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SUMMARY

Increasing evidence suggests that attention varies rhythmically, phase locked to ongoing cortical oscilla-
tions. Here, we report that the phase of theta oscillations (3-6 Hz) in the frontal eye field (FEF) is associated
with the spatiotemporal variation of information readout from working memory (WM). Non-human primates
were briefly shown a sample array of colored squares. A short time later, they viewed a test array and
were rewarded for identifying which square changed color (the target). Behavioral performance varied
systematically with theta phase at the time of test array onset, as well as with the target’s location. This is
consistent with theta “scanning” across the FEF and thus visual space from top to bottom. Theta was
coupled, on opposing phases, to both spiking and beta (12-20 Hz). These results could be explained by a
wave of activity that moves across the FEF, modulating the readout of information from WM.

INTRODUCTION

Cortical activity fluctuates rhythmically, which has conse-
quences for its function. This begins with sensory systems
that sample the external world with periodicity.’? It is also
evident in visual attention. Even when trained to sustain
steady visual attention on a single location, attention nonethe-
less fluctuates. The ability of non-human primates (NHPs)
to detect a target at that location waxes and wanes on a
3-6 Hz (theta) cycle.® These alternations of better and worse
performance align with the phase of theta local field potential
(LFP) oscillations in the frontal cortex. This periodicity of
perceptual and attentional processes raises the possibility
that other cortical functions, not just those involved in select-
ing and processing external inputs, might synchronize to
particular cortical rhythms.

We examined working memory (WM), which is linked with
attention.””” Neural spiking during WM retention shows bursti-
ness that co-varies with LFP rhythms across a wide range of
frequencies.®'* But, it is not known whether WM function per
se cycles at a base frequency, like attention does in theta.
Thus, we sought to test whether there was a rhythmic compo-
nent to WM-dependent behavior.

We analyzed neural activity recorded from the frontal eye field
(FEF) in NHPs performing a change identification WM task
(Figure 1A).">'® NHPs were shown a sample array of colored
squares (set size, 2-5), followed by an 800-1,000 ms memory
delay. Then, a test array appeared in which one of the squares
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had changed color (the target). The NHPs were required to main-
tain central eye gaze until the test array appeared (see STAR
Methods). Then, they made a direct saccade toward the target
to receive a juice reward.

WM performance depended on both the FEF theta phase
at test array onset and the target’s position. The findings
suggest a traveling wave of activity across the FEF, leading
to a top-to-bottom spatial sampling that influenced WM
readout.

RESULTS

Behavioral performance cycled with FEF theta phase
Each NHP completed 14 recording sessions (NHP 1, 16,940
trials in total; NHP 2, 15,762 trials in total). Behavioral perfor-
mance declined as a function of set size, consistent with the
limited capacity of WM (Figure 1B).">'” LFPs and spiking activity
were recorded in FEF during task performance. Overall LFP po-
wer was characterized by prominent theta oscillations extending
through the trial (Figures 1C and S1A).

To determine whether behavior varied with LFP, we deter-
mined the instantaneous phase for frequencies from 2 to 64 Hz
at the time of the test array onset. Note that due to the unpredict-
able time of the test array (Figure 1D), LFP phase in FEF at
test array onset was not time locked to external events. LFP
phase was compared to the NHP’s reaction time (RT) and
accuracy (percent correct change identification) by measuring
the Kullback-Leibler (KL) divergence from a circular uniform
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Figure 1. FEF theta modulates WM task performance
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(A) WM task sequence. NHPs indicated which square changed color (the target) by making a saccade to its location. Timing of the test array was randomly

determined because of the variable length of memory delay period.

(B) Performance of two NHPs as a function of the number of items held in WM. Error bars show +1 standard error.
(C) Oscillatory amplitude (grand averaged) across the time course of the WM task.
(D) Schematic illustration of the LFP phase at the timing of test stimulus onset. Across all trials, LFP phase was roughly uniformly distributed at test array onset

(Figures STE-S1H).

(E) Non-uniformity of RT distribution over LFP phase measured by KL divergence in FEF (top, NHP 1; bottom, NHP 2). Non-uniformity of the distribution of RTs
peaked at 4-5 Hz in FEF. Surrogate data were obtained by trial-shuffled bootstrapping (1,000 samplings).
(F) Behavioral performance (green, RT; gray, percent correct) as a function of FEF theta phase for NHP 1 (left) and NHP 2 (right). Shaded area shows 1 SD,

Hkk

calculated by bootstrapping with 33% subsampling, 10,000 iterations.

distribution across LFP phases, separately at each frequency.
Large KL divergence indicate performance reliably differs be-
tween LFP phases at test array onset.

This revealed a relationship between FEF theta and task
performance. There was a clear peak within the theta range
(~5 Hz) for both NHPs, indicating a correspondence between
behavior and FEF theta phase when the test array appeared
(Figure 1E). Behavioral performance—both RT and accuracy—
showed significant modulation by the phase of FEF theta
(8-6 Hz; p < 0.001 for RT and accuracy, for both NHPs)
(Figures S1B and S1C). RT was faster and accuracy was higher
if the test array appeared during the falling (“good”) phases
(i.e., 0 to +x rad) of theta relative to the rising (“poor”) phases
(i.e., —x to 0 rad) of theta (Figure 1F). This theta modulation
was stronger in trials with higher WM load (Figure S1D). We
confirmed that LFP phase at test array onset was not phase
locked to trial events and thus uniformly distributed across
trials (see Figures STE-S1H for event-related potentials and
inter-trial phase coherence). Phase reset driven by the test array
onset only became significant around 150-200 ms after its pre-
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p < 0.001 for the result of Wilcoxon’s signed-rank test.

sentation (e.g., Figure S1G) and did not correlate with behavioral
performance before this (see Figures S11-S1P). This confirmed
that behavior was influenced by the intrinsic FEF theta phase
at test array onset.

WM errors were spatially organized

We found that behavior not only depended on the theta phase
at test array onset, it also depended on the location of the
target. Errors were not randomly distributed in space. Rather,
incorrect choices tended to be near the correct target.
Figure 2B shows a distribution of choices when the target
was at the 3 o’clock position. When they chose the wrong array
item, that item was more likely to be at 1 and 5 o’clock
compared with further locations (e.g., 9 o’clock). Figure 2C
shows the choice distribution after rotating and aligning
saccadic landing positions relative to the target (for results of
each location; see Figures S2A and S2B). The proximity of
items to the target location and the frequency of choice errors
showed a negative correlation (Figure 2D; NHP 1, r = —0.70,
and p < 0.001; NHP 2, r = —0.65, and p < 0.001).
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Figure 2. Choice errors and location-dependent theta modulation of WM task performance
(A) Two-dimensional histogram of saccadic landing position for all possible target locations (all trials from two NHPs aggregated, trial n = 32,702).

(B) Saccadic landing histogram for the trials with target location at 3 o’clock.

(C) Saccadic landing histogram for all possible target locations, rotated to align target location at 0° (top).
(D) Monotonic decrease of choice errors (areal mean of histogram values) as a function of item distance from target. **“p < 0.001 for Pearson correlation test. Error

bars indicate + 1 SEM.

(E) Fluctuation of WM task performance as a function of FEF theta phase at test display onset, for 6 possible target locations. Each line shows sinusoidal curve fits
of accuracy distribution of one theta cycle. Colored triangles denote the optimal phase from the sinusoidal fits.
(F) Peak phase at each target location. The optimal phase was estimated using bootstrapping and defined as the circular mean of peak phases obtained from the

fitted sine functions in (E). Error bars indicate + 1 SD.

(G) Same as (F), but for NHP 2. **p < 0.01, **p < 0.001 for the result of circular ANOVA test in (F) and (G).
(H) Negative correlation between daily performance for each target location and level of theta modulation at the location.
(I) Same as (H), but for NHP 2. NHP 2 showed a better performance for certain target locations than other locations; ANOVA ***p < 0.001. Error bars indicate

1 SEM.
See also Figure S2.

Theta sampled visual space sequentially

The good and poor phases of theta seemed to sample visual
space sequentially from the top to bottom of the array. This
was revealed by an analysis of performance as a function of theta
phase and position of the target in the array. We fitted a sinusoi-
dal function to the distribution of accuracy over FEF theta phase
at test array onset to estimate the peak of accuracy (i.e., optimal
phase), separately for each target location. For both NHPs, a
circular ANOVA showed significant differences in the optimal
phase across locations (bootstrapped with 33% subsampling,
10,000 iterations; p < 0.001 for both NHP 1 and NHP 2). For
NHP 1, theta phase modulated performance at all six array loca-

tions in a systematic fashion. Performance was better for the top
two array locations (11 and 1 o’clock) when the array appeared at
or near the peak of FEF theta. At lower locations (9 and 3 o’clock,
then 7 and 5 o’clock), performance peaked when the test array
appeared at progressively later phases of theta (Figures 2E
and 2F, NHP 1). NHP 2 showed significant theta modulation at
3 out of 6 locations (Figure 2G). The other locations (3, 5, and 7
o’clock) were non-modulated, and KL-divergence spectra did
not show a clear peak in theta range (Figures S2C-S2F). This
difference between NHPs may stem from their different task
strategies. NHP 1 performed equally well across all target
locations (Figure 2H; F(5,78) = 2.210, p = 0.062). In contrast,
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Figure 3. Theta rhythmically modulates beta power and spike rate in FEF
(A) Cross-frequency coupling between theta phase and high-frequency oscillation power during sample (0-800 ms, left) and delay period (800-1,600 ms, right).

Dashed lines denote one cycle of theta.

(B) Beta power comparison between rising (behaviorally poor) and falling (good) phase of theta.
(C) Grand-averaged spike rate as a function of theta phase (delay period only).

(D) Firing rate comparison between rising and falling phase of theta.

(E) Time course of neural information contained in spikes calculated by PEV, time-aligned by sample array onset (left) and test array onset (right). PEV analysis was
performed using correct trials only. Shaded area and error bars indicate 1 SEM. *p < 0.05, *p < 0.01, and ***p < 0.001 for the result of Wilcoxon’s signed-rank test.

See also Figure S3 and Table S1.

NHP 2 showed uneven performance across locations with higher
accuracy at the lower location that did not show sequential
sampling (Figure 2I; F(5,78) = 14.312, p < 0.000). Thus, NHP 1
seemed to split processing evenly across all locations (and
thus sampled all locations). NHP 2 instead focused mainly on
the lower locations and thus did not “scan” the full visual space
equally like NHP 1. Thus, we observed sequential theta modula-
tion at visual field locations where NHPs divided their attention.
To further examine this apparent difference, we analyzed the
relationship between daily error rates and theta modulation for
each target location. We found a positive correlation between
theta modulation strength and daily error rates (Figures 2H and
2l; Pearson r > 0.714, p < 0.001 in both NHPs; see also
Figures S2G and S2H), suggesting stronger theta modulation
emerged on sessions when cognitive resources were strained.
To test whether FEF theta exhibits traveling wave properties,
we analyzed theta phase differences (3-6 Hz) from single-elec-
trode data and their pairs (before averaging, ~8 electrodes per
session) during the memory delay. We found theta phase differ-
ence is correlated to physical distance between electrode pairs
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(Figures S21-S2K), propagating 0.5°/mm-0.7°/mm in both
animals. A general linear model (GLM) analysis further revealed
that phase differences were predicted by mediolateral and
anteroposterior distances (Table S1), indicating a consistent
direction of propagation across FEF.

Neural information cycled with theta
Theta was composed of alternating excitatory and inhibitory
cortical states (Figure 3). Phase-amplitude coupling revealed
that theta phase modulated beta (12-20 Hz) power. Beta power
was lowest during the rising theta phases and higher during the
falling theta phases (Figure 3A). This was significant for both the
sample and memory delay (Figure 3B; p < 0.01). Single unit spike
rate was also coupled to theta (Figures 3C and 3D; p < 0.01).
Spike rate was highest at the troughs of theta (near —x and +x)
(Figure 3C). This was when beta was lowest (around —x) and
late in the falling theta phase (around +r). Spike rate was lowest
just after the peak of theta when beta power was highest.

We measured neural information about WM items (i.e., the
sample array) using FEF spiking activity to examine its interaction
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with theta phase. Using a GLM, we predicted item location and
color, quantifying explanatory power with percent explained
variance (PEV). Figure 3E shows that neural information increased
after sample onset and remained stable during the delay period,
as expected. After test array onset, it increased again, suggesting
WM retrieval triggered by the test array. The effect of theta
phase in the memory delay emerged at test array onset. More in-
formation was present when the test array appeared during the
falling (good) phase of theta than during the rising (poor) phase
(Figure 3E). The good vs. poor phases were defined by the
instantaneous theta phase at test array onset (Figure 1F). Visual
information arrived in the FEF with a latency of about 100 ms
(see “sample” period in Figure 3E). Thus, information about the
test array would arrive, not during the instantaneous (inhibitory)
phase but in the opposite excitatory phase. A similar effect was
observed in single unit spiking rates. A subpopulation of neurons
showed greater increases in spiking following test onset on good-
phase trials (Figure S3).

DISCUSSION

Our results indicate that the phase of frontal theta during a mem-
ory delay was associated with the readout of information from
WM. The ability to detect a change (a target) in a visual scene
(an array of items) from a similar scene held in WM fluctuated
with theta oscillations in the FEF. Performance depended on
both the theta phase when the comparison scene appeared as
well as the location of the target. It appeared as if a theta wave
was “scanning” the WM representation of the scene from top
to bottom. This could be explained by a traveling wave moving
across a retinotopic FEF. Performance improved when the theta
wave happened to align with the location of the target when
the comparison scene appeared. Cortical excitatory/inhibitory
states and neural information also cycled with frontal theta, sug-
gesting a possible mechanism for its effects on behavior.

Previous work has shown that selective attention waxes and
wanes in theta in correspondence with frontal theta rhythms.
During periods when attention is ostensibly sustained at a
constant location in space, behavioral performance varies
with a temporal periodicity of ~4-5 Hz.'®' Studies of human
electroencephalogram (EEG)/electrocorticogram (ECoG)>°~2?
and NHP LFPs®*° have shown this rhythmicity reflects
ongoing theta oscillations in the frontoparietal cortex. Theta os-
cillations are often induced when attention is directed toward
one of multiple competing stimuli.®*” Depending on the phase
of these theta oscillations when a probe stimulus is shown,
behavioral performance can vary dramatically.>?°-2*?® These
results show that ongoing cortical theta oscillations can modu-
late attention to external sensory inputs.

Our results indicate that internal WM representations also cy-
cle with frontal theta. This is consistent with human behavior?®~*°
and EEG®"*? studies. In our case, the theta cycling modulated
the behavioral readout of WM. Our results share many common-
alities with the attention literature. Prior work on attention also
found the strongest modulation within a similar 4-5 Hz
band.?'2%2° Attention studies have likewise found behavior is
optimal when probed during the falling phase of frontal theta.?®
Prior work also showed similar theta modulation of spiking and
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higher-frequency activity.”>*>?°> Overall, similarities between
our results and previous studies of attention strongly suggest a
common mechanism may be at play. We propose that it reflects
shared control mechanisms deployed for both attention and
WM. This is consistent with many previous proposals suggesting
shared control of attention and WM.>™"

Our results also build on previous work by demonstrating that
theta modulation has an orderly structure across visual space.
Previous studies have typically contrasted single locations
inside and outside the focus of attention. Their results have
been interpreted as good and poor theta phases alternating at
the attended location, while poor and good theta phases oscil-
late in anti-phase at the unattended location.>*® This can be
equivalently thought of as good and poor theta phases
alternating back and forth between the attended and unattended
locations. Our study generalizes this idea to a structured shift of
theta phases when resources are not focused on a single loca-
tion but divided across visual space. The optimal theta phase
for behavior varied by retinotopic target location, progressing
from the top to the bottom of the visual field.

This may reflect a progressive attentional shift across the visual
field during the memory delay. At the neural level, this could be im-
plemented by a traveling wave of activity across the cortical sur-
face. Traveling waves have been observed in a number of cortical
areas, suggesting they may be a ubiquitous motif of cortical pro-
cessing.**° Our results would suggest a wave sweeping across
the polar angle dimension of the FEF topographic map, arrayed
along the anterior-posterior axis.*’ In fact, waves of theta oscilla-
tions propagating in the posterior-to-anterior direction have been
observed in human frontal cortex.*' Our results may also suggest
traveling theta interacts with receptive field (RF) structure, as FEF
has a retinotopic organization.*? Although, traveling waves can
also influence function independent of spiking via subthreshold
modulation of excitability and synaptic weights.**** This could
not be tested directly with our methodology. It can be tested in
future work employing RF mapping and denser sampling of FEF.

A simple explanation of the results is that a traveling wave of
excitation enhances processing when it aligns with the target.
The behaviorally good phase was the inhibitory phase (when
spiking and gamma is falling and alpha/beta is higher). However,
this was the instantaneous phase when the test array appeared.
Spiking activity indicates that information reaches the FEF
around 100-200 ms after onset (see sample period in
Figure 3E), matching the latency of effects following test array
onset (Figure 3E). This suggests that test array information in
spiking arrives in the FEF not during the instantaneous inhibitory
phase but during the following excitatory phase of theta (i.e.,
when spiking and gamma is rising and alpha/beta is lower).
Thus, the excitatory phase was the good phase in terms of brain
mechanisms. On the other hand, it is unclear exactly when this
input becomes functionally relevant—it may instead arrive during
an inhibitory phase. If so, theta could play a role in top-down WM
processes such as stabilizing internal representations to reduce
interference through beta. Beta, which was higher during the
inhibitory theta phase, has been associated with stabilizing
cortical representations®® and top-down control of sensory
processing.’?>*° In either case, our results suggest the theta
cycle modulates how information is read out from WM.
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Our findings build on current WM models®“® by suggesting
that theta traveling waves could coordinate top-down and
bottom-up processes by coordinating other frequencies. Beta
during the inhibitory theta phase may facilitate feedback
signaling, while the excitatory phase facilitates feedforward
processing, as predicted by spatial computing models.*®

Many theories have emphasized the role of theta as a temporal
framework for structuring cognitive processes. The rhythmic the-
ory of attention® proposes visual attention sequentially samples
perceptual inputs within a theta cycle. The theta-gamma neural
code'" suggests that within a single theta cycle, distinct neural
ensembles encoding different information are activated in suc-
cession across several nested gamma cycles, enabling multi-
plexed representation. More recently, the rhythmic attentional
scanning model*” suggests each theta cycle acts as a selection
window, determining which of multiple competing representa-
tions is propagated downstream. These frameworks collectively
suggest that theta actively segments cognitive processing into
periodic sampling windows, which our results support.

Our results also suggest that theta modulation plays a key role
under high cognitive demands, such as when memory load in-
creases and resources are divided across multiple items or loca-
tions—a characteristic trait of theta oscillations.?2”*¢">" Frontal
theta, involved in active resource control,’? is known to increase
with cognitive load—much like a car engine straining uphill.>® In
visual attention studies, theta has been linked to the intermittent
sampling of unattended locations.?® This may explain why theta
modulation is often stronger outside the primary focus of atten-
tion.?® Sustained attention to a single location likely involves
continuous resource allocation, reducing the need for theta-
driven sampling. Our task required distribution of limited-capac-
ity WM resources across multiple locations, but the NHPs
appeared to vary in how they achieved this. Behavioral evidence
suggests NHP 1 spreads resources evenly across the visual
field. In contrast, NHP 2 appeared to focus resources more
on lower-field locations, while deprioritizing locations in the up-
per field. Correspondingly, we observed theta modulation
throughout the visual field for NHP 1 but only in the upper field
for NHP 2. The less-prioritized locations may have required
sequential sampling and thus exhibited theta modulation.
In contrast, the prioritized locations may have allowed for
continuous, non-rhythmic processing. These findings suggest
theta may be involved in distributing resources across multiple
locations. This theta mechanism may generalize to any context
where the brain must manage multiple simultaneous representa-
tions, whether external or internal.

Our findings demonstrate that WM readout varies with frontal
theta oscillations, with behavioral performance depending on
FEF theta phase. Theta appeared to structure the spatial organi-
zation of WM, with retrieval performance varying systematically
across retinotopic space. Our findings provide further evidence
that cognition is intrinsically linked to cortical oscillatory dynamics.
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Materials availability
This study did not generate new unique reagents.

Data and code availability

Electrophysiological data presented in this article can be obtained from
the lead contact upon reasonable request. Additional details necessary to
reproduce the analyses are also available from the lead contact.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Macaca mulatta (NHP 1) Covance RRID: NCBITaxon_9544

Macaca fascicularis (NHP 2) Merck RRID: NCBITaxon_9541

Software and algorithms

MATLAB MathWorks Inc https://www.mathworks.com/products/matlab; RRID: SCR_001622
MonkeyLogic software NIMH; Asaad and Eskandar®**° https://monkeylogic.nimh.nih.gov/

CircStat toolbox Berens et al.”® https://github.com/circstat/circstat-matlab; RRID:SCR_016651
Other

Microelectrodes FHC Cat#UEWLFDSMNN1E

All procedures followed the guidelines of the Massachusetts Institute of Technology Committee on Animal Care and the National
Institutes of Health. Detailed methods for experimental procedures and data processing pipelines are available in Methods S1.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

One adult rhesus macaque (Macaca mulatta, NHP 1: male, 13 kg) and one adult male cynomolgus monkey (NHP 2: male, 6 kg)
were trained to perform the task. For neural recording, multiple epoxy-insulated tungsten electrodes (FHC, Bowdoin, ME, USA
04287) were inserted using custom-built manual screw microdrives. FEF was targeted via co-registration of structural MRI
scans with standard atlases, and confirmed by microstimulation-driven saccades. The electrodes were acutely lowered at
the beginning of every recording session (n = 14 sessions for each NHP) and settled for at least 2 hours before recording,
then retracted after it. For further details on surgical procedures and animal handling, please see our previous publication
with the same dataset.

METHOD DETAILS

Behavioral protocol and data acquisition

The behavioral paradigm was controlled with the MonkeyLogic program.>*~°° Each trial began with a 500 ms fixation period, followed
by an 800 ms sample period where an array of colored squares was displayed. After a variable memory delay period (800-1000 ms),
a test array appeared, identical to the sample array except for a color change in one randomly selected target. NHPs were required
to make a single saccade to the changed item. Trials with eye movements during the sample or delay period, reflecting a failure to
maintain fixation, were not included in the analysis. Eye movements were tracked using an ISCAN infrared system (240 Hz)
throughout all sessions. Stimuli were 1° colored squares, with two possible colors (color A, and color B) at each location, randomized
daily to prevent long-term memorization. Six item locations (roughly 1, 3, 5, 7, 9, and 11 o’clock) were used each session that were
within £75 angular degrees from the horizontal meridian and 4° to 6° from the fixation point. For the analysis, gaze coordinates at
saccadic landings on six target locations were translated to ensure symmetry and then rotated so that the target location was
positioned at 0 degrees (top of the screen). NHPs completed at least 720 correct trials per session. Invalid trials (e.g., failure to fixate
before test array onset) were excluded (trial survival rate: 76.29% for NHP 1, 71.09% for NHP 2). As a result, total 16,940 trials for NHP
1 (load 2: 29.56%, load 3: 28.56%, load 4: 21.46%, load 5: 20.43%) and total 15,762 trials for NHP 2 (load 2: 27.44%, load 3: 26.95%,
load 4:20.21%, load 5: 18.44%) were included. For more details on the behavioral paradigm, please see our previous publication that
used the same dataset'* and Methods S1.

LFP data acquisition and preprocessing

Continuous LFP data was amplified, band-passed filtered (3.3-88 Hz), and digitized at 1 kHz sampling rate (Plexon Multi-channel
Acquisition Processor). Although this hardware filter partially overlapped our primary band-of-interest (3-6 Hz), the filter was not
sharp. Manual inspection confirmed that substantial power remained in the theta band. All signals were referenced to ground.
Any 60 Hz line noise, 85 Hz noise related to the monitor refresh rate, and their harmonics were estimated and removed offline using
an adaptive sinusoid fit method. For most of LFP analyses, LFPs were averaged across all simultaneously recorded FEF electrodes
(n =7.93 + 2.00 per session) to estimate a representative LFP signal for FEF. Analyses using single-electrode data (e.g., Figure S2;
Table S1) are noted explicitly.
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To obtain amplitude (power) spectrograms, a fast Fourier transform was applied with a sliding Hanning window (window
size = 1024, 100 ms step). For cross-frequency coupling analysis, the LFP signal was narrow-band-filtered (0.5 Hz step with
2 Hz bandwidth for 8-16 Hz; 1 Hz step with 4 Hz bandwidth for 16-32 Hz; 2 Hz step with 8 Hz bandwidth for 32-64 Hz) using
Butterworth 5™ order filter.

Spike data analysis

Spikes were sorted into isolated single units manually using waveform features (Plexon offline Sorter), as previously described.'*
Then, two criteria were applied for excluding units from the analysis: (1) units with less than 30 trials sampled for each condition
were excluded; (2) units with a firing rate less than 1 Hz during the task period (0.5 to +1.6 s relative to sample stimulus onset)
were excluded. As a result of applying these two criteria, 76.19% of units (leaving n = 267 units) from FEF were included in the
analysis.

Theta modulation of behavioral performance

To estimate theta phase at the timing of test array onset, LFP was band-pass filtered at 3-6 Hz with zero-phase FIR filters
(MATLAB'’s filtfilt.m function). After band-pass filtering, the Hilbert transform was used to obtain instantaneous angle
(MATLAB'’s hilbert.m and angle.m functions). The theta phase was extracted at the time point minimally preceding the test display
command sent by the computer (0-1 ms prior in 1 kHz recordings), to capture ongoing activity just before stimulus onset. Theta
phase was divided into discrete phase bins (100 bins) for further analyses. The strength of coupling between LFP phase and
behavioral performance was measured by the KL divergence between the observed histogram of the behavioral measure (RT
or accuracy) and a circular uniform distribution. Detailed procedures are provided in Methods S1.

Neural information analysis

To investigate how spiking data encodes WM information (location x color), we analyzed individual single unit spiking using GLM and
calculated its effect size (i.e., PEV measured by 12, which quantifies how much of a unit’s firing rate variability is attributed to stimulus
location and identity). Since the color of each object was unknown to the NHP before sample array onset, we assessed how well
spiking represented this information at each time point. PEV was computed using a single ANOVA model, where all locations and
item identities were included in a unified model with dummy-coded variables representing location x item identity: y = ¥ bX where
X =0, 1, 2, represented absent, color A, and color B, respectively, for each location. PEV was calculated using the n2 formula and
summed across all model variables: PEV = (1 / SS_Total) * £ SS_X * 100. Only neural data from correct trials were included in the
PEV analysis. This approach provides a comprehensive assessment of how spiking activity encodes WM information across all
spatial locations, resulting in a measure of the overall strength of WM representations. Then, PEV (Figure 3) and single unit spiking
rate (Figure S3) were divided into either ‘rising’ or ‘falling’ phase trials based on the theta phase immediately preceding test array
onset (rising-phase trials: - to 0 rad; falling-phase trials: 0 to += rad).

QUANTIFICATION AND STATISTICAL ANALYSIS
For testing sample means (or medians) against a null value (appropriate for a one-sample t-test), non-parametric Wilcoxon’s signed
rank test was used. Circular ANOVA was used for angular phase data, implemented by CircStat toolbox®” in MATLAB (function

circ_wwtest.m). For correlation analyses, Pearson’s method was used except for logarithmic scale data (Spearman’s method was
used for KL divergence in Figure 2).
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