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SUMMARY

Estimating and comparing how long events last requires the temporary storage of durations. How durations

are stored in working memory is unknown, despite the central role of memory systems in timing. We inves-

tigated the neural signatures of working memory for sequences of durations with magnetoencephalography

(MEG) while human participants performed an n-item delayed reproduction task. Sequences orthogonally

varied in the number of items (one or three) and their durations. The number of durations in the sequence,

but not the duration of the sequence, affected recall precision and could be decoded from alpha and beta

oscillatory activity during retention. Our results extend earlier behavioral findings, suggesting that durations

are itemized in working memory and that their number, not their duration, modulates recall precision.

Crucially, we establish that alpha power reflects a universal signature of working memory load and mediates

recall precision, even for abstract information such as duration.

INTRODUCTION

Humans and animals can readily discriminate the durations of

sensory events as well as the silent intervals that may separate

them. Sensory timing tasks typically quantify this ability by

asking individuals to compare or (re)produce time intervals.1 In

most sensory timing tasks, the encoded temporal information

is stored until a decision is made: for instance, in the simplest

two-alternative forced-choice design, two time intervals are pre-

sented in succession, and the first of the two is held in working

memory until the second is presented and a comparison can

be made.2–4 The encoding of duration in such tasks and the de-

cision stages have been well explored.5–7 To the contrary, how

durations are maintained in working memory is unknown. Clas-

sical information-theoretic timing models postulated a working

memory component,8–11 but its mechanisms and neural dy-

namics remain largely speculative.12–14

Recent behavioral work suggests that the storage of durations

in working memory is comparable to that of any items,15–17 in

that recall precision is indicative of working memory load.18–20

At the cortical level, the maintenance of encoded events in work-

ing memory has been linked to oscillatory dynamics,21 which

provide a self-sustained neural code in the absence of sensory

stimulation. Working memory function likely relies on different

oscillatory regimes, ranging from theta to alpha, beta, and

gamma.22–27 A consistent finding is that alpha power (8–12 Hz)

increases with working memory load,28 but studies assessing

working memory for duration do not clearly align with this semi-

nal observation as discussed below.29,30

Herein, we thus investigated whether duration storage follows

the known principles of working memory. We focused on recall

precision as a measure of working memory load and neural os-

cillations as its neural signature. We recorded participants’ brain

activity with magnetoencephalography (MEG) while they per-

formed an n-items delayed reproduction task, in which they

were asked to encode, maintain, and reproduce temporal se-

quences of varying length. Critically, we orthogonalized the num-

ber of items (one or three) in a sequence and the duration of the

sequence. Using this task, we previously showed that the num-

ber of items, but not the duration of the sequence, affected recall

precision.15 These results provided evidence that durations can

be itemized and stored in working memory as mental abstract

magnitudes.31–34 Accordingly, in the present study, we expected

an increase in alpha power, with working memory load depend-

ing on the number of durations in a sequence but not on the dura-

tion of the sequences itself.

The modulation of alpha power is a well-established marker of

working memory load, resulting from the number of items.28,35,36

Jensen et al. (2002) demonstrated a parametric alpha increase

over posterior and parietal regions during a visual Sternberg

task (2, 4, and 6 items, electroencephalography [EEG]), a finding

that has since been replicated in visual37–39 and auditory con-

texts40–43 (see also the review by Wilsch et al.).44 Working mem-

ory load is classically operationalized through the number of
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items that have to be maintained, but similar results have been

obtained when modulating the complexity of the stimuli.43,45,46

The increase in alpha power is thought to reflect inhibition of

task-irrelevant information during retention47 (see also48,49) and

can be modulated by temporal expectations about the retention

interval.50,51 Two studies have directly targeted the neural dy-

namics of working memory maintenance for duration: one study

showed that alpha power decreased with longer visual item dura-

tions,29 whereas the second study, using a visual n-back task, re-

ported a decrease in posterior alpha power with increasing work-

ing memory load—together with beta power increase over

temporal areas.30 The divergent alpha power trends in timing

studies suggest the possibility of distinct mechanisms for dura-

tions held in working memory. To investigate this further, we em-

ployed alpha power as an index of working memory load, aiming to

determine which factor, the number of items (n-items), or the dura-

tion of the sequence contributes most to working memory load.

We show that the number of items, but not the duration of the

sequence, can be decoded from both alpha and beta (15–25 Hz)

band activities, with distinct cortical sources. Interestingly, the

alpha-band power showed a direct link to the precision of tem-

poral reproduction. Thus, our results suggest that durations

are itemized in working memory like any other mental events.

RESULTS

Behavioral results

In an n-item-delayed-reproduction task, participants repro-

duced sequences of either one or three duration items following

a retention interval (see Figure 1A). The sequences varied

orthogonally in the number of items (one or three) and the dura-

tion of the sequence (1.6 s/short, 2.4 s/medium, and 3.6 s/long;

Figure 1B). The behavioral results replicate our previous find-

ings.15 Specifically, the relative reproduction (relRP, defined as
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Figure 1. N-item delayed reproduction task and behavioral results

(A) Trial structure. Each trial consisted of four phases. First, participants listened to a sequence of pure tones (1 kHz, 50 ms) demarcating empty time intervals of

varying duration (encoding phase, red fixation dot). Following a retention interval (orange fixation dot), participants were asked to reproduce the full temporal

sequence as precisely as possible (green fixation dot). In the example depicted here, the sequence was composed of three durations. Following their repro-

duction, participants received feedback about the relative temporal reproduction error for each duration in the sequence. ITI, inter-trial-interval; RP, reproduction.

(B) Items and sequences. Dots represent tones. Horizontal lines and the numbers above indicate the duration of the empty intervals in seconds. A sequence was

composed of one or three items (blue and green, respectively). The durations of sequences were fixed to 1.6 s (short), 2.4 s (medium), or 3.6 s (long), irrespective of

the number of items that composed them, such that the number of items and the duration of the full sequence were orthogonalized.

(C) Effects of the number of items and the duration of sequences on relative reproduction (relRP) and inverse precision (coefficient of variation, CV). Left: relRP

significantly increased with the number of items and decreased with the duration of the sequence (** = p < 0.01, fixed effect in linear mixed effect model). Right:

CVs were not affected by the duration of the sequence but significantly increased with the number of items, indicating a decrease in reproduction precision with

higher working memory load.
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the ratio between each item’s reproduction and duration) was

modulated by the number of items and the sequence duration

(Table 1; Figures 1C and S1). Consistent with context effects in

magnitude estimation,52 durations in sequences containing

more items were reproduced as longer compared to durations

that occurred alone. Furthermore, short sequences were over-

produced and long sequences underproduced, an effect typi-

cally interpreted as a regression to the mean.52–54

More importantly, the results confirm that the number of items

significantly decrease the precision of temporal reproduction

[quantified as the coefficient of variation, CV: mean (item repro-

duction) divided by standard deviation (item reproduction);

F(1, 19) = 45.94, p < 0.001, BF10 > 1,000]. Conversely, the dura-

tion of the sequence did not significantly affect the precision of

temporal reproduction [F(1, 19) = 0.51, p = 0.49, BF10 = 0.13].

Thus, the number of durations, but not the duration of the

sequence itself, constitutes the load when it comes to storing

multiple durations in working memory.

Decoding results

Next, we applied common spatial pattern decoding (CSP)55,56

on the MEG data to test whether oscillatory dynamics during

the stimulus-free retention interval contained information about

the number of items and/or the duration of the sequence. De-

coding was applied to induced oscillatory power (after subtrac-

tion of the evoked response), and in time-frequency bins

(2–25 Hz, 0.5–4 s). Significant decoding performance at the

group level was observed only for the number of items

(Figure 2A, left) but not for the duration of the sequence

(Figure 2B; Standard error of the mean for the time-frequency

matrices is displayed in Figure S2.) A cluster permutation test

revealed a statistically significant cluster spanning all time-fre-

quency bins (Figure 2A, left). The peak frequency distributions

(histograms in Figure 2A, middle) were of bimodal shape, with

one peak in the alpha and one in the beta band. The source pro-

jection of the decoding patterns for the whole frequency and

time ranges showed sources in occipital, parietal, and motor

areas (Figure 2C). To investigate the cortical dynamics underly-

ing the significant decoding performance, we separated the de-

coding patterns in the alpha and beta bands before projecting

the weights in source space (Figure 2E). This revealed parieto-

occipital sources in the alpha band versus a more pronounced

spread into sensorimotor areas for the beta band. Both were

relatively lateralized to the left hemisphere. Lastly, we recon-

structed the sources directly from the oscillatory power, rather

than from the decoding patterns, which allowed assessing the

directionality of the effect: for the alpha band, we observed

higher power for three-item versus one-item sequences, with

a bilateral occipital distribution. In the beta band, power was

higher for one-item compared to three-item sequences in the

motor regions and higher for three-item sequences in occipital

regions (Figure 2F), both bilateral. While the effect of beta power

in the occipital regions likely reflects harmonics of alpha, the

opposite directionality and the different topographical distribu-

tions of the modulation of beta power in the sensorimotor areas

suggests that it reflects an independent effect. These findings

thus argue for the separability of alpha and beta dynamics dur-

ing working memory maintenance.

Alpha power mediates the effect of n-items on precision

We addressed the relationship between the precision of repro-

duction (quantified by the CV, computed for single trials through

a resampling and bootstrapping approach; see STAR Methods)

and oscillatory power in the alpha and beta bands, obtained from

six source labels covering the significant decoding patterns:

lateral occipital cortex, inferior parietal cortex, superior parietal

cortex, supramarginal gyrus, precentral gyri, and postcentral

gyri (all bilateral). Alpha power in the bilateral superior parietal

cortices, supramarginal gyri, and postcentral cortex showed a

significant relationship with CV in the one-item trials (correlations

ranging from − 0.057 to − 0.068, all p < 0.003; Figure 2D; see also

Table S1 and Figure S3): CV decreased with higher alpha power,

meaning precision increased. A marginally significant correlation

was observed in the inferior parietal areas (r = - 0.053, p = 0.006).

No significant effects were found in the three-item trials, nor for

the beta band (all p > 0.02). We then tested for a direct relation-

ship between the behavioral precision effects and the differ-

ences in oscillatory dynamics for 3- vs. 1-item through media-

tion.57 Alpha power in bilateral supramarginal gyrus mediated

the effect of n-items on precision: (1) the independent variable

n-items had a significant effect on the mediator, power (a effect;

− 0.06 [− 0.07 to − 0.06], bootstrapped 95% confidence interval);

(2) n-items significantly affected the CV (b effect, − 0.1 [− 0.17 to

− 0.04]); and (3) the indirect path of n-items on CV via power was

significant (a × b effect, 0.01 [0.0–0.01]).

In sum, alpha power in the supramarginal gyrus mediated the

effect of the number of items on the precision of temporal repro-

duction, suggesting that working memory load increases with

the number of durations, not with the duration of the sequence.

DISCUSSION

Sustained representations of durations are required for tasks like

duration comparison or reproduction,58 but little is known about

duration storage in memory. Here, we investigated whether

working memory for duration follows similar principles as work-

ing memory for sensory items.15,16,19,20,59,60 Specifically, we as-

sessed established behavioral and neural markers of working

memory maintenance from the sensory domain, namely recall

Table 1. Effects of the number of items (n-item) and sequence

duration on the relative reproduction (relRP) and precision (CV) of

temporal reproductions

DV IV STAT p BF

relRP n-item F(1, 19) = 27.58 <0.001 >1000

sequence duration F(1, 19) = 173.02 <0.001 >1000

IA F(1, 25) = 0.01 0.95 <0.001

CV n-item F(1, 19) = 45.94 < 0.001 > 1000

sequence duration F(1, 19) = 0.51 0.49 0.013

IA F(1, 19) = 6.41 0.02 0.018

Bayes factors (BF) reflect the Bayesian evidence for the significance of

the respective predictor. Bold values indicate a significant effect. DV,

dependent variable; IV, independent variable; STAT, statistical parame-

ters; P, p-value; IA, interaction.
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Figure 2. MEG decoding

(A) N-item decoding in sensor space. The number of items was significantly decoded from induced power in the alpha and beta bands during the retention interval

using common spatial patterns (CSP). Left: decoding performance during the retention interval, computed in time-frequency bins. The colored pixels reflect

significant decoding performance (decoding accuracy > 0.5; cluster permutation test) and the gray ones non-significant decoding performance. The marginal

means reflect average decoding performance across frequency (left, red) and time points (below, orange). Middle: the red and orange histograms show the

frequencies and latencies with the highest decoding performance for each participant.

(legend continued on next page)
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precision and neural oscillatory power during retention, to test

whether working memory load for durations is driven by the num-

ber of durations (n-items) or their total duration (i.e., temporal

extent) itself. Manipulating n-items and sequence duration

orthogonally in a previously published n-item delayed reproduc-

tion task,15 we replicated our previous behavioral findings that

recall precision decreased with the number of items but not

with sequence duration (Figure 1).

During working memory maintenance, a decoding approach

applied to MEG data revealed that induced oscillatory dynamics

(parieto-occipital alpha and sensorimotor beta) reflected the

number of durations (3- vs. 1-item), but not the duration of the

sequence (Figure 2). Furthermore, alpha power statistically

mediated the effect of n-items on behavioral precision. A key

contribution of this work is the demonstration that time intervals

are represented as discrete items in working memory, which ex-

tends the principles of sensory working memory to abstract tem-

poral information.15,31,33,34

Alpha power indexes working memory load

Maintaining three versus one duration in working memory

increased alpha power over parieto-occipital areas. Previous

studies have established that maintaining multiple distinct visual

or auditory items (e.g., letters, faces, or spoken syllables) in

working memory is associated with an increase in alpha power

measured over parieto-occipital regions, proportional to working

memory load.28,35,36,39,40,43 Some studies also reported the

opposite direction but specifically as a relatively short-lived

response to visuo-spatial displays.61–63 The increase of alpha

activity is typically interpreted as the disengagement of the dor-

sal visual stream, to shield the currently retained information

from interference by distracting inputs.45,47,48,64–66 Our observa-

tion extends the signature of alpha power to the maintenance of

duration information in working memory. The parietal sources

are in line with a previous study reporting load-depended activity

modulations in inferior parietal cortex67 and, more generally, the

representation of mental magnitudes in parietal cortices31 and of

durations in chronotopic maps in parietal and motor areas.68,69

It has previously been suggested that alpha power could be a

signature of spatial attention allocated to more locations with a

larger number of items.70,71 Participants did not mention spatial-

ization as a particular strategy during debriefing, and the most

common strategy in timing tasks is counting.72 Had participants

spatialized individual items during retention, subjective dis-

tances should increase with item duration according to the clas-

sical tau effect,73 which in turn should have surfaced as an effect

of sequence duration (similarly for counting), which was not

observed.

Critically, alpha power in the supramarginal gyrus statistically

mediated the effect of the number of items on recall precision,

providing a direct link between the behavioral precision effect

and alpha power as an index for working memory load. Further-

more, the absence of a similar effect on alpha power with longer

sequence duration, and the inability to decode sequence dura-

tion during retention, corroborate the behavioral result that work-

ing memory precision depends solely on the number of duration

items.

The role of beta power during working memory retention

Beta power in sensorimotor cortices during retention decreased

with the number of durations maintained in working memory,

which suggests a clear functional distinction from the neural dy-

namics observed in alpha power over parieto-occipital areas.

Beta oscillations are a known neural correlate of working mem-

ory,21,74–76 with several putative functional roles: top-down inhi-

bition,74,77 with commonalities and overlaps to alpha dynamics,

but also more specifically the maintenance of sequence or-

der.21,77,78 Furthermore, beta power modulations have been re-

ported as neural signatures of interval timing79–81 and timing pre-

cision (modulated by alpha phase82), as well as working memory

for duration of a single tactile stimulus.83

In line with the inhibitory role of beta, our observation of higher

beta power for 1-item here might indicate stronger movement in-

hibition84–87 or enhanced preparation for target encoding,77 as

the maintenance of single items binds less resources than for

multi-item sequences. Furthermore, increased complexity in

the motor demands (as in the reproduction of several items)

could decrease beta power contralateral to the effector side in

a motor imagery task,88 in line with the left lateralization

observed in the source-reconstructed decoding patterns

(Figure 2B).

With respect to the specific relevance of beta dynamics to

timing, our findings point toward a sustained representation of

duration in sensorimotor areas used for working memory mainte-

nance. Seminal investigations revealed that working memory

maintenance relies on persistent firing of distributed neural pop-

ulations, both in areas that encode the respective stimuli (i.e., vi-

sual or motor cortices) and in parietal and frontal areas.18,89 Crit-

ically, the amplitude of the activity specifically related to the

memorized items decreases with load,90 as does recall preci-

sion. This decrease can be linked to a more distributed represen-

tation of multiple items, suggested to be mediated by beta

(B) Decoding of sequence duration (short vs. long). Time-frequency matrix of decoding performance, with marginal means reflecting average decoding per-

formance across frequency (left, red), and time points (below, orange). No significant decoding performance was observed for sequence duration.

(C) Sensor topographies and source projections of decoding patterns, averaged across participants. AU, absolute units.

(D) Brain-behavior correlations. We tested whether the power modulations were directly related to the precision of temporal reproductions per trial. A significant

relationship between precision (CV, computed through resampling) and alpha power was found, here depicted for the supramarginal gyrus (sig. only for 1-item;

measures were binned only for visualization; **p < 0.01, non-parametric resampling).

(E) Sensor topographies and source projections of decoding patterns, separately for the alpha (8–12 Hz) and beta (15–25 Hz) bands. Decoding patterns in the

alpha and beta band overlapped but were relatively more shifted to occipital/parietal areas for alpha and central areas for beta and left-lateralized.

(F) Source contrasts for 3- versus 1-item sequences: power differences projected in source space and thresholded at 80%. While panels A and B show the

decoding patterns (red = decoding better than chance), which do not allow to infer the directionality of the effect, the contrast of relative power between 3- and

1-item sequences allows to appreciate the different directions of the effects in the alpha (red = more power for three items) and beta bands (blue = more power for

one item).
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power.75,91 Here, the successful decoding of the number of du-

rations in working memory from beta band activity points toward

a distributed representation of item durations mediated by beta

dynamics.

In conclusion, we addressed how sequences of durations are

stored in working memory, through behavioral and neural indices

of working memory load: recall precision and neural oscillatory

dynamics. The number of duration items but not the duration

of the sequence had an effect on recall precision and was de-

codable from oscillatory power in the alpha and beta bands,

pointing toward an abstract representation of duration items in

working memory. Alpha power increased with load, bridging be-

tween durations and other kinds of items. Beta power dynamics

differed from alpha, suggesting a specialized neural code for

duration.

Limitations of the study

Here, we tested only a single type of empty duration items.

Future studies should address the generalizability of the findings

by using filled durations with delimiters from different modalities

and with varying content. Furthermore, the results are mainly of

correlational nature, despite the statistical assessment of a

mediation effect of the number of items on recall precision by

alpha power. Future studies could use perturbational methods

such as frequency-specific transcranial alternating current stim-

ulation (tACS) to perturb working memory storage and confirm

the causal implication of alpha oscillations in retention. Finally,

we did not assess other known signatures of working memory,

such as theta, beta, or gamma oscillations,22,27 which could pro-

vide additional insights.
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Twenty-three participants (14 women, mean age = 26.2 years, SD = 5.2 years) were recruited at Neurospin. The sample size was

chosen in accordance to previous behavioral experiments.15 All participants were right-handed, and had normal hearing and vision,

and no self-reported history of audiological or neurological disorders. Participants were naive as to the purpose of the study and

received monetary compensation for their participation. Prior to the study, all participants signed a written informed consent in accor-

dance with the Ethics Committee on Human Research at Neurospin: CPP n◦ 100049 (Gif-sur-Yvette, France), and the Declaration of

Helsinki (2013). Three participants were excluded, one because of a problem with the triggers, one had incomplete data, and for the

third, no anatomical MRI scan was available. This left 20 participants for the analyses.

This study addresses general cognitive mechanisms that are not expected to be influenced by sex or gender, and it is not common

practice to assess such influences in this area of human cognitive neuroscience without an a priori hypothesis. Furthermore, the small

sample size, and the non-availability of additional information (such as hormonal cycle phase in female participants), would have

made analyses by sex or gender unreliable. Ancestry, race, ethnicity, and socioeconomic status of participants were not recorded,

as this information is considered sensitive data under French law and was not covered by the current ethics approval. While the sam-

ple characteristics are standard for resource-intensive neuroimaging studies aiming for relatively small, homogeneous samples, they

have been criticized for not reflecting the worldwide population.102 Given the targeted age group, participants were likely either uni-

versity students or young professionals, which may have biased the sample’s socioeconomic status. While there is a priori no reason

to assume that basic neural and behavioural markers like the ones assessed here should be affected by these individual character-

istics, future research should extend these findings to more diverse populations, particularly a wider age group.

METHOD DETAILS

General procedure and task

Participants performed an n-item delayed temporal reproduction task.15 They were presented with a sequence of one or three

‘‘empty’’ intervals (Figure 1A), delimited by short pure tones (encoding; for details about the stimuli see below). Empty time intervals

were used to prevent a maintenance strategy based on auditory features, as opposed to duration. They had to maintain the sequence

in memory (retention), and, upon a prompt, reproduce the whole sequence by pressing a button for each tone (reproduction). Par-

ticipants received feedback after each reproduction of a sequence.

Before the main experiment, the researcher explained the task to the participants, and provided them with written instructions.

Participants then started a training block composed of eight trials. The training was repeated if a participant failed on more than

half of the trials (average relative temporal reproduction error over all items in the sequence below - 0.5 or above + 0.5). Data

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Behavioral Data (.Rda) and Custom Code Open Science Framework Project: p6m7s

https://doi.org/10.17605/OSF.IO/P6M7S

MEG Data (BIDS format) OpenNeuro Dataset: DS006720

https://doi.org/10.18112/openneuro.ds006720.v1.0.0

Software and algorithms

MATLAB 2017a The Mathworks https://mathworks.com

Psychtoolbox Brainard92; Pelli93 http://psychtoolbox.org/

MNE Python version 1.8.0, Gramfort et al.,94,95 Larson et al.96 https://mne.tools/stable/index.html

MNE-BIDS version 1.6.0 Appelhoff et al.97 https://mne.tools/mne-bids/stable/index.html

MNE-BIDS-Pipeline v. 1.8 N/A https://mne.tools/mne-bids-pipeline/

R version 4.3.3 and version 4.5.0 R Core Team98 https://www.r-project.org/

RStudio version 2025.5.0.496 Posit Team 202599 https://posit.co/download/rstudio-desktop/

Freesurfer Dale et al.100 https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki

Source projection code for CSD patterns Westner & King101 https://github.com/britta-wstnr/source_decoding

Custom Code Deposited on OFS https://doi.org/10.17605/OSF.IO/P6M7S
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from the training session were not included in the analyses. The actual experiment consisted of 8 blocks of 36 trials each; each block

lasted about 10 minutes. After each block, the MEG recording was stopped to save the data, resulting in a break for the participant.

The total MEG session lasted 90 minutes. Each participant was presented with the same conditions, in randomized order as

described above. As the design was a repeated-measures within subject design, no blinding was put in place.

Stimuli

The experimental paradigm was adapted from Experiment 2 in Herbst et al.15 All stimuli were created digitally using Psychtoolbox

(Brainard, 1997) under MATLAB (2017a, The Mathworks), at a sampling rate of 44.1 kHz. Stimuli consisted of a sequence of pure

tones (1 kHz, 50 ms duration including 10 ms onset and offset ramping to avoid onset artifacts), which demarcated the time intervals

(hereafter referred to as ‘‘items’’).

Three sequence durations were tested (1.6 s, 2.4 s and 3.6 s) and the number of duration items was one or three for each sequence.

Two-item sequences as used in the previous behavioral study were removed to obtain more trials per condition in the MEG exper-

iment. The order of items within each n-item sequence was randomized. We orthogonalized n-items and the duration of the se-

quences, resulting in a fixed sequence duration regardless of n-items, but shorter individual items in sequences with more items

(Figure 1B). Each block contained all possible sequence types in random order: for the 3-item sequences, six permutations of the

order exist for each of the three sequence durations (18 trials), and the three different 1-item sequences were each repeated six times

throughout the block, to balance the number of 1- and 3-item sequences.

During encoding, a red fixation dot was displayed on the center of the screen. 0.5 s after the last tone in the sequence, an orange

fixation dot signaled the onset of the retention period. The retention period lasted for 4.2 s. This relatively long interval was chosen

with the aim to assess the neural dynamics of working memory with MEG during a period free from sensory stimuli. Following the

retention period, a green fixation dot prompted participants to reproduce the full sequence. To respond, participants pressed one

button on a Fiber Optic Response Pad (FORP, Science Plus Group, DE) with the index finger of their right hand. Participants had

unlimited time to initiate their reproduction, and no sounds were played when they pressed the button.

To reproduce the sequence, participants pressed the button as many times as there were tones in the sequence (e.g., 4 key

presses for 3 items demarcated by 4 tones), trying to reproduce each duration as precisely as possible. If the correct number of

presses was registered, visual feedback was displayed on the screen 0.5 s after the last button press. Visual feedback was displayed

for 1 s, and followed by a variable inter-trial interval sampled from a uniform distribution ranging from 2 s to 3 s. Feedback was given in

the form of a visual bar plot, which depicted the relative signed reproduction error for each item in the sequence: (item reproduction –

item duration)/item duration. Thus, bars of zero length indicated perfectly accurate reproduction, while bars above and below zero

reflected over- and under-reproduction, respectively. Trials in which the participant pressed too early (during retention), or an incor-

rect number of times were labelled as error trials and the participant was prompted with ‘too early’/‘wrong number of clicks’ instead of

the feedback described above. These trials were removed from the analyses.

MEG recording

Prior to the arrival of the participant, an empty room recording was performed for one minute to assess the noise level of the MEG

sensors. Before undergoing the MEG recording, participants were equipped with external electrodes, positioned to record the elec-

tro-occulogram (EOG, horizontal and vertical eye movements) and -cardiogram (ECG). The positions of the EEG electrodes, four

head-position indicator coils, and three fiducial points (nasion, left and right pre-auricular areas) were digitized using a 3D digitizer

(Polhemus, US/Canada) for subsequent co-registration with the individual’s anatomical MRI. The MEG recordings took place in a

magnetically shielded chamber, where the participant was seated in an armchair under the MEG helmet. The electromagnetic brain

activity was recorded using a whole-head Elekta Neuromag Vector View 306 MEG system (Neuromag Elekta LTD, Helsinki) with 102

triple-sensors elements (two orthogonal planar gradiometers, and one magnetometer per sensor location). Participants were in-

structed to fixate their gaze on a screen positioned in front of them, at about one meter distance. The chamber was dimly lit. Their

head position was measured before each recording run (8 in total) using the head-position indicator coils. MEG recordings were

sampled online at 1 kHz, high-pass filtered at 0.03 Hz, and low-pass filtered at 330 Hz. A two-minute-long resting state recording

(eyes open) was performed after the task, used to compute the noise covariance matrix for source reconstruction.

Anatomical MRI recordings

To improve the spatial resolution of the source reconstruction, individual high-resolution structural Magnetic Resonance Imaging

(MRI) recordings were used. These were recorded on another day, using a Siemens 3 T Magnetom Prisma Fit MRI scanner. Param-

eters of the sequence were: slice thickness: 1 mm, repetition time TR = 2300 ms, echo time TE = 2.98 ms, and flip angle = 9 degrees.

QUANTIFICATION AND STATISTICAL ANALYSIS

Software

The analyses of the behavioral data were conducted using R version 4.3.3.98 The MEG data were analyzed using MNE Python

(version 1.8.0),94–96 transformed to the standardized brain imaging data structure (BIDS)103 using MNE BIDS (version 1.6.0),97 and
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analyzed with the MNE BIDS pipeline (version 1.8, https://mne.tools/mne-bids-pipeline/), plus additional custom-written code.

FreeSurfer was used for the reconstruction of the MRI surfaces.100

Behavioral data

The reproduced duration per item was measured as the time between the onsets of the two key presses. We removed reproduction

outliers defined as reproductions that exceeded by 3 standard deviations the participant’s mean reproduction for that duration.

Recall precision is commonly used in working memory experiments as a continuous measure of working memory load.20 To ensure

that our measure of precision was not confounded by established biases in reproducing durations with varying magnitudes, we em-

ployed the coefficient of variation (CV), a widely accepted index of precision in timing research.11 We computed CV for bins of items

of the same duration, and from the same n-item sequence for each participant as follows:

CV =
SD(item reproduction)

mean(item reproduction)

To be in accordance with previous studies, we also computed the relative reproduction per item (relRP), in the same bins as CV,

defined as follows:

relRP =
item reproduction

item duration

Parallel statistical analyses were performed on relRP and CV, testing for effects of the number of items (n-items), sequence dura-

tion, and their interaction. Random intercepts and slopes were included for all predictors. To assess statistical significance, we

computed linear mixed effect models using R’s lme4 package,104 with the Satterthwaite approximation of degrees of freedom, im-

plemented in the lmerTest package.105 Additionally, to obtain effect sizes and assess null-effects, we computed Bayes factors (BF)

for each predictor in the model using the bayestestR package106 via the Bayesian Information Criterion approximation.107 The alpha

level for assuming statistical significance was set to p < 0.05. In addition, we use Bayes factors to support an unequivocal interpre-

tation of the results. BF represent the relative posterior probability of observing the data under the alternative (i.e., full) and null (i.e.,

reduced) model, which is informative about whether the inclusion of a given predictor into the model improves the explained variance.

For BF we chose the criterion of >3 and <0.3 when comparing to models.108,109 BF between 0.3 and 3 reflect inconclusive outcomes.

In Table 1, we report F- and p-values, as well as BF. In the figures, significance values are marked with asterisks, indicating * p < 0.05

and ** p < 0.01.

MEG preprocessing

To remove artifacts from the recorded data, we used a standardized preprocessing routine, implemented in the MNE-BIDS-pipeline,

with the following steps: noisy or flat sensors were identified visually and marked for exclusion. Next, environmental artifacts were

removed from the raw data, using signal source separation (SSS or Maxwell-filter),110 which also interpolates the bad sensors.

Head position coordinates were read from the first of the eight recording runs, and all other runs were spatially aligned to these co-

ordinates. The data were then filtered with a low-pass filter of 160 Hz, and a notch-filter at 50, 100, and 150 Hz to remove line noise.

No additional high-pass filter was applied (0.03 Hz used during recording). Furthermore, we resampled the data to a sampling fre-

quency of 250 Hz to speed up the subsequent computations.

Next, the data were cut into epochs of -5 s to 10 s around the onset of the retention interval, and epochs with peak-to-peak am-

plitudes exceeding 50,000 fT in the magnetometers were rejected. We deliberately used no baseline for the time-domain data, as the

interval preceding the retention interval contains the evoked activity from the last tone presented during the encoding phase, and the

encoding phase itself varies in duration because of the different sequence durations. Independent component analysis (ICA) was

performed on the remaining epochs, with an additional 1 Hz high-pass filter applied only for that purpose. For the detection of arte-

facts related to the electro-occulogram (EOG) and -cardiogram (ECG), we used an inbuilt routine in MNE python, which finds a par-

ticipant’s typical EOG and ECG activity recorded with the external electrodes, and returns the ICA components that correlate with

these typical events. Thresholds for returning the ICA components were set to: 0.1 for the ECG (cross-trial phase statistics),111 and

4.0 for the EOG (z-score).

After ICA cleaning, we rejected epochs with peak-to-peak amplitudes exceeding 10,000 fT (magnetometers) and 20,000 fT/cm

(gradiometers). In the following, we report only the analyses of the 102 magnetometers, to reduce the dimensionality of the data

and simplify the interpretation of the results and topographies. On average, we obtained 271.7 clean epochs per participant

(SD = 13.45, minimum: 246, maximum: 288).

Anatomical MRI preprocessing and forward model computation

FreeSurfer’s ‘‘recon-all’’ function was used to reconstruct the cortical surfaces of each participant’s brain. Individual surfaces were

mapped to FreesSurfer’s ‘fsaverage’ template brain, for later averaging. Single-layer individual head models were computed using

the boundary element method (watershed BEM), from each participant’s aMRI. The coregistration of the MEG data with the individ-

ual’s structural MRI was carried out by manually realigning the digitized fiducial points with the anatomical landmarks of the head

surface reconstructed from the MRI (using MNE Python’s command coregistration gui). Second, an iterative refinement procedure
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was used to realign all digitized points with the individuals’ scalp. We then computed a surface-based source space with 4098 candi-

date dipoles per hemisphere, spaced approximately 4.9 mm apart (24 mm2 per source area; recursively subdivided octahedrons

‘oct6’), a minimal distance of 5 mm from the inner skull. The final forward models were derived from this source space, the co-regis-

tration matrices, and the boundary element models.

Common spatial pattern decoding

To investigate how duration sequences are represented in working memory and identify the factors contributing to memory load, we

focused our MEG data analysis on the retention interval. During this period devoid of sensory inputs, we examined how sequences

varying in length and duration modulate induced oscillatory activity,112 in line with established neural dynamics of working memory.21

We employed a decoding approach using Common Spatial Patterns (CSP) in combination with logistic regression, implemented as

part of the MNE BIDS pipeline. CSP is recommended for the analysis of induced oscillatory activity.55,56 It identifies spatial filters that

maximize the variance of one class of signals (e.g., sequences with a three versus one item), while minimizing the variance of other

classes. This allowed us to effectively classify brain activity patterns associated with varying memory load.

We performed the CSP spatial filtering in linearly spaced time-frequency bins, ranging from 2 – 30 Hz (bin width of 2 Hz, 14 bins) and

0.5 – 4 s following retention onset (bin width of 0.25 s, 14 bins). Specifically, the filtering and decoding was run on each trials’ covari-

ance matrix computed on single trial data, band-pass filtered in the range of the desired frequency bin, after subtracting the evoked

response to focus on induced activity. Since no time-frequency transformation is performed here, there was also no additional base-

line-correction. For decoding, we used logistic regression (solver: ‘‘liblinear’’) with a 5-fold cross validation (shuffled splits), and quan-

tified decoding performance as the area under the receiver-operator curve averaged across the folds.

To assess in which frequency bands and at which time points we could significantly decode the number of items or the sequence

duration at the group level, we performed cluster-permutation tests on the decoding accuracy values across time-frequency bins,

using an initial cluster forming threshold of p < 0.01, a final cluster selection threshold of p < 0.05, and 5000 permutations.

Source reconstruction

To further investigate which brain areas contribute to the significant decoding accuracy, we reconstructed the sources of the decod-

ing patterns (https://github.com/britta-wstnr/source_decoding).101 Here, we used the decoding weights (recomputed now for all

epochs jointly without cross-validation), and transformed them to the corresponding patterns across sensors (group average de-

picted in Figure 2C). Topographical patterns are closer to an interpretation as neurophysiological activity compared to the classifier

weights.113 We then computed linearly constrained minimum variance spatial filters (lcmv-beamformers)114 from the epoched and

band-pass filtered data, and a noise covariance matrix from the resting state recording, and projected the decoding patterns

(back-transformed to covariance matrices) to the source level. Finally, we morphed the individual source activity to a template brain

for averaging (fsaverage). We performed the source reconstruction for the complete range of frequencies identified as statistically

significant, and second, split into the canonical alpha (8 – 12 Hz) and beta (15 – 25 Hz) frequency bands. Finally, to investigate the

directions of the effects, we also projected the frequency-band power difference (covariance matrix computed from band-pass

filtered epochs) for 1-item and 3-item sequences to source space using minimum-norm estimates (dSPM).115

Brain-behavior relationships

To further assess whether the neural dynamics identified as correlates of working memory load for durations directly relate to behav-

ioral reproduction precision, we extracted single trial power in the alpha (8 – 12 Hz) and beta (15 – 25 Hz) bands from the occipital,

parietal, and central regions, in which we found significant decoding (labels: lateraloccipital, inferiorparietal, superiorparietal, supra-

marginal, precentral, postcentral from the ‘aparc’ atlas116). We created functional labels for each participant per hemisphere, by sub-

selecting the 15 % of voxels with the highest activity in each label (across all conditions). Selecting only the most activated voxels

balanced the need for robust labels, despite individual differences, with the goal of maximizing the signal-to-noise ratio by excluding

inactive voxels. We then computed the average power for the alpha and beta band for each label, by applying the Hilbert transform to

bandpass-filtered data from each epoch to obtain complex time series, and squaring the absolute values averaging across voxels

and time points (0.5 – 4 s) to obtain oscillatory power.

To obtain precision for each trial, a measure which is per se defined across trials, we applied a resampling and bootstrapping tech-

nique.117 Per participant and n-items, we randomly selected 20 trials (without replacement), and computed one value of CV and

average power for this sample. We repeated this 1000 times. To test for significant correlations between power and CV, we computed

correlations between CV and power across these 1000 values, and compared them to a null-distribution, for which we shuffled the

indices of the 1000 samples and computed the correlation, repeating this shuffling 1000 times to obtain a null-distribution of 1000

correlation values (Table S1; Figure S3). CV was z-scored across all participants and trials for model stability, and power values

were averaged for the left and right hemispheres and z-scored per individual, as recommended by e.g., Grandchamp & Delorme.118

In order to compute p-values, we counted how many correlation values obtained from the null distribution were as large or larger than

the true correlation value. We set a threshold of p < 0.004 (p < 0.05 with Bonferroni correction for 12 comparisons). We targeted only

CV for this analysis (and not relRP), as it provides a bias-free measure of recall precision in particular with respect to wide range of

durations used.
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Mediation analyses

We also assessed whether oscillatory power in the retention window mediates the effect of n-items on CV,57,119–122 i.e., whether the

neural dynamics play the hypothesized statistical role to index working memory load caused by the number of items. To test for the

presence of a statistically significant mediation, we followed the steps described in Shrout & Bolger.57 We used the same resampling

technique as above to compute power and CV for 1000 samples for each participant (500 per n-item). We computed linear mixed

effect models using the mixedlm function from the statsmodels package for python.123 The models were twofold: (1) regressing po-

wer on n-items (a effect) and (2) regressing CV on power (b effect) and n-items (c’ effect). Both models had a random intercept and

random slopes across participant for each fixed effect. From these models, we estimated regression coefficients for the three effects,

and repeated the sampling 5000 times to obtain reliable 95% bootstrap confidence intervals.117 The mediation was quantified as the

product of the a × b effect. If the confidence interval for this effect does not include zero, a significant mediation can be assumed.57

Results are depicted in Table S2 and Figure S4.
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