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ABSTRACT

Visual working memory (VWM) maintenance depends on oscillatory network dynamics across multiple frequency
bands throughout fronto-parietal and sensory brain areas. However, whether these networks reflect the active main-
tenance of visual information content or serve top-down control processes has remained unresolved. To address this,
we used concurrent magneto- and electroencephalography (M/EEG) to measure brain activity during VWM tasks, in
which the memory content was parametrically controlled. Using new edge-level analysis for source-connectivity net-
works, we disentangled connections and subnetworks underlying the maintenance of specific contents from those
supporting feature-general VWM. We show here that long-range high-alpha band (a,, 11-13 Hz) phase-synchronization
networks carry out a dual role in these VWM functions. a-band subgraphs localized to the visual areas are feature-
selective and maintain the contents of VWM. In contrast, the high a-band subgraph in the fronto-parietal areas was
shared across memory contents, suggesting that it forms the content-agnostic executive core of VWM. We propose
that a-band synchronization across distinct, but yet interconnected, subgraphs support the active maintenance of
feature representations and their top-down selection.
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1. INTRODUCTION Buschman, 2021; Yu & Postle, 2021), it has remained
under debate whether the representational functions
arise within sensory cortices, the PFC, or from distributed
activity (Christophel et al., 2017; Li & Curtis, 2023; Mejias
& Wang, 2022; Yan et al., 2023).

In contrast to fMRI, electrophysiological methods yield
direct mechanistic insight and have demonstrated that
memory consolidation and refreshing are facilitated via
neuronal oscillations (Benchenane et al., 2011). Oscilla-

Visual Working Memory (VWM) maintains visual informa-
tion online for use in cognitive operations or goal-directed
behaviors. It has been suggested to comprise a distinct
short-term storage of sensory information and executive
processes (Baddeley, 2012; D’Esposito & Postle, 2015;
Klingberg, 2010). In line with these models, functional
magnetic resonance imaging (fMRI) studies have shown
that WM consists of distributed activity across sensory

cortices and fronto-parietal control networks (Emrich
et al.,, 2013; Lee et al., 2013). While manipulation and
executive control of VWM are consistently associated
with prefrontal cortical (PFC) activity (Panichello &

tions are widely established to predict performance in
VWM tasks in electroencephalography (EEG) (D. Wang
et al., 2018; Pavlov & Kotchoubey, 2022; Ratcliffe et al.,
2022; Sauseng et al., 2009), magnetoencephalography
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(MEG) (Honkanen et al., 2015; S. Palva et al., 2011; van
Edeetal., 2017), and intracranial EEG (iIEEG) (Bahramisharif
et al., 2018; Johnson et al., 2023; ter Wal et al., 2021).
These studies have further investigated the functional sig-
nificance of oscillations in the maintenance of VWM con-
tents vs. executive functions. VWM contents have been
shown to be encoded by feature-selective spatio-temporal
dynamics of beta (3, 20-30 Hz) and gamma (y, 30-80 Hz)
oscillations, as observed in MEG (Honkanen et al., 2015),
intracranial EEG (Bahramisharif et al., 2018), and bursts in
monkey PFC (Lundqvist et al., 2016, 2022). On the other
hand, local alpha-band (o, 8-14 Hz) oscillations reflect dis-
tractor inhibition (Bonnefond & Jensen, 2012; de Vries
et al., 2019; Magosso & Borra, 2024; Sghirripa et al., 2021;
Zhou et al., 2023) and attention (Magosso et al., 2021;
Riddle et al., 2020; Sattelberger et al., 2024; van Ede,
2018) of VWM.

In contrast to local oscillations, there is limited under-
standing of the functional significance of large-scale
oscillatory networks in VWM. Scarce studies using EEG
or MEG source connectivity analysis (Ericson et al., 2024;
J. M. Palva et al., 2010; Magosso & Borra, 2024; Sato
et al., 2018; Sattelberger et al., 2024) and local field
potential (LFP) recordings in monkeys (Liebe et al., 2012;
Salazar et al., 2012) have revealed that concurrent large-
scale phase synchronization in multiple bands, that is, in
a-, B-, and y-bands, characterizes VWM performance.
Recent work further suggests that inter-areal coupling in
the form of traveling waves in the a-band could reflect
top-down control in VWM (Zeng et al., 2024). However, it
has remained unknown whether large-scale network
oscillations would maintain VWM contents or mediate
executive control over VWM processes, and further, in
which frequency bands would these functions be medi-
ated. One of the challenges is to identify parts of the com-
plex brain network that are related to the given functions.

Here, we studied whether large-scale oscillatory net-
works would reflect VWM contents or their executive
functions. Advances in brain network analysis (Markello
et al., 2022; Shafiei et al., 2023), especially at the edge-
(connection) level (Betzel et al., 2023; Faskowitz et al.,
2022), provide a new way to chart neuronal architectures.
We leveraged these approaches to identify subnetworks
with VWM content-specific synchronization. We recorded
ongoing brain activity with concurrent MEG and EEG (M/
EEG) during a delayed match-to-sample VWM task in
which we parametrically controlled VWM contents using
a task paradigm in which the object statistical properties
remained identical while only the to-be-remembered
visual feature was varied. We then used edge-level data-
driven source connectivity analysis to chart their distinct
network architectures and content specific subgraphs
This allowed us to resolve subgraphs encoding VWM

contents and shared subnetwork across conditions,
possibly reflecting executive control. Finally, we used
machine learning (ML) for decoding the memory contents
and established that phase-synchronization connec-
tomes contain information of VWM contents.

2. METHODS

2.1. Task and recordings

The experimental procedure of the task and M/EEG
recordings are described in detail in Honkanen et al.
(2015). M/EEG data were collected from 20 healthy right-
handed subjects (age 29 + 6, mean + SD, 8 females). The
VWM task comprised three conditions in which subjects
memorized the shapes, colors, or spatial locations of the
objects in the “Sample” stimulus (S1, duration 150 ms)
(Fig. 1a). After a 2050 ms retention period, a “Test” stim-
ulus (S2, duration 500 ms) was presented and subjects
indicated if it had the same or different task-relevant fea-
ture(s) as S1. The memorized stimuli were algorithmically
generated for each trial and each stimulus was presented
only once to avoid any long-term memory effects. For
each subject, a total of 800 trials were recorded for each
condition, to maximize within subject effect size (Ince
et al., 2022).

Cortical activity was measured with concurrent M/
EEG with 204 planar gradiometers, 102 magnetometers,
and 60 EEG electrodes with a VectorView (Elekta Neuro-
mag Ltd.) system at 600 Hz sampling rate at the BioMag
Laboratory in Helsinki University Hospital. Ocular arti-
facts were measured with electro-oculogram (EOG) and
the behavioral thumb-twitch responses with electromy-
ography (EMG). T1-weighted anatomical MRI scans for
cortical surface reconstruction models were obtained at
a resolution of 1 x 1 x 1 mm using an MP-RAGE protocol
with a 1.5 T MRI scanner (Siemens, Germany). The study
was approved by the ethical committee of Helsinki Uni-
versity Central Hospital and was performed according to
the Declaration of Helsinki. Written informed consent was
obtained from each subject prior to the experiment.

2.2. Analysis of behavioral data

For each feature and memory load, we computed Hit
Rates (HR) and Reaction Times (RTs) Performance differ-
ences between features and loads were also evaluated
with both frequentist and Bayesian statistics. Repeated-
measures t-test was used to compare the HRs and RTs
across features and loads. Bayes factors were computed
using the R package BayesFactor and provided an esti-
mate of evidence for performance differences. We
reported Bayes factors BFO1 (Rouder et al., 2009)
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Fig. 1. Schematic illustration of the experimental task and inter-areal synchronization during working memory retention.

(@) Subjects memorized either the shapes, colors, or spatial locations for 2 loads (2 or 4 objects) in the Sample stimulus
(81, 0.15 s). S1 was followed by a 2.05 s retention period after which one object was presented as the Test stimulus

(S2, 0.5 s) and the subject responded whether the memorized feature differed between S1 and S2 for this object. (b) Hit
Rates (HRs) and Reaction Times (RTs) for different feature conditions (Shape, Color, and Location). Lines above boxplots
represent significant differences (two-tailed repeated-measures t-test, “o < 0.01, **p < 0.001). (c) Data from M/EEG
sensors were collapsed into cortical parcels. An example of prominent 1:1 phase synchronization of a-band oscillations
in the left superior occipital gyrus (sOG, in red) and the right middle frontal sulcus (mFS, in blue) during VWM retention
displayed in a flattened and inflated cortical surface. Red and blue traces show the Morlet filtered signals of sOG and
mFS, respectively, with the signals’ phases below. The bottom panel shows time-resolved 1:1 synchronization between
the two regions estimated with iPLV. (d) Synchronization matrices between all cortical parcels and for all Morlet-wavelet
frequencies were computed for each subject. Statistical group-level analyses were performed at the edge level for each
edge (connection) across subjects. This resulted a sparse weighted group-level statistical weighted adjacency matrix in
which non-significant edges were set to zero, where the edge density, K, provides the fraction of significant connections.

expressing the probability of the data given HO (absence
of an effect) relative to H1 (presence of an effect). BFO1
values larger than 1 are therefore in favor of HO. For the
Bayes factor analysis, an uninformative Jeffreys prior was
placed on the variance of the normal population, while a
Cauchy prior with scale parameter of r = 1/2/2 was placed
on the standardized effect size.

2.3. Preprocessing of M/EEG data

An overview of the workflow including all analysis steps
of the M/EEG data is shown in Supplementary Fig-
ure S1. We applied the temporal extension of signal
space separation (tSSS) method with MaxFilter software
(Elekta Neuromag) to the raw signal in MEG sensors to

suppress extra-cranial noise, interpolate bad channels,
and co-localize recordings in signal space individually
for each subject. Independent component analysis (ICA,
MATLAB toolbox Fieldtrip) was used to identify and
extract components correlated with ocular (identified
using the EOG signal) or heart-beat artefacts (identified
using the magnetometer signal as a reference). The pre-
processed M/EEG sensor time-series were epoched
into individual trials of 2700 ms, spanning from —700 ms
pre-S1 onset to 1800 ms post-S1. Time series data were
then filtered into narrow-band time series using a bank
of 38 complex Morlet wavelets with the time-frequency
compromise parameter m = 5 and approximately log-
linearly spaced center frequencies ranging from 3 to
120 Hz. After filtering, the narrow-band data were
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downsampled to a sampling rate of five times the center
frequency.

2.4. Source modelling and cortical parcellation

To obtain accurate synchronization estimates, we used
source-localized M/EEG data. FreeSurfer software (http://
surfer.nmr.mgh.harvard.edu/) was used for volumetric
segmentation of the MRI data, surface reconstruction,
flattening, cortical parcellation, and neuroanatomical
labeling with Destrieux atlas. MNE software (https://mne
.tools/stable/index.html) was used for source modeling
with minimum norm estimate using the dSPM method.
The 148 parcels of the Destrieux atlas were split into 400
cortical parcels by iteratively splitting the largest parcels
along a previously determined axis. The fine-grained par-
cellation was used to yield maximum sensitivity to indi-
vidual differences in functional cortical anatomy as well
as for robust optimization of the source-collapsing
approach (Korhonen et al., 2014; Siebenhlhner et al.,
2016). Noise covariance matrices (NCMs) were obtained
using preprocessed broad-band filtered M/EEG time-
series (151-299 Hz) from 0.7 s time-windows prior to S1
onset. The NCMs were used to create MNE inverse oper-
ators to project the sensor-space M/EEG data into source
space. The source models had dipole orientations fixed
to the pial surface normals and a 5 mm inter-dipole sep-
aration. To reconstruct ongoing cortical phase dynamics,
source narrowband complex vertex time series were col-
lapsed into parcel time series in 400-parcels of the
Destrieux-atlas using a source-reconstruction-accuracy
(fidelity) weighted collapse operator (Korhonen et al.,
2014). This enhanced the identification of true edges
among spurious connections (S. Palva & Palva, 2012;
Siebenhihner et al., 2016). Parcels were also assigned to
one of the seven functional systems of the Yeo parcella-
tion (Thomas Yeo et al., 2011) using a consensus map-
ping approach, where each parcel was assigned to
the subsystem that contained the largest fraction of its
vertices.

2.5. Analysis of oscillations amplitudes and
inter-areal synchronization

Inter-areal phase-synchronization was computed in three
separate time windows: 700 ms to 100 ms before S1
(baseline window), 600 ms to 1200 ms after S1 (early
retention), and 1200 to 1800 ms after S1 (late retention).
To allow maximal individual functional cortical separabil-
ity and robust optimization of the source-collapsing
approach, phase synchronization was estimated between
all 400 parcels. We computed phase-synchronization for
each wavelet frequency using the imaginary part of the

complex phase-locking value (iPLV) (Lachaux et al., 1999;
Rouhinen et al., 2020) that is insensitive to zero-lag inter-
actions and hence yields neither artificial nor true zero lag
couplings (J. M. Palva et al., 2018; S. H. Wang et al.,
2018). For each subject, the inter-areal synchronization
was computed by pooling the iPLV values across the
given time-window and across trials of each condition
(Shape, Color, Location). To combine the early and late
retention periods, for each subject and condition, the
iPLV values of each edge were averaged over the two
retention-period time-windows. Oscillation amplitudes
were computed for the same wavelet frequencies, par-
cels, and time-windows as the synchronization analysis,
and pooled across all trials of the conditions (Shape,
Color, Location) separately for each subject.

To obtain single-trial iPLV values and oscillation ampli-
tudes for the classification analysis, for each subject and
wavelet frequency, inter-areal synchronization and oscil-
lation amplitudes were computed as described above,
but the estimates were not averaged across trials for
each condition. iPLV values were computed within each
trial (and not across multiple trials) by estimating the
instantaneous phase difference between parcel pairs
across time points and then taking the imaginary part of
the mean complex phase difference.

2.6. Statistical analyses

Before statistical testing, both oscillation amplitudes and
synchronization were baseline-corrected by subtracting
the mean amplitude or iPLV value of the pre-S1 baseline
window for each wavelet frequency. The 400-parcel data
was collapsed to a coarser 200-parcel parcellation to
improve statistical stability by reducing the effects of
inter-subject variability in functional anatomy (Rouhinen
et al., 2020). Group statistical analyses were then carried
out separately for each frequency, parcel (or parcel pair,
for synchronization) and time window.

To identify significant retention period synchronization
and its load dependence at the group level, we com-
pared, for each wavelet frequency and each edge, the
strength of synchronization averaged across loads
against the strength at baseline, and also compared the
strengths between individual loads, using the Wilcoxon
Signed Rank test at oo = 0.05. To estimate effect sizes for
the identified significant differences between conditions,
we estimated the average strength over edges for each
participant. A repeated-measures t-test was then used
to compare the strength of average synchronization
between the conditions. We identified significant correla-
tions between the strength of synchronization and indi-
vidual HRs at the edge-level separately for each condition
using a Pearson correlation test.
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To remove false positives (FP) caused by multiple sta-
tistical tests, we pooled all significant observations over
all edges and then discarded as many of the least-
significant comparisons as would be predicted to be
false discoveries by the a level (J. M. Palva et al., 2010;
Siebenhlhner et al., 2020). To remove any remaining FPs,
a threshold Q was defined for the number of significant
observations that could arise by chance in any of the fre-
quencies even after controlling for multiple comparisons
(Puolivéli et al., 2020). This was estimated by simulating
random processes at the null hypothesis, using the same
number of tests performed in the actual experiment, and
recording the residual fractions of “significant” observa-
tions after the elimination of the number of significant

observations predicted to be false positives by the a
level. Given the number of cortical parcels and time win-
dows in which statistical analyses were performed for
each condition, Q was estimated to correspond to
0.672% edge density and is shown as the shaded gray
area in Figures 2 and 4.

2.7. Graph analysis and visualization

Spectro-temporal patterns of synchronization and ampli-
tude modulations were visualized as time-frequency rep-
resentations (TFRs). For each time-frequency (TF) bin, we
computed the fraction of cortical parcels that showed a
significant increase (i.e., P+, the fraction of significant
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Fig. 2. Content dependent large-scale synchronization and

desynchronization characterizes VWM maintenance. (a) Edge

density, K, as a function of frequency for the retention period for each condition (Shape, Color, Location), averaged across
the Early and Late retention time windows, separately for each load compared to baseline as well as for the difference
between the loads. Two-tailed Wilcoxon signed-rank tests were used to test if iPLV values of each edge were different
from zero (p < 0.05). (b) Edge density (K) for the significant differences in synchronization strength between the conditions.
(c) Distribution of individual graph strength (GS) values for the o (11-13 Hz) and 6 (6-8 Hz) networks for the three features,
edges selected based on (b). Two-tailed repeated-measures t-test was performed between each pair of features.

(d) Graphs of a-band synchronization for each condition shown in a, displayed on an inflated and flattened cortical
surface. The 200 strongest edges, as identified by edge betweenness centrality, and their connected nodes are shown.
Connections are bundled into hyperedges (see section 2). Surface and node rendering reflect subsystem identity, with
node size being proportional to node degree. In each hyperedge bundle, edge colors reflect the mixing of the colors of
connected nodes, with the color being defined by Yeo subsystems. Yeo subsystems: visual network (Vis); dorsal attention
network (DAN); ventral attention network (VAN); fronto-parietal network (FPN); default mode network (DMN).
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positive parcels for each TF bin) or decrease (i.e., P-, the
fraction of significant negative parcels for each TF bin).
For oscillation amplitudes, we localized the TF region of
interest.

We used a graph theory (Bullmore & Sporns, 2009)
approach to characterize the network structures as
weighted graphs. Adjacency matrices were thresholded
by statistical significance such that the non-significant
edge values were set to zero. Adjacency matrices were
then defined as graphs where the nodes were the cortical
parcels and edges the significant interactions between
nodes.

Edge density (K) was used to index the proportion of
significant edges of all possible interactions and was
computed as the number of significant edges divided by
the total number of edges in the graph. Positive and neg-
ative values of K were used to indicate the proportion of
edges showing a significant increase or decrease in syn-
chronization strength, respectively.

In addition, graph strength (GS) was used to describe
the mean strength of synchronization and was computed
separately for each frequency and participant as the
average strength over all significant connections.

To characterize inter-areal synchronization within and
between functional subsystems (Yeo parcellation and
functional visual subdivisions), for each subsystem pair,
we computed edge density for all possible edges for the
given pair. Within subsystems, edge density was com-
puted for all edges between the parcels within the sys-
tem. The differences in edge strengths between functional
visual subdivisions were obtained by computing the dif-
ference between the average edge strengths (A-iPLV).

Node centrality metrics were further used to identify
highly connected nodes in the graphs that putatively
played a key role in network communication. Node
degree was used to index how each node was connected
to the other nodes, with a higher degree indicating more
connections. Edge betweenness centrality, a measure of
the number of shortest paths between node pairs that
pass through an edge, was used as a measure to reveal
the central core of the network for communication.

To remove residual signal leakage among nearby par-
cels (S. Palva & Palva, 2012) from the graphs, we excluded
poorly source-reconstructed parcel edges from the graph
analysis and visualizations. While using iPLV to estimate
inter-areal synchronization would exclude the direct
effects of zero-phase lagged signal mixing, spurious
interactions would still remain (J. M. Palva et al., 2018).
We therefore removed edges between parcels for which
the source reconstruction accuracy (fidelity) was below
0.165 (6.5% of parcels). To further exclude spurious
connections, we removed edges between parcels that
exhibited greatest signal leakage with their neighbors,

measured with cross-patch PLV (fidelity radius greater
than 0.35). A total of 16.2% of all possible edges were
thus excluded from the analyses. To further mitigate the
contribution of spurious interactions caused by the con-
current presence of true interactions and linear mixing,
edges were bundled by their adjacency signal mixing to
hyper-edges (S. H. Wang et al., 2018). The hyper-edges
thus bundled together edges that putatively originated
from a single true edge among the spurious edges
caused by source-leakage (S. Palva & Palva, 2012; J. M.
Palva et al., 2018). These hyper-edges were used to visu-
alize inter-areal network synchronization (Fig. 2).

2.8. lIdentifying shared and feature-specific edges

To identify the shared and feature-specific subnetworks,
we created a union matrix by combining the retention-
period matrices for the three visual features. The union
matrix was created by combining the raw graphs of
Shape, Color, and Location, using the edge or average
edge strength across conditions. Next, we computed
hyperedge bundling across the union matrix. Small hyp-
eredges were excluded as they were likely to comprise
false positives. To determine if a hyperedge was shared,
a participation threshold was set whereby each of the
three features (conditions) contributed a minimum pro-
portion of raw edges to the hyperedge. To ensure that at
least two conditions contributed substantially to the
shared hyperedge, the participation threshold was set
to > 0.3, normalized by the edge densities of the raw
graphs. If the hyperedge did not meet this requirement
for at least two conditions, it was considered condition-
specific to the condition which contained the largest pro-
portion of raw edges in the hyperedge.

2.9. Classification analysis of trials of single
features

Machine learning (ML) was used to classify visual fea-
tures, based on the retention period synchronization
matrices and parcel-level oscillation amplitude patterns
as features for the classifier using the random forest clas-
sification method. For each frequency and load, we first
averaged iPLV values across all subjects and trials for the
retention period subtracted by baseline data. The largest
1000 iPLV values of the group-averaged matrix were then
used to create a binary mask that was applied to all trials
of individual subjects. Classification on local oscillation
amplitudes was performed using amplitude values from
all 400 parcels for each trial.

Classification was performed at the level of individual
subjects and separately for each narrow-band frequency.
For each subject and Morlet wavelet frequency, single-trial
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iPLV matrices and oscillation amplitudes for the baseline
and the two retention period windows (Early and Late)
were computed, using the same frequency-specific filter-
ing and synchronization estimation as in the group-level
analyses. After applying the binary mask, this yielded a
1 x 1000 vector per trial for synchronization and a 1 x 400
vector per trial for oscillation amplitudes. A random forest
classifier was then trained on these vectors of each trial
using a leave-one-out cross-validation (LOOCV) method
applied at the trial level (i.e., train on all trials minus one
and then classify whether the left-out trial is from the
Shape, Color, or Location condition, and then repeated
for all trials). For each subject, and separately for each
time window and load condition, 688 + 75 (mean * SD)
trials were used in each classification run. Therefore, in
each classification run (i.e., one LOOCV iteration), the
classifier was trained on ~99.8% of trials and tested on
the remaining ~0.2% (i.e., one trial). Classification accu-
racy was obtained as the proportion of trials correctly
classified for each subject and averaged across the sub-
jects. As participants memorized different visual features
in separate experimental blocks, baseline activity already
contained information about the relevant feature. There-
fore, differences in the classification accuracy in the
retention vs. baseline time-windows were obtained. We
tested, for each frequency, whether the classification
accuracy of the retention period significantly differed
from the classification accuracy of the baseline period at
the group level (Wilcoxon signed-rank test).

Classification was also applied to narrow-band ampli-
tudes of each ftrial. The procedure was the same as for
inter-areal synchronization, except the classification to
decode the memorized feature was performed on the
average parcel amplitudes.

3. RESULTS

3.1. Behavioral performance

We used here a delayed match-to-sample VWM task for
which we had earlier revealed that local y-band ampli-
tudes underlie the maintenance of feature-specific infor-
mation in VWM (Honkanen et al., 2015) (Fig. 1a). We
manipulated both VWM content and load such that the
task was to memorize either the shapes, colors, or spatial
locations of either 2 or 4 objects. Within each condition,
the Hit Rate (HR) decreased with increasing memory load
(two-tailed repeated measures t-test, p < 0.05) (Fig. 1b).
Differences in HR between conditions were observed in
both load conditions. HR for Shape was significantly
lower than for Color (load 2: t = -8.018, p = 1.62e-07,
BFO1 = 8.62e-06; load 4: t = -1.62, p = 1.46e-12,
BFO1 = 1.53e-10; repeated measures t-test) and Loca-

tion (load 2: t = -5.15, p = 5.66e-05, BFO1 = 0.002; load 4:
t =-8.72, p = 4.58e-08, BFO1 = 2.64e-06) while HR for
Color was significantly greater than Location only in load
2 (t = 2.88, p = 9.69e-03, BFO1 = 0.21). Reaction Time
(RT) increased with increasing memory load for each
condition (two-tailed repeated-measures t-test, p < 0.05)
(Fig. 1b). RT for Shape was significantly higher than for
both Color (load 2: t =5.69, p = 1.75e-05, BFO1 = 0.00068;
load 4: t = 4.00, p = 7.79e-04, BFO1 = 0.022; repeated-
measures t-test) and Location (load 2: t = 3.82, p = 1.16e-
03, BFO1 = 0.032; load 4: t = 3.43, p = 2.81e-03,
BF0O1 = 0.072). These results indicate that, for both load
2 and 4, the task in the Shape condition was significantly
more demanding than in both the Color and Location
conditions.

3.2. Large-scale network synchronization
differentiate memory contents

Networks of inter-areal phase-synchronization were
computed from source-reconstructed MEG data in a
data-driven manner (Supplementary Fig. S1). We esti-
mated phase-synchronization using iPLV between all
cortical parcels separately for each frequency and for the
three time-windows (baseline and two retention period
time windows) (Fig. 1c). Statistically significant network
level synchronization were then characterized using
graph theory (Bullmore & Sporns, 2009) such that cortical
parcels (brain areas) were the nodes and statistically sig-
nificant connections of synchronization were the edges
of the network, the edge weight defining the strength of
synchronization (see section 2). To characterize the
extent of synchronization, for each time- and frequency-
bin, we computed edge density (K) separately for statisti-
cally significant positive and negative interactions. Edge
density was defined as the fraction of statistically signifi-
cant inter-areal interactions of all possible pairwise inter-
actions among the 400 brain areas for each condition
(Fig. 1d).

We first averaged iPLV values over the three condi-
tions (Shape, Color, Location) and over the two memory
loads. This showed that the VWM retention period was
characterized by dynamic sustained synchronization in
the high-a-band (11-13 Hz) and concurrent desynchro-
nization in the 0- (6-8 Hz) and B-bands (17-20 Hz com-
pared to baseline (Supplementary Fig. S2, two-tailed
Wilcoxon signed-rank test, p < 0.05). Having established
that the VWM retention period is characterized by robust
synchronization, we next computed phase synchroniza-
tion for each condition (Shape, Color, and Location)
compared to baseline separately for the two loads as
well as for the difference between the loads. All features
showed similar spectral patterns with robust o-band
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synchronization and concurrent suppression of 6- and
B-band synchronization (two-tailed Wilcoxon signed-
rank test, p < 0.05) (Fig. 2a). These patterns were more
prominent in the late retention period (1.2-1.8 s) than in
the early retention period (0.6-1.2 s) (Supplementary
Fig. S3). As the load conditions showed similar synchro-
nization patterns, we averaged data over the memory
loads for the subsequent analyses. To compare with pre-
vious literature, we also computed local oscillation
amplitudes for each feature and load condition. We
found that VWM retention was characterized by a sus-
tained and wide-spread decrease in the low-frequency
(83-12 Hz) and B-band (15-25 Hz) oscillations amplitudes
(Supplementary Fig. S4). As found previously (Honkanen
et al.,, 2015), oscillation amplitudes were also load-
dependently increased.

We next examined if synchronization would differ
between the different conditions. The edge densities of
both a-band synchronization and 6-band desynchroniza-
tion differed between feature conditions (two-tailed Wil-
coxon signed-rank test, p < 0.05) (Fig. 2b), demonstrating
that both increased inter-areal synchronization and
decreased (desynchronization) inter-areal synchroniza-
tion reflect memorization of VWM contents. To define the
effect sizes for the statistical analysis at the individual
subject-level, we first defined the frequency bands in a
data-driven manner using hierarchical clustering to reveal
clusters of adjacent frequencies with spatial similarity.
This revealed a-band (11-13 Hz) and 6-band (6-8 Hz) fre-
quency clusters (Supplementary Fig. S5) that were used
for the subsequent analysis. The graph strength (GS),
which is the averaged strength over all significant con-
nections across the whole brain, was then computed at
the individual level and statistical significance between
conditions estimated across participants. The a-band GS
differed between feature conditions (two-tailed repeated-
measures t-test, p < 0.05) (Fig. 2c), while the differences
for 6-band desynchronization did not reach statistical sig-
nificance. For the a-band synchronization, there was a
significant difference in GS between the Shape and Color
conditions (t = 2.45, p = 0.024), and between Shape and
Location conditions (t = 2.66, p = 0.016). As the Shape
condition was more difficult than Color and Location con-
ditions, to ensure that results did not reflect differences in
task difficulty, we compared the synchronization dynam-
ics between conditions with similar HRs, that is, load 2 for
Shape with load 4 for Color and Location conditions. We
found condition-related differences in both a-band syn-
chronization and 6-band desynchronization (Supplemen-
tary Fig. S6), indicating that both of these dynamic
modulations reflect memory contents.

To then understand whether synchronization networks
would connect task relevant cortical areas, we mapped

the anatomical structure of the synchronization networks
shown in Figure 2a. To this end, we plotted the edges and
nodes with the highest edge-betweenness centrality, that
is a centrality measure that quantifies an edge’s impor-
tance in a network by measuring the number of shortest
paths between node pairs that pass through that edge
and identifies edges that act as “bridges” connecting dif-
ferent parts of the network. To aid in the functional inter-
pretation of the connections, only the edges within and
between relevant cortical systems of visual, DAN, VAN,
FPN, and default mode network (DMN) were visualized in
Figure 2d with the complete networks shown in Supple-
mentary Figure S7. Importantly, the functional network
anatomy differed between conditions. For Shape, the
most central hub was the left superior occipital gyrus
(sOG), which connected to the key nodes of the dorsal
attention network such as frontal eye fields (FEF, located
in the superior precentral sulcus), intraparietal sulcus
(intPS), and bilaterally to the visual cortex. The left sOG
was also connected to the inferior frontal gyrus (iFG) and
middle frontal gyrus (mFG) of the prefrontal cortical (PFC),
and inferior parietal gyrus (iPG) of posterior parietal cor-
tex (PPC). For Color, the most central hubs were the right
superior parietal gyrus (sPG) and right inferior parietal
gyrus (iPG) of the PPC, which were connected primarily
to the left middle frontal gyrus (mFG). Synchronization
was also strong across the attention networks, namely
the dorsal attention network (DAN), ventral attention net-
work (VAN), and the fronto-parietal network (FPN). For
Location, the central hub was the right precentral gyrus
(prCG) with bilateral connections to sPG and iPG. Impor-
tantly, FEF was a key node in all networks. The most cen-
tral parcels for each of the networks are provided in
Supplementary Table S1, along with the information of
functional subsystems. The overall synchronization pat-
terns thus demonstrated that a-band synchronization
networks had central hubs in attentional control networks
that were connected to functionally specialized visual
areas.

3.3. a-band synchronization is localized to feature
selective visual areas

As the increase in a-band synchronization was feature-
selective, we focused the subsequent analysis on this
frequency band. To investigate the cortical network orga-
nization of the a-band synchronization across the func-
tional networks, we co-localized the 400 parcels of the
Destrieux atlas with fMRI-based functional systems of
the Yeo atlas (Thomas Yeo et al., 2011) comprising of the
visual network (Visual), somatomotor network (SM), dor-
sal attention network (DAN), ventral attention network
(VAN), limbic network (Lim), fronto-parietal network (FPN),
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and the default mode network (DMN).We then estimated
the strength of synchronization within and between the
subsystems for each condition for data averaged across
memory loads. For Shape, synchronization was robust
within the visual system, as well as between and within
the DAN, VAN, and SM; for Color in SM and its connec-
tions to Limbic system; and for Location within and
between SM, VAN and DAN (Fig. 3a).

To further test if a-band synchronization would be
specifically localized to visual areas responsible for pro-
cessing of the memorized or distracting visual features,
we assigned the parcels from the visual system to dis-
tinct functional visual subdivisions (Riesenhuber &
Poggio, 2000, 2002): early visual cortex (V1-V3), lateral
occipital cortex (LOC), ventral visual stream, and dorsal
visual stream as in Honkanen et al. (2015) (Supplementary
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Fig. 3. Functional localization of a-band synchronization. (a) Edge density for the a-band synchronization networks
during the retention period for each condition (Shape, Color, Location) separately for within and between functional

subsystems of the Yeo atlas. Yeo subsystems: visual network (Visual);

somatomotor network (SM); dorsal attention

network (DAN); ventral attention network (VAN); limbic network (Lim); fronto-parietal network (FPN); default mode network
(DMN). (b) Edge density for the a-band synchronization networks within and between functional visual subdivisions. Visual
subdivisions: early visual cortex, V1-V3 (Early); lateral occipital cortex (LOC); visual areas V4 and V8 (V4,V8); ventral stream
visual areas (Ventral); dorsal stream visual areas (Dorsal). (c) The differences in mean phase synchronization (A-iPLV)
between functional visual subdivisions (Edge A > Edge B) for the a-band synchronization networks in (b). The red color
indicates stronger synchronization for edges in Edges A (y-axis) and blue for edges in Edges B (x-axis). Stars denote the
subsystem pairs where the group difference was significant (two-tailed Wilcoxon-signed-rank test, *p < 0.05).
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Fig. S8). We then estimated the number of significant
edges within and across these functional visual systems
(Fig. 3b).

The a-band synchronization for the Shape condition
had the most connections in the early visual areas (V1-
V3) and the lateral occipital cortex (LOC), that is, in areas
that are involved in object perception (Hansen et al.,
2007; Kravitz et al., 2013; Tootell & Hadjikhani, 2001), but
also in the dorsal visual stream regions, whose activity is
related to the processing of location information, although
more recently it has also been connected to the (related)
processing of shapes (Freud et al., 2017; Theys et al.,
2015). For the Color condition, the strongest connections
were found across the early visual areas as well as V4
and V8 and areas associated with color processing; for
Location in the dorsal visual stream and in areas respon-
sible for spatial information processing.

We then addressed differences in the mean edge
strength between functional visual subdivisions for each
condition (two-tailed Wilcoxon signed-rank test,
(p < 0.05) (Fig. 3c)). For the Shape condition, we found
that connections involving LOC, V4, and V8 showed sig-
nificantly stronger synchronization than others. For Color,
connection within and involving LOC and early visual
areas dominated, while for Location, connections within
and involving the dorsal stream were strongest. These
data indicate that o-band synchronization is largest
within and between the feature-relevant visual regions.

Albeit not in our main focus, to understand the func-
tional role 6-band desynchronization may play in the
VWM retention, we also plotted the anatomical structure
of 6-band desynchronization. Intriguingly, desynchroni-
zation was found in the fronto-parietal attention networks
connected with visual system areas (Supplementary
Fig. S9). The 8-band desynchronization was widespread
and not focused on visual areas, although it was consis-
tently stronger for Shape and Color in LOC. Hence, 6-
band desynchronization overlapped with that of
strengthened a-band synchronization.

3.4. The fronto-parietal synchronization network
transcends memory contents

In addition to being feature-selective (Fig. 2c), we hypoth-
esized that synchronization networks could also play a
general content-agnostic role in VWM. We hypothesized
that 6 and a-band network synchronization could reflect
the top-down selection of the memorized contents given
their role in top-down control (D’Andrea et al., 2019;
Lobier et al., 2018; Sadaghiani et al., 2019). Hence, we
posited that the top-down executive network should be
shared, i.e. connections should transcend across differ-
ent memorized contents while the representational con-
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tents of VWM should be specific to the memorized feature
information. We thus developed a novel graph-theory
based approach to identify subnetworks that were shared
across all VWM conditions and that were content-specific
(Fig. 4a-b). This approach was implemented on synchro-
nization networks averaged across load conditions. More
specifically, we used hyperedge bundling (S. H. Wang
et al., 2018) on an interim union matrix that combined
edges from all feature conditions averaged across loads
to extract the subgraphs that were specific to each mem-
orized feature (Fig. 4a) and subgraphs that were shared
across all three features (Fig. 4b).

Importantly, we found both shared and feature-specific
subgraphs for both 6 and a-band networks (Fig. 4c). This
result indicated that within a frequency band, distinct
sub-networks (subgraphs) can mediate distinct functions
of VWM. While a-band networks consisted of feature-
specific subgraphs especially for shape, 6-band net-
works consisted of feature-specific subgraphs especially
for location. These results underscore frequency-specific
network synchronization in maintaining specific VWM
contents. Crucially, for both 6 and a-band networks, the
majority of edges were shared across the features, that
is, content-agnostic. Importantly, these shared subnet-
works coupled nodes in the attentional and fronto-
parietal networks (Fig. 4d). For the shared 6-band
desynchronization network, the most central hubs were
the left and right occipitotemporal gyrus (OTG), which
connected to the postcentral sulcus (poCS) of DAN and
frontomarginal gyrus (mrgF) of FPN. For the shared a-
band synchronization network, the most central hubs
were the right FEF and left intrapariental sulcus (intPS),
which are both key nodes of the DAN and were also con-
nected to each other. Supplementary Table S1 lists the
most central parcels of the shared networks, along with
the functional subsystem of each parcel. The presence of
both shared and content specific subgraphs within the
a-band synchronization and 6-band desynchronization
networks suggest that these networks enable the top-
down selection of remembered contents.

3.5. oa-band network synchronization predicts
individual behavioral performance

To address the behavioral relevance of the modulation in
a-band synchronization and in 6-band desynchroniza-
tion, we computed the correlation between each individ-
ual subject’s behavioral performance as indexed by the
Hit Rate (HR), and the strength of inter-areal synchroni-
zation. We computed edge density, K, as the proportion
of edges that were significantly correlated with HR. For
all features, we observed a positive correlation between
individual behavioral performance and inter-areal
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Fig. 4. Shared networks connect visual and fronto-parietal regions. (a) Schematics of the approach. To identify feature-
specific and shared networks, the group-level synchronization matrices of significant edges were combined into a union
matrix. (b) All edges in the union matrix that putatively originated from the same single true edge, among the spurious
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networks for the 6 and a-band frequency bands, visualized on the flattened cortical surface.

synchronization in the a-band and a negative correlation of - and y-band amplitudes with HR (Supplementary
in the 6-band, as expected (Pearson correlation test, Fig. S10). This highlights the role of higher frequency
p < 0.05) (Fig. 5a). Post-hoc correlations between HR oscillations at the local level in the maintenance of visual
and the GS of all significant edges in the a-band and 6- information in VWM compared to the network synchroni-
bands, as shown in Figure 5a, were then performed. Sig-  zation in the lower frequencies.

nificant correlations were observed in the a-band for
load 4 of Color (r = 0.82, p = 1.14e-05) and Location
(r = 0.80, p = 2.78e-05) and load 2 of Shape (r = 0.88,
p = 3.47e-07) with matching difficulty (Fig. 5b) and in the
6-band for load 2 of Shape (r = -0.89, p = 1.06e-07), The previous analysis had established that a-band syn-
Color (r = -0.87, p = 8.10e-07) and Location (r = -0.84, chronization was feature-selective. To obtain validation
p = 3.55e-06) (Fig. 5¢). This indicated that the a-band on whether synchronization would contain information
synchronization GS and 6-band desynchronization GSat unique to the memorized feature that would enable
the individual level were correlated with individual HR, decoding, we used machine learning (ML) analysis. A
demonstrating the strong behavioral relevance of both  multivariate random forest classifier was trained on syn-
a-band synchronization and 6-desynchronization, as chronization patterns on every trial for each frequency
would be expected if these networks are central for band and for each subject. Significance was then tested
selecting the memorized VWM contents. In contrast, using the leave-one-out cross validation (LOOCV) method
there was only a minor correlation of a-band oscillation (Fig. 6a). Classification accuracy of the memorized fea-
amplitudes with HR, but a stronger negative correlation ture in both retention windows and for both load condi-

3.6. The memorized visual feature can be decoded
from a-band synchronization patterns
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Fig. 5.

o and 6-band synchronization networks are correlated with individual behavioral performance. (a) Connection

density for the significant correlations between the strengths of synchronization and Hit Rates (HR) (Pearson correlation
test, p < 0.05). Edge iPLV values were correlated positively with HR in the a-band and negatively correlated in the
6-band for all three features. (b) The individual graph strengths (GS), that is, the summed strength of significant edges,
as a function of the individual HRs. In the a-band (9-11 Hz), there was a strong positive correlation for all conditions.
(c) Same as (b) but graph strength was extracted from the significantly suppressed edges in the 6-band (6.5-8 Hz). A
strong negative correlation was observed between the graph strength in the 6-band and individual HR.

tions was highest in the a-band (Fig. 6¢c, top). However,
the classification accuracy was above chance-level both
for the baseline and retention period time windows. This
likely reflects the block effect whereby the participants
memorized different visual features in separate experi-
mental blocks. To disentangle decoding performance
due to global task effects, we estimated the difference in
the classification accuracies between retention and
baseline time-windows (Fig. 6¢, bottom). This revealed
significantly greater accuracies for the retention period
between 10-30 Hz (two-tailed Wilcoxon signed-rank test,
p < 0.05), with the greatest improvement in classification
accuracy in the a-band.

The classifier analysis was also applied to amplitudes
of each trial. Classification accuracies in both baseline
and retention time-windows converged toward 0.98
(Fig. 6b, top), but the classification accuracy between
retention and baseline data did not differ (Fig. 6b, bottom)
indicating that this cannot be attributable to information
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in the retention period. While these data overall demon-
strate that network synchronization is a reliable measure
of VWM contents unlike local oscillations amplitudes, it
should be noted that the single-trial feature vectors used
for synchronization (1 x 1000 vectors) were larger than
used for oscillation amplitudes (1 x 400 vectors) which
makes the direct comparison difficult.

4. DISCUSSION

Long-range phase synchronization across WM-related
brain areas has been established to be fundamental for
VWM, as demonstrated by EEG/MEG source connectiv-
ity analysis (Ericson et al., 2024; Mamashli et al., 2021; J.
M. Palva et al., 2010; Sato et al., 2018; Sattelberger et al.,
2024) and local field potential (LFP) recordings in mon-
keys (Liebe et al., 2012; Salazar et al., 2012). However,
whether oscillatory networks would track the contents of
VWM or reflect attention and executive control functions
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Fig. 6. The memorized visual feature can be decoded from o and B-band synchronization patterns. (a) Local amplitude
and inter-areal phase synchronization were used as features for multi-label supervised learning to classify trials of each
condition (Shape, Color, and Location) within subjects. A random forest classifier was trained on local amplitudes and
phase synchronization of each trial for 38 frequency bands within each subject and tested using leave-one-trial-out cross
validation. (b) Classification of local amplitudes was performed separately for loads 2 and 4 (dashed and solid lines, resp.)
and for retention (orange lines) and baseline (blue lines) time-windows. Difference curves (lower row, red lines) indicate
differences in decoding accuracy between retention and baseline windows. Accuracy is the proportion of trials correctly
classified from the total number of tested trials. Horizontal bars (light red: load 2, dark red: load 4) indicate significant
differences between accuracy of retention and baseline (Two-tailed Wilcoxon signed-rank test, p < 0.05). (c) Same as (b)
but classification was performed for inter-areal synchronization of each trial.

has remained unknown. Using a parametric VWM task Muthukumaraswamy & Singh, 2013) and memory con-
controlling for the memorized features, combined with tents (Honkanen et al., 2015; Morgan et al., 2011), whereas
advanced network analysis approaches, we found that both local a-band oscillations (Capilla et al., 2014; Gould
a-band synchronization networks track VWM contents. et al., 2011; Thut et al., 2006) and inter-areal a-band syn-
More precisely, we identified content-specific subnet- chronization (Gregoriou et al., 2009; Lobier et al., 2018) are
works of a-band synchronization and subnetworks that generally associated with attention, especially in the spa-
were shared across feature-conditions. This finding tial domain. However, this study demonstrates that, similar
shows that a-band network synchronization reflects the to findings in auditory (Ahveninen et al., 2023; Mamashli
representational functions of VWM (Baddeley, 2012; et al., 2021) and verbal (Rossi et al., 2023) WM and that of
D’Esposito & Postle, 2015; Klingberg, 2010). LFP in monkeys (Salazar et al., 2012), long-range synchro-

This result was surprising and not aligned with the tradi-  nization tracks the content of human VWM. Crucially, we
tional functional significance of local oscillations given that  demonstrate that a-band network synchronization, which
local B- and y-band frequencies have been related to the was sensitive to and tracked VWM contents, was localized
representation of sensory information (Fries et al., 2002; to subnetworks (subgraphs) in functional visual areas
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responsible for the processing for their respective features
(Riesenhuber & Poggio, 2000, 2002) although connections
were also found involving visual areas processing the dis-
tracting visual features. In addition, also connections from
these functional visual areas with the frontoparietal net-
work tracked VWM contents. These findings are in line
with earlier work showing that VWM contents can be
tracked in both the sensory cortices and in the PFC
(Christophel et al., 2017; Serences, 2016). Our findings
were further validated by ML analysis, which revealed that
feature-specific synchronization enables decoding of
memory content. However, the ML analysis also decoded
contents during the baseline period, likely due to the block
design, whereby the participant had an active memory
representation across the whole block. In contrast to pre-
vious studies (Chen et al., 2022; Elshafei et al., 2022), we
found no decoding for local oscillation amplitudes.

Our results can be explained by a framework in which
a-band network synchronization implements top-down
control to select for the features to be remembered. In line
with this hypothesis, a-band synchronization subgraphs
in the fronto-parietal network were shared across condi-
tions in which different contents were memorized. This
suggests that a-band network synchronization forms the
executive core of VWM. The main hubs of the shared net-
work, transcending across different conditions, were
found in the frontoparietal control systems (Gratton et al.,
2018; Power & Petersen, 2013) with the main network
hubs in the IPS and FEF of the DAN (Corbetta & Shulman,
2002). Due to its multiplexing role, a-band network syn-
chronization could implement the top-down selection of
the memorized contents. This hypothesis is in line with
the role of a-synchronization in attentional top-down con-
trol (D’Andrea et al., 2019; Lobier et al., 2018; Mishra
et al., 2021; Sadaghiani et al., 2019) and the role of fron-
toparietal regions in controlling the prioritization of infor-
mation in visual WM (Sahan et al, 2019) and in
implementing spatial computing for the control of WM
(Lundqvist et al., 2023). Furthermore, this framework
aligns with the content-independent pointer system of
WM that supports the attentive tracking of objects but
not the content of the objects (Thyer et al., 2022). The
presence of a shared executive network across different
VWM contents is also analogous to the supramodal
shared network across different modalities for conscious
access and across tasks (Deco et al., 2021; Sanchez
et al., 2020), which suggest a similar organizational prin-
ciple for WM and perception. We advance here that the
shared connections of a-band synchronization reflect the
top-down executive network that enables the selection of
the to-be-remembered visual contents, as reflected in
content-specific synchronization in the visual cortices.
The functional significance of a-band network synchroni-
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zation in top-down control differs from the general view
that alpha-band oscillations and synchronization would
mainly have an inhibitory role, to protect memorized infor-
mation from external interferences (Jensen, 2024; Jensen
& Mazaheri, 2010). There are two explanations for these
differences. First, a-band oscillation amplitudes and net-
work synchronization may carry out distinct roles in the
inhibition vs. top-down control of information (S. Palva &
Palva, 2007, 2011). Second, canonical oscillatory fre-
quencies may have multiple sources with differential
functional roles, as has been established for visual atten-
tion (Benwell et al., 2017; Cruz et al., 2025; lemi et al.,
2017; Trajkovic et al., 2024; van Ede et al., 2017).

Both a-band synchronization and 6-band desynchro-
nization were correlated with individual behavioral perfor-
mance. High performers exhibited greater a-band
synchronization and 6-band desynchronization than low
performers, demonstrating the functional significance of
inter-areal network synchronization in the maintenance of
content-specific feature representations. a-band syn-
chronization was strong during the late retention period
which may reflect the refreshing of VWM contents, a
post-consolidation process during maintenance that
strengthens the memoranda and prevents loss of infor-
mation (Morey & Cowan, 2018).

In contrast to many previous studies which have found
0-band synchronization during VWM, particularly in the
hippocampus (Heusser et al., 2016), but also in cortex
(Bahramisharif et al., 2018; Berger et al., 2019; Sarnthein
et al., 1998), we found 6-band desynchronization. This
finding is unlikely to be explained by a smaller signal-to-
noise ratio, as 0-band and a-band oscillation amplitudes
were similar. The lack of 6-band synchronization is similar
to that found in our previous studies using delayed
match-to-sample VWM tasks (J. M. Palva et al., 2010;
Sattelberger et al., 2024). In particular, 6-band oscilla-
tions are thought to reflect control mechanisms in WM
(Berger & Sauseng, 2022; Sauseng et al., 2010), which
the delayed match-to-sample VWM task used in the
present study did not involve.

The combination of a-band synchronization and 6-
band desynchronization in the present task may be com-
plementary. This could reflect the opposing demands of
VWM in maintaining the internal WM representations and
in inhibiting the external sensory stimulation (Van Ede &
Nobre, 2023). This could be achieved via concurrent o-
band synchronization, and 6-band desynchronization in
the visual areas suppressing incoming new sensory infor-
mation (Johnson et al., 2023) similarly to that have been
proposed previously to a-band oscillation amplitudes
(Jensen, 2024; Jensen & Mazaheri, 2010). Differences in
canonical frequency bands in this respect may arise due
to small spectral differences caused by task differences
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as well as by different analytic pipelines. Thus, a-band
synchronization and 6-band desynchronization may
operate in a complementary fashion to maintain repre-
sentations and simultaneously prevent interference from
incoming sensory information.

Overall, our results establish that large-scale a-band
synchronization reflects not only the “What” (i.e., the con-
tents) of visual working memory, but also suggests the
existence of a shared control network that transcends
specific memory contents. We propose a model where
a-band synchronization implements top-down selection
of memorized visual information based on behavioral
needs. The concept of a network that is not a silo for a
particular type of information or content would explain
information leaks between memories across different
types of content (Robertson, 2022) as well as between
different cognitive tasks (Ericson et al., 2024). Thus, long-
range synchronization may serve multiplexed roles and
reflect both working memory contents and executive
demands, which together provide the key architectural
features of visual working memory.
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