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SUMMARY

Increasing evidence suggests that attention varies rhythmically, phase locked to ongoing cortical oscilla-

tions. Here, we report that the phase of theta oscillations (3–6 Hz) in the frontal eye field (FEF) is associated 
with the spatiotemporal variation of information readout from working memory (WM). Non-human primates 
were briefly shown a sample array of colored squares. A short time later, they viewed a test array and 
were rewarded for identifying which square changed color (the target). Behavioral performance varied 
systematically with theta phase at the time of test array onset, as well as with the target’s location. This is 
consistent with theta ‘‘scanning’’ across the FEF and thus visual space from top to bottom. Theta was 
coupled, on opposing phases, to both spiking and beta (12–20 Hz). These results could be explained by a 
wave of activity that moves across the FEF, modulating the readout of information from WM.

INTRODUCTION

Cortical activity fluctuates rhythmically, which has conse-

quences for its function. This begins with sensory systems 

that sample the external world with periodicity. 1,2 It is also 

evident in visual attention. Even when trained to sustain 

steady visual attention on a single location, attention nonethe-

less fluctuates. The ability of non-human primates (NHPs) 

to detect a target at that location waxes and wanes on a 

3–6 Hz (theta) cycle. 3 These alternations of better and worse 

performance align with the phase of theta local field potential 

(LFP) oscillations in the frontal cortex. This periodicity of 

perceptual and attentional processes raises the possibility 

that other cortical functions, not just those involved in select-

ing and processing external inputs, might synchronize to 

particular cortical rhythms.

We examined working memory (WM), which is linked with 

attention. 4–7 Neural spiking during WM retention shows bursti-

ness that co-varies with LFP rhythms across a wide range of 

frequencies. 8–14 But, it is not known whether WM function per 

se cycles at a base frequency, like attention does in theta. 

Thus, we sought to test whether there was a rhythmic compo-

nent to WM-dependent behavior.

We analyzed neural activity recorded from the frontal eye field 

(FEF) in NHPs performing a change identification WM task 

(Figure 1A). 15,16 NHPs were shown a sample array of colored 

squares (set size, 2–5), followed by an 800–1,000 ms memory 

delay. Then, a test array appeared in which one of the squares

had changed color (the target). The NHPs were required to main-

tain central eye gaze until the test array appeared (see STAR 

Methods). Then, they made a direct saccade toward the target 

to receive a juice reward.

WM performance depended on both the FEF theta phase 

at test array onset and the target’s position. The findings 

suggest a traveling wave of activity across the FEF, leading 

to a top-to-bottom spatial sampling that influenced WM 

readout.

RESULTS

Behavioral performance cycled with FEF theta phase 

Each NHP completed 14 recording sessions (NHP 1, 16,940 

trials in total; NHP 2, 15,762 trials in total). Behavioral perfor-

mance declined as a function of set size, consistent with the 

limited capacity of WM (Figure 1B). 15,17 LFPs and spiking activity 

were recorded in FEF during task performance. Overall LFP po-

wer was characterized by prominent theta oscillations extending 

through the trial (Figures 1C and S1A).

To determine whether behavior varied with LFP, we deter-

mined the instantaneous phase for frequencies from 2 to 64 Hz 

at the time of the test array onset. Note that due to the unpredict-

able time of the test array (Figure 1D), LFP phase in FEF at 

test array onset was not time locked to external events. LFP 

phase was compared to the NHP’s reaction time (RT) and 

accuracy (percent correct change identification) by measuring 

the Kullback-Leibler (KL) divergence from a circular uniform

Neuron 114, 159–166, January 7, 2026 © 2025 Elsevier Inc. 159
All rights are reserved, including those for text and data mining, AI training, and similar technologies.

ll

mailto:ekmiller@mit.edu
https://doi.org/10.1016/j.neuron.2025.09.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2025.09.031&domain=pdf


distribution across LFP phases, separately at each frequency. 

Large KL divergence indicate performance reliably differs be-

tween LFP phases at test array onset.

This revealed a relationship between FEF theta and task 

performance. There was a clear peak within the theta range 

(∼5 Hz) for both NHPs, indicating a correspondence between 

behavior and FEF theta phase when the test array appeared 

(Figure 1E). Behavioral performance—both RT and accuracy— 

showed significant modulation by the phase of FEF theta 

(3–6 Hz; p < 0.001 for RT and accuracy, for both NHPs) 

(Figures S1B and S1C). RT was faster and accuracy was higher 

if the test array appeared during the falling (‘‘good’’) phases 

(i.e., 0 to +π rad) of theta relative to the rising (‘‘poor’’) phases 

(i.e., − π to 0 rad) of theta (Figure 1F). This theta modulation 

was stronger in trials with higher WM load (Figure S1D). We 

confirmed that LFP phase at test array onset was not phase 

locked to trial events and thus uniformly distributed across 

trials (see Figures S1E–S1H for event-related potentials and 

inter-trial phase coherence). Phase reset driven by the test array 

onset only became significant around 150–200 ms after its pre-

sentation (e.g., Figure S1G) and did not correlate with behavioral 

performance before this (see Figures S1I–S1P). This confirmed 

that behavior was influenced by the intrinsic FEF theta phase 

at test array onset.

WM errors were spatially organized

We found that behavior not only depended on the theta phase 

at test array onset, it also depended on the location of the 

target. Errors were not randomly distributed in space. Rather, 

incorrect choices tended to be near the correct target. 

Figure 2B shows a distribution of choices when the target 

was at the 3 o’clock position. When they chose the wrong array 

item, that item was more likely to be at 1 and 5 o’clock 

compared with further locations (e.g., 9 o’clock). Figure 2C 

shows the choice distribution after rotating and aligning 

saccadic landing positions relative to the target (for results of 

each location; see Figures S2A and S2B). The proximity of 

items to the target location and the frequency of choice errors 

showed a negative correlation (Figure 2D; NHP 1, r = − 0.70, 

and p < 0.001; NHP 2, r = − 0.65, and p < 0.001).

Figure 1. FEF theta modulates WM task performance

(A) WM task sequence. NHPs indicated which square changed color (the target) by making a saccade to its location. Timing of the test array was randomly 

determined because of the variable length of memory delay period.

(B) Performance of two NHPs as a function of the number of items held in WM. Error bars show ±1 standard error.

(C) Oscillatory amplitude (grand averaged) across the time course of the WM task.

(D) Schematic illustration of the LFP phase at the timing of test stimulus onset. Across all trials, LFP phase was roughly uniformly distributed at test array onset 

(Figures S1E–S1H).

(E) Non-uniformity of RT distribution over LFP phase measured by KL divergence in FEF (top, NHP 1; bottom, NHP 2). Non-uniformity of the distribution of RTs 

peaked at 4–5 Hz in FEF. Surrogate data were obtained by trial-shuffled bootstrapping (1,000 samplings).

(F) Behavioral performance (green, RT; gray, percent correct) as a function of FEF theta phase for NHP 1 (left) and NHP 2 (right). Shaded area shows 1 SD, 

calculated by bootstrapping with 33% subsampling, 10,000 iterations. ***p < 0.001 for the result of Wilcoxon’s signed-rank test.
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Theta sampled visual space sequentially

The good and poor phases of theta seemed to sample visual 

space sequentially from the top to bottom of the array. This 

was revealed by an analysis of performance as a function of theta 

phase and position of the target in the array. We fitted a sinusoi-

dal function to the distribution of accuracy over FEF theta phase 

at test array onset to estimate the peak of accuracy (i.e., optimal 

phase), separately for each target location. For both NHPs, a 

circular ANOVA showed significant differences in the optimal 

phase across locations (bootstrapped with 33% subsampling, 

10,000 iterations; p < 0.001 for both NHP 1 and NHP 2). For 

NHP 1, theta phase modulated performance at all six array loca-

tions in a systematic fashion. Performance was better for the top 

two array locations (11 and 1 o’clock) when the array appeared at 

or near the peak of FEF theta. At lower locations (9 and 3 o’clock, 

then 7 and 5 o’clock), performance peaked when the test array 

appeared at progressively later phases of theta (Figures 2E 

and 2F, NHP 1). NHP 2 showed significant theta modulation at

3 out of 6 locations (Figure 2G). The other locations (3, 5, and 7 

o’clock) were non-modulated, and KL-divergence spectra did 

not show a clear peak in theta range (Figures S2C–S2F). This 

difference between NHPs may stem from their different task 

strategies. NHP 1 performed equally well across all target 

locations (Figure 2H; F(5,78) = 2.210, p = 0.062). In contrast,

Figure 2. Choice errors and location-dependent theta modulation of WM task performance

(A) Two-dimensional histogram of saccadic landing position for all possible target locations (all trials from two NHPs aggregated, trial n = 32,702).

(B) Saccadic landing histogram for the trials with target location at 3 o’clock.

(C) Saccadic landing histogram for all possible target locations, rotated to align target location at 0 ◦ (top).

(D) Monotonic decrease of choice errors (areal mean of histogram values) as a function of item distance from target. ***p < 0.001 for Pearson correlation test. Error 

bars indicate ± 1 SEM.

(E) Fluctuation of WM task performance as a function of FEF theta phase at test display onset, for 6 possible target locations. Each line shows sinusoidal curve fits 

of accuracy distribution of one theta cycle. Colored triangles denote the optimal phase from the sinusoidal fits.

(F) Peak phase at each target location. The optimal phase was estimated using bootstrapping and defined as the circular mean of peak phases obtained from the 

fitted sine functions in (E). Error bars indicate ± 1 SD.

(G) Same as (F), but for NHP 2. **p < 0.01, ***p < 0.001 for the result of circular ANOVA test in (F) and (G).

(H) Negative correlation between daily performance for each target location and level of theta modulation at the location.

(I) Same as (H), but for NHP 2. NHP 2 showed a better performance for certain target locations than other locations; ANOVA ***p < 0.001. Error bars indicate

1 SEM.

See also Figure S2.
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NHP 2 showed uneven performance across locations with higher 

accuracy at the lower location that did not show sequential 

sampling (Figure 2I; F(5,78) = 14.312, p < 0.000). Thus, NHP 1 

seemed to split processing evenly across all locations (and 

thus sampled all locations). NHP 2 instead focused mainly on 

the lower locations and thus did not ‘‘scan’’ the full visual space 

equally like NHP 1. Thus, we observed sequential theta modula-

tion at visual field locations where NHPs divided their attention. 

To further examine this apparent difference, we analyzed the 

relationship between daily error rates and theta modulation for 

each target location. We found a positive correlation between 

theta modulation strength and daily error rates (Figures 2H and 

2I; Pearson r > 0.714, p < 0.001 in both NHPs; see also 

Figures S2G and S2H), suggesting stronger theta modulation 

emerged on sessions when cognitive resources were strained. 

To test whether FEF theta exhibits traveling wave properties, 

we analyzed theta phase differences (3–6 Hz) from single-elec-

trode data and their pairs (before averaging, ∼8 electrodes per 

session) during the memory delay. We found theta phase differ-

ence is correlated to physical distance between electrode pairs

(Figures S2I–S2K), propagating 0.5 ◦ /mm–0.7 ◦ /mm in both 

animals. A general linear model (GLM) analysis further revealed 

that phase differences were predicted by mediolateral and 

anteroposterior distances (Table S1), indicating a consistent 

direction of propagation across FEF.

Neural information cycled with theta

Theta was composed of alternating excitatory and inhibitory 

cortical states (Figure 3). Phase-amplitude coupling revealed 

that theta phase modulated beta (12–20 Hz) power. Beta power 

was lowest during the rising theta phases and higher during the 

falling theta phases (Figure 3A). This was significant for both the 

sample and memory delay (Figure 3B; p < 0.01). Single unit spike 

rate was also coupled to theta (Figures 3C and 3D; p < 0.01). 

Spike rate was highest at the troughs of theta (near − π and +π) 

(Figure 3C). This was when beta was lowest (around − π) and 

late in the falling theta phase (around +π). Spike rate was lowest 

just after the peak of theta when beta power was highest.

We measured neural information about WM items (i.e., the 

sample array) using FEF spiking activity to examine its interaction

Figure 3. Theta rhythmically modulates beta power and spike rate in FEF

(A) Cross-frequency coupling between theta phase and high-frequency oscillation power during sample (0–800 ms, left) and delay period (800–1,600 ms, right). 

Dashed lines denote one cycle of theta.

(B) Beta power comparison between rising (behaviorally poor) and falling (good) phase of theta.

(C) Grand-averaged spike rate as a function of theta phase (delay period only).

(D) Firing rate comparison between rising and falling phase of theta.

(E) Time course of neural information contained in spikes calculated by PEV, time-aligned by sample array onset (left) and test array onset (right). PEV analysis was 

performed using correct trials only. Shaded area and error bars indicate 1 SEM. *p < 0.05, **p < 0.01, and ***p < 0.001 for the result of Wilcoxon’s signed-rank test. 

See also Figure S3 and Table S1.
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with theta phase. Using a GLM, we predicted item location and 

color, quantifying explanatory power with percent explained 

variance (PEV). Figure 3E shows that neural information increased 

after sample onset and remained stable during the delay period, 

as expected. After test array onset, it increased again, suggesting 

WM retrieval triggered by the test array. The effect of theta 

phase in the memory delay emerged at test array onset. More in-

formation was present when the test array appeared during the 

falling (good) phase of theta than during the rising (poor) phase 

(Figure 3E). The good vs. poor phases were defined by the 

instantaneous theta phase at test array onset (Figure 1F). Visual 

information arrived in the FEF with a latency of about 100 ms 

(see ‘‘sample’’ period in Figure 3E). Thus, information about the 

test array would arrive, not during the instantaneous (inhibitory) 

phase but in the opposite excitatory phase. A similar effect was 

observed in single unit spiking rates. A subpopulation of neurons 

showed greater increases in spiking following test onset on good-

phase trials (Figure S3).

DISCUSSION

Our results indicate that the phase of frontal theta during a mem-

ory delay was associated with the readout of information from 

WM. The ability to detect a change (a target) in a visual scene 

(an array of items) from a similar scene held in WM fluctuated 

with theta oscillations in the FEF. Performance depended on 

both the theta phase when the comparison scene appeared as 

well as the location of the target. It appeared as if a theta wave 

was ‘‘scanning’’ the WM representation of the scene from top 

to bottom. This could be explained by a traveling wave moving 

across a retinotopic FEF. Performance improved when the theta 

wave happened to align with the location of the target when 

the comparison scene appeared. Cortical excitatory/inhibitory 

states and neural information also cycled with frontal theta, sug-

gesting a possible mechanism for its effects on behavior. 

Previous work has shown that selective attention waxes and 

wanes in theta in correspondence with frontal theta rhythms. 

During periods when attention is ostensibly sustained at a 

constant location in space, behavioral performance varies 

with a temporal periodicity of ∼4–5 Hz. 18,19 Studies of human 

electroencephalogram (EEG)/electrocorticogram (ECoG) 20–22 

and NHP LFPs 23–25 have shown this rhythmicity reflects 

ongoing theta oscillations in the frontoparietal cortex. Theta os-

cillations are often induced when attention is directed toward 

one of multiple competing stimuli. 26,27 Depending on the phase 

of these theta oscillations when a probe stimulus is shown, 

behavioral performance can vary dramatically. 3,20–23,25 These 

results show that ongoing cortical theta oscillations can modu-

late attention to external sensory inputs.

Our results indicate that internal WM representations also cy-

cle with frontal theta. This is consistent with human behavior 28–30 

and EEG 31,32 studies. In our case, the theta cycling modulated 

the behavioral readout of WM. Our results share many common-

alities with the attention literature. Prior work on attention also 

found the strongest modulation within a similar 4–5 Hz 

band. 21–23,25 Attention studies have likewise found behavior is 

optimal when probed during the falling phase of frontal theta. 23 

Prior work also showed similar theta modulation of spiking and

higher-frequency activity. 22,23,25 Overall, similarities between 

our results and previous studies of attention strongly suggest a 

common mechanism may be at play. We propose that it reflects 

shared control mechanisms deployed for both attention and 

WM. This is consistent with many previous proposals suggesting 

shared control of attention and WM. 3–7

Our results also build on previous work by demonstrating that 

theta modulation has an orderly structure across visual space. 

Previous studies have typically contrasted single locations 

inside and outside the focus of attention. Their results have 

been interpreted as good and poor theta phases alternating at 

the attended location, while poor and good theta phases oscil-

late in anti-phase at the unattended location. 3,33 This can be 

equivalently thought of as good and poor theta phases 

alternating back and forth between the attended and unattended 

locations. Our study generalizes this idea to a structured shift of 

theta phases when resources are not focused on a single loca-

tion but divided across visual space. The optimal theta phase 

for behavior varied by retinotopic target location, progressing 

from the top to the bottom of the visual field.

This may reflect a progressive attentional shift across the visual 

field during the memory delay. At the neural level, this could be im-

plemented by a traveling wave of activity across the cortical sur-

face. Traveling waves have been observed in a number of cortical 

areas, suggesting they may be a ubiquitous motif of cortical pro-

cessing. 34–39 Our results would suggest a wave sweeping across 

the polar angle dimension of the FEF topographic map, arrayed 

along the anterior-posterior axis. 40 In fact, waves of theta oscilla-

tions propagating in the posterior-to-anterior direction have been 

observed in human frontal cortex. 41 Our results may also suggest 

traveling theta interacts with receptive field (RF) structure, as FEF 

has a retinotopic organization. 42 Although, traveling waves can 

also influence function independent of spiking via subthreshold 

modulation of excitability and synaptic weights. 35,43 This could 

not be tested directly with our methodology. It can be tested in 

future work employing RF mapping and denser sampling of FEF. 

A simple explanation of the results is that a traveling wave of 

excitation enhances processing when it aligns with the target. 

The behaviorally good phase was the inhibitory phase (when 

spiking and gamma is falling and alpha/beta is higher). However, 

this was the instantaneous phase when the test array appeared. 

Spiking activity indicates that information reaches the FEF 

around 100–200 ms after onset (see sample period in 

Figure 3E), matching the latency of effects following test array 

onset (Figure 3E). This suggests that test array information in 

spiking arrives in the FEF not during the instantaneous inhibitory 

phase but during the following excitatory phase of theta (i.e., 

when spiking and gamma is rising and alpha/beta is lower). 

Thus, the excitatory phase was the good phase in terms of brain 

mechanisms. On the other hand, it is unclear exactly when this 

input becomes functionally relevant—it may instead arrive during 

an inhibitory phase. If so, theta could play a role in top-down WM 

processes such as stabilizing internal representations to reduce 

interference through beta. Beta, which was higher during the 

inhibitory theta phase, has been associated with stabilizing 

cortical representations 44 and top-down control of sensory 

processing. 20,22,45 In either case, our results suggest the theta 

cycle modulates how information is read out from WM.
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Our findings build on current WM models 9,45 by suggesting 

that theta traveling waves could coordinate top-down and 

bottom-up processes by coordinating other frequencies. Beta 

during the inhibitory theta phase may facilitate feedback 

signaling, while the excitatory phase facilitates feedforward 

processing, as predicted by spatial computing models. 46

Many theories have emphasized the role of theta as a temporal 

framework for structuring cognitive processes. The rhythmic the-

ory of attention 3 proposes visual attention sequentially samples 

perceptual inputs within a theta cycle. The theta-gamma neural 

code 11 suggests that within a single theta cycle, distinct neural 

ensembles encoding different information are activated in suc-

cession across several nested gamma cycles, enabling multi-

plexed representation. More recently, the rhythmic attentional 

scanning model 47 suggests each theta cycle acts as a selection 

window, determining which of multiple competing representa-

tions is propagated downstream. These frameworks collectively 

suggest that theta actively segments cognitive processing into 

periodic sampling windows, which our results support.

Our results also suggest that theta modulation plays a key role 

under high cognitive demands, such as when memory load in-

creases and resources are divided across multiple items or loca-

tions—a characteristic trait of theta oscillations. 26,27,48–51 Frontal 

theta, involved in active resource control, 52 is known to increase 

with cognitive load—much like a car engine straining uphill. 53 In 

visual attention studies, theta has been linked to the intermittent 

sampling of unattended locations. 25 This may explain why theta 

modulation is often stronger outside the primary focus of atten-

tion. 25 Sustained attention to a single location likely involves 

continuous resource allocation, reducing the need for theta-

driven sampling. Our task required distribution of limited-capac-

ity WM resources across multiple locations, but the NHPs 

appeared to vary in how they achieved this. Behavioral evidence 

suggests NHP 1 spreads resources evenly across the visual 

field. In contrast, NHP 2 appeared to focus resources more 

on lower-field locations, while deprioritizing locations in the up-

per field. Correspondingly, we observed theta modulation 

throughout the visual field for NHP 1 but only in the upper field 

for NHP 2. The less-prioritized locations may have required 

sequential sampling and thus exhibited theta modulation. 

In contrast, the prioritized locations may have allowed for 

continuous, non-rhythmic processing. These findings suggest 

theta may be involved in distributing resources across multiple 

locations. This theta mechanism may generalize to any context 

where the brain must manage multiple simultaneous representa-

tions, whether external or internal.

Our findings demonstrate that WM readout varies with frontal 

theta oscillations, with behavioral performance depending on 

FEF theta phase. Theta appeared to structure the spatial organi-

zation of WM, with retrieval performance varying systematically 

across retinotopic space. Our findings provide further evidence 

that cognition is intrinsically linked to cortical oscillatory dynamics.
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STAR★METHODS

KEY RESOURCES TABLE

All procedures followed the guidelines of the Massachusetts Institute of Technology Committee on Animal Care and the National 

Institutes of Health. Detailed methods for experimental procedures and data processing pipelines are available in Methods S1.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

One adult rhesus macaque (Macaca mulatta, NHP 1: male, 13 kg) and one adult male cynomolgus monkey (NHP 2: male, 6 kg) 

were trained to perform the task. For neural recording, multiple epoxy-insulated tungsten electrodes (FHC, Bowdoin, ME, USA 

04287) were inserted using custom-built manual screw microdrives. FEF was targeted via co-registration of structural MRI 

scans with standard atlases, and confirmed by microstimulation-driven saccades. The electrodes were acutely lowered at 

the beginning of every recording session (n = 14 sessions for each NHP) and settled for at least 2 hours before recording, 

then retracted after it. For further details on surgical procedures and animal handling, please see our previous publication 

with the same dataset.

METHOD DETAILS

Behavioral protocol and data acquisition

The behavioral paradigm was controlled with the MonkeyLogic program. 54–56 Each trial began with a 500 ms fixation period, followed 

by an 800 ms sample period where an array of colored squares was displayed. After a variable memory delay period (800–1000 ms), 

a test array appeared, identical to the sample array except for a color change in one randomly selected target. NHPs were required 

to make a single saccade to the changed item. Trials with eye movements during the sample or delay period, reflecting a failure to 

maintain fixation, were not included in the analysis. Eye movements were tracked using an ISCAN infrared system (240 Hz) 

throughout all sessions. Stimuli were 1 ◦ colored squares, with two possible colors (color A, and color B) at each location, randomized 

daily to prevent long-term memorization. Six item locations (roughly 1, 3, 5, 7, 9, and 11 o’clock) were used each session that were 

within ±75 angular degrees from the horizontal meridian and 4 ◦ to 6 ◦ from the fixation point. For the analysis, gaze coordinates at 

saccadic landings on six target locations were translated to ensure symmetry and then rotated so that the target location was 

positioned at 0 degrees (top of the screen). NHPs completed at least 720 correct trials per session. Invalid trials (e.g., failure to fixate 

before test array onset) were excluded (trial survival rate: 76.29% for NHP 1, 71.09% for NHP 2). As a result, total 16,940 trials for NHP

1 (load 2: 29.56%, load 3: 28.56%, load 4: 21.46%, load 5: 20.43%) and total 15,762 trials for NHP 2 (load 2: 27.44%, load 3: 26.95%, 

load 4: 20.21%, load 5: 18.44%) were included. For more details on the behavioral paradigm, please see our previous publication that 

used the same dataset 14 and Methods S1.

LFP data acquisition and preprocessing

Continuous LFP data was amplified, band-passed filtered (3.3–88 Hz), and digitized at 1 kHz sampling rate (Plexon Multi-channel 

Acquisition Processor). Although this hardware filter partially overlapped our primary band-of-interest (3–6 Hz), the filter was not 

sharp. Manual inspection confirmed that substantial power remained in the theta band. All signals were referenced to ground. 

Any 60 Hz line noise, 85 Hz noise related to the monitor refresh rate, and their harmonics were estimated and removed offline using 

an adaptive sinusoid fit method. For most of LFP analyses, LFPs were averaged across all simultaneously recorded FEF electrodes 

(n = 7.93 ± 2.00 per session) to estimate a representative LFP signal for FEF. Analyses using single-electrode data (e.g., Figure S2; 

Table S1) are noted explicitly.

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Macaca mulatta (NHP 1) Covance RRID: NCBITaxon_9544

Macaca fascicularis (NHP 2) Merck RRID: NCBITaxon_9541

Software and algorithms

MATLAB MathWorks Inc https://www.mathworks.com/products/matlab; RRID: SCR_001622

MonkeyLogic software NIMH; Asaad and Eskandar 54,55 https://monkeylogic.nimh.nih.gov/

CircStat toolbox Berens et al. 56 https://github.com/circstat/circstat-matlab; RRID:SCR_016651

Other

Microelectrodes FHC Cat#UEWLFDSMNN1E
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To obtain amplitude (power) spectrograms, a fast Fourier transform was applied with a sliding Hanning window (window 

size = 1024, 100 ms step). For cross-frequency coupling analysis, the LFP signal was narrow-band-filtered (0.5 Hz step with

2 Hz bandwidth for 8–16 Hz; 1 Hz step with 4 Hz bandwidth for 16–32 Hz; 2 Hz step with 8 Hz bandwidth for 32–64 Hz) using 

Butterworth 5 th order filter.

Spike data analysis

Spikes were sorted into isolated single units manually using waveform features (Plexon offline Sorter), as previously described. 14 

Then, two criteria were applied for excluding units from the analysis: (1) units with less than 30 trials sampled for each condition 

were excluded; (2) units with a firing rate less than 1 Hz during the task period (–0.5 to +1.6 s relative to sample stimulus onset) 

were excluded. As a result of applying these two criteria, 76.19% of units (leaving n = 267 units) from FEF were included in the 

analysis.

Theta modulation of behavioral performance

To estimate theta phase at the timing of test array onset, LFP was band-pass filtered at 3–6 Hz with zero-phase FIR filters 

(MATLAB’s filtfilt.m function). After band-pass filtering, the Hilbert transform was used to obtain instantaneous angle 

(MATLAB’s hilbert.m and angle.m functions). The theta phase was extracted at the time point minimally preceding the test display 

command sent by the computer (0–1 ms prior in 1 kHz recordings), to capture ongoing activity just before stimulus onset. Theta 

phase was divided into discrete phase bins (100 bins) for further analyses. The strength of coupling between LFP phase and 

behavioral performance was measured by the KL divergence between the observed histogram of the behavioral measure (RT 

or accuracy) and a circular uniform distribution. Detailed procedures are provided in Methods S1.

Neural information analysis

To investigate how spiking data encodes WM information (location x color), we analyzed individual single unit spiking using GLM and 

calculated its effect size (i.e., PEV measured by η 2 , which quantifies how much of a unit’s firing rate variability is attributed to stimulus 

location and identity). Since the color of each object was unknown to the NHP before sample array onset, we assessed how well 

spiking represented this information at each time point. PEV was computed using a single ANOVA model, where all locations and 

item identities were included in a unified model with dummy-coded variables representing location × item identity: y = Σ bX where 

X = 0, 1, 2, represented absent, color A, and color B, respectively, for each location. PEV was calculated using the η 2 formula and 

summed across all model variables: PEV = (1 / SS_Total) * Σ SS_X * 100. Only neural data from correct trials were included in the 

PEV analysis. This approach provides a comprehensive assessment of how spiking activity encodes WM information across all 

spatial locations, resulting in a measure of the overall strength of WM representations. Then, PEV (Figure 3) and single unit spiking 

rate (Figure S3) were divided into either ‘rising’ or ‘falling’ phase trials based on the theta phase immediately preceding test array 

onset (rising-phase trials: -π to 0 rad; falling-phase trials: 0 to +π rad).

QUANTIFICATION AND STATISTICAL ANALYSIS

For testing sample means (or medians) against a null value (appropriate for a one-sample t-test), non-parametric Wilcoxon’s signed 

rank test was used. Circular ANOVA was used for angular phase data, implemented by CircStat toolbox 57 in MATLAB (function 

circ_wwtest.m). For correlation analyses, Pearson’s method was used except for logarithmic scale data (Spearman’s method was 

used for KL divergence in Figure 2).
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