Hebbian (“fire together wire together”) and anti-Hebbian
(“out of sync, lose the link”) rules (52) might offer insights into re-
ducing dimensionality and thus narrowing the range of potential
solutions. In networks governed by Hebbian plasticity, neurons fre-
quently coactivated by similar tasks or stimuli develop more homo-
geneous response profiles, leading to the formation of specialized
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modules with relative lower dimensionality (53-55). This idea is
supported by recent findings showing that sequences of contextually
related images (e.g., natural video) are represented in a neural space
with lower dimensionality, evidenced by straighter neural popula-
tion trajectories, compared to sequences of contextually unrelated
stimuli (56).

Conversely, under anti-Hebbian rule, task-relevant features are
disentangled from task-irrelevant ones, which may result in the com-
pression of axes representing these task-irrelevant features, thereby
reducing effective dimensionality (57-59). This type of geometric
transformation reshapes the representational space to focus on task-
relevant features (60). This conjecture is supported by our findings
that although the perceptual manifold can accomplish all 256 classi-
fications, the accuracy along some dimensions (such as CA axis) was
lower than others, suggesting that not all features are equally repre-
sented in the neural space. Our findings highlight that the dimen-
sionality of perceptual neural manifolds, such as the 7D manifold
identified here, inherently depends on specific task demands, stimu-
lus sets, and learning history. Although the precise dimensionality
we describe here (7D) is likely task and stimulus specific, we propose
that the general computational strategy, the expansion of neural rep-
resentation dimensionality through geometric twist operations via
NMS, represents a flexible neural coding mechanism that is broadly
applicable across diverse tasks and brain regions. Future research us-
ing learning paradigms and novel stimuli will be crucial to directly
test how representational dimensionality dynamically adapts over
training, how rapidly the brain can adjust its dimensional structure
in response to novel computational demands, and how generalizable
these neural geometric principles are across tasks and cortical areas.
Together, along the hierarchy of the ventral visual stream, the amount
of information encoded in each dimension varies (61), and the rela-
tional structure between representations evolves from relatively sim-
ple and straightforward to more abstract and complex, reflecting the
integration of multiple features and the emergence of high-level per-
ceptual categories (61, 62). The observed drop in classifier perfor-
mance during the blank interval after stimulus offset suggests that
the sensory and perceptual information alone may not sufficiently
support the full decision-making process needed for action execu-
tion. Instead, it is likely that after initial sensory processing and per-
ceptual formation within the V2, this information is subsequently
transferred and maintained by downstream regions specialized in
working memory, decision-making, and motor preparation, such as
higher-order visual, parietal, and prefrontal cortices. Future studies
incorporating longer intervals between stimulus offset and response
initiation (63, 64) and potentially using simultaneous multiarea re-
cordings would be particularly beneficial in clarifying the respective
roles and temporal dynamics of the V2 and other cortical regions
during memory and decision-making processes. This intensive in-
terplay of multiple cortical regions likely orchestrates the progres-
sion from sensory to perceptual and to decision-making manifolds
and ultimately to action-oriented manifolds, which enables us to act
upon the physical world in response to stimuli that has acted upon us.

MATERIALS AND METHODS

Four hemispheres from two adult male macaque monkeys (Macaca
mulatta) were used in this study. All procedures were performed in
accordance with the National Institutes of Health Guidelines and
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were approved by the Institutional Animal Care and Use Committee
of the Beijing Normal University [protocol number: IACUC(BNU)-
NKCNL2013-13].

Visual stimuli, behavioral tasks, and recordings
The data used in this study was from our previous work, and for
more details on stimuli, tasks, and recordings, see (32).

Stimuli were generated with ViSaGe using MATLAB scripts and
presented on a 21-inch cathode ray tube (CRT) display. MIC stimu-
li had seven levels of dot motion coherence. The size of the MIC was
a 4° diameter circular, and the position of MIC was consistent with
array population receptive field (RF).

Two monkeys performed an MIC orientation-discrimination task
after headpost task training and optical imaging guided 32-channel
Utah array implant. This task was a two-alternative forced-choice dis-
crimination task, and the monkeys were trained to make an eye saccade
choice based on MIC orientations. The monkeys made a saccade to the
right target if the orientation was tilted to the right of the vertical axis
and vice versa. The monkeys received a water reward for correct choices.

The electrophysiological recording system is AlphaLab SnR
64-channel system. Neural signals were sampled at 22 kHz and with
an 800- to 7500-Hz band-pass filter. Recordings were performed on
multiple days. In this study, we only used single neurons in the
unique-unit dataset (32). This dataset was generated by excluding
potential duplicated units (i.e., similar waveforms or tunings) that
were recorded from the same electrodes on different days. There-
fore, the neurons in this dataset were either from different electrodes
or from the same electrode but had different waveforms or tunings.
In addition, we further refined our selection to include only single
neurons from this dataset.

Data analysis

Data preprocessing

For all single neurons selected as previously described, they passed
the RF test. Briefly, we used two types of RF mapping stimuli. One is
grid-like RF mapping, where a 0.8° square wave grating is presented
at different positions on the grid. We fit the neuronal response in
two dimensions using a 2D Gaussian function. The other is 4° long
and 0.2° wide bars presented at different horizontal and vertical po-
sitions, for which we use a 1D Gaussian for fitting. A goodness of fit
greater than 0.7 is considered as passing the RF test [see (32)]. Then,
to build a high-dimensional neural space, we identified all V2 neu-
rons that participated in the MIC orientation-discrimination task.
In total, we obtained 93 V2 single neurons, with 47 neurons from
Monkey S and 46 neurons from Monkey W.

We sorted all trials into 112 conditions to analyze each neuron’s
response (two motion-axis orientation conditions, four sheared
configuration conditions, seven coherence levels, and two perfor-
mance outcomes). Subsequently, we calculated each neurons trial-
averaged response (from —200 ms before stimulus onset to 200 ms
after stimulus offset) with a Gaussian window (a 10-ms sliding win-
dow with a 2-ms step size). We then combined all neuron responses
after z -scoring each neuronss trial average response (15, 65). In ad-
dition, we excluded conditions with fewer than three trials for some
neurons, so we totally got 61 useful conditions. Following these
steps, we constructed a data matrix of dimensions 61 (useful condi-
tions) X T (trial time) X 93 (neuron number) from the MIC orienta-
tion discrimination task.
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Support vector machine

We used SVM for two purposes: first, to decode categorical infor-
mation from the neural data, and second, to provide a well-defined
vector, which represents a distinct dimension in the neural space.
In the analysis, we used the fitcsvm function with a linear kernel in
MATLAB. We retained the default hyperparameter values of the
function, except for customizing the box constraint. In the neural
geometry part, the box constraint was set at 0.001, whereas for the
binary classification part, it was set at 1 (for an explanation of box
constraints, see text S12). Then, the SVMs were trained and tested
using data points in the neural space.

Since our population data are composed of multiple sessions
with varying trial numbers, we followed previous methods (15, 65)
and used trial-averaged data (as described in the “Data prepro-
cessing” section). So here, we divided the data at different time
points into training and testing sets. First, we partitioned the com-
plete time range from —200 to 1000 ms relative to stimulus onset
into tiled 12-ms-wide time bins. Within each time bin, we ran-
domly selected half of the time steps for training and the other
half for testing. To train a single SVM classifier, the selected
training data from time bins were pooled together. To generate
time courses of classifier accuracy, the classifier was tested with-
in each time bin using the testing data. We also tried another
method where, instead of using tiled 12-ms time window, we ran-
domly selected half of the time points from the entire time span
as training data and the other half as test data. The classification
accuracies were consistent. However, in this way, we could not ob-
tain time courses of classification accuracy, so we did not use it in
this text.

Angle analysis
To calculate the angle subtended between two n-dimensional unit
vectors ; and B;, we used the following formula

6 = acos(B; ;)

The vectors were from SVM classifications. For the neural geom-
etry and twist model parts, we performed SVM analysis once for
each classification. For control analyses, we ran SVM analysis 200
times for each classification (see text S5 and fig. S6, A and B). The
orthogonality of the angle was tested by examining whether it sig-
nificantly differed from the angle distribution constructed by ran-
domly selecting two vectors in a 93D space (see text S5 and fig. S6C).
Low-pass filter
To smooth the temporal profiles of the neuron activities, we applied
customized simple discrete-time RC low-pass filters. Let the tempo-
ral profile of a neuron be x(t). The filtering is applied using a sliding
window starting from N time steps before the current moment. In
this window, the filtered temporal profile x(t) is

x)=ax(t)+(1—-a)x(t—1)
where a is the smoothing factor. The factor o is computed from the
sampling time interval At and the required cutoff frequency f, as
. 2m At f,
2nAtf +1

Essentially, the low-pass filter computes the exponentially weight-
ed moving average of the original temporal profile. In our study,
At =0.002s, f, =2Hzand N =5.
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3D visualization

The main axes identified by SVM must be perfectly mutually or-
thogonal for creating Cartesian coordinate systems. So here, we first
created an arbitrary full rank matrix A. Its first few columns were
replaced by the identified main axes by SVM. We then applied QR
decomposition on matrix A to obtain an orthogonal matrix Q. The
transformation matrix was T = Q7 (see text S13 for details). Then,
we used this transformation matrix to linearly transform the origi-
nal neural space to a new coordinate system where the identified
main axes by SVM were the first several axes.

To neatly visualize the neural states in a 3D subspace, we first
applied low-pass filter to the data in the original neural space. We
chose cutoff frequency f. = 2 Hz because we wanted to smooth the
curve for better visualization and clearer depiction of the dynamic
process. Low-pass filtering was not used in other quantitative calcu-
lations. We then used matrix T to transform the filtered data into a
high-dimensional coordinate system. Last, the transformed data
were projected into a 3D subspace constructed by the main axes
identified for visualization.

Double-twist model

The double-twist model transformed the continuous cylindrical stim-
ulus manifold depicted in Fig. 4C (left) to a continuous perceptual
manifold embedded in a 7D space. Its projections into 3D subspaces
were shown in gray in Fig. 4C (middle and right). The perceptual
manifold arose from the correspondence between the XOR operator
and the arithmetic product. Let the true value be represented by —1
and the false value by 1. The truth table of the XOR operator aligns
with that of the arithmetic product (see fig. $25). That is,

X@Y eoxy

where X and Y are Boolean variables and x and y are the coordinates on
the x and y axes, respectively. Therefore, after two twist operations, the
7D coordinates of a point in the perceptual manifold corresponding to
a point [x, ¥, z] in the stimulus manifold are [x, Vs Z, XY, Y2, XZ, xyz].

The derived perceptual manifold was fit to the neural data using
affine transformation for visualization. Because the neural data con-
tained noise, we first applied a low-pass filter (cutoff frequency of 2 Hz)
and then calculated the steady-state averages (from 300 to 500 ms
relative to stimulus onset) of neural activities for the eight stimuli to
determine eight centers. These centers were then projected into var-
ious 3D subspaces (Fig. 4). In each subspace, we located the neural
states for the eight stimuli based on the derived perceptual mani-
fold. Using the least square method, we obtained the transformation
matrix F. The mean of the residuals was represented as a vector e.
For any point x on the 3D projections of the derived perceptual
manifold, we applied the transformation

y=Fx+e

to fit the model to the data (see text S14 for detailed formulation).
The goodness of fit was measured by R,

Binary classification

Binary classification entailed sorting stimulus conditions into two
classes based on all possible classification rules. With eight stimulus
conditions, we had a total of 256 classification rules. For each classi-
fication, the criterion for linear separability was set at 75% accuracy
within each stimulus condition. Each neuron pool was randomly se-
lected from the entire set of 93 neurons, one at a time, and we then
conducted SVM analysis 10 times for each neuron pool (see text S15).
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To infer the dimensionality from binary classifications, we used
the approach developed by Rigotti et al. (36). Briefly, we calculated
the ratio of the actual number of linearly separable classifications
and the theoretical number of binary classifications for each condi-
tion number n (n € {2, ...,8}). The last n whose ratio > 0.8 was
selected as the dimensionality (see text S16).

Connectivity patterns of neural networks

We created a simple two-layer feedforward neural network; the first
layer contained three units representing the three feature dimen-
sions, respectively, and the second layer contained 93 NMS neurons.
Each neuron received the input signals of all the three feature di-
mensions (mixed): x(HV), y(OI), and z(CA) and used a ReLU acti-
vation function (nonlinearity). The input signals represented the
eight corners of the cube in the x-y-z stimulus space, each corre-
sponding to a specific stimulus. The activity r; of the ith neuron was
defined as

r; = ReLU ZWUY;' +b, | +e
j

where y; € {x,y,z} is the input signal of the jth stimulus feature
with w;; as the weight, b; is a random bias sampled from the uniform
distribution % (0, 1), and € is a noise term drawn from the Gaussian
distribution .#(0,1/3).

The weights w;; were randomly sampled from standard Gaussian
distributions. The covariance between the weights controlled the
structure of the network and thus determined the heterogeneity of
the output activities. Hence, we used a diversity parameter d € [0, 1]
to define the 93D X 93D covariance matrix K for sampling the weights
of feature x

1-d1-d - 1

The covariance matrix K was fed into the multivariate_normal func-
tion in Python’s numpy.random package to generate the weights. The
procedure for generating the weights of features y and z was identical.

We ran multiple simulations on the network. In each simulation,
input stimuli were repeated 100 times to allow the added random
noise for generating point clusters. We applied the same analyses for
the networK’s output activities as we did for the neural data. One
hundred simulations were conducted to calculate the dimensional-
ity of the neural geometry.

Supplementary Materials
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Supplementary Text S1to S16

Figs. S1to S25
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