
© 2025 The Authors. Published under a Creative Commons  
Attribution 4.0 International (CC BY 4.0) license.

Imaging Neuroscience, Volume 3, 2025
https://doi.org/10.1162/IMAG.a.1034

Research Article

1.  INTRODUCTION

Visual Working Memory (VWM) maintains visual informa-
tion online for use in cognitive operations or goal-directed 
behaviors. It has been suggested to comprise a distinct 
short-term storage of sensory information and executive 
processes (Baddeley, 2012; D’Esposito & Postle, 2015; 
Klingberg, 2010). In line with these models, functional 
magnetic resonance imaging (fMRI) studies have shown 
that WM consists of distributed activity across sensory 
cortices and fronto-parietal control networks (Emrich 
et  al., 2013; Lee et  al., 2013). While manipulation and 
executive control of VWM are consistently associated 
with prefrontal cortical (PFC) activity (Panichello & 

Buschman, 2021; Yu & Postle, 2021), it has remained 
under debate whether the representational functions 
arise within sensory cortices, the PFC, or from distributed 
activity (Christophel et al., 2017; Li & Curtis, 2023; Mejías 
& Wang, 2022; Yan et al., 2023).

In contrast to fMRI, electrophysiological methods yield 
direct mechanistic insight and have demonstrated that 
memory consolidation and refreshing are facilitated via 
neuronal oscillations (Benchenane et  al., 2011). Oscilla-
tions are widely established to predict performance in 
VWM tasks in electroencephalography (EEG) (D. Wang 
et al., 2018; Pavlov & Kotchoubey, 2022; Ratcliffe et al., 
2022; Sauseng et  al., 2009), magnetoencephalography 
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(MEG) (Honkanen et al., 2015; S. Palva et al., 2011; van 
Ede et al., 2017), and intracranial EEG (iEEG) (Bahramisharif 
et  al., 2018; Johnson et  al., 2023; ter Wal et  al., 2021). 
These studies have further investigated the functional sig-
nificance of oscillations in the maintenance of VWM con-
tents vs. executive functions. VWM contents have been 
shown to be encoded by feature-selective spatio-temporal 
dynamics of beta (β, 20–30 Hz) and gamma (γ, 30–80 Hz) 
oscillations, as observed in MEG (Honkanen et al., 2015), 
intracranial EEG (Bahramisharif et al., 2018), and bursts in 
monkey PFC (Lundqvist et al., 2016, 2022). On the other 
hand, local alpha-band (α, 8–14 Hz) oscillations reflect dis-
tractor inhibition (Bonnefond & Jensen, 2012; de Vries 
et al., 2019; Magosso & Borra, 2024; Sghirripa et al., 2021; 
Zhou et  al., 2023) and attention (Magosso et  al., 2021; 
Riddle et  al., 2020; Sattelberger et  al., 2024; van Ede, 
2018) of VWM.

In contrast to local oscillations, there is limited under-
standing of the functional significance of large-scale 
oscillatory networks in VWM. Scarce studies using EEG 
or MEG source connectivity analysis (Ericson et al., 2024; 
J. M. Palva et  al., 2010; Magosso & Borra, 2024; Sato 
et  al., 2018; Sattelberger et  al., 2024) and local field 
potential (LFP) recordings in monkeys (Liebe et al., 2012; 
Salazar et al., 2012) have revealed that concurrent large-
scale phase synchronization in multiple bands, that is, in 
α-, β-, and γ-bands, characterizes VWM performance. 
Recent work further suggests that inter-areal coupling in 
the form of traveling waves in the α-band could reflect 
top-down control in VWM (Zeng et al., 2024). However, it 
has remained unknown whether large-scale network 
oscillations would maintain VWM contents or mediate 
executive control over VWM processes, and further, in 
which frequency bands would these functions be medi-
ated. One of the challenges is to identify parts of the com-
plex brain network that are related to the given functions.

Here, we studied whether large-scale oscillatory net-
works would reflect VWM contents or their executive 
functions. Advances in brain network analysis (Markello 
et al., 2022; Shafiei et al., 2023), especially at the edge- 
(connection) level (Betzel et  al., 2023; Faskowitz et  al., 
2022), provide a new way to chart neuronal architectures. 
We leveraged these approaches to identify subnetworks 
with VWM content-specific synchronization. We recorded 
ongoing brain activity with concurrent MEG and EEG (M/
EEG) during a delayed match-to-sample VWM task in 
which we parametrically controlled VWM contents using 
a task paradigm in which the object statistical properties 
remained identical while only the to-be-remembered 
visual feature was varied. We then used edge-level data-
driven source connectivity analysis to chart their distinct 
network architectures and content specific subgraphs 
This allowed us to resolve subgraphs encoding VWM 

contents and shared subnetwork across conditions,  
possibly reflecting executive control. Finally, we used 
machine learning (ML) for decoding the memory contents 
and established that phase-synchronization connec-
tomes contain information of VWM contents.

2.  METHODS

2.1.  Task and recordings

The experimental procedure of the task and M/EEG 
recordings are described in detail in Honkanen et  al. 
(2015). M/EEG data were collected from 20 healthy right-
handed subjects (age 29 ± 6, mean ± SD, 8 females). The 
VWM task comprised three conditions in which subjects 
memorized the shapes, colors, or spatial locations of the 
objects in the “Sample” stimulus (S1, duration 150 ms) 
(Fig. 1a). After a 2050 ms retention period, a “Test” stim-
ulus (S2, duration 500 ms) was presented and subjects 
indicated if it had the same or different task-relevant fea-
ture(s) as S1. The memorized stimuli were algorithmically 
generated for each trial and each stimulus was presented 
only once to avoid any long-term memory effects. For 
each subject, a total of 800 trials were recorded for each 
condition, to maximize within subject effect size (Ince 
et al., 2022).

Cortical activity was measured with concurrent M/
EEG with 204 planar gradiometers, 102 magnetometers, 
and 60 EEG electrodes with a VectorView (Elekta Neuro-
mag Ltd.) system at 600 Hz sampling rate at the BioMag 
Laboratory in Helsinki University Hospital. Ocular arti-
facts were measured with electro-oculogram (EOG) and 
the behavioral thumb-twitch responses with electromy-
ography (EMG). T1-weighted anatomical MRI scans for 
cortical surface reconstruction models were obtained at 
a resolution of 1 x 1 x 1 mm using an MP-RAGE protocol 
with a 1.5 T MRI scanner (Siemens, Germany). The study 
was approved by the ethical committee of Helsinki Uni-
versity Central Hospital and was performed according to 
the Declaration of Helsinki. Written informed consent was 
obtained from each subject prior to the experiment.

2.2.  Analysis of behavioral data

For each feature and memory load, we computed Hit 
Rates (HR) and Reaction Times (RTs) Performance differ-
ences between features and loads were also evaluated 
with both frequentist and Bayesian statistics. Repeated-
measures t-test was used to compare the HRs and RTs 
across features and loads. Bayes factors were computed 
using the R package BayesFactor and provided an esti-
mate of evidence for performance differences. We 
reported Bayes factors BF01 (Rouder et  al., 2009) 
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expressing the probability of the data given H0 (absence 
of an effect) relative to H1 (presence of an effect). BF01 
values larger than 1 are therefore in favor of H0. For the 
Bayes factor analysis, an uninformative Jeffreys prior was 
placed on the variance of the normal population, while a 
Cauchy prior with scale parameter of r = √2/2 was placed 
on the standardized effect size.

2.3.  Preprocessing of M/EEG data

An overview of the workflow including all analysis steps 
of the M/EEG data is shown in Supplementary Fig-
ure  S1. We applied the temporal extension of signal 
space separation (tSSS) method with MaxFilter software 
(Elekta Neuromag) to the raw signal in MEG sensors to 

suppress extra-cranial noise, interpolate bad channels, 
and co-localize recordings in signal space individually 
for each subject. Independent component analysis (ICA, 
MATLAB toolbox Fieldtrip) was used to identify and 
extract components correlated with ocular (identified 
using the EOG signal) or heart-beat artefacts (identified 
using the magnetometer signal as a reference). The pre-
processed M/EEG sensor time-series were epoched 
into individual trials of 2700 ms, spanning from −700 ms 
pre-S1 onset to 1800 ms post-S1. Time series data were 
then filtered into narrow-band time series using a bank 
of 38 complex Morlet wavelets with the time–frequency 
compromise parameter m  =  5 and approximately log-
linearly spaced center frequencies ranging from 3 to 
120  Hz. After filtering, the narrow-band data were 

Fig. 1.  Schematic illustration of the experimental task and inter-areal synchronization during working memory retention. 
(a) Subjects memorized either the shapes, colors, or spatial locations for 2 loads (2 or 4 objects) in the Sample stimulus 
(S1, 0.15 s). S1 was followed by a 2.05 s retention period after which one object was presented as the Test stimulus 
(S2, 0.5 s) and the subject responded whether the memorized feature differed between S1 and S2 for this object. (b) Hit 
Rates (HRs) and Reaction Times (RTs) for different feature conditions (Shape, Color, and Location). Lines above boxplots 
represent significant differences (two-tailed repeated-measures t-test, *p < 0.01, **p < 0.001). (c) Data from M/EEG 
sensors were collapsed into cortical parcels. An example of prominent 1:1 phase synchronization of α-band oscillations 
in the left superior occipital gyrus (sOG, in red) and the right middle frontal sulcus (mFS, in blue) during VWM retention 
displayed in a flattened and inflated cortical surface. Red and blue traces show the Morlet filtered signals of sOG and 
mFS, respectively, with the signals’ phases below. The bottom panel shows time-resolved 1:1 synchronization between 
the two regions estimated with iPLV. (d) Synchronization matrices between all cortical parcels and for all Morlet-wavelet 
frequencies were computed for each subject. Statistical group-level analyses were performed at the edge level for each 
edge (connection) across subjects. This resulted a sparse weighted group-level statistical weighted adjacency matrix in 
which non-significant edges were set to zero, where the edge density, K, provides the fraction of significant connections.
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downsampled to a sampling rate of five times the center 
frequency.

2.4.  Source modelling and cortical parcellation

To obtain accurate synchronization estimates, we used 
source-localized M/EEG data. FreeSurfer software (http://
surfer​.nmr​.mgh​.harvard​.edu/) was used for volumetric 
segmentation of the MRI data, surface reconstruction, 
flattening, cortical parcellation, and neuroanatomical 
labeling with Destrieux atlas. MNE software (https://mne​
.tools​/stable​/index​.html) was used for source modeling 
with minimum norm estimate using the dSPM method. 
The 148 parcels of the Destrieux atlas were split into 400 
cortical parcels by iteratively splitting the largest parcels 
along a previously determined axis. The fine-grained par-
cellation was used to yield maximum sensitivity to indi-
vidual differences in functional cortical anatomy as well 
as for robust optimization of the source-collapsing 
approach (Korhonen et  al., 2014; Siebenhühner et  al., 
2016). Noise covariance matrices (NCMs) were obtained 
using preprocessed broad-band filtered M/EEG time-
series (151–299 Hz) from 0.7 s time-windows prior to S1 
onset. The NCMs were used to create MNE inverse oper-
ators to project the sensor-space M/EEG data into source 
space. The source models had dipole orientations fixed 
to the pial surface normals and a 5 mm inter-dipole sep-
aration. To reconstruct ongoing cortical phase dynamics, 
source narrowband complex vertex time series were col-
lapsed into parcel time series in 400-parcels of the 
Destrieux-atlas using a source-reconstruction-accuracy 
(fidelity) weighted collapse operator (Korhonen et  al., 
2014). This enhanced the identification of true edges 
among spurious connections (S. Palva & Palva, 2012; 
Siebenhühner et al., 2016). Parcels were also assigned to 
one of the seven functional systems of the Yeo parcella-
tion (Thomas Yeo et al., 2011) using a consensus map-
ping approach, where each parcel was assigned to  
the subsystem that contained the largest fraction of its 
vertices.

2.5.  Analysis of oscillations amplitudes and  
inter-areal synchronization

Inter-areal phase-synchronization was computed in three 
separate time windows: 700  ms to 100  ms before S1 
(baseline window), 600  ms to 1200  ms after S1 (early 
retention), and 1200 to 1800 ms after S1 (late retention). 
To allow maximal individual functional cortical separabil-
ity and robust optimization of the source-collapsing 
approach, phase synchronization was estimated between 
all 400 parcels. We computed phase-synchronization for 
each wavelet frequency using the imaginary part of the 

complex phase-locking value (iPLV) (Lachaux et al., 1999; 
Rouhinen et al., 2020) that is insensitive to zero-lag inter-
actions and hence yields neither artificial nor true zero lag 
couplings (J. M. Palva et  al., 2018; S. H. Wang et  al., 
2018). For each subject, the inter-areal synchronization 
was computed by pooling the iPLV values across the 
given time-window and across trials of each condition 
(Shape, Color, Location). To combine the early and late 
retention periods, for each subject and condition, the 
iPLV values of each edge were averaged over the two 
retention-period time-windows. Oscillation amplitudes 
were computed for the same wavelet frequencies, par-
cels, and time-windows as the synchronization analysis, 
and pooled across all trials of the conditions (Shape, 
Color, Location) separately for each subject.

To obtain single-trial iPLV values and oscillation ampli-
tudes for the classification analysis, for each subject and 
wavelet frequency, inter-areal synchronization and oscil-
lation amplitudes were computed as described above, 
but the estimates were not averaged across trials for 
each condition. iPLV values were computed within each 
trial (and not across multiple trials) by estimating the 
instantaneous phase difference between parcel pairs 
across time points and then taking the imaginary part of 
the mean complex phase difference.

2.6.  Statistical analyses

Before statistical testing, both oscillation amplitudes and 
synchronization were baseline-corrected by subtracting 
the mean amplitude or iPLV value of the pre-S1 baseline 
window for each wavelet frequency. The 400-parcel data 
was collapsed to a coarser 200-parcel parcellation to 
improve statistical stability by reducing the effects of 
inter-subject variability in functional anatomy (Rouhinen 
et al., 2020). Group statistical analyses were then carried 
out separately for each frequency, parcel (or parcel pair, 
for synchronization) and time window.

To identify significant retention period synchronization 
and its load dependence at the group level, we com-
pared, for each wavelet frequency and each edge, the 
strength of synchronization averaged across loads 
against the strength at baseline, and also compared the 
strengths between individual loads, using the Wilcoxon 
Signed Rank test at α = 0.05. To estimate effect sizes for 
the identified significant differences between conditions, 
we estimated the average strength over edges for each 
participant. A repeated-measures t-test was then used  
to compare the strength of average synchronization 
between the conditions. We identified significant correla-
tions between the strength of synchronization and indi-
vidual HRs at the edge-level separately for each condition 
using a Pearson correlation test.

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
https://mne.tools/stable/index.html
https://mne.tools/stable/index.html
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To remove false positives (FP) caused by multiple sta-
tistical tests, we pooled all significant observations over 
all edges and then discarded as many of the least-
significant comparisons as would be predicted to be 
false discoveries by the α level (J. M. Palva et al., 2010; 
Siebenhühner et al., 2020). To remove any remaining FPs, 
a threshold Q was defined for the number of significant 
observations that could arise by chance in any of the fre-
quencies even after controlling for multiple comparisons 
(Puoliväli et al., 2020). This was estimated by simulating 
random processes at the null hypothesis, using the same 
number of tests performed in the actual experiment, and 
recording the residual fractions of “significant” observa-
tions after the elimination of the number of significant 

observations predicted to be false positives by the α 
level. Given the number of cortical parcels and time win-
dows in which statistical analyses were performed for 
each condition, Q was estimated to correspond to 
0.672% edge density and is shown as the shaded gray 
area in Figures 2 and 4.

2.7.  Graph analysis and visualization

Spectro-temporal patterns of synchronization and ampli-
tude modulations were visualized as time-frequency rep-
resentations (TFRs). For each time-frequency (TF) bin, we 
computed the fraction of cortical parcels that showed a 
significant increase (i.e., P+, the fraction of significant 

Fig. 2.  Content dependent large-scale synchronization and desynchronization characterizes VWM maintenance. (a) Edge 
density, K, as a function of frequency for the retention period for each condition (Shape, Color, Location), averaged across 
the Early and Late retention time windows, separately for each load compared to baseline as well as for the difference 
between the loads. Two-tailed Wilcoxon signed-rank tests were used to test if iPLV values of each edge were different 
from zero (p < 0.05). (b) Edge density (K) for the significant differences in synchronization strength between the conditions. 
(c) Distribution of individual graph strength (GS) values for the α (11–13 Hz) and θ (6–8 Hz) networks for the three features, 
edges selected based on (b). Two-tailed repeated-measures t-test was performed between each pair of features. 
(d) Graphs of α-band synchronization for each condition shown in a, displayed on an inflated and flattened cortical 
surface. The 200 strongest edges, as identified by edge betweenness centrality, and their connected nodes are shown. 
Connections are bundled into hyperedges (see section 2). Surface and node rendering reflect subsystem identity, with 
node size being proportional to node degree. In each hyperedge bundle, edge colors reflect the mixing of the colors of 
connected nodes, with the color being defined by Yeo subsystems. Yeo subsystems: visual network (Vis); dorsal attention 
network (DAN); ventral attention network (VAN); fronto-parietal network (FPN); default mode network (DMN).
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positive parcels for each TF bin) or decrease (i.e., P-, the 
fraction of significant negative parcels for each TF bin). 
For oscillation amplitudes, we localized the TF region of 
interest.

We used a graph theory (Bullmore & Sporns, 2009) 
approach to characterize the network structures as 
weighted graphs. Adjacency matrices were thresholded 
by statistical significance such that the non-significant 
edge values were set to zero. Adjacency matrices were 
then defined as graphs where the nodes were the cortical 
parcels and edges the significant interactions between 
nodes.

Edge density (K) was used to index the proportion of 
significant edges of all possible interactions and was 
computed as the number of significant edges divided by 
the total number of edges in the graph. Positive and neg-
ative values of K were used to indicate the proportion of 
edges showing a significant increase or decrease in syn-
chronization strength, respectively.

In addition, graph strength (GS) was used to describe 
the mean strength of synchronization and was computed 
separately for each frequency and participant as the 
average strength over all significant connections.

To characterize inter-areal synchronization within and 
between functional subsystems (Yeo parcellation and 
functional visual subdivisions), for each subsystem pair, 
we computed edge density for all possible edges for the 
given pair. Within subsystems, edge density was com-
puted for all edges between the parcels within the sys-
tem. The differences in edge strengths between functional 
visual subdivisions were obtained by computing the dif-
ference between the average edge strengths (Δ-iPLV).

Node centrality metrics were further used to identify 
highly connected nodes in the graphs that putatively 
played a key role in network communication. Node 
degree was used to index how each node was connected 
to the other nodes, with a higher degree indicating more 
connections. Edge betweenness centrality, a measure of 
the number of shortest paths between node pairs that 
pass through an edge, was used as a measure to reveal 
the central core of the network for communication.

To remove residual signal leakage among nearby par-
cels (S. Palva & Palva, 2012) from the graphs, we excluded 
poorly source-reconstructed parcel edges from the graph 
analysis and visualizations. While using iPLV to estimate 
inter-areal synchronization would exclude the direct 
effects of zero-phase lagged signal mixing, spurious 
interactions would still remain (J. M. Palva et al., 2018). 
We therefore removed edges between parcels for which 
the source reconstruction accuracy (fidelity) was below 
0.165 (6.5% of parcels). To further exclude spurious  
connections, we removed edges between parcels that 
exhibited greatest signal leakage with their neighbors, 

measured with cross-patch PLV (fidelity radius greater 
than 0.35). A total of 16.2% of all possible edges were 
thus excluded from the analyses. To further mitigate the 
contribution of spurious interactions caused by the con-
current presence of true interactions and linear mixing, 
edges were bundled by their adjacency signal mixing to 
hyper-edges (S. H. Wang et al., 2018). The hyper-edges 
thus bundled together edges that putatively originated 
from a single true edge among the spurious edges 
caused by source-leakage (S. Palva & Palva, 2012; J. M. 
Palva et al., 2018). These hyper-edges were used to visu-
alize inter-areal network synchronization (Fig. 2).

2.8.  Identifying shared and feature-specific edges

To identify the shared and feature-specific subnetworks, 
we created a union matrix by combining the retention-
period matrices for the three visual features. The union 
matrix was created by combining the raw graphs of 
Shape, Color, and Location, using the edge or average 
edge strength across conditions. Next, we computed 
hyperedge bundling across the union matrix. Small hyp-
eredges were excluded as they were likely to comprise 
false positives. To determine if a hyperedge was shared, 
a participation threshold was set whereby each of the 
three features (conditions) contributed a minimum pro-
portion of raw edges to the hyperedge. To ensure that at 
least two conditions contributed substantially to the 
shared hyperedge, the participation threshold was set 
to  >  0.3, normalized by the edge densities of the raw 
graphs. If the hyperedge did not meet this requirement 
for at least two conditions, it was considered condition-
specific to the condition which contained the largest pro-
portion of raw edges in the hyperedge.

2.9.  Classification analysis of trials of single 
features

Machine learning (ML) was used to classify visual fea-
tures, based on the retention period synchronization 
matrices and parcel-level oscillation amplitude patterns 
as features for the classifier using the random forest clas-
sification method. For each frequency and load, we first 
averaged iPLV values across all subjects and trials for the 
retention period subtracted by baseline data. The largest 
1000 iPLV values of the group-averaged matrix were then 
used to create a binary mask that was applied to all trials 
of individual subjects. Classification on local oscillation 
amplitudes was performed using amplitude values from 
all 400 parcels for each trial.

Classification was performed at the level of individual 
subjects and separately for each narrow-band frequency. 
For each subject and Morlet wavelet frequency, single-trial 
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iPLV matrices and oscillation amplitudes for the baseline 
and the two retention period windows (Early and Late) 
were computed, using the same frequency-specific filter-
ing and synchronization estimation as in the group-level 
analyses. After applying the binary mask, this yielded a 
1 x 1000 vector per trial for synchronization and a 1 x 400 
vector per trial for oscillation amplitudes. A random forest 
classifier was then trained on these vectors of each trial 
using a leave-one-out cross-validation (LOOCV) method 
applied at the trial level (i.e., train on all trials minus one 
and then classify whether the left-out trial is from the 
Shape, Color, or Location condition, and then repeated 
for all trials). For each subject, and separately for each 
time window and load condition, 688 ± 75 (mean ± SD) 
trials were used in each classification run. Therefore, in 
each classification run (i.e., one LOOCV iteration), the 
classifier was trained on ~99.8% of trials and tested on 
the remaining ~0.2% (i.e., one trial). Classification accu-
racy was obtained as the proportion of trials correctly 
classified for each subject and averaged across the sub-
jects. As participants memorized different visual features 
in separate experimental blocks, baseline activity already 
contained information about the relevant feature. There-
fore, differences in the classification accuracy in the 
retention vs. baseline time-windows were obtained. We 
tested, for each frequency, whether the classification 
accuracy of the retention period significantly differed 
from the classification accuracy of the baseline period at 
the group level (Wilcoxon signed-rank test).

Classification was also applied to narrow-band ampli-
tudes of each trial. The procedure was the same as for 
inter-areal synchronization, except the classification to 
decode the memorized feature was performed on the 
average parcel amplitudes.

3.  RESULTS

3.1.  Behavioral performance

We used here a delayed match-to-sample VWM task for 
which we had earlier revealed that local γ-band ampli-
tudes underlie the maintenance of feature-specific infor-
mation in VWM (Honkanen et  al., 2015) (Fig.  1a). We 
manipulated both VWM content and load such that the 
task was to memorize either the shapes, colors, or spatial 
locations of either 2 or 4 objects. Within each condition, 
the Hit Rate (HR) decreased with increasing memory load 
(two-tailed repeated measures t-test, p < 0.05) (Fig. 1b). 
Differences in HR between conditions were observed in 
both load conditions. HR for Shape was significantly 
lower than for Color (load 2: t  =  -8.018, p  =  1.62e-07, 
BF01  =  8.62e-06; load 4: t  =  -1.62, p  =  1.46e-12, 
BF01 = 1.53e-10; repeated measures t-test) and Loca-

tion (load 2: t = -5.15, p = 5.66e-05, BF01 = 0.002; load 4: 
t = -8.72, p = 4.58e-08, BF01 = 2.64e-06) while HR for 
Color was significantly greater than Location only in load 
2 (t = 2.88, p = 9.69e-03, BF01 = 0.21). Reaction Time 
(RT) increased with increasing memory load for each 
condition (two-tailed repeated-measures t-test, p < 0.05) 
(Fig. 1b). RT for Shape was significantly higher than for 
both Color (load 2: t = 5.69, p = 1.75e-05, BF01 = 0.00068; 
load 4: t = 4.00, p = 7.79e-04, BF01 = 0.022; repeated-
measures t-test) and Location (load 2: t = 3.82, p = 1.16e-
03, BF01  =  0.032; load 4: t  =  3.43, p  =  2.81e-03, 
BF01 = 0.072). These results indicate that, for both load 
2 and 4, the task in the Shape condition was significantly 
more demanding than in both the Color and Location 
conditions.

3.2.  Large-scale network synchronization 
differentiate memory contents

Networks of inter-areal phase-synchronization were 
computed from source-reconstructed MEG data in a 
data-driven manner (Supplementary Fig.  S1). We esti-
mated phase-synchronization using iPLV between all 
cortical parcels separately for each frequency and for the 
three time-windows (baseline and two retention period 
time windows) (Fig. 1c). Statistically significant network 
level synchronization were then characterized using 
graph theory (Bullmore & Sporns, 2009) such that cortical 
parcels (brain areas) were the nodes and statistically sig-
nificant connections of synchronization were the edges 
of the network, the edge weight defining the strength of 
synchronization (see section  2). To characterize the 
extent of synchronization, for each time- and frequency-
bin, we computed edge density (K) separately for statisti-
cally significant positive and negative interactions. Edge 
density was defined as the fraction of statistically signifi-
cant inter-areal interactions of all possible pairwise inter-
actions among the 400 brain areas for each condition 
(Fig. 1d).

We first averaged iPLV values over the three condi-
tions (Shape, Color, Location) and over the two memory 
loads. This showed that the VWM retention period was 
characterized by dynamic sustained synchronization in 
the high-α-band (11–13 Hz) and concurrent desynchro-
nization in the θ- (6–8 Hz) and β-bands (17–20 Hz com-
pared to baseline (Supplementary Fig.  S2, two-tailed 
Wilcoxon signed-rank test, p < 0.05). Having established 
that the VWM retention period is characterized by robust 
synchronization, we next computed phase synchroniza-
tion for each condition (Shape, Color, and Location) 
compared to baseline separately for the two loads as 
well as for the difference between the loads. All features 
showed similar spectral patterns with robust α-band 
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synchronization and concurrent suppression of θ- and 
β-band synchronization (two-tailed Wilcoxon signed-
rank test, p < 0.05) (Fig. 2a). These patterns were more 
prominent in the late retention period (1.2–1.8 s) than in 
the early retention period (0.6–1.2  s) (Supplementary 
Fig. S3). As the load conditions showed similar synchro-
nization patterns, we averaged data over the memory 
loads for the subsequent analyses. To compare with pre-
vious literature, we also computed local oscillation 
amplitudes for each feature and load condition. We 
found that VWM retention was characterized by a sus-
tained and wide-spread decrease in the low-frequency 
(3–12 Hz) and β-band (15–25 Hz) oscillations amplitudes 
(Supplementary Fig. S4). As found previously (Honkanen 
et  al., 2015), oscillation amplitudes were also load-
dependently increased.

We next examined if synchronization would differ 
between the different conditions. The edge densities of 
both α-band synchronization and θ-band desynchroniza-
tion differed between feature conditions (two-tailed Wil-
coxon signed-rank test, p < 0.05) (Fig. 2b), demonstrating 
that both increased inter-areal synchronization and 
decreased (desynchronization) inter-areal synchroniza-
tion reflect memorization of VWM contents. To define the 
effect sizes for the statistical analysis at the individual 
subject-level, we first defined the frequency bands in a 
data-driven manner using hierarchical clustering to reveal 
clusters of adjacent frequencies with spatial similarity. 
This revealed α-band (11–13 Hz) and θ-band (6–8 Hz) fre-
quency clusters (Supplementary Fig. S5) that were used 
for the subsequent analysis. The graph strength (GS), 
which is the averaged strength over all significant con-
nections across the whole brain, was then computed at 
the individual level and statistical significance between 
conditions estimated across participants. The α-band GS 
differed between feature conditions (two-tailed repeated-
measures t-test, p < 0.05) (Fig. 2c), while the differences 
for θ-band desynchronization did not reach statistical sig-
nificance. For the α-band synchronization, there was a 
significant difference in GS between the Shape and Color 
conditions (t = 2.45, p = 0.024), and between Shape and 
Location conditions (t = 2.66, p = 0.016). As the Shape 
condition was more difficult than Color and Location con-
ditions, to ensure that results did not reflect differences in 
task difficulty, we compared the synchronization dynam-
ics between conditions with similar HRs, that is, load 2 for 
Shape with load 4 for Color and Location conditions. We 
found condition-related differences in both α-band syn-
chronization and θ-band desynchronization (Supplemen-
tary Fig.  S6), indicating that both of these dynamic 
modulations reflect memory contents.

To then understand whether synchronization networks 
would connect task relevant cortical areas, we mapped 

the anatomical structure of the synchronization networks 
shown in Figure 2a. To this end, we plotted the edges and 
nodes with the highest edge-betweenness centrality, that 
is a centrality measure that quantifies an edge’s impor-
tance in a network by measuring the number of shortest 
paths between node pairs that pass through that edge 
and identifies edges that act as “bridges” connecting dif-
ferent parts of the network. To aid in the functional inter-
pretation of the connections, only the edges within and 
between relevant cortical systems of visual, DAN, VAN, 
FPN, and default mode network (DMN) were visualized in 
Figure 2d with the complete networks shown in Supple-
mentary Figure  S7. Importantly, the functional network 
anatomy differed between conditions. For Shape, the 
most central hub was the left superior occipital gyrus 
(sOG), which connected to the key nodes of the dorsal 
attention network such as frontal eye fields (FEF, located 
in the superior precentral sulcus), intraparietal sulcus 
(intPS), and bilaterally to the visual cortex. The left sOG 
was also connected to the inferior frontal gyrus (iFG) and 
middle frontal gyrus (mFG) of the prefrontal cortical (PFC), 
and inferior parietal gyrus (iPG) of posterior parietal cor-
tex (PPC). For Color, the most central hubs were the right 
superior parietal gyrus (sPG) and right inferior parietal 
gyrus (iPG) of the PPC, which were connected primarily 
to the left middle frontal gyrus (mFG). Synchronization 
was also strong across the attention networks, namely 
the dorsal attention network (DAN), ventral attention net-
work (VAN), and the fronto-parietal network (FPN). For 
Location, the central hub was the right precentral gyrus 
(prCG) with bilateral connections to sPG and iPG. Impor-
tantly, FEF was a key node in all networks. The most cen-
tral parcels for each of the networks are provided in 
Supplementary Table  S1, along with the information of 
functional subsystems. The overall synchronization pat-
terns thus demonstrated that α-band synchronization 
networks had central hubs in attentional control networks 
that were connected to functionally specialized visual 
areas.

3.3.  αα-band synchronization is localized to feature 
selective visual areas

As the increase in α-band synchronization was feature-
selective, we focused the subsequent analysis on this 
frequency band. To investigate the cortical network orga-
nization of the α-band synchronization across the func-
tional networks, we co-localized the 400 parcels of the 
Destrieux atlas with fMRI-based functional systems of 
the Yeo atlas (Thomas Yeo et al., 2011) comprising of the 
visual network (Visual), somatomotor network (SM), dor-
sal attention network (DAN), ventral attention network 
(VAN), limbic network (Lim), fronto-parietal network (FPN), 
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and the default mode network (DMN).We then estimated 
the strength of synchronization within and between the 
subsystems for each condition for data averaged across 
memory loads. For Shape, synchronization was robust 
within the visual system, as well as between and within 
the DAN, VAN, and SM; for Color in SM and its connec-
tions to Limbic system; and for Location within and 
between SM, VAN and DAN (Fig. 3a).

To further test if α-band synchronization would be 
specifically localized to visual areas responsible for pro-
cessing of the memorized or distracting visual features, 
we assigned the parcels from the visual system to dis-
tinct functional visual subdivisions (Riesenhuber & 
Poggio, 2000, 2002): early visual cortex (V1-V3), lateral 
occipital cortex (LOC), ventral visual stream, and dorsal 
visual stream as in Honkanen et al. (2015) (Supplementary 

Fig. 3.  Functional localization of α-band synchronization. (a) Edge density for the α-band synchronization networks 
during the retention period for each condition (Shape, Color, Location) separately for within and between functional 
subsystems of the Yeo atlas. Yeo subsystems: visual network (Visual); somatomotor network (SM); dorsal attention 
network (DAN); ventral attention network (VAN); limbic network (Lim); fronto-parietal network (FPN); default mode network 
(DMN). (b) Edge density for the α-band synchronization networks within and between functional visual subdivisions. Visual 
subdivisions: early visual cortex, V1-V3 (Early); lateral occipital cortex (LOC); visual areas V4 and V8 (V4,V8); ventral stream 
visual areas (Ventral); dorsal stream visual areas (Dorsal). (c) The differences in mean phase synchronization (Δ-iPLV) 
between functional visual subdivisions (Edge A > Edge B) for the α-band synchronization networks in (b). The red color 
indicates stronger synchronization for edges in Edges A (y-axis) and blue for edges in Edges B (x-axis). Stars denote the 
subsystem pairs where the group difference was significant (two-tailed Wilcoxon-signed-rank test, *p < 0.05).
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Fig.  S8). We then estimated the number of significant 
edges within and across these functional visual systems 
(Fig. 3b).

The α-band synchronization for the Shape condition 
had the most connections in the early visual areas (V1-
V3) and the lateral occipital cortex (LOC), that is, in areas 
that are involved in object perception (Hansen et  al., 
2007; Kravitz et al., 2013; Tootell & Hadjikhani, 2001), but 
also in the dorsal visual stream regions, whose activity is 
related to the processing of location information, although 
more recently it has also been connected to the (related) 
processing of shapes (Freud et  al., 2017; Theys et  al., 
2015). For the Color condition, the strongest connections 
were found across the early visual areas as well as V4 
and V8 and areas associated with color processing; for 
Location in the dorsal visual stream and in areas respon-
sible for spatial information processing.

We then addressed differences in the mean edge 
strength between functional visual subdivisions for each 
condition (two-tailed Wilcoxon signed-rank test, 
(p < 0.05) (Fig. 3c)). For the Shape condition, we found 
that connections involving LOC, V4, and V8 showed sig-
nificantly stronger synchronization than others. For Color, 
connection within and involving LOC and early visual 
areas dominated, while for Location, connections within 
and involving the dorsal stream were strongest. These 
data indicate that α-band synchronization is largest 
within and between the feature-relevant visual regions.

Albeit not in our main focus, to understand the func-
tional role θ-band desynchronization may play in the 
VWM retention, we also plotted the anatomical structure 
of θ-band desynchronization. Intriguingly, desynchroni-
zation was found in the fronto-parietal attention networks 
connected with visual system areas (Supplementary 
Fig. S9). The θ-band desynchronization was widespread 
and not focused on visual areas, although it was consis-
tently stronger for Shape and Color in LOC. Hence, θ-
band desynchronization overlapped with that of 
strengthened α-band synchronization.

3.4.  The fronto-parietal synchronization network 
transcends memory contents

In addition to being feature-selective (Fig. 2c), we hypoth-
esized that synchronization networks could also play a 
general content-agnostic role in VWM. We hypothesized 
that θ and α-band network synchronization could reflect 
the top-down selection of the memorized contents given 
their role in top-down control (D’Andrea et  al., 2019; 
Lobier et al., 2018; Sadaghiani et al., 2019). Hence, we 
posited that the top-down executive network should be 
shared, i.e. connections should transcend across differ-
ent memorized contents while the representational con-

tents of VWM should be specific to the memorized feature 
information. We thus developed a novel graph-theory 
based approach to identify subnetworks that were shared 
across all VWM conditions and that were content-specific 
(Fig. 4a–b). This approach was implemented on synchro-
nization networks averaged across load conditions. More 
specifically, we used hyperedge bundling (S. H. Wang 
et  al., 2018) on an interim union matrix that combined 
edges from all feature conditions averaged across loads 
to extract the subgraphs that were specific to each mem-
orized feature (Fig. 4a) and subgraphs that were shared 
across all three features (Fig. 4b).

Importantly, we found both shared and feature-specific 
subgraphs for both θ and α-band networks (Fig. 4c). This 
result indicated that within a frequency band, distinct 
sub-networks (subgraphs) can mediate distinct functions 
of VWM. While α-band networks consisted of feature-
specific subgraphs especially for shape, θ-band net-
works consisted of feature-specific subgraphs especially 
for location. These results underscore frequency-specific 
network synchronization in maintaining specific VWM 
contents. Crucially, for both θ and α-band networks, the 
majority of edges were shared across the features, that 
is, content-agnostic. Importantly, these shared subnet-
works coupled nodes in the attentional and fronto-
parietal networks (Fig.  4d). For the shared θ-band 
desynchronization network, the most central hubs were 
the left and right occipitotemporal gyrus (OTG), which 
connected to the postcentral sulcus (poCS) of DAN and 
frontomarginal gyrus (mrgF) of FPN. For the shared α-
band synchronization network, the most central hubs 
were the right FEF and left intrapariental sulcus (intPS), 
which are both key nodes of the DAN and were also con-
nected to each other. Supplementary Table S1 lists the 
most central parcels of the shared networks, along with 
the functional subsystem of each parcel. The presence of 
both shared and content specific subgraphs within the 
α-band synchronization and θ-band desynchronization 
networks suggest that these networks enable the top-
down selection of remembered contents.

3.5.  αα-band network synchronization predicts 
individual behavioral performance

To address the behavioral relevance of the modulation in 
α-band synchronization and in θ-band desynchroniza-
tion, we computed the correlation between each individ-
ual subject’s behavioral performance as indexed by the 
Hit Rate (HR), and the strength of inter-areal synchroni-
zation. We computed edge density, K, as the proportion 
of edges that were significantly correlated with HR. For 
all features, we observed a positive correlation between 
individual behavioral performance and inter-areal 
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synchronization in the α-band and a negative correlation 
in the θ-band, as expected (Pearson correlation test, 
p  <  0.05) (Fig.  5a). Post-hoc correlations between HR 
and the GS of all significant edges in the α-band and θ-
bands, as shown in Figure 5a, were then performed. Sig-
nificant correlations were observed in the α-band for 
load 4 of Color (r  =  0.82, p  =  1.14e-05) and Location 
(r = 0.80, p = 2.78e-05) and load 2 of Shape (r = 0.88, 
p = 3.47e-07) with matching difficulty (Fig. 5b) and in the 
θ-band for load 2 of Shape (r  =  -0.89, p  =  1.06e-07), 
Color (r = -0.87, p = 8.10e-07) and Location (r = -0.84, 
p = 3.55e-06) (Fig. 5c). This indicated that the α-band 
synchronization GS and θ-band desynchronization GS at 
the individual level were correlated with individual HR, 
demonstrating the strong behavioral relevance of both 
α-band synchronization and θ-desynchronization, as 
would be expected if these networks are central for 
selecting the memorized VWM contents. In contrast, 
there was only a minor correlation of α-band oscillation 
amplitudes with HR, but a stronger negative correlation 

of β- and γ-band amplitudes with HR (Supplementary 
Fig.  S10). This highlights the role of higher frequency 
oscillations at the local level in the maintenance of visual 
information in VWM compared to the network synchroni-
zation in the lower frequencies.

3.6.  The memorized visual feature can be decoded 
from αα-band synchronization patterns

The previous analysis had established that α-band syn-
chronization was feature-selective. To obtain validation 
on whether synchronization would contain information 
unique to the memorized feature that would enable 
decoding, we used machine learning (ML) analysis. A 
multivariate random forest classifier was trained on syn-
chronization patterns on every trial for each frequency 
band and for each subject. Significance was then tested 
using the leave-one-out cross validation (LOOCV) method 
(Fig. 6a). Classification accuracy of the memorized fea-
ture in both retention windows and for both load condi-

Fig. 4.  Shared networks connect visual and fronto-parietal regions. (a) Schematics of the approach. To identify feature-
specific and shared networks, the group-level synchronization matrices of significant edges were combined into a union 
matrix. (b) All edges in the union matrix that putatively originated from the same single true edge, among the spurious 
edges caused by source-spread, were bundled together to a hyper-edge. Note that each union can lead to multiple hyper-
edges. Hyper-edges in which a participation threshold (see section 2) was met were considered to be a shared hyper-edge 
or else was considered as a condition specific to the condition, which contained the largest proportion of raw edges in 
the hyperedge. (c) The proportion of shared and feature-specific edges for each frequency band. (d) Shared hyperedge 
networks for the θ and α-band frequency bands, visualized on the flattened cortical surface.
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tions was highest in the α-band (Fig. 6c, top). However, 
the classification accuracy was above chance-level both 
for the baseline and retention period time windows. This 
likely reflects the block effect whereby the participants 
memorized different visual features in separate experi-
mental blocks. To disentangle decoding performance 
due to global task effects, we estimated the difference in 
the classification accuracies between retention and 
baseline time-windows (Fig.  6c, bottom). This revealed 
significantly greater accuracies for the retention period 
between 10–30 Hz (two-tailed Wilcoxon signed-rank test, 
p < 0.05), with the greatest improvement in classification 
accuracy in the α-band.

The classifier analysis was also applied to amplitudes 
of each trial. Classification accuracies in both baseline 
and retention time-windows converged toward 0.98 
(Fig.  6b, top), but the classification accuracy between 
retention and baseline data did not differ (Fig. 6b, bottom) 
indicating that this cannot be attributable to information 

in the retention period. While these data overall demon-
strate that network synchronization is a reliable measure 
of VWM contents unlike local oscillations amplitudes, it 
should be noted that the single-trial feature vectors used 
for synchronization (1  x  1000 vectors) were larger than 
used for oscillation amplitudes (1  x 400 vectors) which 
makes the direct comparison difficult.

4.  DISCUSSION

Long-range phase synchronization across WM-related 
brain areas has been established to be fundamental for 
VWM, as demonstrated by EEG/MEG source connectiv-
ity analysis (Ericson et al., 2024; Mamashli et al., 2021; J. 
M. Palva et al., 2010; Sato et al., 2018; Sattelberger et al., 
2024) and local field potential (LFP) recordings in mon-
keys (Liebe et al., 2012; Salazar et al., 2012). However, 
whether oscillatory networks would track the contents of 
VWM or reflect attention and executive control functions 

Fig. 5.  α and θ-band synchronization networks are correlated with individual behavioral performance. (a) Connection 
density for the significant correlations between the strengths of synchronization and Hit Rates (HR) (Pearson correlation 
test, p < 0.05). Edge iPLV values were correlated positively with HR in the α-band and negatively correlated in the  
θ-band for all three features. (b) The individual graph strengths (GS), that is, the summed strength of significant edges,  
as a function of the individual HRs. In the α-band (9–11 Hz), there was a strong positive correlation for all conditions.  
(c) Same as (b) but graph strength was extracted from the significantly suppressed edges in the θ-band (6.5–8 Hz). A 
strong negative correlation was observed between the graph strength in the θ-band and individual HR.
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has remained unknown. Using a parametric VWM task 
controlling for the memorized features, combined with 
advanced network analysis approaches, we found that 
α-band synchronization networks track VWM contents. 
More precisely, we identified content-specific subnet-
works of α-band synchronization and subnetworks that 
were shared across feature-conditions. This finding 
shows that α-band network synchronization reflects the 
representational functions of VWM (Baddeley, 2012; 
D’Esposito & Postle, 2015; Klingberg, 2010).

This result was surprising and not aligned with the tradi-
tional functional significance of local oscillations given that 
local β- and γ-band frequencies have been related to the 
representation of sensory information (Fries et  al., 2002; 

Muthukumaraswamy & Singh, 2013) and memory con-
tents (Honkanen et al., 2015; Morgan et al., 2011), whereas 
both local α-band oscillations (Capilla et al., 2014; Gould 
et al., 2011; Thut et al., 2006) and inter-areal α-band syn-
chronization (Gregoriou et al., 2009; Lobier et al., 2018) are 
generally associated with attention, especially in the spa-
tial domain. However, this study demonstrates that, similar 
to findings in auditory (Ahveninen et al., 2023; Mamashli 
et al., 2021) and verbal (Rossi et al., 2023) WM and that of 
LFP in monkeys (Salazar et al., 2012), long-range synchro-
nization tracks the content of human VWM. Crucially, we 
demonstrate that α-band network synchronization, which 
was sensitive to and tracked VWM contents, was localized 
to subnetworks (subgraphs) in functional visual areas 

Fig. 6.  The memorized visual feature can be decoded from α and β-band synchronization patterns. (a) Local amplitude 
and inter-areal phase synchronization were used as features for multi-label supervised learning to classify trials of each 
condition (Shape, Color, and Location) within subjects. A random forest classifier was trained on local amplitudes and 
phase synchronization of each trial for 38 frequency bands within each subject and tested using leave-one-trial-out cross 
validation. (b) Classification of local amplitudes was performed separately for loads 2 and 4 (dashed and solid lines, resp.) 
and for retention (orange lines) and baseline (blue lines) time-windows. Difference curves (lower row, red lines) indicate 
differences in decoding accuracy between retention and baseline windows. Accuracy is the proportion of trials correctly 
classified from the total number of tested trials. Horizontal bars (light red: load 2, dark red: load 4) indicate significant 
differences between accuracy of retention and baseline (Two-tailed Wilcoxon signed-rank test, p < 0.05). (c) Same as (b) 
but classification was performed for inter-areal synchronization of each trial.
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responsible for the processing for their respective features 
(Riesenhuber & Poggio, 2000, 2002) although connections 
were also found involving visual areas processing the dis-
tracting visual features. In addition, also connections from 
these functional visual areas with the frontoparietal net-
work tracked VWM contents. These findings are in line 
with earlier work showing that VWM contents can be 
tracked in both the sensory cortices and in the PFC 
(Christophel et  al., 2017; Serences, 2016). Our findings 
were further validated by ML analysis, which revealed that 
feature-specific synchronization enables decoding of 
memory content. However, the ML analysis also decoded 
contents during the baseline period, likely due to the block 
design, whereby the participant had an active memory 
representation across the whole block. In contrast to pre-
vious studies (Chen et al., 2022; Elshafei et al., 2022), we 
found no decoding for local oscillation amplitudes.

Our results can be explained by a framework in which 
α-band network synchronization implements top-down 
control to select for the features to be remembered. In line 
with this hypothesis, α-band synchronization subgraphs 
in the fronto-parietal network were shared across condi-
tions in which different contents were memorized. This 
suggests that α-band network synchronization forms the 
executive core of VWM. The main hubs of the shared net-
work, transcending across different conditions, were 
found in the frontoparietal control systems (Gratton et al., 
2018; Power & Petersen, 2013) with the main network 
hubs in the IPS and FEF of the DAN (Corbetta & Shulman, 
2002). Due to its multiplexing role, α-band network syn-
chronization could implement the top-down selection of 
the memorized contents. This hypothesis is in line with 
the role of α-synchronization in attentional top-down con-
trol (D’Andrea et  al., 2019; Lobier et  al., 2018; Mishra 
et al., 2021; Sadaghiani et al., 2019) and the role of fron-
toparietal regions in controlling the prioritization of infor-
mation in visual WM (Sahan et  al., 2019) and in 
implementing spatial computing for the control of WM 
(Lundqvist et  al., 2023). Furthermore, this framework 
aligns with the content-independent pointer system of 
WM that supports the attentive tracking of objects but 
not the content of the objects (Thyer et  al., 2022). The 
presence of a shared executive network across different 
VWM contents is also analogous to the supramodal 
shared network across different modalities for conscious 
access and across tasks (Deco et  al., 2021; Sanchez 
et al., 2020), which suggest a similar organizational prin-
ciple for WM and perception. We advance here that the 
shared connections of α-band synchronization reflect the 
top-down executive network that enables the selection of 
the to-be-remembered visual contents, as reflected in 
content-specific synchronization in the visual cortices. 
The functional significance of α-band network synchroni-

zation in top-down control differs from the general view 
that alpha-band oscillations and synchronization would 
mainly have an inhibitory role, to protect memorized infor-
mation from external interferences (Jensen, 2024; Jensen 
& Mazaheri, 2010). There are two explanations for these 
differences. First, α-band oscillation amplitudes and net-
work synchronization may carry out distinct roles in the 
inhibition vs. top-down control of information (S. Palva & 
Palva, 2007, 2011). Second, canonical oscillatory fre-
quencies may have multiple sources with differential 
functional roles, as has been established for visual atten-
tion (Benwell et al., 2017; Cruz et al., 2025; Iemi et al., 
2017; Trajkovic et al., 2024; van Ede et al., 2017).

Both α-band synchronization and θ-band desynchro-
nization were correlated with individual behavioral perfor-
mance. High performers exhibited greater α-band 
synchronization and θ-band desynchronization than low 
performers, demonstrating the functional significance of 
inter-areal network synchronization in the maintenance of 
content-specific feature representations. α-band syn-
chronization was strong during the late retention period 
which may reflect the refreshing of VWM contents, a 
post-consolidation process during maintenance that 
strengthens the memoranda and prevents loss of infor-
mation (Morey & Cowan, 2018).

In contrast to many previous studies which have found 
θ-band synchronization during VWM, particularly in the 
hippocampus (Heusser et  al., 2016), but also in cortex 
(Bahramisharif et al., 2018; Berger et al., 2019; Sarnthein 
et  al., 1998), we found θ-band desynchronization. This 
finding is unlikely to be explained by a smaller signal-to-
noise ratio, as θ-band and α-band oscillation amplitudes 
were similar. The lack of θ-band synchronization is similar 
to that found in our previous studies using delayed 
match-to-sample VWM tasks (J. M. Palva et  al., 2010; 
Sattelberger et  al., 2024). In particular, θ-band oscilla-
tions are thought to reflect control mechanisms in WM 
(Berger & Sauseng, 2022; Sauseng et al., 2010), which 
the delayed match-to-sample VWM task used in the 
present study did not involve.

The combination of α-band synchronization and θ-
band desynchronization in the present task may be com-
plementary. This could reflect the opposing demands of 
VWM in maintaining the internal WM representations and 
in inhibiting the external sensory stimulation (Van Ede & 
Nobre, 2023). This could be achieved via concurrent α-
band synchronization, and θ-band desynchronization in 
the visual areas suppressing incoming new sensory infor-
mation (Johnson et al., 2023) similarly to that have been 
proposed previously to α-band oscillation amplitudes 
(Jensen, 2024; Jensen & Mazaheri, 2010). Differences in 
canonical frequency bands in this respect may arise due 
to small spectral differences caused by task differences 
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as well as by different analytic pipelines. Thus, α-band 
synchronization and θ-band desynchronization may 
operate in a complementary fashion to maintain repre-
sentations and simultaneously prevent interference from 
incoming sensory information.

Overall, our results establish that large-scale α-band 
synchronization reflects not only the “What” (i.e., the con-
tents) of visual working memory, but also suggests the 
existence of a shared control network that transcends 
specific memory contents. We propose a model where 
α-band synchronization implements top-down selection 
of memorized visual information based on behavioral 
needs. The concept of a network that is not a silo for a 
particular type of information or content would explain 
information leaks between memories across different 
types of content (Robertson, 2022) as well as between 
different cognitive tasks (Ericson et al., 2024). Thus, long-
range synchronization may serve multiplexed roles and 
reflect both working memory contents and executive 
demands, which together provide the key architectural 
features of visual working memory.
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