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Abstract

■ Oscillatory power across multiple frequency bands has been
associated with distinct working memory (WM) processes.
Recent research has shown that previous observations based
on averaged power are driven by the presence of transient,
oscillatory burst-like events, particularly within the alpha, beta,
and gamma bands. However, the interplay between different
burst events in human WM is not well understood. The current
EEG study aimed to investigate the dynamics between alpha
(8–12 Hz)/beta (15–29 Hz) and high-frequency activity (HFA;
55–80 Hz) bursts in human WM, particularly burst features
and error-related deviations during the encoding and mainte-
nance of WM in healthy adults. Oscillatory burst features within
the alpha, beta, and HFA bands were examined at frontal and
parietal electrodes in healthy young adults during a Sternberg

WM task. Averaged power dynamics were driven by oscillatory
burst features, most consistently the burst rate and burst
power. Alpha/beta and HFA bursts displayed complementary
roles in WM processes, in that alpha and beta bursting
decreased during encoding and increased during delay, while
HFA bursting had the opposite pattern, that is, increased during
encoding and decreased during the delay. Critically, weaker var-
iation in burst dynamics across stages was associated with incor-
rect responses and impaired overall task performance.
Together, these results indicate that successful human WM is
dependent on the rise-and-fall interplay between alpha/beta
and HFA bursts, with such burst dynamics reflecting a novel tar-
get for the development of treatment in clinical populations
with WM deficits. ■

INTRODUCTION

Working memory (WM) is a foundational component of
executive function that reflects the process of holding
information “in mind” to execute goal-directed behaviors
(Diamond, 2013). Based on classic lesion studies, WM was
originally thought to be solely centralized in the dorsolat-
eral PFC (dlPFC; Lara & Wallis, 2015). It is now known that
the posterior parietal cortex (PPC) also plays a distinct role
in WM within the broader central executive network (i.e.,
frontoparietal network; Niendam et al., 2012). Recent
research has found that the PPC is responsible for encod-
ing the spatial or sensory aspects of stimuli, while the PFC
is responsible for executing cognitive control demands
(e.g., categorization, filtering). Together, this reflects a
parietal-to-frontal feedforward mechanism of spatial sig-
naling as well as a frontal-to-parietal feedback mechanism
of control signaling (Murray, Jaramillo, & Wang, 2017;
Crowe et al., 2013; Goodwin, Blackman, Sakellaridi, &
Chafee, 2012). Furthermore, there is evidence that the
PPC is not only involved in aspects of encoding sensory

information but also directly involved in control-related
demands of WM (Goodwin et al., 2012; Esterman, Chiu,
Tamber-Rosenau, & Yantis, 2009; Koenigs, Barbey,
Postle, & Grafman, 2009).

Numerous prior studies have investigated spectral activity
underlying WM using scalp EEG or magnetoencepha-
lography (MEG) in humans, and most traditional fre-
quency bands have been implicated in WM processes
(Pavlov & Kotchoubey, 2022). Importantly, most prior
studies utilized metrics such as averaged power, which
give the impression that band activity is sustained and con-
tinuous over the length of long behavioral trials. As sus-
tained average power can be the summation of transient,
high-power oscillatory bursts ( Jones, 2016), examining
these transient burst events with trial-by-trial and nonaver-
aged analyses may further advance WM models. In fact,
Miller, Lundqvist, and colleagues, using local field poten-
tial and spike recordings in nonhuman primates, have elo-
quently shown that oscillatory bursts (and not sustained
activity) within the beta and gamma bands underlie WM
processes within the PFC (Lundqvist, Herman, Warden,
Brincat, &Miller, 2018; Lundqvist et al., 2016). Specifically,
they found that the rate of gamma bursting increases dur-
ing stimulus encoding (and subsequent readout or decod-
ing) and decreases during WM delay, while beta bursting
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rates decrease during encoding and increase during WM
delay. Furthermore, beta bursting was negatively correlated
with gamma bursting, with deviations in this beta/gamma
rise-and-fall bursting pattern predicting behavioral errors.

While Miller and colleagues focused their empirical
investigations within the beta band, the traditional alpha
and beta bands were grouped together (10–30 Hz) in their
overarching model as both bands provide inhibition in dif-
ferent areas of cortex. This “push–pull” interplay between
alpha/beta (10–30 Hz) and gamma (>30 Hz) bursting rate
was conceptualized as alpha/beta bursts (primarily in cor-
tical layers 5/6) carrying the control or inhibition of WM
storage and gamma bursts (primarily in cortical layers
2/3) carrying the encoding of sensory information (Buschman
&Miller, 2023; Miller, Lundqvist, & Bastos, 2018). Further-
more, these authors have suggested that this alpha/beta
versus gamma bursting reflects oscillatory states respon-
sible for internal cognitive control and external sensory
encoding, respectively (Lundqvist, Miller, Nordmark,
Liljefors, & Herman, 2024; Widge & Miller, 2019; Miller
et al., 2018).

Building upon these burst findings in nonhuman pri-
mates and expanding the understanding of the potentially
distinct roles of alpha and beta activity in human WM, in a
recent MEG study Lundqvist and colleagues found that
both alpha and beta burst rates were involved in human
WM encoding, delay, and readout (Liljefors et al., 2024).
Within occipital cortex, alpha and beta bursting decreased
during stimulus presentation. Given the two bands
showed differing temporal patterns and target versus dis-
tractor responses, the authors proposed beta burst rates
support the transition from sensory processing to WM
retention, while alpha burst rates suppressed unwanted
sensory information. Furthermore, they showed that pre-
frontal and parietal beta bursting increased before stimu-
lus presentation, suggesting that beta suppressed
retained information before target encoding (Liljefors
et al., 2024). This is consistent with prior human work
using averaged data that show alpha and beta power gate
information flow, with alpha protecting against distractions
and beta flexibly activating task-relevant circuits (Zhou,
Ramchandran, & Haegens, 2023; ElShafei, Zhou, &
Haegens, 2022).

We have previously shown that bursting power, dura-
tion, and frequency span are critical burst features along-
side burst rate that determine average power and correlate
with human perception (Shin, Law, Tsutsui, Moore, &
Jones, 2017). However, most burst studies in WM to date
have focused on burst rate, while the role of other burst
features remains understudied (except (McKeon et al.,
2023; Rodriguez-Larios & Haegens, 2023). One recent
human EEG study expanded prior burst rate findings to
amplitude, duration, and frequency span of beta bursts
during WM across the scalp montage (Rodriguez-Larios
& Haegens, 2023). Surprisingly, the prior Miller/Lundqvist
findings of decreased beta burst rate during WM were
not found; rather, beta burst amplitude and duration

decreased during the WM delay, while burst peak fre-
quency increased (Rodriguez-Larios & Haegens, 2023).
Furthermore, higher WM load was associated with
decreased beta burst amplitude and duration, yet
increased frequency and rate. These discrepancies and
a still incomplete picture of burst features across differ-
ent frequency bands (e.g., alpha, beta, and gamma), net-
works (e.g., frontal and parietal), and WM stages (e.g.,
encoding vs. maintenance) highlight the need for a
more extensive examination of burst features to theo-
rize the role of these rhythms in WM.
The objective of the current study was to identify the

dynamic interplay between alpha/ beta and high-
frequency activity (HFA; 55–80 Hz) bursts in human
WM, with a more complete examination of various burst
features (i.e., rate, amplitude, duration, frequency span)
and error-related deviations in these features during both
the encoding and maintenance of WM stimuli. We uti-
lized a trial-by-trial burst characterization approach
applied to a large, publicly available EEG data set of 154
young adults collected during a Sternberg WM test.
Results indicate that successful human WM is dependent
on the rise-and-fall interplay between several alpha/beta
and HFA burst features across the encoding and mainte-
nance periods. Our extensive identification of bursting
features involved in WM processes provides novel targets
for treatment development in clinical populations with
WM deficits.

METHODS

Participants

As previously described (Pavlov & Kotchoubey, 2020,
2021), 154 participants (82 female, mean age= 21.23 years,
SD = 3.22 years) constituted the final sample. The partic-
ipants had normal or corrected-to-normal vision and did
not report any history of neurological or mental disease.
All of them were Russian native speakers. The experimen-
tal protocol was approved by the Ural Federal University
ethics committee.

WM Task

As previously described (Pavlov & Kotchoubey, 2020,
2021), the task was a Sternberg WM paradigm with Cyrillic
alphabet letters with temporally distinct encoding and
maintenance processing stages (see Figure 1A). The
experiment entailed six different conditions: maintenance
in memory of five, six, or seven simultaneously presented
letters in the alphabetical (manipulation task) or forward
(retention task) order. In the retention task, the partici-
pants had to maintain in memory the original set as it
was presented, and in the manipulation task, they had
to, first, mentally reorganize the letters into the alphabet-
ical order and then maintain the result in memory. After a
6.7-sec delay, a letter–digit probe appeared, and the
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Figure 1. Initial spectrogram and sample burst raw data. (A) Left. The experimental paradigm. Sets of Russian alphabet letters (5, 6, or 7) written in
capitals were used as stimuli. An analogue using Latin letters and English words is shown (as noted by Pavlov & Kotchoubey, 2020). Duration of each
phase of the task is indicated below. Right: EEG montage. (B) Spectrogram across full trial for all participant/trials at F3 (left panel) and P3 (right
panel). (C) Sample averaged oscillatory power during individual recordings, decomposed into distinct alpha (left), beta (center), and HFA (right)
bursts across three randomly sampled trials (electrode F3). (D) Correlation analyses (top) and multiple regression analyses (bottom) between mean
power and burst rate, burst power, burst duration, and burst frequency span.
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participants indicated whether the probe was on the cor-
responding position either in the original set (retention
task) or in the set resulted from the alphabetical reorder-
ing (manipulation task). Each of the six conditions (reten-
tion or manipulation of five, six, or seven letters sets)
entailed 20 consecutive trials. These six blocks of 20 trials
were presented in a random order.

EEG Recording and Preprocessing

As previously described (Pavlov & Kotchoubey, 2020,
2021), the EEG was recorded from 19 electrodes arranged
according to the 10–20 system using Mitsar-EEG-202
amplifier with averaged earlobes reference. Two addi-
tional electrodes were used for horizontal and vertical
EOG. EEG data were acquired with 500 Hz sampling rate
and 150 Hz low-pass filter.

Preprocessing was conducted using the EEGLAB tool-
box for MATLAB (The MathWorks). Data were resampled
to 250 Hz, 50-Hz line noise was removed with a notch
filter (47–53 Hz), after which the data were high-pass
filtered at 1 Hz and low-pass filtered at 100 Hz. EEGLAB’s
clean_rawdata function was used to remove channels
for which (a) signal was flat for 5+ sec, (b) high-
frequency line noise was >3 standard deviations (SDs)
above the mean, and (c) there was <.85 correlation with
nearby channels. This EEGLAB function also removed
data >20 SDs outside the mean with the artifact subspace
reconstruction algorithm and removed bad data periods
with >25% of channels out of acceptable range. Rejected
channels (mean per participant = 2.3, SD = 1.7) were
spherically interpolated, and data were re-referenced to
average. Independent component analysis was con-
ducted with the picard algorithm. Using EEGLAB’s
ICLabel, components with a .8 or higher likelihood of
being eye or muscle artifact were rejected.

To examine prefrontal and parietal regions, F3 and P3
electrodes (n = 1 interpolated; 99% noninterpolated)
were extracted for further examination, as source local-
ization was determined to be invalid given the 19-
channel montage. Due to concerns about voltage
conduction, multiple electrodes were not merged.
F3 and P3 pairings were examined separately. Data were
epoched to capture the full trial, including fixation cross
(last 500 msec of 3000-msec window), cue (600 msec),
stimulus encoding (3000 msec), and the working-
memory maintenance or “delay” period (6700 msec).
Baseline normalization was conducted using the fixation
window. An epoch was rejected if it contained a value
outside the ±150 μV range. When examining discrete
WM stages, we examined 500msec of the fixation window
(i.e., t= 2500–3000 msec of the full 3000-msec window),
2000 msec of the encoding window (i.e., t = 500–
2500 msec of the 3000-msec window), and 4000 msec
of the delay window (i.e., t = 1500–5500 msec of the
6700-msec window).

EEG Spectral Analysis

The time-frequency response (TFR) of each single-trial
time series was calculated by convolution with a Morlet
wavelet of the form

w t; fð Þ ¼ A⋅ exp
−t2

2σ2

� �
⋅ exp i2πftð Þ

A ¼ 1

σ
ffiffiffiffiffi
2π

p

σ ¼ m
2πf

for each frequency of interest f (3–80 Hz) and width σ,
which is determined by constant m (selected here to be 7)
that controls the number of cycles per wavelet. Visual inspec-
tion of the averagedTFR across all participants/trials through-
out the task and across participants indicated presence of
distinct alpha (8–12 Hz) and beta (15–29 Hz) band activity
(Figure 1B). Due to notable 50-Hz line noise, a notch filter
was applied from 47 to 53 Hz. A clear pattern of band-
limited activity in the gamma range was not detected.
However, based on prior work (Lundqvist et al., 2016),
we remained motivated to investigate activity in the 55–
80 Hz range of interest, but to clarify this was not clearly
interneuron-mediated gamma oscillatory activity, we refer
to activity in this range as “high frequency activity” (Iemi
et al., 2022). Alpha, beta, and HFA bands were extracted
for subsequent burst analysis.

Burst Analysis

Transient high-power “events” were detected and charac-
terized using the SpectralEvents Toolbox (https://github
.com/jonescompneurolab/SpectralEvents), which defines
spectral events as any local maximum in the TFR above a
power threshold within a user-defined band of interest. To
be consistent with prior studies using similar methods,
findMethod = 1 was used as in Shin et al. (2017), which
is agnostic to event overlap, and the event threshold was
set at 6× the median power (i.e., 6 factors of the median
[FOM]) across time and epochs for each frequency bin of
the TFR (Morris et al., 2023; Levitt et al., 2020; Shin et al.,
2017). Events were examined within the alpha (8–12 Hz),
beta (15–29 Hz), and HFA (55–80 Hz) bands (Figure 1B–
C). Each spectral event was characterized by its peak
time/frequency within each trial, along with the event’s
peak power, duration, and frequency span (f-span). Anal-
ysis was conducted on a subject-by-subject basis. Event
rate was calculated by counting the number of events in
the 2-sec period of each epoch. Event power was calcu-
lated as the normalized FOM power value at each event
maximum. The event duration and frequency span
(f-span) were calculated from the boundaries of the
region containing power values greater than half the
local maxima power, as the FWHM in the time and
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frequency domain, respectively. Events with features
greater than 3 SDs from the mean were removed. Z scores
of event features are reported (with baseline normaliza-
tion using the fixation window).
To be consistent with prior studies that use a similar

method of power thresholding to identify spectral bursts
(i.e., “events”) in the TFR of baseline neural activity
(Kavanaugh et al., 2023; Morris et al., 2023; Levitt et al.,
2020; Shin et al., 2017), we conducted all analyses here
using a threshold of 6 FOM. This cutoff of 6 FOMwas orig-
inally chosen because it maximized the amount of trial-
by-trial power variance explained by subthreshold versus
suprathreshold activity (Shin et al., 2017). Thus, Shin et al.
(2017) sought to obtain optimal sensitivity to high-power
time–frequency fluctuations while minimizing the bias
induced by the presence (or lack thereof ) of a constant
rhythm in the band of interest (BOI). To verify that 6
FOM was a reasonable choice for the present study and
each frequency band, we quantified the across-trial Pear-
son’s correlation betweenmean power within the BOI and
percent area above the cutoff at various threshold values
ranging from 0.25 to 16 FOM (Supplemental Figure S1).
We found that the correlation coefficient averaged across
participants peaked near 6.0 FOM in each frequency band
and electrode, demonstrating that this value was optimal
for identifying spectral bursts. Furthermore, we estimated
probability of observing a spectral burst as a function of
threshold (Supplemental Figure S1) and its corresponding
cumulative distribution function (CDF). 1-CDF in
Supplemental Figure S1 shows the proportion of total
possible bursts above the cutoff.

Statistical Analyses

Statistical analyses were conducted in MATLAB 2022a and
GraphPad Prism 10. A series of Pearson correlation analy-
ses examined the association between TFR and event fea-
ture correlates within each band at each time point, with
one-way ANOVAs examining the differences between
event features on averaged power across participants
(with Tukey’s correction for pairwise comparisons). To
simultaneously examine the contribution of each burst
feature to average power, a series of regression analyses
were conducted with burst features as independent
variables and average power as the dependent variable.
After showing appropriate correlation between burst
features (i.e., r ≤ .5; Figure 7), a regression analysis
was conducted at each time point and then an ANOVA
compared the averaged regression coefficient (across
all time points) of each feature (ANOVA Bonferroni-
corrected for two electrodes and three bands, i.e.,
raw p value multiplied by 6; Tukey correction for pair-
wise comparisons).
Two-way repeated-measures ANOVA (2-RM-ANOVA)

was utilized for most analyses, although if missing data
were present, a mixed-effects model (i.e., restricted
maximum likelihood) was alternatively conducted

based on the default parameters in GraphPad to fit a
mixed-effect model to repeated-measures data. Data
were entered in a grouped format, within which each
participant (set as random factor) had data for each rel-
evant time point (set as fixed factor) and group (i.e., cor-
rect vs. incorrect or F3 vs. P3; set as fixed factor). Missing
data were predominantly present only when bursting
was not detected for that participant/time point, so
the burst rate = 0, but burst features were unavailable
(as there was no burst to measure features). The pri-
mary effect of time (i.e., fixation, encoding, delay) and
the Time × Accuracy interaction were examined for rel-
evant analyses (for analyses comparing regions, i.e.,
Figure 3, the Time × Region interaction was examined).
Pairwise comparisons after models were corrected with
Sidak correction. The primary effect of time and the
Time × Accuracy interactions are displayed separately
in figures to improve readability.

Bonferroni correction was applied to all RM-ANOVA and
mixed-model analyses to account for two electrodes (F3
and P3), bands (alpha, beta, HFA), and event features
(rate, power, duration, frequency span; i.e., raw p value
multiplied by 24). Multiple-comparison corrected
p values are reported (e.g. , uncorrected p value
multiplied by 24, unless otherwise noted), with statistical
significance set at p < .05. If a given set of analyses were
not Bonferroni corrected, the “uncorrected p” term is
used (e.g., follow-up analyses). Raw scores converted to
z scores (with baseline normalization using the fixation
window) were utilized for analyses unless indicated other-
wise. Only correct trials were included, unless mentioned
otherwise.

To simultaneously examine the contribution of each
burst feature to total task accuracy, a series of regression
analyses were conducted with burst features as indepen-
dent variables and task accuracy as the dependent variable.
Analyses were conducted separately for the encoding and
delay phases. After showing appropriate correlation
between burst features (i.e., r ≤ .5; Figure 7), a regression
analysis was conducted at each time point and then an
ANOVA compared the averaged regression coefficient
(across phase time points) of each feature (ANOVA
Bonferroni-corrected for two electrodes and three bands,
i.e., raw p value multiplied by 6; Tukey correction for
pairwise comparisons).

Features that were more strongly associated with task
accuracy were further examined across the EEG scalp
montage. A similar series of linear regression analyses
(burst features as independent variables) was conducted
at each electrode (for each time point). The burst rate
coefficient was extracted for alpha and beta band analyses
and the burst duration coefficient was extracted for HFA
band analyses, and these coefficients were examined
across electrode regions (anterior: FP1/2, F3/4/z/7/8; cen-
tral: C3/z/5, T3/4; posterior: T5/6, P3/z/5, O1/2). Single-
sample t tests compared the coefficient of each region to
zero (Bonferroni-corrected for three regions and two time
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Figure 2. Burst power, duration, and frequency span, not just burst rate, change across WM stages in a pattern reflective of averaged power at P3. (i)
Averaged power time series across trial. (ii–v) Oscillatory bursting patterns across fixation, encoding, and delay stages for burst rate (ii), burst power
(iii), burst duration (iv), and burst frequency span (v) within alpha (A), beta (B), and HFA (C) bands. Asterisks denote statistical significance. Pairwise
comparisons only displayed when overall model was statistically significant after Bonferroni correction.
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points; i.e., raw p value multiplied by 6). Similarly, and to
build upon the HFA–alpha/beta contrast findings, we then
conducted the same RM-ANOVA of this contrast score
across all electrodes, extracted the model F statistic of
each electrode’s analysis, and examined across brain
regions with a one-sample t test (Bonferroni-corrected
for three regions and two time points; i.e., raw p value
multiplied by 6).
Finally, we examined the possible differential effect of

bursting dynamics on task accuracy for manipulation ver-
sus retention WM demands and low (five items) versus
medium (six items) versus high (seven items) WM load
by conducting similar regression models, extracting
regression coefficients, and comparing between WM
demands with paired sample t tests (no correction
applied; p < .05).

RESULTS

Participants completed a version of the SternbergWMpar-
adigm (Figure 1A), within which they were presented and
asked to manipulate or retain a set of visually presented
alphabet letters (Pavlov & Kotchoubey, 2020, 2021), while
EEG was continuously recorded. We focused only on
activity from EEG sensors above frontal (electrode
F3) and parietal (P3) cortex to relate results to prior
studies. Examination of nonaveraged individual trials
shows bursts of high power in each band (Figure 1C).
The rate, power, duration, and frequency span of oscil-
latory bursts were examined within these bands in n =
154 participants. Low-frequency, transient activity dur-
ing stimuli presentation/removal appeared to reflect
evoked responses, and therefore, we continued to focus

Figure 3. Frontal versus parietal recoding was associated with diminished bursting patterns across alpha, beta, and HFA bands. (i) Averaged power
time series across trial for F3 and P3 electrodes. (ii–v) Time × Electrode analyses examining differences between electrodes in oscillatory bursting
patterns across fixation, encoding, and delay stages for burst rate (ii), burst power (iii), burst duration (iv), and burst frequency span (v) within alpha
(A), beta (B), and HFA (C) bands. Asterisks denote statistical significance. Pairwise comparisons only displayed when overall model was statistically
significant after Bonferroni correction.
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our predetermined analyses in alpha, beta, and HFA
bands.

Burst Rate Is Most Strongly Correlated with
Trial Averaged Power

To investigate what features of the burst patterns underlie
averaged power metrics, we examined the correlation
between the average of each burst feature (i.e., rate,
power, duration, frequency span) and the averaged power
across the trials. Across all bands and electrodes, burst rate
was always the most strongly associated with averaged
power, followed by burst power, burst duration, and burst
frequency span, with statistically significant differences
between these features detected in pairwise follow-up
analyses for the majority of bands/features (Figure 1D,
top panel; Alpha F3: F = 309, p < .0001; Alpha P3: F =
316, p < .0001; Beta F3: F = 158, p < .0001; Beta P3:
F = 299, p < .0001; HFA F3: F = 181, p < .0001; HFA
P3: F = 196, p < .0001). In examining notable correla-
tions between features, frequency span had a consis-
tently positive association with rate and a negative association
with duration (Figure 7). We then examined if specific burst
features were most strongly associated with averaged power
than others via multiple regression with all features loaded
in each model. The burst rate was the feature most strongly
associated with average power across all bands and
electrodes (Figure 1D, bottom panel; F3–Alpha: F =
592 p < .0001; F3–Beta: F = 340, p < .0001, F3–
HFA: F = 54.7, p < .0001; P3–Alpha: F = 635, p <
.0001; P3–Beta: F = 468, p < .0001; P3–HFA: F = 8.96,
p < .0001).

Average Power Change across WM Stages Reflects
Changes in Burst Features

Consistent with prior studies on averaged alpha/
beta power during WM (Paulo et al., 2023; Pavlov &
Kotchoubey, 2020, 2021; Roux, Wibral, Mohr, Singer, &
Uhlhaas, 2012), averaged alpha and beta power at P3
decreased during the fixation cue and increased during
the delay, while averaged HFA power increased dur-
ing the fixation cue and decreased during the delay
(Figure 2A–C, i) . Given that on individual tr ia ls
alpha/ beta and HFA power emerge as transient bursts,
we next examined which burst features (rate, power, dura-
tion, and frequency span) contributed to the observed
average power differences.

Alpha and beta exhibited a similar pattern of bursting
across WM stages (Figure 2A–B, ii–v). Specifically, the
alpha/beta burst rate, burst power, and burst duration
reflected the averaged power pattern of a decrease in
activity from fixation to encoding and an increase from
encoding to the delay (Alpha burst rate: F = 408, p <
.0001; Alpha burst power: F= 245, p< .0001; Alpha burst
duration: F=72.5, p< .0001; Beta burst rate: F=418, p<
.0001; Beta burst power: F = 138, p < .0001; Beta burst

duration: F = 48.1, p < .0001). There was no significant
pattern in the frequency span of alpha or beta bursts
(both p > .05).
The rate and power of HFA bursting largely reflected the

averaged power pattern, in that the rate and power of HFA
bursting displayed the inverse pattern of alpha/beta burst-
ing (Figure 2C, ii–v; HFA burst rate: F = 111, p < .0001;
HFA burst power: F = 15.2, p < .0001). The rate of HFA
bursting increased during encoding and decreased during
the delay, while the power of HFA bursts was characterized
by a decrease during the delay. There was no significant
pattern in the duration or frequency of HFA bursting
(both p > .05).
Taken together, alpha/beta and HFA bursting follow

inverse patterns of rising and falling across WM stages at
P3 (but not at F3). Consistent with prior work, this pattern
was found in burst rate (Liljefors et al., 2024; Lundqvist
et al., 2016, 2018) and in alpha/beta burst features
(Rodriguez-Larios & Haegens, 2023), but uniquely, we
found this pattern was also present in the power and dura-
tion of HFA bursts.

Dynamic Variation in Bursting Differs between
Parietal and Prefrontal Electrodes

Given the distinct roles of prefrontal versus parietal cortex
in WM processes (Murray et al., 2017; Crowe et al., 2013),
we then examined activity at the F3 electrode and com-
pared with P3 electrode findings (Figure 3).
The overall trends in the alpha and beta dynamics across

the WM stages were consistent across electrodes, with a
few notable differences suggesting overall enhanced
dynamic variation in parietal (P3) compared with prefron-
tal (F3) sites (Figure 3A–B). Similar to P3, at F3 the aver-
aged alpha and beta power decreased from the fixation
to encoding period and increased from encoding to delay,
and these effects were mainly driven by corresponding
changes in burst rate, power, and duration (results were
mixed for frequency span; see Supplemental Table S1
for significance across WM stages). Notable differences
across electrodes include that the averaged alpha/beta
power decrease from fixation to encoding was faster
and stronger in the P3 electrode, as was the increase
from the encoding to delay period, and that these
effects were greater in the beta band (Figure 3). These
differences were driven by changes in burst rate and
power in both bands and additionally duration differ-
ences in the beta band (Figure 3A–B; Alpha rate: F =
16.0, p< .0001; Alpha power: 13.1, p< .0001; Beta rate:
F = 27.4, p < .0001; Beta power: F = 29.4, p < .0001;
Beta duration: F = 25.8, p < .0001).
The averaged HFA power dynamics across WM stages

was markedly different at F3 and P3 and emerged solely
from significant differences in HFA rate dynamics. Frontal
activity at F3 was characterized by a decrease during
encoding and plateau during the delay, while at P3, HFA
increased during encoding and decreased during the delay
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(Figure 3C, i). HFA burst rates were higher at P3 during
encoding and higher at F3 during the delay (F = 45.2,
p < .0001; Figure 3C, ii).
Taken together with prior theories suggesting different

roles of parietal and frontal cortex in sensory encoding and
cognitive control (Crowe et al., 2013; Murray et al., 2017),
our results suggest that the fast alpha/beta changes at P3
may reflect earlier sensory encoding in this region while
the distinct differences in HFA band activity across elec-
trodes may more directly reflect differences in the role
of these parietal and frontal cortex in sensory versus cog-
nitive control.
In examining the correlation between band/features

across all time points, there was a negative association
between HFA burst rate and alpha/beta burst features at
P3 (Supplemental Figure S4A; beta burst rate: r = −.16,
p < .0001; beta burst power: r = −.10, p < .0001; alpha
burst rate: r = −.22, p < .0001; alpha burst power: r =
−.18, p < .0001; alpha burst duration: r = −.11, p <
.0001). Furthermore, we found that alpha/beta and HFA
had mirrored patterns across t ime points at P3
(Supplemental Figure S4B). Interestingly, this negative
association was not found at F3; rather, there was a posi-
tive association between beta rate and HFA rate at F3
(Supplemental Figure S4A; r = .11, p < .0001).
Taken together, we confirmed nonhuman primate find-

ings that alpha/beta and gamma/HFA bursting show
inverse patterns (although at P3, not F3) for differing
WM demands (Lundqvist et al., 2016, 2018) and uniquely
found that this association also include the power and
duration of bursts.

Incorrect Responses Are Associated with Weaker
Variation in Burst Features across WM Stages

We then examined differences in burst patterns
between correct and incorrect trials (mean number of
incorrect trials = 21.2, SD = 7.9, range = 4–42). At P3,
incorrect trials had weaker dynamic variation (i.e., less
pronounced variation in bursting) across WM stages
compared with correct trials (Figure 4). Correct–
incorrect differences were observed in the burst rate
for alpha, beta, and HFA bands and additionally in power
in the beta band (Figure 4A–C, ii; Alpha rate: F = 14.2,
p < .0001; Beta rate: F = 21.5, p < .0001; Beta power:
F = 11.2, p < .0001; HFA rate: F = 6.3, p = .048). Find-
ings were overall less robust at F3 (Supplemental
Figure S3) but followed a qualitatively similar pattern to
P3. A comparison of the difference between alpha/beta
and HFA burst rate dynamics across WM stages (i.e.,
HFA rate–combined alpha/beta rate) also showed that
weaker variation was indicative of incorrect responses
(Figure 5A, i), suggesting that a strong inverse relation-
ship between HFA and alpha/beta is an important com-
ponent of accurate working-memory processing (Miller
et al., 2018; Figure 5A, i; rate: F = 24.4, p = 3.1e−05;

power: F = 8.8, p > .05; duration: F = 3.8, p > .05; fre-
quency span: F = .23, p > .05).

In examining overall participant performance, there was
a differential association between this HFA–alpha/beta
contrast (i.e., “HFA–ABC”) score and overall participant
task accuracy, with a positive association found during
stimulus encoding and a negative association found dur-
ing the WM delay (Figure 5A, ii; encoding: r = .26,
uncorrected p < .05; delay: r = −.23, uncorrected
p < .05). Furthermore, in dividing the sample into the
lower 25th percentile (i.e., <25th percentile) and rest
of the sample (i.e., ≥25th percentile) to detect low
performers, a receiver operating curve of this HFA–
alpha/ beta contrast score was able to adequately
differentiate the low performers from the rest of the
sample (Figure 5A, iii; delay: area under the curve
[AUC] = .62, uncorrected p < .05; encoding: AUC =
.66, uncorrected p < .05).

Taken together, building upon prior work in frontal cor-
tex of nonhuman primates (Lundqvist et al., 2016, 2018),
we found that incorrect trials were associated with
reduced dynamic variation of burst patterns in frontal
and parietal cortex and that this pattern was most notable
in parietal cortex. Furthermore, reduced alpha/beta–HFA
dynamics in parietal cortex were associated with poor
overall WM task performance.

Alpha/Beta Bursting Rate and HFA Bursting
Duration Relate to Task Accuracy

We then examined if specific burst features were most
strongly associated with task accuracy than others
(Figure 5B). Within the alpha band, the burst rate at P3
during the delay was most strongly associated with total
accuracy, while the burst rate at F3 during the delay was
most negatively correlated with total accuracy (F3–Delay:
F = 9.9, p < .0001; P3–Delay: F = 49, p < .0001). Within
the beta band, the burst rate at F3 and P3 during encoding
and at F3 during the delay was most strongly associated
with total accuracy (F3–Encode: F = 10, p < .0001; F3–
Delay: F = 12, p < .0001; P3–Encode: F = 8.8, p <
.0001). Within the HFA band, the burst duration at F3 dur-
ing encoding and P3 during the delay was most strongly
associated with total accuracy (F3–Encode: F = 11, p <
.0001); P3–Delay: F = 4.5, p = .029).

Next, we examined the metrics with strong associations
to task accuracy across the EEG montage (Figure 6). The
rate of beta bursting was most strongly associated with
overall task accuracy in posterior brain regions during
encoding (t = 4.6, p = .02), while the beta burst rate
was most strongly associated with overall task accuracy
in anterior brain regions during the delay (t = 3.99, p =
.04). No patterns were observed in alpha burst rate or
HFA burst duration. Furthermore, to also examine
HFA–ABC across the montage in a similar manner, the
difference between correct and incorrect trials for the
HFA–ABC was most substantial in parietal brain regions
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Figure 4. Incorrect responses were associated with diminished parietal bursting patterns across alpha, beta, and HFA bands. (i) Averaged power time
series across trial for correct and incorrect trials. (ii–v) Time × Accuracy analyses examining differences between electrodes in oscillatory bursting
patterns across fixation, encoding, and delay stages for burst rate (ii) and burst power (iii) within alpha (A), beta (B), and HFA (C) bands. Asterisks
denote statistical significance. Pairwise comparisons only performed when overall model was statistically significant after Bonferroni correction.

290 Journal of Cognitive Neuroscience Volume 38, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/38/2/281/2546325/jocn.a.87.pdf by U
niversity of W

isconsin, M
adison user on 23 January 2026



during both encoding (t=7.6, p= .002) and the delay (t=
6.6, p = .004). Full electrode montage analyses were
largely consistent with initial single electrode findings.
We finally examined these findings across WM demands

(i.e., manipulation vs. retention) andWM load (i.e., low vs.

medium vs. high). The relationship between bursting
and task accuracy was not significantly different dur-
ing manipulation versus retention demands (Figure 5C;
all uncorrected p values > .05). No findings for WM load
were observed in alpha and beta bands, although there

Figure 5. (A, i) Time × Accuracy analysis examining the difference between correct and incorrect trials in the contrast between HFA and alpha/beta
bursting rate. (ii) Correlation between the HFA–alpha/beta bursting contrast during encoding and delay and total participant task accuracy. (iii)
Receiver operating characteristic curve of the HFA-alpha/beta contrast in differentiating low-performing participants from the rest of the sample. (B)
Multiple regression models and follow-up ANOVAs examining burst feature predictors of total WM task accuracy, examined across electrodes, bands,
and the encoding (top) and delay (bottom) periods. (C) Multiple regression models and ANOVAs examining burst feature predictors of total WM task
accuracy across differing WM demands/ load.

Kavanaugh et al. 291

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/38/2/281/2546325/jocn.a.87.pdf by U
niversity of W

isconsin, M
adison user on 23 January 2026



were HFA findings. Specifically, the weakest relation-
ship between task accuracy and HFA bursting at F3
during encoding was found during high WM load com-
pared with low and medium WM load (F = 5.8, uncor-
rected p = .004). To provide behavioral performance
context to these demand findings, as a group, participants

performed signif icantly better during retention
demands compared with manipulation demands
(paired sample t test: t = 16.5, p < .0001) and per-
formed steadily worse with more items (ANOVA; F(2,
459) = 77.5, p < .0001; pairwise comparisons: 5 items >
6 items > 7 items).

Figure 6. Spatial distribution of burst features during encoding (A) and delay (B) periods, as shown by EEG montage (top) and bar graphs separating
different montage regions (bottom; anterior: FP1/2, F3/4/z/7/8; central: C3/z/5, T3/4; posterior: T5/6, P3/z/5, O1/2).
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DISCUSSION

Utilizing a trial-by-trial burst characterization approach
within a large, publicly available EEG–WM data set, we
demonstrated the interplay between alpha/beta and HFA
(55–80 Hz) bursts in human WM. Averaged power dynam-
ics were driven by oscillatory bursts across bands, most
consistently reflected in burst rate. Alpha/beta and HFA
bursts displayed complementary roles in WM processes,
in that alpha and beta bursting decreased during encoding
and increased during delay, while HFA bursting had the
opposite pattern. Weaker changes in this pattern across
WM states were associated with incorrect responses, such
that incorrect trials had less dynamic variation in
alpha/beta and HFA burst dynamics. This reduced
dynamic variation was also associated with poor overall
task performance and together suggests reduced
alpha/beta–HFA dynamics may reflect both a trial-by-trial
and overall performance level marker of WM deficits
(results are summarized in Supplemental Table S1).
Although oscillatory burst rate is the most commonly

utilized burst metric in the literature, prior work has iden-
tified the critical importance of measuring burst power,
duration, and frequency span to most precisely under-
stand underlying neocortical circuit origins of averaged
power signals during response inhibition (Enz, Ruddy,
Rueda-Delgado, & Whelan, 2021), perception (Shin et al.,
2017; Sherman et al., 2016), and WM (McKeon et al., 2023;
Rodriguez-Larios & Haegens, 2023). While several burst
features were associated with averaged power and dis-
played temporally similar patterns to averaged power,
the burst rate across alpha, beta, and HFA bands was most
strongly associated with averaged power during WM in

multiple regression models. The duration of HFA bursting
was most negatively associated with averaged power,
likely reflecting that more bursts (that are shorter in dura-
tion) lead to a larger averaged power, compared with
bursts that are longer duration (but are fewer in amount).
This is consistent with our prior work on beta burst rate in
perception (Shin et al., 2017) and gamma burst rate and
power in WM (McKeon et al., 2023). Similarly, the burst
rate, power, and duration generally reflected the averaged
power time course pattern across WM demands. Although
frequency span was the least correlated to averaged power
and did not consistently reflect the time course pattern in
this study, it has shown utility as an important clinical
marker in other contexts (Morris et al., 2023). Further-
more, frequency span was positively correlated with rate
and negatively correlated with duration, consistent with
our prior findings (Shin et al., 2017). Broadly, our results
highlight the continued utility of moving away from aver-
aged power metrics and favor a measurement approach
that captures the dynamics of oscillatory bursts in WM.

Our findings that the rate, power, and duration of alpha
and beta bursts consistently decreased during stimulus
encoding and increased during WM delay is highly consis-
tentwith prior oscillatory burst rate findings (Liljefors et al.,
2024; Lundqvist et al., 2016, 2018) and averaged power
findings (Paulo et al., 2023; Pavlov & Kotchoubey, 2020,
2021; Roux et al., 2012). Time course pattern differences
were present between alpha and beta bursting, as beta
sharply increased bursting during the delay, while alpha
increased more slowly, consistent with recent work on
the nuanced differences between alpha and beta bursting
inWM (Liljefors et al., 2024). Our findings are complemen-
tary to recent findings that compared the WM delay to

Figure 7. Correlation matrices of burst features across bands and electrodes.
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fixation using a different approach to burst characteriza-
tion and found that the WM delay was associated with
lower beta burst amplitude, lower burst duration, and
higher burst frequency, although with no change in burst
rate (Rodriguez-Larios & Haegens, 2023).

While alpha/beta findings were largely consistent across
F3 and P3 electrodes, changes across WM stages occurred
earlier and were stronger at P3 than at F3, particularly in
the beta band, consistent with the interpretation that pari-
etal cortex represents fast sensory encoding and frontal
cortex more higher-level processing (Murray et al., 2017;
Crowe et al., 2013).

In contrast, parietal HFA bursting rate increased during
encoding and decreased during the delay, while frontal
HFA burst rate peaked at fixation, decreased during
encoding, and was stable during the delay. Importantly,
note that we describe the 55–80 Hz range in our study
as HFA, instead of gamma, as a pattern of band-limited
activity was not detected, and it was unclear whether
observed activity reflected interneuron-mediated gamma
oscillations. We compare current HFA findings and prior
gamma-related findings despite their potential differ-
ences, as both are similarly associated with neuronal
excitability, while alpha/beta activity are associated with
neuronal inhibition (Iemi et al., 2022; Miller et al., 2018;
Wang, 2010).

Parietal gamma bursting rate was consistent with prior
burst patterns within the PFC of nonhuman primates
(Lundqvist et al., 2016, 2018). Our frontal versus parietal
HFA finding is highly consistent with prior work, which
similarly found that gamma (60–80 Hz) power strongly
increased during encoding and decreased during the
WM delay in (right) parietal cortex, while gamma power
in left frontal cortex increased to a lesser degree and
remained relatively stable during theWMdelay (Roux et al.,
2012). Furthermore, increased gamma-related activity at
stimulus encoding has been shown to be more pro-
nounced in parietal cortex compared with PFC (Murray
et al., 2017). It is possible these frontal versus parietal dif-
ferences reflect different WM stages of processing, in that
frontal gamma band activity peaks during the fixation as
task demands are assessed and/or filtered, but parietal
gamma band activity peaks at stimulus presentation to
receive the sensory input, consistent with the known role
of frontal versus parietal networks (Murray et al., 2017;
Crowe et al., 2013).

Most notably, this is the first human study to our knowl-
edge to show an anticorrelated and mirrored pattern
between the beta and gamma/HFA burst rate during WM
(although only at P3 electrode and not the F3 electrode)
and replicates the highly influential work of Miller and
Lundqvist that showed this pattern within single PFC neu-
rons of nonhuman primates (Lundqvist et al., 2016, 2018).
It is unclear why prior frontal findings were not replicated,
but methodological limitations related to the signal-to-
noise ratio in scalp EEG cannot be ruled out. Furthermore,
it is the first study in either humans or nonhuman primates

to show that this pattern extends into an alpha–HFA pat-
tern and extends beyond burst rate to also include burst
power and duration. Consistent with its known cognitive
control capabilities outside WM (Enz et al., 2021; Wessel,
2020), alpha/beta has been conceptualized as a cognitive
control mechanism or state during the WM process. Dur-
ing WM, alpha/beta activity has been found to gate infor-
mation flow and recruit task-relevant circuits (Zhou et al.,
2023; ElShafei et al., 2022), while gamma has been found
to process perceptual information and maintain that infor-
mation during the delay (McKeon et al., 2023; Lundqvist
et al., 2016). This alpha/beta cognitive control state is con-
ceptualized as being activated during task initiation (i.e.,
beta activity rises during fixation), then deactivated during
stimulus presentation to allow for perceptual encoding
(i.e., beta drops and gamma rises during encoding), and
then reactivated during the delay (i.e., beta rises and
gamma drops) as cognitive control demands are critical
when “remembering” the stimuli (Miller et al., 2018).
We showed for the first time in humans that weaker var-

iations in these patterns across WM stages were associated
with incorrect responding. Such deviations were primarily
restricted to burst rate, although parietal beta burst power
was also implicated (and not frontal HFA burst rate). A uni-
fied pattern emerged across bands and electrodes, in that
the rise and fall of the burst rate across WM stages in cor-
rect trials, was not as pronounced in incorrect trials. Incor-
rect trials had a lower burst rate when a higher burst rate
was expected (i.e., not enough bursting) and a higher rate
when a lower rate was expected (i.e., too much bursting).
One interpretation is that, during encoding, incorrect tri-
als had too many alpha/beta bursts and not enough HFA
bursts, while during the delay, incorrect trials had too
many HFA bursts and not enough alpha/beta bursts. A
more nuanced finding was previously shown in monkeys,
in that during incorrect trials, the beta/gamma bursting
pattern reflected the expected pattern for the incorrect
response (i.e., not the pattern expected for the correct
response; Lundqvist et al., 2018). Furthermore, we found
that correct trials had a more pronounced difference
between HFA and alpha/beta bursting (i.e., HFA–alpha/
beta contrast [“HFA–ABC”]) than incorrect trials, in that
correct trials were associated with higher HFA and lower
alpha/beta during encoding and the opposite pattern
during the delay.
We next examined correlates of overall task perfor-

mance. This HFA–ABC strongly correlated to overall
participant accuracy and differentiated low performing
participants from the rest of the sample. When comparing
which features were most strongly associated with task
accuracy, we found that the beta bursting rate, specifically
at F3/P3 during encoding and F3 during delay, and HFA
bursting duration, specifically F3 during encoding and P3
during delay, were most strongly associated with overall
participant accuracy. Alpha findings were less consistent,
as the bursting rate during the delay was negatively asso-
ciated with accuracy at F3 and yet positively associated
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with accuracy at P3. This collectively suggests that optimal
WM accuracy may involve beta in broadly facilitating cog-
nitive control, HFA in encoding sensory content in a
frontal-to-parietal feedback process, and alpha in inhibit-
ing parietal and dis-inhibiting frontal cortex. Follow-up
analyses of alpha rate, beta rate, and HFA duration exam-
ined the relationship to task accuracy across the scalp
montage. Here, the beta burst rate findings localized to
posterior regions during encoding and anterior regions
during the delay, while no differences across the scalp
montage for alpha and HFA. The HFA–ABC findings local-
ized to posterior regions during both encoding and delay
periods. This builds upon single-electrode findings to
more clearly highlights the role of frontal beta bursting
in successful WM. Certainly, this frontal beta bursting rate
finding is highly consistent with prior WM research on the
role of beta in cognitive control (Liljefors et al., 2024;
Lundqvist et al., 2016), while the posterior HFA–ABC find-
ing may relate to aspects of sensory encoding given prior
parietal gamma findings (Murray et al., 2017; Roux et al.,
2012). Interestingly, the relationship between HFA burst
duration and task accuracy was strongest during low–medium
(vs. high) WM load, although no differences in other bands
were found across WM load or WM demands. This indicates
that the strength of this association does not increase with
higher WM demands and provides some evidence to suggest
the relationship is specific to lower WM load.
Taken together, both on a trial-by-trial level and on the

individual performance level, reduced alpha/beta–HFA
dynamics were indicative of impaired performance.
Although this is the first study to our knowledge that has
shown incorrect versus correct trial bursting patterns in
humans, it is consistent with prior nonhuman primate
findings (Rassi et al., 2023), as well as findings in adults
showing that lower beta activity during the delay (com-
pared with baseline; Paulo et al., 2023) and across the
whole trial (Pavlov & Kotchoubey, 2020) was associated
with better WM performance. This suggests that the
switching between these high and low oscillatory states
during differing WM demands relates to task accuracy
and that less efficient switching between these states
may be an underlying cause of WM deficits.
Our performance-related findings have critical implica-

tions for potential treatment targets of WM in clinical
populations, such as schizophrenia, depression, and
attention-deficit/hyperactivity disorder. WM deficits are an
established transdiagnostic component of all neuropsychi-
atric disorders (Willcutt, Sonuga-Barke, Nigg, & Sergeant,
2008), and WM is specifically identified as a risk factor for
transdiagnostic psychopathology (Huang-Pollock,
Shapiro, Galloway-Long, &Weigard, 2017). Despite being
one of the strongest predictors of poor clinical and func-
tional outcomes, there remains a dearth of available
treatments for WM deficits (Gardiner & Iarocci, 2018;
Diamond, 2013; Lee et al., 2013; Rinsky & Hinshaw,
2011; Miller & Hinshaw, 2010). Alpha/beta and gamma/
HFA bursting dynamics may reflect promising biomarkers

of such neuropsychiatric disorders that can be targeted
and objectively measured. Targeting dysfunctional neural
dynamics is now possible with currently available brain
modulation paradigms such as rTMS and transcranial direct
current stimulation (tDCS; Widge & Miller, 2019). Meta-
analytic findings have shown rTMS to the left dlPFC can
improve WM in healthy adults and specific clinical samples,
yet there remains a tremendous range in outcomes due to
the nonspecific targeting in traditional or clinical rTMS pro-
tocols (Martin,McClintock, Forster, Lo, & Loo, 2017;Martin,
McClintock, Forster, & Loo, 2016; Brunoni &Vanderhasselt,
2014). However, it is now possible to send rTMS pulses via
closed-loop protocols synced to real-time oscillatory
dynamics and/or via task-locked protocols to specific pulses
during specific neurocognitive demands (e.g., during
encoding vs. delay; Widge & Miller, 2019). Current results
indicate that overactive alpha/beta and underactive HFA
during WM encoding or underactive alpha/beta and over-
active HFA during WM delay is associated with WM errors
and therefore may be promising targets for closed-loop or
task-synced neuromodulation protocols.

Finally, a note on the limitations of the current study.
Data utilized in this article were made publicly available
by the original authors (Pavlov & Kotchoubey, 2020) and
utilized by our group to test current hypotheses. Given the
19-channel scalp EEG montage, source localization tech-
niques were determined to be an inappropriate approach.
Unlike more fine-tuned approaches with intracranial
recordings, these findings are hampered by the poor spa-
tial resolution and high degree of noise in human EEG
recordings. At the same time, use of human EEG is critical
to translating these scientific findings into actionable bio-
markers in the clinical setting. Furthermore, substantial
line noise at 50 Hz was treated with a notch filter after
other EEGLAB filtering approaches were unsuccessful,
which may have interfered with accurate measuring of
burst features in the higher frequency ranges (and why
we restricted analyses to 55–80 Hz). Also note that in the
absence of band-limited oscillatory activity in the gamma
band, we here labeled activity in that range as HFA—
comparing current HFA findings to prior gamma findings
has inherent limitations given the nonoverlapping fea-
tures of these dynamics. While correct/incorrect patterns
were informative, data were obtained on a healthy young
adult sample without psychiatric or neurological disor-
ders. Follow-up work with clinical populations is needed
in the process of translating findings to novel neurobiolog-
ical treatment targets for WM deficits. As current results
are purely correlational and causation cannot be implied,
future studies should implement neuromodulatory tech-
niques to probe a possible causal relationship. Addition-
ally, while we examined HFA and relate our findings to
prior gamma-band findings, we cannot distinguish under-
lying mechanisms, and it remains unclear whether HFA
findings described here reflect interneuron-mediated
mechanisms (as has been proposed by Miller and col-
leagues to describe narrow-band 30–100 Hz gamma

Kavanaugh et al. 295

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/38/2/281/2546325/jocn.a.87.pdf by U
niversity of W

isconsin, M
adison user on 23 January 2026



bursting; Miller et al., 2018) or alternatively, calcium/spike-
dependent mechanisms. Due to our use of scalp EEG and
the known signal to noise ratio, it is unclear whether the
lack of band-limited gamma activity reflects a lack of reso-
lution of human EEG or differing neural phenomenon
than that posted by Miller et al. Future work could build
upon current findings to examine these dynamics with
approaches that have a better signal to noise ratio (e.g.,
electrocorticography). Finally, future work should exam-
ine intra-individual relationships between trial-level accu-
racy and bursting dynamics to more precisely identify
person-specific markers of WM errors.
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authors of this paper report its proportions of citations by
gender category to be: M/M = .389; W/M = .167; M/W =
.278; W/W = .167.
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