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Perceptual decision-making is thought to be mediated by neuronal networks with
attractor dynamics?. However, the dynamics underlying the complex neuronal
responses during decision-making remain unclear. Here we use simultaneous
recordings of hundreds of neurons, combined with an unsupervised, deep-learning-

based method, to discover decision-related neural dynamics in the rat frontal
cortex and striatum as animals accumulate pulsatile auditory evidence. We found
that trajectories evolved along two sequential regimes: an initial phase dominated
by sensory inputs, followed by a phase dominated by autonomous dynamics, with
the flow direction (thatis, neural mode) largely orthogonal to that in the first
regime. We propose that this transition marks the moment of decision commitment,
thatis, the time when the animal makes up its mind. To test this, we developed a
simplified model of the dynamics to estimate a putative neurally inferred time

of commitment (nTc) for each trial. This model captures diverse single-neuron
temporal profiles, such as ramping and stepping>*. The estimated nTc values were
not time locked to stimulus or response timing but instead varied broadly across
trials. If nTc marks commitment, evidence before this point should affect the
decision, whereas evidence afterwards should not. Behavioural analysis aligned

to nTc confirmed this prediction. Our findings show that decision commitment
involves a rapid, coordinated transition in dynamical regime and neural mode and
suggest that nTc offers a useful neural marker for studying rapid changes in internal

brain state.

Theories of attractor dynamics have been successful at capturing
several brain functions®, including motor planning® and neural rep-
resentations of space”®. Attractors are a set of states towards which
asystem tends to evolve from a variety of starting positions. In these
theories, computations of a brain function are carried out using the
temporal evolution or the dynamics of the system. Experimental find-
ings support the idea that the brain uses systems with attractor states
for computations underlying working memory®and navigation’. These
theories often focus on the low-dimensional nature of neural popula-
tion activity**'° and account for responses across a large number of
neurons using a dynamical system model in which the variable has
only afew dimensions™ 2,

Attractor network models have also been proposed to underlie
perceptual decision-making: the process by which noisy sensory
stimuli are categorized to select an action or mental proposition.
Inthese hypotheses, the network dynamics carry out the computations
needed in decision formation**"*¢, such as accumulating sensory
evidence and committing to a choice. Although some experimental
evidence favours a role of attractors in perceptual decisions*'*?, the
actual population-level dynamics underlying decision-making have not

beendirectly estimated. Knowledge of these dynamics would directly
testthe current prevailing attractor hypotheses, provide fundamental
constraints on neural circuitmodels and account for the often complex
temporal profiles of neural activities.

A separate line of work involves tools, sometimes based on
deep learning, for discovering the low-dimensional component of
neural activity in a data-driven manner'®®', In this approach, the
spike trains of many simultaneously recorded neurons are modelled
as being a function of a few latent variables that are shared across
neurons.

To combine bothlines of work, we used aninnovative method® that
estimates, from the spike trains of simultaneously recorded neurons,
the dynamics of alow-dimensional variable z, given by:

Z=F(z,u)+n, (6)]

where uare externalinputs, nis noise and, when applied to perceptual
decisions, zrepresents the dynamical state of the decision process of
the brain at a given time (Fig. 1a—c). The instantaneous change of the
decision variable or its dynamics is given by z, which depends on z
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Fig.1|Attractor models of decision-making were tested by recording from
theratfrontal cortex and striatum. a, Rats were trained to accumulate
auditory pulsatile evidence over time. While keepingits head stationary, the rat
listened to randomly timed clicks played from loudspeakers onits left (L) and

variable zindicates how the instantaneous change depends on zitself.
Theorientation of the arrowrepresents the direction of the change, and its
sizerepresents the speed, also quantified using aheat map (right). e, Changes

inzdrivensolely by external sensory inputs (example of bistable attractors).
f,Bistable attractor hypothesis of decision-making, with directions of the input
dynamics (based onref.1).g, Ahypothesis supposingaline attractorinthe
autonomous dynamics on the basis of the DDM of decision behaviour (based
onref.23).h, Recurrent neural networks can be trained to make perceptual
decisionsusingalineattractor thatisnotaligned to theinputdynamics (non-
normal; based onref. 2).i, Unsupervised discovery (this study) of dynamics that
have notbeen previously considered.j, Six interconnected frontal cortical
andstriatal regions are examined here. vStr, ventral striatum. k, Neuropixels
recordings (318 + 147 neurons per session per probe, mean +s.d.) from12ratsin
total (twoto threeregions perrat). AP, anteroposterior; ML, mediolateral.

right (R). At the end of the stimulus, the rat received a water reward for turning
totheside withmoreclicks. Theearliest time when arat could respond was
fixed at1.5 srelative to the moment of insertingits nosein the centre port (that
is, notareaction time paradigm). b, Behavioural performanceinanexample
recording session. Dashed referencelinesatabscissa=0and ordinate=0.5.

¢, The decision processis modelled as adynamical system. Right, the blue and
red arrows represent the change in the decision variablein the presence of
aleftorright, respectively.z,, zdimension1;z,,zdimension2.d, Autonomous
dynamicsillustrated using the bistable attractor hypothesis. In the velocity
vector field (thatis, flow field; left), the arrow at each value of the decision

itself,and uand n. This approach aims to estimate the function Fand,
throughit, capture the nature of decision-making neural dynamics.

Fig.1d and Extended Data Fig. 1a,b). Input dynamics are changes in
z driven by u, which can be distinguished from autonomous dynam-
ics as F(z, u) - F(z, 0). Input dynamics can depend on z (Fig. 1e and
Extended Data Fig.1c-e).

Many of the prevailing neural attractor hypotheses have been
inspired by a classic and successful behavioural-level model, the drift
diffusion model (DDM)?%, In the behavioural DDM, a scalar (that s,
one-dimensional) decision variable zis driven by sensory evidence
inputs (Extended Data Fig. 6a,b). For example, for decisions between

Differentiating dynamical hypotheses

The function F is useful for distinguishing among hypotheses of
decision-making. F can be dissected into two components: autono-
mous dynamics and input-driven dynamics. Autonomous dynam-
ics are dynamics in the absence of sensory inputs u (that is, F(z, 0);

2 | Nature | www.nature.com



goright versus go left, momentary evidence for right (left) might drive
zinapositive (negative) direction. Through these inputs, the momen-
tary evidence accumulates over time inzuntil the value of zreaches an
absorbingbound, amoment thoughtto correspond to decision com-
mitment and after which inputs no longer affect z. Different bounds
correspond to different choice options: a positive (or negative) bound
would correspond to the decision to go right (or go left). A straight-
forward implementation of the DDM in neural population dynamics,
which we refer to as the DDM line attractor, would posit a line attrac-
tor in neural space, with the position of the neural state z along that
line representing the value of z and two point attractors at the ends
of the line representing the decision commitment bounds? (Fig. 1g).
Another hypothesis approximates the DDM process using bistable
attractors, with each of the two attractors representing each of the
decisionbounds and, inbetween the two attractors, aone-dimensional
stable manifold of slow autonomous dynamics that corresponds to the
evidence accumulation regime (Fig. If). In both the DDM line attrac-
tor and bistable attractor hypotheses, evidence inputs are aligned
with the slow dynamics manifold and the attractors at its end points.
A third hypothesis, inspired by trained recurrent neural networks,
also positsaline attractor (Fig. 1h) but allows for evidence inputs that
are not aligned with the line attractor and that accumulate over time
through non-normal autonomous dynamics?. In all three hypotheses,
the one-dimensional line attractor and/or slow manifoldis stable, mean-
ing that autonomous dynamics flow towards it (Fig. 1f-h). Because
these three hypotheses were each designed to explain a particular
set of the phenomena observed in decision-making experiments, a
broader range of experimental observations could suggest dynamics
that have not been previously considered. Asbut one example, autono-
mous dynamics may contain discrete attractors that do not lie at the
end points of aone-dimensional slow dynamics manifold; many other
arrangements are possible. In the data-driven approach we describe
below, Fis estimated purely from the spiking data and the timing of
sensory input pulses, without incorporating any assumptions from
the behavioural DDM or other existing hypotheses.

Dissociating between autonomous and input dynamics requires
neuralrecordings during a decision unfolding over atime period that
includesintervals both withand without momentary evidence inputs.
We trained rats to perform a task in which they listened to randomly
timed auditory pulses played from their left and their right and reported
the side on which more pulses were played® (Fig. 1a). The stochastic
pulsetrains allow us to sample neural responses time locked to pulses,
whichare useful forinferring input-driven dynamics, and also the neural
activity in the intervals between pulses, which is useful for inferring
autonomous dynamics. Expertrats are highly sensitive to small differ-
encesinauditory pulse number (Fig.1b and Extended DataFig.2a), and
the behavioural strategy of ratsin this task s typically well captured by
gradual accumulation of evidence, whichis at the core of the DDM** %,

While the rats performed this task, we recorded six frontal cortical
and striatal regions with chronically implanted Neuropixels probes
(Fig.1j,k and Extended DataFig. 2b). The frontal orienting fields (FOF)
and the anterior dorsal striatum (dStr) are known to be causally neces-
saryfor this task and are interconnected® . The dorsomedial frontal
cortex (dmFC) is a major anatomical input to the dStr*°, as confirmed
by our retrograde tracing (Extended Data Fig. 2c), and is also causally
necessary for the task (Extended Data Fig. 2d). The dmFC s intercon-
nected with the medial prefrontal cortex (mPFC) and, less densely, the
FOF, the primary motor cortex (M1)* and the anterior ventral striatum®.

Unsupervised discovery of dynamics

To test the attractor hypotheses and allow discovery of dynamics
not previously considered, a flexible yet interpretable method was
needed. We used aninnovative deep learning method (flow field infer-
ence from neural data using deep recurrent networks; FINDR?) that

infers the low-dimensional stochastic dynamics that best account for
population spiking data. The low dimensionality of the description is
critical forinterpretability. Prominent alternative deep-learning-based
approaches for inferring neural latent dynamics involve models in
which these latent dynamics have hundreds of dimensions and are
deterministic'®. By contrast, FINDR infers latent dynamics that are low
dimensional and stochastic. The stochasticity in the latent dynamics
accounts for noise in the decision process that contributes to errors.
FINDR approximates the decision-relevant dynamics F with a gated
multilayer perceptron network®and noise nas a Gaussian with diagonal
covariance (equation (1) and Fig. 2a). The firing rate of each neuron at
each time point is modelled as a weighted sum of the z variables, fol-
lowed by a softplus nonlinearity, which can be thought of as approxi-
mating neuronal current—frequency curves® (Fig. 2b). The weighting for
eachneuron (vector w, for neuron n, comprising the nth row of aweight
matrix W; Fig. 2b) is fit to the data. To aid the interpretability of z, we
transform Wafter training such that its columns are orthonormal and
ittherefore actsasarotation. Asaresult, angles and distancesinz are
preserved in Wz (neural space before softplus). Before learning Fand
W, we separately account for the decision-irrelevant, deterministic but
time-varying baseline firing rate for each neuron (baseline in Fig. 2b)
so that FINDR can focus on the choice formation process.

We first confirmed that, in synthetic data, the velocity vector
fields (flow fields) inferred by FINDR can distinguish between exist-
ing attractor hypotheses (Extended Data Fig. 1f-h). Next, we turned
to the recorded spiking data and confirmed that FINDR provides a
good fit to the heterogeneous single-trial firing rates of individual
neurons and to the complex dynamics in their peristimulus time his-
tograms (PSTHs) conditioned on the sign of the evidence (Extended
DataFig.3a-d). We found that two latent dimensions suffice to capture
our datawell (Extended Data Fig. 3e-i). For models with more than two
latent dimensions, the latent dynamics are still mostly confined to two
dimensions, and this two-dimensional manifold is approximately an
attractor (Extended Data Fig. 3h-k).

Figure 2c-h shows a representative recording session from the
dmFC and the mPFC. We found that, generally, two-dimensional
input-driven dynamics and autonomous dynamics inferred by FINDR
were not described well by the existing hypotheses:in all three hypoth-
esesillustrated in Fig. 1d-h, there is a one-dimensional stable mani-
fold that either is or approximates a line attractor. By contrast, even
though, over the first 330 ms, the average trajectories evolve along an
approximately straight line (Fig. 2h), the lineis not a one-dimensional
attractor, and individual trials diverge fromit. Furthermore, inall three
hypothesesin Fig.1d-h and in all other hypotheses we are aware of,
autonomous dynamics play animportant part throughout the entire
decision-making process. For example, autonomous dynamics are
what enforce the stability of the one-dimensional slow manifolds in
Fig. 1d-h. By contrast, at least in the space of the latent variable z,
FINDR-inferred dynamics suggest that, initially, motionin neural space
is dominated and driven by inputs to decision-making regions (that s,
by the input-dependent dynamics), not the autonomous dynamics,
which are slow in both dimensions (Fig. 2c-h), not only one. Later in
the decision-making process, the balance between autonomous versus
input-driven dynamicsinverts, anditis the autonomous dynamics that
become dominant. Plots in Fig. 2g show the difference in magnitude
between autonomous and input-driven dynamics (indicated with the
colourscale) onthe zplane. Theinitial dominance of theinput-driven
dynamics canbe seeninthe zone near the (0, 0) origin at the negative
end of the colour scale. The later dominance of autonomous dynamics
canbe seenintheright and left edges of the sampled region, reached
later inthe decision-making process, at the opposite end of the colour
scale. Moreover, the direction of instantaneous change driven by the
inputs (slightly clockwise from horizontal in Fig. 2e) is not aligned
with the direction of the strongest autonomous dynamics in the left
and right edges of the sampled region (slightly anticlockwise from
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Fig.2|Unsupervised discovery shows transitionsin dynamical regime and
neuralmode underlying the shift from evidence accumulation to decision
commitment. a, Decision-relevant dynamics are inferred using FINDR?.

b, FINDRIearns the decision variable zthat best captures neural spiking
activity. Each neuronal spike count atagiven time step ismodelled as a Poisson
random variable with the rate given by an affine transformation of zat that time
step, followed by the softplus nonlinearity. The grey box indicates the decision
variablezatanexample time step, and the yellow box indicates the spike counts
atthattimestep. Atime-varyingbaselineislearnt for each neuronto capture
the decision-irrelevant component of its activity. c-h, Vector field inferred
from 96 simultaneously recorded choice-selective neuronsinthe dmFC and
themPFC fromarepresentative session. Only the portion of the state space
visited by atleast 50 of 5,000 simulated 1-s trajectories (sample zone) is shown.

vertical in Fig. 2c). The curved trial-averaged trajectories of zemerge
from this non-alignment in the input direction and the autonomous
direction later in the decision-making process. The change from an
input-dominated to an autonomous-dominated dynamical regime and
thesharp turninthedirection of the neural trajectoriesin Fig. 2c-h were
observed consistently across rats and behavioural sessions (Fig. 3a-d).
These observations were robust to several different initializations of
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¢, Autonomous dynamics. d, Speed of autonomous dynamics. e, Input
dynamics for left and right clicks. Ifu =[1;0] indicates aleft click input,
F(z,[1;0]) - F(z, 0) is the input dynamics given aleft click. However, the average
leftinput dynamics depend onthe frequency of left clicks, given by p(u=[1;0]|z).
Therefore, we compute the average leftinput dynamics F(z, left) — F(z, 0) as
p(u=1[1;011z)(F(z, [1;0]) - F(z, 0)). We compute the average right input dynamics
similarly, with u=[0;1].f, Speed of input dynamics. g, Difference inspeed
betweenautonomous and input dynamics. h, Initially, zis strongly driven by
inputs, and its trajectories develop along the evidence accumulation axis
aligned withthe direction of input dynamics. Atalater time, the trajectories
becomelargely insensitive to the inputs and areinstead driven by autonomous
dynamicsto evolve along the decision commitment axis aligned with the
direction of autonomous dynamics.

the neural networks in FINDR, the order of minibatches during training
and how datasets were splitinto training and test sets (Extended Data
Fig.4). They are therefore a consistent finding of the analysis.

To perform a head-to-head comparison with the three hypotheses
in Fig. 1d-h, we constructed a variant of FINDR in which the network
parametrizing F was replaced by a parametrization of the dynamics
constrained to describe those three hypotheses (Fig. 3e,fand Extended
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Fig.3 | FINDR shows transitionsin dynamical regime and neural mode
consistently across sessions and better captures the datathana constrained
modelbased on previous hypotheses. a, To quantify how speed difference
betweenautonomous and input dynamics evolves over atrial, weidentify the
time point when the latent trajectories curve (stars) and compute the speed
differencein Fig. 2gbefore and after this point. The latent trajectories are
trial-averaged, sorted by evidence strength. The trial-averaged trajectoriesand
starsarecoloured asinFig.2h.b, The peakis defined as the time of maximum
curvatureinthetrial-averaged trajectories. Time periods are defined relative to
this peak (before peak and after peak) and to trial start and end (early and late)
forc,d.Black star symbol represents the peak of average trajectory curvature.
¢, We compute the normalized difference in speed between autonomous and
input dynamics for five different time periods (start (time = O s), early, before
peak, after peak and late) from vector fields inferred from sessions with more
than30recorded neurons, over 400 trials during which the animal performed
withmorethan80%accuracy (n =27 sessions). The dashed lineindicates

DataFig.5).Ifthe datawere described well by one of these hypotheses,
we would expect this variant (which we refer to as cFINDR, for con-
strained FINDR) to fit the datawell, particularly out of sample, because
it has far fewer parameters than FINDR. However, unconstrained FINDR
consistently fit the data better than cFINDR, confirming that previ-
ous hypotheses do not adequately capture the data. Although one of
the hypotheses (Fig. 1h, suggesting non-normal dynamics with aline
attractor) can generate curved trial-averaged trajectories apparently
similar to those we see inthe data (Fig. 3e,f and Extended Data Fig. 5g),
thereis a key difference, which is that, in this particular hypothesis,
the turn from theinitial flow direction induced by the inputs happens
early, because the autonomous dynamics causing it are strong the
moment the latent state departs fromthe line attractor. However, our
datasuggest that there isamore prolonged initial phase of flow along

FINDR - cFINDR (AR?)

normalized difference of 0. Cl, confidence interval.d, For sessionsinwhich
FINDR with the two-dimensional decision variable z fit significantly better than
FINDR with one-dimensional z (n =21 0f 27; Extended Data Fig. 3), we measured
thedirection of motion of the trial-averaged trajectories and its angle with
respect to the z; axis for different time periods (curving of trial-averaged
trajectories across 21sessions). e, cFINDR captures previous hypotheses
andreplacesthe neural network parametrizing Fwith acombination of line
attractor dynamics (specified by QAQ™, with the diagonal matrix A having one
zero and one negative eigenvalue) and bistable attractor dynamics (specified
by anonlinear function ¢; Methods). f, Autonomous dynamicsinferred by
cFINDR and FINDR are shown for arepresentative session, with vector field
outside the sample zone in grey. g, The coefficient of determination (R?) of the
evidence-sign conditioned PSTH computed using fits of FINDR is significantly
greater than those computed using fits of cFINDR (across 27 sessions, two-sided
Wilcoxonssigned-rank test).

the input directions before the turn, with the stronger autonomous
dynamics happening much later in the decision-making process. We
believe that this underlies the much better fits to the data for FINDR
than those for cFINDR.

Arecentstudy®described neural trajectories that were described well
by non-normal dynamics®**. Consistent with this, the two-dimensional
FINDR-inferred autonomous dynamics around the origin are also
non-normal (Extended Data Fig. 10b,c), although with a key differ-
ence withrespecttorefs. 33-35, whichis that here the originis unstable
(Extended DataFig.10a,e).

Unsupervised inference of dynamics underlying decision-making,
based only on spiking activity and sensory evidence inputs, thus sug-
gests that the process unfolds in two separate sequential regimes. In
theinitial regime, dynamics are largely determined by the inputs, with
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autonomous dynamics playing a minor role. The sensory evidence
inputs (right and left clicks) drive the decision variable to evolve along
an axis, parallel to the directions of the input dynamics, that we will
termthe evidence accumulation axis. Inthe second, later regime, these
characteristics reverse; the trajectories representing the evolution of
the decision variable become largely independent of the inputs and
areinstead mostly determined by autonomous dynamics. We will term
the straight line along the direction of the autonomous dynamics in
thelater regime the decision commitment axis. Of note, the evidence
accumulation axis and the decision commitment axis are not aligned
witheach other. During the regime transition, the trajectoriesinz veer
from evolving along the evidence accumulation axis to developing
along the decision commitment axis. In neural space, this will equate
to a transition from evolving along one mode (that is, a direction in
neural space), corresponding to evidence accumulation, to another
modethat, as explained below, we believe may correspond to decision
commitment.

Although derived entirely from unsupervised analysis of neural spik-
ingactivity and auditory click times, these two regimes are reminiscent
of the two regimes of the behavioural DDM: namely, aninitial regime
in which momentary sensory inputs drive changes in the state of a
scalar decisionvariable zand alater regime, after zreachesabound, in
whichthe statebecomesindependent of sensory inputs (Extended Data
Fig.2e,f). The correspondence between the two regimesinferred from
spiking activity and the behavioural DDM suggests that the transition
between regimes may correspond to the moment of decision commit-
ment. It further suggests that a modified neuralimplementation of the
DDM, focusing on key aspects of the two regimes, could be a simple
model that captures many aspects of the neural data, although having
far fewer parameters than FINDR and thus greater statistical power. We
next develop this model and show that it can be used to precisely infer
the regime transition time in each trial and test the proposal that this
transition corresponds to decision commitment.

Simplified model of decision dynamics

FINDR-inferred vector fields show a rapid shift from strongly input-
driven to autonomous-dominant dynamics, analogous to the tran-
sition from evidence accumulation to decision commitment in the
behavioural DDM (Fig. 4a,b). The DDM captures behaviour in a wide
range of decision-making tasks, including tasks in which the stimulus
duration is determined by the environment?*?>%3%% as used here.
This suggests that the FINDR-inferred dynamics may be approximated
by a simplified model in which the decision variable evolves as in the
behavioural DDM.

Theregime transition coincides with rapid reorganizationinthe neu-
ronal population representation of the decision process. To quantify
thisreorganization, we treat the activity of each neuron asadimension
in neural space, with axes in this space as neural modes. Seen in this
way, the shift from evidence accumulation to decision commitment
is coordinated with a fast transition in the neural mode, analogous to
the rapid change in neural modes from motor preparation to motor
execution®, This motivates whether a simplified model based on a
rapid, coordinated transition in both dynamical regime and neural
mode can capture the key features of FINDR-inferred dynamics and
broader experimental observations.

In what we will call the multimode or minimally modified DDM
(MMDDM), a scalar decision variable z evolves just as in the behav-
ioural DDM, governed by three parameters (Fig. 4b, Extended Data
Fig. 6a,b and the Methods). The key addition is that neurons encode z
differently before and after the decision commitment boundisreached.
Each neuron has two weights: we, for the evidence accumulation phase
and wy for the decision commitment phase. When w, and w;,c are con-
strained to be the same, the MMDDM reduces to astandard DDM with a
single neuralmode. Inthe DDM line attractor hypothesisin Fig.1g, ifthe
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autonomous dynamics towards the line attractor are strong relative to
thenoise, trajectories will be largely one dimensional, which are approx-
imated well by a single-mode DDM. Because neurons multiplex both
decision-relevantand decision-irrelevant signals®**°, MMDDM includes
terms for spike history and, similar to FINDR, decision-irrelevant base-
line changes (Extended Data Fig. 6¢-f). All parameters are fit jointly
for each session using both neural activity and behavioural choices.

MMDDM can account for a broader range of neuronal profiles
(Fig.4c-g) thanthe single-mode DDM, which captures only ramp-like
neuronal temporal profiles (Extended Data Fig. 2e-1). In the vast major-
ity of recording sessions, the dataare better fit by MMDDM than by the
single-mode DDM (cross-validated; Fig. 4h,i). The model also accu-
rately captures the choice data (Fig. 4j and Extended Data Fig. 6g) and
reproduces vector fields that closely resemble those inferred from real
spike trains (Extended Data Fig. 6h). Additional validations are shown
in Extended DataFig. 6i-n.Finally, because the end of the stimulus was
fixed across trials relative to fixation onset, stimulus offset was not
included as an input in MMDDM, consistent with the lack of abrupt
neural changes at stimulus offset (Extended Data Fig. 9).

nTc

In MMDDM,, the transition from evidence accumulation to decision
commitment and a consequent switch from wy, to wyc directly imple-
mentachangeinneural mode between the two phases of the trial, which
was previously suggested®*. However, it remains unclear whether this
neural mode change corresponds to the animal making up its mind, in
part because no method has been developed previously to precisely
estimateits timingin single trials. The behavioural DDM, without neu-
ral data, can provide a rough estimate of the moment of commitment
(Fig. 5a, dashed grey line). But on the basis of the hypothesis that the
time of the neural mode change corresponds to the time of commit-
ment and, using data from many simultaneously recorded neurons,
MMDDM allows a far more precise estimate per trial (Fig. 5a, orange
line). We refer to this moment as nTc. Surprisingly, nTc varied widely
acrosstrials. It was not time locked to stimulus onset (Fig. 5b), stimulus
offset (Extended Data Fig. 7n) or the onset of the decision-reporting
motor response (Fig. 5¢). Instead, nTc seemed to be aninternally timed
event.nTcsalso occurred well after the onset of perimovementkernels
inferred from generalized linear models of single-neuron spike trains*°
(Extended DataFig. 8), indicating that nTcs do not reflect the initiation
of action plan encoding.

Acore prediction of the hypothesis that nTc marks the time of internal
decision commitment is that, after nTc, auditory click stimuli should
stop influencing the behavioural choice, because the animal will have
already made up its mind. The single-trial estimates of nTc that MMDDM
provides canbe usedtotest this prediction: we time align the sensory
stimulus dataof each trial to the neurally estimated nTcand then behav-
iourally measure the weight with which stimulus fluctuations at each
time pointaffect choice (thatis, the psychophysical kernel**; Methods).
Remarkably, as predicted, we found that the psychophysical weight of
stimulus fluctuations on the choice of the animal diminished abruptly
tozeroafter nTc (Fig.5d and Extended DataFig. 7). Because these com-
mitment times varied widely across trials (Fig. 5b,c), the abrupt dropin
psychophysical weight cannot be observed without the single-trialnTc
estimates. If we instead align trials to the stimulus onset, we obtain a
smooth psychophysical kernel (Extended DataFig.7e-h), as observed
in previous studies lacking access to nTc*.

nTc showed further hallmarks of being a marker of commitment:
First, for a given evidence strength, trials without commitment are
predicted to be more likely to involve noise acting against the sen-
sory evidence, leading to lower accuracy. Consistent with this pre-
diction, accuracy was lower in trials when nTc could not be identified
(Fig.5e).Second, commitment should occur more often when evidence
is stronger, and, accordingly, nTc was more frequently detected in
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Fig.4|Asimplified model captures discovered dynamics and diverse
neuronal profiles. a, The velocity vector field of both the discovered dynamics
andthe DDMline attractor can be partitioned into evidence accumulation (EA)
and decision commitment (DC) regimes. b, The MMDDM, a simplified model of
the discovered dynamics. Asin the behavioural DDM, momentary evidence (u)
and noise (n) accumulate over timein the decision variable (z) until zreaches
either the left (-B) or right (+B) bound. At thismoment, the animal commits
toadecision: zbecomes fixed and unresponsive to further input. Also at
thismoment, the encoding weight (w) of each neuron shifts from wg, to wy,
changing howzmapsto the predicted Poisson firing ratey through softplus
nonlinearity hand baseline b.c, MMDDM captures heterogeneous single-
neuron profiles. Aramp PSTH arises when w;, and w,c are equal.d, A decay

trials with stronger evidence (Fig. 5f). Additional hallmarks are shown
in Extended Data Fig. 7i-q. Together, these results offer behavioural
support for an internally timed commitment event, after which sen-
sory inputs are ignored, and the timing of which can be inferred from
spiking data using nTc.

Abrupt and gradual shifts at commitment

Perceptual decision-making involves a diversity in the temporal pro-
files of choice-selective neurons, with some showing aramp-to-bound
profile, others exhibiting astep-like profile and some fallinginbetween
aramp and astep>*. We found that the continuum of ramping and step-
ping profiles can be captured by a rapid reorganization in population

profileemerges whenwyis zerobecause, over time, more trialsreach the bound
where encoding of zvanishes. e, Adelay profile results from setting wg, to zero
because, earlyinthetrial, itis unlikely to have reached the bound. f, ‘Flip’is
produced by setting wg, and wp to have opposite signs. g, MMDDM captures
heterogeneity insingle-neuron temporal profiles. Shading represents 95%
bootstrap Clof the mean; thesolid line is the model prediction. h, MMDDM
has a higher out-of-sample likelihood than a one-dimensional DDM without a
neural mode switch.i, MMDDM achieves a higher goodness-of-fit R* value of
the choice-conditioned PSTHs. h,i, Pvalues were computed using two-sided
signtests.j, Model prediction (pred.) and observed psychometric function for
one example session. The shaded areas are the 95% bootstrap Cl of the mean;
thesolidlineis the model prediction.

activity at the time of decision commitment, as described by MMDDM.
We grouped neurons by whether they were estimated to be more, less
or similarly engaged in evidence accumulation relative to decision
commitment (|wg,| > [wpcl, [Weal = lwpcl and [we,| < lwpcl, respectively, in
MMDDM(its). We then computed the pericommitment neural response
time histogram (PCTH) of each neuron (Methods and Fig. 6a,b). For
neurons similarly engagedin accumulationand commitment, the PCTH
had a ramp-to-bound profile, whereas, for neurons more engaged in
commitment, the PCTH resembled a step. For neurons more engaged
inaccumulation, the PCTH had aramp-and-decline profile. Even with-
out grouping neurons, we found that the first three principal compo-
nents (PCs) of the PCTHs correspond to the ramp-to-bound, step and
ramp-and-decline profiles.
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which the nTc occurred more than1sbefore movement.d, Supporting the
interpretation of nTcas adecision commitment and, despite the highly variable
timing of nTc, sensory evidence presented before nTc affects the decision of
the animal but evidence presented after nTc does not (weight of clicks on choice
inferred using logistic regression). Trials for which the estimated time of
commitmentoccurred atleast 0.2 s before stimulus offsetand 0.2 s or more
after stimulus onset were included for this analysis (9,397 of 55,057 trials across
115sessionswith12 rats). The greenlineis the prediction from the MMDDM
modelfittothedata. e, Behaviouralaccuracy was lower in trials in which nTc
could notbeidentified. Predictions were made by fitting MMDDM to the data,
simulating trials from the fitted models and applying the same nTc detection
procedure as thatused for real data. Dashed reference lines at abscissa=0

and ordinate=0.5.f, nTc was more likely to be identified in trials with stronger
evidence.Foreachevidencestrengthbin, the fraction of trialswithan
identified nTc was divided by the overall trial fraction across all bins, which

was lower inthe datathaninthe model predictions. Black circlesand green
linesindicate the mean across sessions. Black error bars and green shading
indicate the 95% bootstrap confidence of the mean. Dashed reference lines
atordinate=1.0.

The abrupt changes at decision commitment seem inconsistent
with smoothly curved trial-averaged trajectories in low-dimensional
neural state space often observed in decision-making studies®’. Similar
phenomenaare observed inour data: the trial-averaged trajectories for
leftand right choices do not separate from each other along astraight
line but rather along curved arcs (Fig. 6¢). These smoothly curving
arcs may result from averaging over trajectories with an abrupt turn
aligned to decision commitment, which occurs at different times across
trials (Fig. 5Sb—d). Consistent with this account, the smooth curves
in low-dimensional neural state space can be captured well by the
out-of-sample predictions of MMDDM but not by a one-dimensional
DDM without aneural mode switch (Fig. 6¢). These resultsindicate that
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the MMDDM, a simplified model of the discovered dynamics, can cap-
turethe widespread observation well of smoothly curved trial-averaged
trajectories.

Mode transitions across regions

Although we generally observed dynamics with a neural mode tran-
sition across several frontal cortical and striatal areas, quantitative
differences could be observed across these regions. The choice selec-
tivity (a measure, ranging from -1to 1, of the difference in firing rates
for right-versus-left-choice trials; Extended Data Fig. 2m) averaged
across neurons had different temporal profiles across brain regions
(Fig. 6e). Although mPFC neurons were most choice selective near
the beginning, FOF neurons were most choice selective towards the
end. We found that the difference in latencies to peak choice selec-
tivity was linked to differences in relative neuron engagement in evi-
dence accumulation and decision commitment. Neurons that were
more strongly engaged in evidence accumulation (wy, > wpc) tended
to have a shorter latency to peak selectivity than neurons that were
morestrongly engaged in decision commitment (wp > wg,). This result
indicates that differences in choice-related encoding across frontal
cortical and striatal regions can be understood in terms of relative
participationin evidence accumulation versus decision commitment
(Fig. 6f,g).

Discussion

How neural dynamics govern the formation of a perceptual choice
has been long debated"**. Here we suggest that, for decisions on the
timescale of hundreds of milliseconds to seconds, an initial input-
driven regime mediates evidence accumulation and a subsequent
autonomous-dominant regime subserves decision commitment. This
regime transitionis coupled to arapid changein the representation of
the decision process by the neural population: the initial neural mode
(thatis, directionin neural space) representing evidence accumulation
is largely orthogonal to the subsequent mode representing decision
commitment. In this sense, it is reminiscent of other covert cognitive
operations, such as attentional selection, that also involve a change
in neural mode®.

If this coupled transition in dynamical regime and neural mode
indeed corresponds to the time of decision commitment, sensory
evidence presented after the transition would have minimal impact
on the decision of the animal, because the animal would have already
committed to aparticular choice. Behavioural analysis confirmed this
prediction in the experimental data (Fig. 5d), leading us to conclude
that the transitionisindeed a signal for covert decision commitment.
Werefer to the estimate of the presence and timing of such a transition
ineachtrial, whichis based onthe sensory stimulus and firing rates of
simultaneously recorded neurons, as nTc.

We wondered how decisions end. In reaction time paradigms of
perceptual decision-making, animals are trained to respond as soon
asthey make a decision. The moment the animalinitiatesits response
is then used to operationally define when it commits to a choice***.
Inthese paradigms, decision commitmentis overt, asitis closely linked
to the onset of the movement animals make to report their choice®.
Here, by contrast, using an experimenter-controlled duration para-
digm, we found a decision commitment signal (nTc) thatis covertinthe
sense of occurring at a time highly variable with respect to the timing
of the external motor action used to report the decision, which it can
precede by as much a second or more (Fig. 5¢). It is also highly vari-
able with respect to stimulus onset (Fig. 5b) or offset (Extended Data
Fig. 7n). Itis thus aninternal signal, largely defined by coordination
across neurons, not by its timing with respect to external events. The
pericommitment neural responses observed here contrast sharply
withthe ramp-and-burst neural responses observed in animals trained
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Fig. 6 | Simplified model captures heterogeneoussingle-neuron temporal
profiles, such asramping and stepping, and shows functional distinctions
betweenbrainregions. a, PCTHs for neurons grouped by relative engagement
(definedinf). Neuronssimilarly engagedin evidence accumulationand decision
commitment have ramp-to-bound profiles (centre). Neurons more engaged
indecision commitment have step-like profiles (right), whereas those more
engaged in evidence accumulation have ramp-and-decline profiles (left).
‘Preferred’ indicates the choiceeliciting higher firing. Data are the mean across
neurons and the 95% CI. b, First three PCs of PCTH differences (preferred -
nonpreferred choice) across all neurons, capturing ramp-to-bound (PC1), step
(PC2) and ramp-and-decline (PC3) profiles. ¢, Observed curved trial-averaged
trajectories (projected onto the first two PCs) are captured by the MMDDM
(centre) but not the single-mode DDM (right). Time from stimulus onset.

Proj., projection.d, MMDDM better captures the data than the single-

mode DDM (out-of-sample log likelihood: MMDDM - single-mode DDM).

e, The neuron-averaged choice selectivity has different temporal profiles across
brainregions: mPFC neurons are most choice selective near the beginning,
whereas FOF neurons are most choice selective towards the end. f, Engagement
index (EI) quantifying relative neuronal engagementin evidence accumulation
versus decision commitment. PSTHs are shown for three example neurons.
Shadingis the 95% Cl of the mean; line indicates model prediction. g, Agradient
acrossbrainregionsinthe strength of neural mode transitions from stronger
engagementinaccumulation (for example, mPFC) to more balanced engagement
(forexample, FOF). Marker indicates median. Overall differencesin engagement
indexacross regions were assessed using the Kruskal-Wallis test (P=1x107**).
Post hoc pairwise comparisons using the Tukey-Kramer test yielded P< 0.001for
mPFC versus dStr,dmFC, M1and ventral striatum; dStr versus M1and FOF; and
dmFC versus FOF (exact Pvalues are in the Supplementary Notes (section 2.1).
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to couple their decision commitment with response initiation* ina
reaction time task.

Although the timing of the nTc signal reported here makes it very
distinct from motor execution, the signal is also distinct from action
preparation or planning. The beginning of action planning carries no
implication as to whether sensory evidence presented subsequently
willorwillnotbeignored. Indeed, in perceptual decision-making tasks,
preliminary action preparation, driven by choice biasesinduced by pre-
vioustrials, is often observed to begin even before the sensory stimulus,
as reported previously*® and found in our own data (Extended Data
Fig.8). By contrast,commitment to a decision suggests that evidence
presented subsequently to the commitment will no longer affect the
choice of the animal. Here we found that nTc corresponds to such a
decision commitment moment. This was the case both at the neural
level, in which it correlates with a substantial decrease in the effect of
sensory inputs on neural responsesin theregions we recorded (Fig. 2),
and at the whole-organismbehavioural level, in the sense that sensory
evidence before nTc affects the choices of the animal but sensory evi-
dence after nTc does not (Fig. 5d).

Although the behavioural DDM is a widely used model of decision-
making, other frameworks are also prevalent, such as the linear bal-
listicaccumulator*® or urgency gating®. It is notable that the dynamics
inferred by FINDR, obtained in a data-driven, unsupervised manner
from spike times and auditory click times alone, resulted in regimes
that match the characteristics of the behavioural DDM but not those
of the alternatives. This match led us to explore a simplified model,
the MMDDM, in which a scalar latent decision variable evolves as in
the DDM but is represented in different neural modes before versus
after decision commitment. The neural mode change indicates thata
downstream decoder of the categorical choice canimproveitsaccuracy
by selectively reading out from neurons with post-commitment weights
large in magnitude. A possible mechanism for the neural mode change
is an input from ascending midbrain neurons, which is suggested by
arecent finding in a working memory task that midbrain neurons, in
response to an external auditory cue, trigger rapid reorganization of
motor cortex activity to switch from planning-related activity to a
motor command that initiates movement in mice*s.

We found thatthe MMDDM provides a parsimonious explanationof a
variety of experimental findings from several species: across primates
and rodents, sensory inputs and choice are represented in separate
neural dimensions***° across time, and neither sensory responses nor
the neural dimensions for optimal decoding of the choice are fixed®.
These phenomena, along with other observationsincluding diversity
in single-neuron dynamics**°, curved average trajectories’®, choice
behaviour?* and some vigorously debated phenomenasuch asavariety
of single-neuron ramping versus stepping temporal profiles**, are all
captured by the MMDDM. However, we do not see MMDDM as a unique
oraunified model of perceptual decision-making. Rather, we see it as
asimple yet useful approximation, a minimally modified DDM, and a
stepping stone towards a unified model of decision-making.

Single-trial trajectories, in sum, filled out the two-dimensional latent
space inferred by FINDR. But when averaged over trials of a given evi-
dencestrength (Fig.2h), they evolved along aone-dimensional curved
trajectory. Looking exclusively along this one-dimensional manifold,
the dynamics resemble those of the bistable attractor hypothesis'
(Fig.1f) inthe sense of a one-dimensional unstable point at the origin,
with autonomous dynamics growing stronger the farther the system
is from the origin. However, the bistable attractor hypothesis and the
other two hypotheses in Fig. 1g,h posit a one-dimensional manifold
of slow autonomous dynamics, along which evidence accumulation
evolves and towards which other states are attracted"?. By contrast,
the FINDR-inferred dynamics (which are inferred from single trials,
not averaged trials) suggest an initial two-dimensional manifold of
slow autonomous dynamics. Sensory evidence inputs drive evidence
accumulation along one of these slow dimensions. The other slow
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dimension corresponds to the decision commitmentaxis, along which
autonomous dynamics willbecome dominant later in the process. We
wondered why there would be slow autonomous dynamics along this
second dimension. We speculate that, duringinitial evidence accumula-
tion, slow autonomous dynamics along the decision commitment axis
provide amechanism for inputs driven by non-sensory factors such as
trial history* to influence choice independent of the accumulating
sensory evidence.

Theauthors of one recently proposed method to infer autonomous
dynamics, applied to data from a task that did not require accumulat-
ingevidence over time, proposed that variety across the tuning curves
of individual neurons could lead to curved one-dimensional decision
manifolds™. However, the authors’ method cannot yet infer input
dynamics, and thus data from tasks with evidence that arrives gradu-
ally over time cannot yet be analysed; such an extension would have to
berealized before we can assess whether the curvature their approach
could infer would correspond to the curvature we described here for
accumulation of evidence. Importantly, inferring input dynamics in
addition to autonomous dynamics was critical to our observation that
achangeindynamical regime, frominput dominated to autonomous
dominated, seemed to coincide with the change in neural mode (Fig. 2).
This observation was key for our hypothesis that this event (nTc) could
correspond to decision commitment, for development of the MMDDM
simplified model to estimate nTc and for experimental confirmation
thatnTcisindeed the moment when sensory evidence ceases to affect
the decision of the animal (Fig. 5d).

Finally, our approach expands the classic repertoire of techniques
used to study perceptual decision-making. We inferred decision dynam-
ics directly from neural data rather than assuming a specific hypoth-
esis, and we took steps to enhance the human interpretability of the
discovered dynamics: the unsupervised method (FINDR) focuses on
low-dimensional rather than high-dimensional decision dynamics,
and the mapping from latent to neural space (before the activation
function of each neuron) preserves angles and distances. On the basis
ofkey features of the inferred latent dynamics, we developed a highly
simplified, tractable model (MMDDM) that is directly relatable to the
well-known DDM framework. We found that the MMDDM, despite its
simplicity, could describe abroad variety of previously observed phe-
nomenaand allowed us to infer the internal decision commitment times
ofthe animalin each trial. Pairing deep-learning-based unsupervised
discovery with simplified, parsimonious models may be a promising
approach for studying not only perceptual decision-making but also
other complex phenomena.
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Methods

Experiments

Animals. The animal procedures described in this study were app-
roved by the Princeton University Institutional Animal Care and Use
Committee and were carried out according to the standards of the
National Institutes of Health (NIH). Animals consisted of 16 adult,
6-24-month-old, male Long-Evans rats (Rattus norvegicus, Hilltop
Lab Animals, Taconic) that were housed in Technoplast cages in
pairs with a12-h reversed light-dark cycle. All training and testing
procedures were performed during the dark cycle. The rats had free
access to food, but they had restricted access to water. The amount
of water that the rats obtained daily was at least 3% of their body
weight. Sample sizes were chosen on the basis of previous electro-
physiological studies in rats?®*, No blinding or randomization was
performed.

Behavioural task. Rats performed the behavioural task in custom-
made training enclosures (Island Motion) placed inside sound- and
light-attenuated chambers (IAC Acoustics). Each enclosure con-
sisted of three straight walls and one curved wall in which three
nose ports were embedded (one in the centre and one on each
side). Each nose port also contained one light-emitting diode that
was used to deliver visual stimuli, and the front of the nose port was
equipped with aninfra-red beam to detect the entrance of the nose
of the ratinto the port. A loudspeaker was mounted above each of
the side ports and used to present auditory stimuli. Each of the side
ports also contained a silicone tube that was used for water reward
delivery, with the amount of water controlled by valve-opening
time.

Rats performed an auditory discrimination task in which optimal
performance required the gradual accumulation of auditory clicks®.
At the start of each trial, rats inserted their nose in the central port
and maintained this placement for 1.5 s (fixation period). After a vari-
able delay of 0.5-1.3 s, two trains of randomly timed auditory clicks
were presented simultaneously: one from the left speaker and one
fromtheright speaker. At the beginning of each click train, a click was
played simultaneously from the left and right speakers (stereoclick).
Regardless of onset time, the click trains ended at the end of the fixation
period, resulting in stimuli ranging from 0.2 sto1s. The train of clicks
from each speaker was generated by an underlying Poisson process,
with different click rates for each side. The combined mean click rate
was fixed at 40 Hz, and trial difficulty was manipulated by varying the
ratio of the generative click rate between the two sides. The generative
clickrateratio varied from 39:1 (easiest) to 26:14 (most difficult) clicks
per s. At the end of the fixation period, the rats could orient towards
the nose port on the side where more clicks were played and obtain a
water reward.

Psychometric functions were calculated by grouping the trials into
eight bins of similar size according to the difference in the total number
of right and left clicks and, for each group, computing the fraction of
trialsendinginaright choice. The Clof the fraction of right responses
was computed using the Clopper-Pearson method.

Electrophysiological recording. Neurons were recorded using
chronically implanted Neuropixels 1.0 probes that are recoverable
after the experiment®®. In four animals, a probe was implanted at
4.0 mm anterior to the bregma and 1.0 mm lateral, for a distance
of 4.2 mm, and at an angle of 10° relative to the sagittal plane that
intersects the insertion site (the probe tip was more medial than the
probe base). In five other animals, a probe was implanted to target
ML, the dStr and the ventral striatum at the site 1.0 mm anterior and
2.4 mm lateral, for a distance of 8.4 mm, and at an angle of 15° rela-
tive to the coronal plane intersecting the insertion site (the probe tip
was more anterior than the probe base). In a final set of three rats,

aprobe was implanted to target the FOF and anterior dStr at 1.9 mm
anterior and 1.3 mm lateral, for a distance of 7.4 mm, and at an angle
of -10°relative to the sagittal plane intersecting the insertion site (the
probe tip was more lateral than the probe base). Spikes were sorted
into clusters using Kilosort2 (ref. 51), and clusters were manually
curated.

Muscimol inactivation. Infusion cannulas (Invivol) were implanted
bilaterally over the dmFC (4.0 mm AP, 1.2 mm ML) in three rats. After
the animalrecovered from surgery, the animal was anaesthetized, and,
onalternate days, a 600-nl solution of either only saline or muscimol
(up to 150 ng) was infused in each hemisphere. Half an hour after the
animal woke up from anaesthesia, the animal was allowed to perform
the behavioural task.

Retrograde tracing. To characterize anatomical inputs into the
dStr, 50 nl of cholera toxin subunit B conjugate (Thermo Fisher Sci-
entific) was injected into the dStr at 1.9 mm AP, 2.4 ML and 3.5 mm
below the cortical surface. The animal was perfused 7 days after
surgery.

Histology. The rat was fully anaesthetized with 0.4 ml ketamine
(100 mg ml™) and 0.2 ml xylazine (100 mg ml™) intraperitoneally,
followed by transcardial perfusion of 100 ml saline (0.9% NaCl, 0.3x
PBS, pH 7.0 and 0.05 ml heparin at 10,000 USP units per ml) and finally
transcardial perfusion of 250 ml of 10% formalin neutral buffered solu-
tion (Sigma, HT501128). The brain was removed and postfixed in 10%
formalinsolution for aminimum of 7 days. Sections (100 pm) were pre-
paredonaleicaVT1200 S vibratome and mounted on Superfrost Plus
glasssslides (Fisher) with Fluoromount-G (SouthernBiotech) mounting
solution and glass coverslips. Images were acquired on a Hamamatsu
NanoZoomer under x4 magnification.

Autonomous and input dynamics
The class of dynamical systems we study here is specified by

z=F(z,u) (2)

for some generic function F, with z the latent decision variable and u
the externalinput to the system from the auditory clicks in the behav-
ioural task. At each moment, there may be no click, aclick from the left
oraclick fromtheright. When time s discretized to sufficiently short
steps, uis one of three values:

[0;0] =0 representing when there is no click,
[1;0] representing when there is a left click or 3)
[0;1] representing when there is a right click.

u=

We define the autonomous dynamics of the system as
Z,ut0nomous = F(2,0) 4)
and the average input dynamics as
Zinpt = P(UZ) (F(z, u) - F(z, 0)) )

and, specifically, the average left and right input dynamics as

Zr=p(u=[1;0]1z)(F(z,[1; 0]) - F(z, 0)), ©)
Zigne = p(u=[0; 1112)(F(z,[0;1]) - F(z, 0)).

The sum of autonomous dynamics and average input dynamics is
equal to the expected value of Z computed over the distribution
p(ulz):



Elz]= ) p(ulz)F(z,u)

=p(u=0|z)F(z, 0) + p(u=[1; 0l|z)F(z, [1; 0])
+p(u=[0;1]lz)F(z,[0;1])

=(1-p(u=[1;0]iz) - p(u=[0;1]Iz))F(z, 0) ?)
+p(u=[1;0l1lz)F(z,[1; 0]) + p(u=[0;11lz)F(z, [0; 1])

=F(z,0) +p(u=[1;0]1z)(F(z, [1; 0]) - F(z, 0))
+p(u=[0;11|z)(F(z,[0;1]) - F(z, 0))

=Zyytonomous T Zjere ¥ Zight

Figure 2c shows a plot of Z,,;nomous, @aNd Fig. 2e shows a plot
of Zjgz and Ziighe- F(z, left) is defined as p(u=[1; 0]|z)F(z, [1; O]) +
(1-p(u=1I1; Ollz))F(z, 0), and F(z, right) is defined as p(u=
[0;111z)F(z, [0;1]) + (1 - p(u =[0; 1]|2))(F(z, 0).

Because p(u|z) = p(z|lu)p(u)/p(z) and p(z) in general do not have an
analytical form, we estimate p(u|z) numerically. To do this, we train
FINDR* to learn Fand generate click trains for 5,000 trials in away that
is similar to how clicks are generated for the task performed by our
rats. Next, we simulate 5,000 latent trajectories from the learnt Fand
the generated click trains. We then bin the state space of zand ask, for
asingle bin, how many times the latent trajectories cross that bin in
total and how many of the latent trajectories when crossing that
bin had u=[1;0] (or u=[0;1]). That is, we estimate p(u = [1;0]|z) with
No. latent states withu : [1; 0] i.nthebinthatcoversz . For Fig. 2’ because z is two

No. latent states in the bin that covers z
dimensional, we use bins of eight-by-eight that cover the state space
traversed by the 5,000 latent trajectories and weigh the flow arrows of
the input dynamics with the estimated p(u|z). Similarly, for the back-
ground shading that quantifies the speed of input dynamics in Fig. 2,
we use bins 0f 100-by-100 to estimate p(u|z) and apply a Gaussian filter
with 0 =2 (in the units of the grid) to smooth the histogram. A similar
procedure was performed for Extended Data Figs.1and 4 to estimate
p(ulz) numerically.

Speed of autonomous and input dynamics. To compute the normal-
ized difference in the speed of autonomous and input dynamics in
Fig.3c, similar to previous sections, we first generated latent trajecto-
ries fromthelearnt Ffor 5,000 different trials with generative click rate
ratios used in our experiments with rats. Next, we computed the mag-
nitude of the autonomous dynamics || Z,onomous!l @Nd the magnitude
of the average input dynamics (|| Zgg|| + || Zsgrell)/2 for each time point
foreachofthe 5,000 trajectories and then averaged across the trajec-
tories and across time periods defined in Fig. 3b to obtain Fig. 3c.

FINDR

Detailed descriptions are provided in ref. 20. Briefly, to infer velocity
vector fields (or flow fields) from the neural population spike trains,
we used a sequential variational autoencoder called FINDR.

FINDR minimizes alinear combination of two losses: one for neural
activity reconstruction (£,) and the other for vector field inference
(£,). Toreconstruct neural activity, FINDR uses adeep neural network
G that takes the spike trains of N simultaneously recorded neuronsy
andthesensory clickinputsuinagiven trial to obtain the time deriva-
tive of the d-dimensional latent decision variable z:

Z,=Z,t AtG(Zt, .7, yl:T) + nt’ t=1,23,.... (8)

Here, T is the number of time steps in a given trial, u, is a two-
dimensional vector representing the number of left and right clicks
played in atime step (At=0.015s), y,is an N-dimensional vector of the
spike countsinatimestep and n,isnoise drawn from N(0, A¢X) ineach
time step. 2 is a d-dimensional diagonal matrix in which the diagonal
elements need not be equal to each other. For each time step, FINDR
infers the firing rates of N simultaneously recorded neurons r, from
z,with

r,=softplus(Wz,+b,), (9

where softplus is a function approximating the firing rate-synaptic
current relationship (f~/ curve) of neurons, Wis an N x d matrix rep-
resenting the encoding weights and b, is an N-dimensional vector
representing the putatively decision-irrelevant baseline input. The
baselineb,islearnt before fitting FINDR using the procedure described
in Baseline and in detail in the Supplementary Methods, section 1.2.
Thereconstruction loss is given by

T
Ly=- Z log Poisson(y,|r,). (10)

t=1

For vector field inference, we parametrize the vector field Fwith a
gated feedforward neural network®>%
27y

Z=———=F(Z, pp,u,).

At 1)

F gives the discretized time derivative of z. We find the vector field
Fthat captures thelatent trajectories zinferred from Gin equation (8)
by minimizing

.
Ly= Y (Fz,u) -Gz, ur, Y, V'S (Fz, u)
t=1

(12)
- G(Zt' l‘lI:T' yl:T))‘
The total loss that is minimized by FINDR is
L=Li+cL,, (13)

where c=0.1is a fixed hyperparameter (c= 0.0125 in Extended Data
Fig.1g). FINDR minimizes £ by using stochastic gradient descent to
learn W, 2, the parameters of the neural network representing F and
the parameters of the neural network G. It can be shown that L is an
approximate upper bound on the marginal log likelihood of the data
and that training FINDR this way is equivalent to performing inference
and learning with a sequential auto-encoding variational Bayes algo-
rithm that straightforwardly extends the standard auto-encoding
variational Bayes algorithm*.

After training, we plot the vector field (that is, a grid of Z) using the
learnt F and generate FINDR-predicted neural responses using equa-
tion (9) and

Z,=Z, 5+ ALF(Z,_ 5 0p) +1,. (14)

Equation (14) is an Euler-discretized gated neural stochastic dif-
ferential equation®**2,

Parameters. The total number of free parameters Pof the FINDR model
is given by

P=Py+P+P+F,

Py, =Nxd,

P=d,

P: € {90 +(64+d)d, 150 + (104 + d)d, 300 + (204 + d)d},

P; € {15,900 + 300N +100x + P, 61, 800 + 600N + 200x
+ Pr, 243,600 +1,200N +400x + P:}.

(15)

Py, is the number of parameters in the encoding weight matrix W,
the dimensions of which are the number of neurons Nand latent dimen-
sionality d. Py is the parameter count in the diagonal covariance 2 of
the additive Gaussian noise of the latent z. The number of parameters
inthe neural networks parameztrizingF(PF) and G(P;) are separate hyper-

_ Pp-d+d
parameters. Here, x= “2d+3
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Hyperparameters. The hyperparameters that were optimized (P,
P;and a) include the number of parameters of the network F(P;), the
number of parameters of the network G(P;) and the learning rate
a e {1072,10™%,107%,107°%7,10°%}. We identify the optimal values
forthese hyperparametersina3 x 3 x 5=45grid search. The grid search
was performed separately for each set of training data for each of five
crossvalidation folds. In each training set, three-quarters of the trials
were used to the optimize the parameters under a given set of hyperpa-
rameters and the remaining one-quarter was held out to evaluate the
model performance for that set of hyperparameters. Test data were
never used in the grid search.

Latent space transformation. Because the encoding weight matrix W
is not constrained to semi-orthogonality and can take only any real
values, different combinations of Wand z, can give rise to the same
firing rate vector r,, even when baseline b, is fixed. To uniquely identify
the latent trajectories (except for redundancy from rotations and
reflections), after optimization, we linearly transformed the latent
spaceztoZ:

Z,=5V'z, (16)
where Sis a d x d diagonal matrix containing the singular values of W
and Vis ad x d matrix containing the right singular vectors

w=Usv'. (17)

Uis an N x d matrix containing the left singular vectors of W (where
Nis the number of neurons). In the space of Z, the encoding weight
matrix is a linear transformation that preserves angles and distances
because Uis semi-orthogonal and canonly give rise to anisometry such
as rotation and reflection.

Wz= UstTz 18)
=Uz

To obtain meaningful axes for the transformed latent space Z, we
generate 5,000 different trajectories of Z in generative mode (that is,
using Fand 2 in equation (14) but not G) and perform PC analysis on
the trajectories. The PCs were used to define the axes of the decision
variable Z. In the main text, the PC1 axis of Zwas denoted as z, and the
PC2 axis of Z was denoted as z,. In all our analyses, the latent trajecto-
riesand vector fields inferred by FINDR are shown in the transformed
latent space of Zand scaled such that the latent trajectories along PC1
liebetween-1and 1.

Sample zone. In Figs. 2 and 3, to focus on the portion of the inferred
vector field that is used by the single-trial trajectories, we show only
the well-sampled subregion of the state space, which is the portion
occupied by at least 50 of 5,000 simulated single-trial latent trajec-
tories of 1s. With this definition, the sample zone is the same across
time pointsin Fig. 2h.

Model evaluation. The goodness of fit of the PSTH was quantified
using the coefficient of determination (R?) of the evidence-sign condi-
tioned PSTH as defined in equation (34) using fivefold cross-validation.
We used three-fifths of the trials in a session as the training dataset,
one-fifth of the trials as the validation dataset to optimize the hyper-
parameters of FINDR and one-fifth of the trials as the test (that s,
out-of-sample) dataset to evaluate performance of FINDR. Therefore,
when we compute the goodness of fit, we also obtain five different
vector fields inferred by FINDR for each fold, which we confirm are
consistent across folds (Extended Data Fig. 4).

Curvature of trial-averaged trajectories. To compute the curvature
of trial-averaged trajectories in Fig. 3b, as before, we first generate

latent trajectories from FINDR for 5,000 different trials with gen-
erative click rate ratios used in our experiments with rats. Next, we
separate the trials on the basis of whether the generative click ratio
in a given trial favours a leftward choice or a rightward choice. We
take the average of the latent trajectories over the left-favouring
trials and then convolve the trial-averaged trajectory with a Gauss-
ian filter with 0 =3 (in units of the time step At = 0.01s). We take this
smoothed trajectory to numerically compute the planar curvature.
We do the same for the right-favouring trials and take the average
between the curvature obtained from left-favouring trials and the
curvature obtained from right-favouring trials to generate the plot
inFig.3b.

cFINDR. The cFINDR model replaces the neural network parametriz-
ing Fin FINDR with alinear combination of affine dynamics, specified
byMand N, and bistable attractor dynamics specified by ¢. The dynam-
ics are furthermore constrained to be two dimensional.

z= % =F(Z, pyU) =MZ g+ Nu +5x (2, 4,),
M=QAQ™,
z[l sin(6) }
0 cos(d ] 19)
|0 O
A _[0 —r}’

@(z,)=-exp(-(z,-x)*/p) © (z,~X)
-exp(—(z, +x)?/p) © (z, +X).

The matrix Mimplements aline attractor located at z, = 0. The inputs
u, are the same as those in FINDR and represent the auditory clicks.
Thetwodiscrete attractors are constrained such thatx, = 0andimple-
mented through the function ¢. The shape of the basin of attraction
corresponding to each pointattractor is specified by the parameter p.
Therelative contribution of the discrete attractors and the line attrac-
tor to the overall dynamics is specified by the scalar s.

The DDM line attractor hypothesis can be implemented in cFINDR
by setting @ = 0. Non-normal dynamics with a line attractor? can be
implemented by setting 8 # 0. The bistable attractor hypothesis can
be implemented by increasing p.

Asin FINDR, cFINDR learns W, > and parameters of G. Instead of the
neural networks parametrizing F, cFINDR, learns s, 6, r, X, p and the
2 x 2matrix Ntoapproximate F, which has nine parameters. The same
objective function and optimization procedure were used in cFINDR.
After optimization, as in FINDR, the latent space z is linearly trans-
formed to uniquely identify the dynamics (except for arbitrary rota-
tions or reflections). Asin the analysis of results from FINDR, the latent
trajectories and vector fields inferred by cFINDR are in the transformed
latent space Z.

When we fit cFINDR to the data, we experimented with the different
constraints r> 0 and r > 3. The fits using r > 0 were superior to those
using r>3and were therefore used in the comparison between cFINDR
and FINDR for the data presented in Fig. 3e,f. We were motivated to try
bothr> 0 and r> 3 because we found that, in synthetic data, cFINDR
under the constraint r> 0 could not recover the dynamics generated
under the DDM line attractor hypothesis (r =10). For this reason,
Extended Data Fig. 5f shows results from synthetic data using r > 3.
Whenfittodata, FINDR outperforms cFINDR using eitherr>0orr>3.

FINDR models with more than two latent dimensions. For Extended
Data Fig. 3j,k, we evaluated FINDR models with more than two latent
dimensions to assess whether the two-dimensional manifold we found
isapproximately an attractor. To show that the sample zone was an
approximate attractor manifold, we perturbed the latent states on the
manifold along the third PC direction. When the latent states were



perturbed (but not so far that the latent states went outside the range
along the PC3 axis covered by the sample zone), the latent states flowed
towards the manifold. To obtain the flow directions along PC3, we first
generated 5,000 latent trajectories (similar to Fig. 2 for computing the
sample zone). We then divided the PC1 x PC2 space into an eight-
by-eight grid (the grid used for the vector field arrows in Extended Data
Fig.3i).Foreachcellinthegrid, weidentified the latent states from the
5,000 trajectories that were inside the cell and identified the highest
(lowest) PC3 value z3“p(z3d"). This was to ensure that the perturbation
along the PC3 axis was not too large. Next, we computed the flow vec-
tor using a 100-by-100 grid on the PC1 x PC2 space, assuming that
PC3 =ziP(z{" and PC4 = 0. The space covered by each cell of the grid
is coloured on the basis of the direction of the flow vector along PC3:
ifflowing upwards, green; if flowing downwards, pink. A Gaussian filter
was applied to thisheat map with o =2 (in units of the 100-by-100 grid),
similar to the heat map for input dynamics in Fig. 2f. The resulting
plotisshown onthe left (right) panel. Results were similar without the
Gaussian filter.

Choice decoding from FINDR. FINDR does not use the choice of the
animal for reconstructing neural activity. However, after training, we
can fit a logistic regression model that predicts the choice of the ani-
mal from the decision variable z at the final time step 7. When we fit
an ¢,-regularized logistic regression model using z; from the trained
network G and the choice of the animal in the representative session
inFig. 2c-h, we found that the logistic choice decoder achieves 89.7%
accuracy in predicting choice in the out-of-sample dataset. We can
generate choices from this decoder by generating latent trajectories
using Fand Yinequation (14) asin previous sections and by supplying z;
tothetrained decoder. A total of 5,000 latent trajectories and choices
generated from Fand the choice decoder were used for the analysisin
Extended DataFig. 41. We used a separate logistic regression model for
predicting choice fromthelatent trajectories truncated attime = 0.33 s
projected onto PC2. Optimization of the logistic regression models
was carried out using L-BFGS™>.

MMDDM

The MMDDM is astate-space model, comprising adynamic model that
governs the time evolution of the probability distributions of latent
(thatis, hidden) states and measurement models that define the con-
ditional distributions of observations (that is, emissions) given the
latent state. Additional informationis provided in the Supplementary
Methods, section1.3.

Dynamic model. The latent variable zis one dimensional (that is, a
scalar), and its time evolutionis governed by a piecewise linear function:

z(t)+u(t)+n,-B<z(t)<B

2
B - sign(z(t)), otherwise. (20)

z(t+1)={

When the absolute value of zis less than the bound height B (free
parameter), its time evolution depends on momentary external input u
andi.i.d. (independent and identically distributed) Gaussian noise .

n~-Mao,Ap), (21)

where Atis the time step and set to 0.01s. Here, ~ means ‘distributed
as’. When zis either less than -B or greater than B, it becomes fixed at
the bound. The initial probability distribution of zis given by

2(e=1)~ My, 1), 2)

where the mean 1, is a free parameter. In time step ¢, the input u(¢) is
the total difference in the per-click input v between the right and left
clicks that occurred in the time interval (¢ - A¢, t):

u®)=y vt;o- Y v(wo),

TER TEL

(23)

where L(R) is the set of the left (right) click times and v(7; ¢) is the per-
clickinputofaclick occurring attime rand time step t. Notethat7 € R
indicates continuous time, whereas ¢t € N indexes a time step. The
per-click input is given by

v(t; t)=D(1; 1) - C(7) -, (24)

where D(7; t) indicates the integral over the interval [t — A¢, ¢) of the
Dirac delta function 6 delayed by 7:

1, t€[t-At0)

25
0, otherwise, (25)

D(;¢) =J‘::t S(x—T1)dx= {

where ¢ is the machine epsilon. To account for sensory adaptation,
the per-click input is depressed by preceding clicks by a time-varying
scaling factor given by the function C(7), implemented according to
previous work* (Supplementary Methods, section 1.3.1). The per-click
inputis corrupted by i.i.d. multiplicative Gaussian noise (¢

{-M1,09). (26)

The free parameter gis the variance of the per-click noise. Variabil-
ity inthe dynamic modelis fit to the data through the per-click noise ¢
rather than per-time step noise 7 on the basis of previous findings*;
ourresultsare similarif we set the variance of prather than the variance
of {as afree parameter.

The dynamic model has three free parameters: bound height B,
variance o2 of the per-click noise and mean y1, of the initial state. These
parameters are learnt simultaneously with the parameters of the meas-
urement models.

Measurement model of behavioural choices. In each trial, the binary
behavioural choice c (1, right; O, left) isthe sign of zin the last time step
Tofthetrial (theearlier of 1 s after the onset of the clicks orimmediately

before the animal leaves the fixation port):
c|z(T) =sign(z(T)). (27)

Measurement model of spike counts. In each time step ¢, given the
value of z, the spike count y of neuron nis a Poisson random variable

YD (8)|2(¢) - Poisson(A P (6)Ad). (28)
Thefiring rate 1is given by
A2(0)12(t) = h(w™ - 2(t) + b(0)), (29)

where h(-)isthe softplus function used to approximate the neuronal
frequency-current curve of a neuron:

h(x) =log(1+exp(x)). (30)
The encoding weight w depends on zitself:
w_ | WX, ~B<z<B -

wi?, ze {-B, B}.

Each neuron has two scalar weights, w, and wy, that specify the
encoding of the latent variable during the evidence accumulation
regime and the decision commitmentregime, respectively. When the
latent variable has not yet reached the bound (-B or B), all simultane-
ously recorded neurons areinthe evidence accumulation regime and
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encode the latent variable through their own private wg,. When the
bound is reached, all neurons transition to the decision commitment
regime and encode z through their own wp..

The bias b accounts for factors that are putatively independent of
the decision, including acomponent that varies only across trials and
another component that varies both across and within trials:

B, €) = begoss(m) + byidnin(m, 0). (32)

The cross-trial trial component bc(fgssis afunction of time mfromthe
first trial of the session, whereas ¢ indicates time in each trial relative
tothe stimulus onset of that trial. The within-trial component consists
oftime-varyinginfluence from spike history, post-stimulus (stim) onset
and pre-movement (move) onset.

byithin(m, t) = Ts(tri"n)](kstim * 6)(t) + Trgﬁz,e(kmove x 0)()
+ z,- Ts([,)rill;ie)(kspike* 6)(0,

where the symbol * indicates convolution, 7, indicates translation
T,.k(t) = k(t - 7,) by the time of event x and §is the Dirac delta function.
The functions b, Ketim Kmover kspike are learnt, and each is para-
metrized as a linear combination of radial basis functions*®>* (Sup-
plementary Methods, section 1.5). The measurement model of each
neuron of the spike train has 19 parameters that are learnt simultane-
ously with the parameters of the dynamic model (that is, the model of

thelatent variable).

(33)

Parameter learning. All parameters, including the three parameters
ofthelatentvariable and the 19 parameters private to each neuron, are
learnt simultaneously by jointly fitting to all spike trains and choices
using maximum a posteriori estimation. Gaussian priors were placed
on the model parameters to ensure that the optimization reached a
critical point and confirmed to not change the results in separate opti-
mizations using maximum likelihood estimation (thatis, optimization
without Gaussian priors). Out-of-sample predictions were computed
using fivefold cross-validation.

nTc. The time step when decision commitment occurred is selected
tobewhenthe posterior probability of the latent variable at either the
left bound or the right bound, given the click times, spike trains and
behavioural choice, is greater than 0.8. Results were similar for other
thresholds, and the threshold of 0.8 was chosen to balance between
prediction accuracy and the number of trials for which commitment
was predicted to have occurred. Using this definition, commitment
occurred in 34.6% of trials.

Engagement index. The engagement index was computed for each
neuron to quantify its involvement in evidence accumulation and
decision commitment. The index was defined using w;, and wy. of the
neuron: El = (|wea| = [wpcl)/(|weal + lwpcl). It ranges from-1to 1. Aneuron
with anengagementindex of —-1encodesthelatent variable only during
decision commitment, an engagementindex of lindicatesinvolvement
only during evidence accumulation, and an engagement index of O
represents a similar strength of encoding the latent variable during
evidence accumulation and decision commitment.

Analyses

Neuronal selection. Only neurons that meet a preselected threshold
for being reliably choice selective were included for analysis. For each
neuron, reliable choice selectivity was measured using the area under
the receiver operating characteristic curve (auROC) indexing how
well anideal observer can classify between a left-choice trial and a
right-choice trial on the basis of neuronal spike counts. Spikes were
counted in four non-overlapping time windows (0.01-0.21s, 0.21-
0.45,0.41-0.6 sand 0.61-0.9 s after stimulus onset), and anauROC was

computed for each time window. A neuron withanauROC < 0.42 oran
auROC > 0.58for any of these windows was considered choice selective
and included for other analyses. Moreover, neurons must have had
an average firing rate of at least two spikes per s. Across sessions, the
median fraction of neurons included under this criterion was 10.4%.

PSTH. Spike times were binned at 0.01 s and were included up to1s
after the onset of the auditory stimulus (click trains) until 1 s after the
stimulus onset or until the animal removed its nose from the central
port, whichever came first. The time-varying firing rate of each neuron
in each group of trials (that is, task condition) was estimated with a
PSTH, which was computed by convolving the spike train on each trial
with a causal Gaussian linear filter with a standard deviation of 0.1s
and awidth of 0.3 s and averaging across trials. The Cl of a PSTH was
computed by bootstrapping across trials.

The goodness of fit of the model predictions of the PSTH was quan-
tified using the coefficient of determination (R?), computed using
fivefold crossvalidation. R* was computed by conditioning the PSTH
oneitherthe sign of the evidence (that is, whether the generative click
ratioinagiven trial favoured a leftward choice or a rightward choice)
or the choice of the animal:

SSres
SStOt

S&%=zt«%ﬂﬁmm—PﬂH;mmﬁ
+(PSTHGps(6) = PSTHG o4(0)?)

SSii= 2, ((PSTHR, (1) ~ B [PSTHR, (O]

+(PSTHL((6) - B IPSTHE,(0)])?),

R*=1-

(34)

where tis timein a trial that goes from O sto1s, with O s being the
stimulus onset. The superscripts ® and * indicate either the sign of
the differencein the total number of right and left clicks or the choice of
theanimal. The subscripts,,, and ‘.4 indicate whether the PSTH was
computed using observed neural activity or model-predicted neural
activity. SS,. is the residual sum of squares, and SS,,, is the total sum
of squares.

Anormalized PSTH was computed by dividing the PSTH by the mean
firing rate of the corresponding neuron across all time steps across all
trials. When PSTHs were separated by ‘preferred’ and ‘null’, the preferred
task condition was defined as the group of trials with the behavioural
choice when the neuron responded more strongly and a null task condi-
tion was defined as the trials associated with the other choice.

Choice selectivity. InFig. 6 and Extended Data Fig. 2m, for each neuron
andforeachtimesteptalignedtothe onset of the auditory click trains,
we computed choice selectivity c(¢):

r(®-@)

0= =)

(35)

where rand [ are the PSTHs computed from trials ending in a right
choice and aleft choice, respectively. The time step ¢* is the time of
the maximum absolute difference:

t*=argmax |r(¢) - ((2)]. (36)

In Extended Data Fig. 2m, neurons are sorted by the centre of mass
of the absolute value of the choice selectivity of each neuron.

Baseline. In FINDR, cFINDR and MMDDM, the neuronal firing rate
depends on a time-varying scalar baseline. In time step ¢ of trial m,
conditioned on the value of the latents in a given time step, the spike
countyofeachneuronisgiven by



y(m, t)|z(m, t) - Poisson(h{w'z(m, t) + b(m, t)}), (37)
where his the softplus function and w is the encoding weight of the
latent. The baseline b incorporates putatively decision-independent
variables asinput to the neural spike trains including slow driftsin firing
rates across trials and faster changes in each trial that are aligned to
either the time from stimulus onset or the time from the animal leav-
ingthe fixation port. The baselineis learnt using a Poisson generalized
linear model fit separately to the spike counts of each neuron. Details
are provided in the Supplementary Methods, section1.2.

PCTH. In trials for which a time of decision commitment (nTc) could
beinferred, the spike trains were aligned to the predicted time of com-
mitment and then averaged across those trials. The trial average was
then filtered with a causal Gaussian kernel with a standard deviation
of 0.05s. The PCTHs were averaged in each of three groups of neurons:
(1) neuronsthat were similarly engaged in evidence accumulation and
decision commitment; (2) neurons more strongly engaged in evidence
accumulation; and (3) neurons more strongly engaged in decision
commitment. Each neuronwas assigned to one of these groups accord-
ing to its engagement index. Neurons with —% <El< %are considered
to be similarly engaged in evidence accumulation and decision com-
mitment, neurons with EI > % are considered to be more strongly
engaged in evidence accumulation, and those withEl < - % are con-
sidered to be more strongly engaged in decision commitment.

For thisanalysis, we focused on only the 65 of 115 sessions for which
the MMDDM improved the R? of the PSTHs and for which the inferred
encoding weights were reliable across cross-validation folds (R*> 0.9).
Fromthis subset of sessions, there were 1,116 neurons similarly engaged
inevidence accumulation and decision commitment, 414 neurons that
were more engaged in decision decisioncommitmentand1,529 neurons
that were more engaged in evidence accumulation.

To compute the shuffled PCTH, the predicted times of commitment
were shuffled among only the trialsin which commitment was detected.
Ifthe randomly assigned commitment time extended beyond the length
of the trial, then the time of commitment was assigned to be the last
time step of that trial.

Trial-averaged trajectories in neural state space. To measure
trial-averaged dynamicsin neural state space, we analysed PCsinadata
matrix made by concatenating the PSTHs. The data matrix X has dimen-
sions TC-by-N, where T is the number of time steps (T=100), Cis the
number of task conditions (C =2 for choice-conditioned PSTHs and
C=4for PSTHs conditioned on both choice and evidence strength)
and Nis the number of neurons. The mean across rows is subtracted
from X, and singular value decomposition is performed: USV" = X. The
principal axes correspond to the columns of the right singular matrix
V, and the projections of the original data matrix X onto the principal
axes correspond to the left singular matrix (U) multiplied by S, the
rectangular diagonal matrix of singular values. The first two columns
of'the projections US are plotted as trajectories in neural state space.

Psychophysical kernel. Kernels were time locked to either nTc of
eachtrial (Fig.5d and Extended DataFig. 7a-d) or thefirstclickin each
trial (Extended Data Fig. 7e-h). We extended the logistic regression
model presentedinref. 55toinclude alapse parameter (Supplementary
Methods, section1.4),and we confirmed that results were similar using
genericlogistic regression. A shuffling procedure was used to randomly
permute the inferred time of commitmentacross trials without chang-
ingthe behavioural choice and the times of the auditory clicks oneach
trial. In this randomly permuted sample, we selected trials for which
the auditory stimuli were playing atleast 0.2 sbeforeand atleast 0.2 s
after theinferred time of commitment to compute the psychophysical
kernelinthe shuffled condition. For Fig. 5d, the prediction was gener-
ated using the MMDDM parameters that were fit to the data and the

same set of trials in the data. For Extended Data Fig. 7, temporal basis
functions were used to parametrize the kernel, and the optimal number
and type of basis function were selected used crossvalidated model
comparison.

Statistical tests. Binomial Cls were computed using the Clopper-
Pearson method. All other Cls were computed with a bootstrapping
procedure using the bias-corrected and accelerated percentile meth-
od?*. Unless otherwise specified, P values comparing medians were
computed using a two-sided Wilcoxon rank-sum test, which tests the
null hypothesis that two independent samples are from continuous
distributions with equal medians against the alternative hypothesis
thatthey are not.

Estimating the low-dimensional vector field without specifying
a dynamical model. For Extended Data Fig. 10d, we estimated the
low-dimensional velocity vector field for each session using amethod
that does not specify a dynamical model (model-free approach). To
obtain the model-free vector field, we first estimated single-trial fir-
ingrates of individual neurons by binning the spike trains into bins of
At =10 msand convolving the spike trains witha Gaussian of 6 =100 ms
centred at 0. Results were similar for other values of around 100 ms.
Next, for each neuron, we took the average across all trials in the session
and subtracted this average from single-trial firing rate trajectories.
These baseline-subtracted firing rate trajectories were then projected
to the low-dimensional subspace spanned by the FINDR latent axes. We
projected the estimated firing rates to the same subspace as FINDR to
allow direct comparisons between the FINDR-inferred vector field and
the model-free vector field.

Wetreated this low-dimensional projection of the baseline-subtracted
firing rates as the latent trajectories in this model-free approach. To
obtain velocity vector fields from the latent trajectories, we first esti-
mated the instantaneous velocity Z at time point t by computing
z,=(z,—z,_,.)/At for all ¢ for all latent trajectories. We then divided
the two-dimensional latent space into an eight-by-eight grid. For each
cell (i,j) from this eight-by-eight grid, we identified all states z, from
alltrajectoriesthat fellinside the cell (i,j). We took the corresponding
z, of theidentified z, values and took the average to compute the velo-
city for the cell (i,j). We computed velocity vectors for all 64 cells. To
compare vector fields, we took the cosine similarity between the veloc-
ity vector for cell (i,j) from FINDR and the velocity vector for cell (i, )
from the model-free approach and took the mean of these cosine
similarities, S.(FINDR, model free). In computing S.(FINDR, model
free), only cells thathad anumber of states greater than 1% of the total
number of states were included. When the number of states used to
estimate the velocity vector was less than 1% of the total number of
states, we considered that cell (i, ) to be outside the sample zone,
analogous to the sample zone in Fig. 2.

To compare between arandom vector field and the model-free vec-
tor field, we generated 1,000 random vector fields (with each of the
64 arrows in the eight-by-eight grid going in random directions) for
each session and computed S.(random, model free) for each random
vector field.

For Extended DataFig.10e, we estimated the autonomous dynamics
vector field around the origin as a model-free way of confirming our
findingsin Extended Data Fig.10a. Similar to the method for Extended
Data Fig. 10d, we convolved the spike trains with a Gaussian and pro-
jected the baseline-subtracted firing rate trajectories to the low-
dimensional subspace spanned by the FINDR latent axes. However,
to separate autonomous dynamics from input dynamics, we used a
Gaussian with a smaller ¢ (20 ms), with a window size +3g around O,
andthenexcluded anyz,,;, with time tfor whichaclick occurred from
the estimation of the autonomous dynamics. When computing the
average of (z,— z,_,,)/At for one of the five pie slices, we required z,_,,
to beinside the pie slice. For all sessions, the circle had a radius of 0.2
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(in units of z). To further ensure that we estimated the autonomous
dynamics, when computing the average, we only considered the tra-
jectories for which the number of left clicks was equal to the number
of right clicks during the epoch when they were in the pie slice.

Inclusion and ethics statement
The animal procedures described in this study were approved by the
Princeton University Institutional Animal Care and Use Committee.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.
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able at Dryad® (https://doi.org/10.5061/dryad.sj3tx96dm).

Code availability

Custom acquisition, postprocessing and analysis code is available at
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github.com/Brody-Lab/findr/). Code implementing MMDDM is avail-
able at GitHub (https://github.com/Brody-Lab/fhmddm), and code
for baseline estimation is available at GitHub (https://github.com/
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Extended DataFig.1|FINDR canbe used todistinguish betweenthe
dynamical systems hypotheses of perceptual decision-making. In these
hypotheses, the decision process is represented by the state of adynamical
system, whichwe refer to as the “decision variable (z)” and is depicted as two-
dimensional here but may have fewer or more dimensions. An attractorisaset
of states for which the dynamical system tends to move toward, from a variety
of starting states. When zisinanattractor state, small perturbations away from
theattractor tend toreturnthe systemtoward the attractor. Anattractor can
implement the commitment toachoice and the maintenance of the choicein
working memory. a, Inallthese hypotheses, the attractors are implemented by
the autonomous dynamics, which corresponds to the deterministic dynamics F
inthe absence ofinputsand depends only on zitself. In the bistable attractors
hypothesis, there are two discrete attractors, each of which correspondstoa
choicealternative. In the DDM line attractor hypothesis, the autonomous
dynamics formnot only two discrete attractorsbutalsoaline attractorin
between. Theinterveninglineattractor allows an analog memory of the
accumulated evidence when noiseis relatively small. In the line attractor
hypothesis with non-normal dynamics, the autonomous dynamics formaline
attractor, and aseparate readout mechanismis necessary for the commitment
toadiscrete choice. b, The autonomous speed is the magnitude of the
autonomous dynamics. Adark region corresponds to asteady state, which can
beanattractor, repeller, or saddle point. In the bistable attractors hypothesis,

theleftandrightsteady states are each centered onanattractor,and themiddle
isasaddle point.Inboththe DDMline attractor hypothesis and the hypothesis
that has non-normal dynamics with aline attractor, the steady states correspond
toattractors. c-d, Input dynamics corresponding to aleft and right auditory
pulse, respectively. Here we show the “effective” input dynamics, whichis
multiplied by the frequency p(u | z) to account for the pulsatile nature and the
statistics of the stimuliin our task (in contrast to Fig. le,in which the input
dynamics were presented without the multiplication of the frequency, whichis
appropriate for stimuli that are continuous over time). Whereasin the bistable
attractorand DDMline attractor, theinputs arealigned to the attractors, inthe
hypothesis that has non-normal dynamics with aline attractor, theinputsare
notaligned. e, Theinput speedis the average of the magnitude of the average
leftinput dynamics and the magnitude of the average right input dynamics.

f, We simulated spikes that follow the bistable attractor dynamicsina-eto
createasynthetic dataset with the number of trials, number of neurons, and
firing rates thatare typical of the values observed in our datasets. Then, we fit
FINDR to thissynthetic dataset fromrandomiinitial parameters. The autonomous
and inputdynamicsinferred by FINDR qualitatively match the bistable
attractors hypothesis. g-h, FINDR-inferred dynamics qualitatively match the
dynamicsinFig.1f-h and a-e.In panel g, the sample zone covers the entirety of
the plotted area.
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Extended DataFig.2|Behavioral performance, histologicalslices,

anatomical tracing, causal necessity of dmFC, and the temporal profiles of

individual neurons notbeing not consistent with an one-dimensional

neural encoding of the latent variable in the drift-diffusion model (DDM).

a, Psychometric functions of each of the twelve rats recorded aggregated

acrossrecording sessions. b, Histologicalimages of probe tracks. Each color
indicates a probe chronicallyimplantedinarat. ¢, Dorsomedial frontal cortex
(dmFC) provides amajor input to the anterior dorsal striatum (dStr).d, dmFC

is causally necessary for the auditory decision-making task studied here.
N =23,298saline trialsand 22,428 muscimol trials. Error bars indicate 95%
binomial confidenceintervals. e, Inthe DDM, noisy inputs are accumulated

over time through ascalar latent variable () until the value of zreaches a fixed

bound, which triggers the commitment toachoice.f, In simulations of the
DDM, zramps quickly when the evidence strengthis strong and more slowly

whenthestrengthis weak. g, Responses averaged across both trials and neurons

resemble the trajectories of zaveraged across simulations. Only choice-
selective neurons wereincluded. Spikes after the animal began movement

(i.e.,removedits nosein the center port) were excluded. For this analysis only,
error trialswere excluded. N =1324 (dmFC),1076 (mPFC),1289 (dStr), 714 (vStr),

822(M1),163 (FOF). h, The responses of asimulated neuron encoding the
DDM with asingle neural mode show the ramping dynamics. Shading indic
thebootstrapped 95% confidence interval of the trial-mean of the filtered

ates

response. i, Aneuronwith aramp profile. j, Aneuronrecorded from the session
with choice selectivity that decays over time. k, A neuron exhibiting a substantial

delayinits choiceselectivity.l, Aneuron whose choice selectivity flipsin i

gn.

m, The diversity of the temporal profile of the choice selectivity of individual

neuronsisnot consistent with aone-dimensional encoding of the DDM.
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Extended DataFig.3|FINDR canwell capture the neural responses and
reveals 2-dimensional decision-making dynamics. a-b, FINDR captures
theunderlying firing rates of the single-trial responses of individual neurons
fromtherepresentative sessioninFig.2.c, FINDR captures the complex trial-
averaged dynamics of individual neurons from the representative sessionin
Fig.2ascanbeseeninthe peristimulus time histograms (PSTH). The goodness-
of-fitismeasured using the coefficient of determination (R%).Bold lineindicates
out-of-sample prediction by FINDR, and the shading indicates 95% confidence
intervalfromthe observed PSTH. d, FINDR captures the single-trial and trial-
averaged responses of individual neurons pooled across 27 sessions. For the
histogram showing single trials pooled across sessions, 34 trials thathad R*< 0
arenotshown.Resultsina-d are 5-fold cross-validated. e, Across different
FINDR models with latent dimensions (d) ranging from1to 4, we computed

the median of the coefficient of determination (R?) of the evidence-sign
conditioned peri-stimulus time histogram (PSTH) of neurons pooled across
sessions (n=2105).f, The median differenceintheR*betweend=2andd =1
issignificantly different fromzero (p < 0.001; Wilcoxon signed-rank test).
Although the median differences are also significant for the comparison
betweend =3 andd=2andthecomparisonbetweend=4andd =3,the
magnitude of the differenceis relatively small (0.0098 and 0.0075, respectively)
compared to the median difference betweend =2andd =1(0.0423).g, We
repeated the analysis in fwithout pooling neurons across sessions. Instead,

PSTH R?

z(PC’I) z(PC1

foreach session, we computed the median PSTHR?across neuronsrecorded
within that session. Each circle corresponds to asession, and afilled circle
indicates asignificant difference in the PSTHR?between FINDR models of
different dimensionalities (p < 0.001; two-sided Wilcoxon signed-rank test;
Supplementary Information 2.2). h, For FINDR models with either 3 or 4 latent
dimensions, more than 97% of the variance is captured by the first two principal
components (PC’s). PCAwas done separately for each session, and the error
barsindicate the 95% confidence interval of the median across sessions (n=27).
i, Formodels with2 or more dimensions, the vector fields and trajectories
projected onto the first two dimensions are qualitatively similar. The vector
fields and trajectories were shown for the representative sessionin Fig.2. The
dashedlines demarcate the well-sampled subregion of the state space (i.e., the
samplezone).j, We evaluated FINDR models with latent dimensions higher
thantwo to see whether the two-dimensional manifold relevant to decision-
making dynamicsis anapproximate attractor manifold. The variance explained
by the third PCin the FINDR model with three-dimensional latent dynamics
waslessthan 0.5% (as shownin h-i), so we turned to the FINDR model with
four-dimensional dynamics. In this model, the variance explained by the third
PCwasaround1.3%. We perturbed the latent states on the manifold along the
PC3direction.k, Whenthelatent states are perturbed (but not too far that the
latent states go outside the range along the PC 3 axis covered by the sample
zone; see Methods for details), the latent states flow toward the manifold.
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Article

Extended DataFig. 4 |Consistency in FINDR-inferred dynamics. a, FINDR-
inferred input and autonomous dynamics are consistentacross 5 different
cross-validation folds as shown for the same sessionin Fig. 2. b, Normalized
differencein the speed between autonomous and input dynamics for five
different time periods (“start (time=0s)” “early”, “pre-peak”, “post-peak”, and
“late”) is consistent across folds (n=27; seeFig. 3c). ¢, The direction of motion
ofthetrial-averaged trajectories andits angle with respect to the z;-axis for
different time periodsis consistent across folds (n =21out of 27 sessions; see
Fig.3d).d, Variability in the dynamics across sessions dependsin parton the
variability in the behavioral performance. For each each session, behavioral
sensitivity was estimated as the parameter 3 inaprobit model p(y | x) = ®(B*x +c¢),
whereyistherat’sleftvs.rightchoice oneachtrial, x thelog-ratio of the right
vs.left click rate on that trial, ® the normal cumulative distribution function,
cthe constantterminthe probit model. The two-sided p-value of the Pearson’s
correlation was computed using a Student’s t-distribution for a transformation
ofthe correlation. Pink marker indicates the example session. e, The linear
correlation between the difference in autonomousvs. input dynamics and
behavioral sensitivity was negative for all epochs, but reliable only for the pre-
peakepoch. The 95% confidence intervals were computed by bootstrapping
acrosssessions (n=27).f, FINDRreliably recovers the FINDR-inferred dynamics.
After fitting FINDR to adataset, the model parameters were used to simulatea
synthetic dataset using the exact same set of sensory stimuliin the real dataset
and containing the same number of neurons and trials. From new initial

parameter values, FINDR was fit to the simulated data to infer the “FINDR-
generated” vector fields. g, FINDR s fit to both choice-selective and non-
selective neurons. We find similar dynamics to when FINDR s fit to only choice-
selective neurons. h, We find vector fields that are consistent across multiple
differentrandomseeds that change theinitializationin the deep neural
networks of FINDR and the order inwhich the mini-batches of the training data
aresupplied to FINDR during training. i, Curved trial-averaged latent trajectories
predicted by FINDR depend ontheclickinputs. When FINDR was fit to datain
which the clickinputs were randomly shuffled across trials, the trial-averaged
latent trajectories remain near the origin. j, The dynamics are two-dimensional
eveninthebeginning of the decision period. An early-epoch sample zone
indicated by the dotted line was computed using trajectories that were truncated
attime=0.33s. The early-epoch samplezone delimits the portion of the state
occupied by atleast 50 of 5000 simulated single-trial trajectories. k, When we
computethe PCs for the trajectories truncated at time=0.33 sand project the
trajectoriesonto PC2, thestandard deviation along this directionis 20.4% of
thestandard deviation along PC1.1, We candecode behavioral choice from
logistic regression significantly better than chance (dashed line) from the
projections of the truncated trajectories onto PC 2. Bold line indicates the
mean, and the shading indicates 95% confidence interval. m, Single-trial latent
trajectories extending to time=1.0 s, simulated using stimuli of different
evidencesstrength, whichis quantified by the ratio of rightand leftinputs.
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specified by ¢. Thedynamics are furthermore constrained to be two- g, cFINDR-inferred dynamics fromasynthetic generated using the non-normal

dimensional. b-g, cFINDR model can generate and infer dynamics describedby ~ dynamicswithalineattractorind.
previous hypotheses. b, Example bistable attractor dynamics generated from
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Extended DataFig. 6 | See next page for caption.
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Extended DataFig. 6 | Multi-mode drift-diffusion model (MMDDM).
a,Directedgraph of the MMDDM for a trial with Ttime steps and Nsimultaneously
recorded neurons. Ateachtimesstep, the decision variable zdepends on
external clickinput (1) and its value in the previous time step. The spike train
dependsonzandalso atime-varyingbaseline input. The behavioral choice (c)
isthesignofthe decision variable at the last time step. In this example trial,
zreachesthebound, and the encoding weight of zof each neuron changes from
weytowpe.b, The MMDDM s aninstance of astate-space model, which consists
ofadynamic model governingthe probability distributions of the latent states
(here, scalar decision variable z) and measurement models specifying the
conditional distributions of the emission (here, spike counts yand therat’s
choicec) giventhe value of the latent states. In the dynamic model, z’s time
derivative (2) is a piecewise linear function. When the absolute value of zis less
thanthe bound height B, the velocity depends on external click input (u) and
i.i.d. Gaussiannoise (7). When zreaches either -Bor B, the time derivative is
zero.Theinputofeachclickemitted at time ronzisscaled by the depressive
adaptation from previous clicks, parametrized by C(7), and it is corrupted by
i.i.d. multiplicative Gaussian noise {with variance o,>. The parameter o,’is
oneofthethree parameterslearned duringfitting and represents the signal-to-
noise of the system. The behavioral choice (c) is the sign of the decision variable
atthelasttime step. The mapping from zto spike train response (y) passes
through the softplus nonlinearity hand depends on baseline b and encoding
weight w. The encoding weight s either w;, and w,.depending onz. The three
parametersthatare fitin MMDDM consist of the bound height B, the mean u, of
starting distribution, and the signal-to-noise of each momentary input.c, The
baselineinput consists of a cross-trial component, parametrized by smooth
temporal basis functions, as shown for an example neuron. d, The spike history
filter of the same neuron. e, The post-stimulus filter of the neuron. This filter
doesnotdependonthe content of the click trainand only depends on the
timing of the first click, which is always a simultaneous left and right click.

f, The kernel of the same neuron to account for movementanticipation. The
kernel does not depend on the actual choice of the animal. g, The psychometric

functionis well captured across sessions. h, The vector field inferred fromreal
spike trainsis confirmed to be similar to thatinferred from MMDDM-simulated
spike trains for the session“T176_2018_05_03".i, After fitting the model to
eachrecordingsession, the learned parameters are used to simulateadata

set, using the same number of trials and the same auditory click trains. The
simulations are used to fitanew model, the recovery model, starting from
randomized parameter values. The encoding weights of theaccumulated
evidence of the recovery model are compared against the weights used for the
simulation (which were learned by fitting to the data) using the coefficient-of-
determination metric. j, Consistency in the encoding weights between the
training models during five-fold cross-validation. For each session, a coefficient-
of-determination was computed for each pair of training models (10 pairs), and
themedianisincludedinthe histogram.k, Whereas the Poisson distribution
requires the mean tobe the same as the variance, the negative binomial
distributionisacountresponse model that allows the variance tobe larger
thanthe mean p, withan additional parameter a, the overdispersion parameter,
thatspecifies the variance to be equal to p + ap®. When the overdispersion
parameteriszero, thedistributionis equivalent toaPoisson.Fitting the datato
varying values of the overdispersion parameter shows that log-likelihood is
maximized withaPoisson distribution for the conditional spike count response.
Similarly, when the overdispersion parameter was learned from the data, the
best-fit values were all close to zero. 1, The magnitude of the input after sensory
adaptation of each clickinasimulated Poisson auditory click train. Based on
previous findings?*, the adaptation strength (¢) is fixed to 0.001, and the post-
adaptationrecoveryrate (k) to100. The generative click rateis40 Hz, asin the
behavioral task.m, Sensory adaptationis not critical to theimprovementin fit
by the MMDDM compared to the single mode DDM. Even without modeling
sensory adaptation-by setting ¢ =1and k = 0, suchthatevery click has the same
input magnitude-the out-of-sample log-likelihood is reliably improved by the
MMDDM compared to the single mode DDM. n, The out-of-sample goodness-
of-fitofthe PSTH’sis alsoreliably improved eveninthe absence of sensory
adaptation. m-n, P-values were computed using two-sided sign tests.
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Extended DataFig. 7 |nTcand psychophysical kernels. a, For the inferred
weights of the stimulus fluctuations to beinterpretable, the click input
fluctuations must not be strongly correlated across time steps. On each time
step oneachtrial, the fluctuationinauditory clickinput was computed by
counting the observed differencein right and left clicks at that time step, and
thensubtracting fromit the expected difference given the random processes
used togenerate the stimulus. Theinput fluctuations at time step of t =0 s were
excluded because they are strongly correlated with the input fluctuations
before decision commitmentand strongly anti-correlated withinput
fluctuations after commitment. b, To determine the time resolution of the
kernel that best captures the weight of the input fluctuations, 10-fold cross-
validation was performed to compare kernels quantified by different numbers
of parameters and types of basis functions. The kernel with the lowest
temporal resolutionis a constant, represented by asingle parameter, implying
that fluctuations across time have the same weight. At the highest time
resolution, the kernel canbe parametrized by aseparate weight for each time
step. Atintermediate time resolution, the kernel is parametrized by basis
functions that span the temporal window. The basis functions canbe evenly
spaced across the temporal window, or stretched such thattimeneart=0s
isrepresented with higher resolutionand time far fromt =0 s with lower
resolution. The most likely model had six moderately stretched (7 =1) basis
functions. ¢, The optimal model’s set of six moderately stretched (n =1) basis
functions. d, Even when using basis functions, the psychophysical kernel is
consistent with the core prediction of MMDDM: The psychophysical weight of
the stimulus fluctuations on the behavioral choice ceases after the time of
decision commitment. Note that no basis function was used in the analysis in
Fig.5d. e, In contrast to the commitment-aligned kernel, the kernel aligned to
the onset of the auditory click trains is smooth. Mean stimulus onset-aligned
psychophysical kernel across sessions, estimated using amodel with five
temporal basis functions. For each session, 10-fold cross-validation was
performed onfitting the kernel model to the data, and ten estimated kernels
were averaged. Then, the kernels were averaged across sessions. f, The onset-
aligned psychophysical kernelis parametrized by five evenly spaced radial
basis functions. g, Cross-validated model comparison shows that atemporally
flat psychophysical kernelis most likely given the observed data. h, Similarly,
given the simulated choices generated by the MMDDM, the out-of-sample log-
likelihood is maximized by assumingaflatkernel. g-h, N=115sessions. i, The
approximately flat psychophysical kernel inferred from MMDDM-simulated
choicesis consistent withthe MMDDM'’s prediction of the probability of

decision commitment given the stimulus: throughout the trial, the probability
of decision commitmentis relatively low, and at no pointin the trial is decision
commitmentanabsolute certainty. j, Att=0.75s, the window used to compute
the psychophysical kernel, the median probability of decision commitment
across sessionsis 0.57.k, A small but statistically significant effect of whether
decision commitment was reached on the “movement onset time”, i.e., thetime
whenthe ratwithdrawsits nose fromthe fixation port minus the earliest time
whentheratisallowedtodoso. Theeffectis notsimply due to trial difficulty
because it remains when we consider only easy trials (right: left click rate either
greater than38:1orless than1:38). k-m, N =35962 trials (without nTc), 19095
(with nTc), 10261 (without nTc among easy trials), 7962 (with nTcamong easy
trials). 1, Similar effect of whether commitment was reached ontherat’s
“movement executiontime”, i.e., the time whentheratreacheseithertheleftor
right port minus the time when it withdrew its nose from the fixation port.

m, Relative timing of decision commitments between pairs of simultaneously
recorded brainregions. For each pair of regions, the comparison was made on
only the trials on which the threshold for commitment was crossed for both
regions. N =3936 trials (dmFC vs. mPFC), 7024 (M1 vs. dStr), 6251 (M1vs. vStr),
8463 (dStrvs.vStr), 529 (dStrvs. FOF), 487 (vStr vs. FOF). n, Inferred times of
commitment, relative to stimulus offset. m-n, P-values were computed using
two-sided sign tests. 0, As expected from the model, nTc’s occur more oftenin
easier trials, i.e., trials with larger generative (experimentally controlled)
difference between theleftand right click rate. p, Asexpected from the model,
the meanvalue of the latent variable (the expectation under the posterior
probability given the spikes and choice) reaches values of larger magnitude on
trialson which nTc could be inferred compared to trials on which an nTc could
notbeinferred. Shadingindicates 95% bootstrapped confidenceintervals
across sessions. q, Consistent with the model, even when considering only the
period while the clicks were still playing, the mean of the latent variable
abruptly plateaus after the nTc. r, The trials on which nTc could be estimated
were separated into three groups using the terciles of the distribution of nTc
relative to stimulus onset. s, Psychometric function of each group, showing the
fraction of arightchoice against the generative (i.e., experimentally specified)
difference between therightand left click rates. t, Behavioral sensitivity is
higher for trials with longer nTc. Alogistic model with two terms (bias and
slope) wasfittoregressthe choice oneach trial against the generative
differencein click rate. Dataare presented as the best-fit slope parameters and
their 95% confidenceintervals, computed by bootstrappingacross trials.
N=6120 trials (first tercile), 6545 (second tercile), 6336 (last tercile).
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Extended DataFig. 8| The distribution of commitment timesinferred from
MMDDM does not match the distribution of start time of peri-movement
kernels. a, Separately for each choice-selective neuron (N =4605), peri-
movementkernels are estimated using Poisson generalized linear models
(GLM)*%38 Theinputs (i.e., regressors) to the model depend on two events that
occuroneachtrial: onset of fixation (i.e., when theratinsertsits noseinto the
center port), and the time when theratleaves the center port and begins to
move toward the side port. Animpulse (i.e., delta function) at the time of each
eventisconvolved withalinear filter, or kernel, to parametrize the time-varying
inputrelated tothatevent. Ateach timestep, the sum ofthe inputsis fed through
arectifying nonlinearity (softplus) to specify the neuron’s Poisson firing rate at
thattime. Three kernels, related to fixation, leftward movement, and rightward
movement, are learned by maximizing the marginal likelihood*’. b, Example
neuron. Two GLM variants were fitted to the same neuron, and for each GLM
variant, the observed peri-event time histogram (PETH) is overlaid the cross-
validated, model-predicted PETH. The choice-dependence of the PETH of this

neuroniswell captured by the model variant whose peri-movementkernels
start-3.0 sbeforeand 0.5 s after movement onset (left), but less well captured
by another variant whose peri-movement kernels time base are limitedto-0.5
to 0.5 (right). ¢, To identify the optimal start of the movement kernel for each
neuron, cross-validated (5-fold) model comparison was performed onseven
modelvariants that vary inthe start time of the movementkernels and the
number of radial basis functions used to parametrize the kernels. The end time
ofthe movementkernel (0.5 s), and the parametrization of the fixation-related
kernel (-1.5st02.0 sand 4 basis functions) areidentical for all variants.d, The
out-of-sample log-likelihood s highest for the model variant whose peri-
movementkernelsstartat-3.0s.e, Foreachneuron, the GLM variant with the
highest out-of-sample log-likelihood determines the optimal start of the
peri-movementkernels. Themode of the distributionisat-3.0 s.f, The start
of peri-movement kernels for most neurons precede the time of the first click.
g, The start of peri-movement kernels for most neurons precede the earliest
commitment timeinferred from MMDDM.
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Extended DataFig.9|Changesinneural responses after stimulus offsetare
moreclosely aligned to movement onset thanstimulus offset. a, Relative
timing of task events. The offset of the auditory click train stimulus always
occurredattheend ofthe1.5s minimum fixation period onevery trial. b, The
median time of movement onset relative to stimulus offset across trials without
aneurally inferred time of commitment (nTc) is 0.192 s. The rightmost bin
contains trials for which the movement onset is 0.8 s or more after stimulus
offset. ¢, Principal component analysis (PCA) was performed on peri-event
time histograms (PETH’s) aligned to stimulus offset (circles) and averaged
across trialswithouta neurally inferred time of commitment (nTc). Spikes were

countedin10 msbins, and the PETH was not additionally filtered. Spikes after
the animal moved away from the fixation port (i.e., movement onset) were
included. For each neuron and each trial condition, the PETHis a100-element
vector. Concatenating across 4605 choice-selective neurons and 4 trial
conditions gave a4605-by-400 matrix. The mean of eachrow (i.e., the average
response of each neuron) was subtracted from the matrix, and PCAwas
performed onthe resulting matrix. Trianglesindicate the median time of
movement onset. Projections are scaled by the standard deviation explained
byeachPC.d,PCAperformed PETH’s aligned to movement onset offset and
averaged acrosstrials without nTc.
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Extended DataFig.10|Further analyses and validation of the dynamics
discovered by FINDR. a, Whenwe computed the eigenvalues of the numerical
Jacobian] obtained from the detected slow pointaround the origin, thereal
components of both eigenvalues were greater than zero for all sessions (n =27),
indicating that the origin is not astable point. Units of 1 are sec™. b, To quantify
how non-normal the dynamics are around the origin, we computed the angle
between the two eigenvectors of ). 90°indicates that the dynamics are normal,
and angleless than 90°indicates that the dynamics are non-normal. ¢, We
further evaluated the non-normality of the discovered dynamics around the
origin by taking the Schur decompositionJ = QTQ*and computing the ratio
between the non-normal part and the normal part of the dynamics, p = |7, ,||/
II[T,1; T5,,1ll. p> O indicates that the dynamics are non-normal, with higher
values of pindicating stronger non-normality. d, Here we estimated the low-
dimensional vector field for each session using amethod that does not specify
adynamical model (“model-free” approach). We compared the vector fields
estimated using this approach to the FINDR-inferred vector fields. To obtain
the model-free vector field, we first estimated single-trial firing rates of
individual neurons by binning the spike trains in At =10 msbins and convolving
the spike trains with a Gaussian of 6 =100 ms. Then, we projected the estimated
single-trial population firing rate trajectories onto the subspace spanned by
the FINDR Iatent axes. This allows direct comparisons between vector fields.
For eachevaluation point (i,j) on a8-by-8 grid of the latent state spacez, we
estimated the velocity arrow by taking the average of 2 = (z,- z,,,)/At for all
tacrossalltrajectories thatfallinside the cell corresponding to the point (i, /).
To compare vector fields, we measured S., the mean of the cosine similarities

between the vector arrows of the model-free approach and the vector arrows
from FINDR inside the sample zone. The median of the S.’sacross all sessions
was 0.73. Three example sessions from across the distribution are shown, with
session2around the median S, of the histogram. For both FINDR and the
model-free approach, the colored trajectories were obtained by trial-averaging
based onthe evidencestrength. Tocompare between arandom vector field
and the model-free vector field, for each session, we generated 1,000 random
vector fields by randomizing the direction of each arrowin the 8-by-8 grid.

e, We assessed the dynamical stability around the origin using amodel-free
approachsimilar tod. We estimated the autonomous velocity around the
initial starting point (indicated as the center of the circle) of the model-free
latent trajectories by taking the average of 2 = (z,— z.,,)/At for all tacross all
trajectories that fallinside each of the 5 pie slices. Here we excluded time
points where clicks affect the dynamics (z, - z,,,)/At, and only considered the
trajectories with #L clicks = #R clicks during the epoch when they arein the pie
slice, when computing the estimate of the autonomous dynamics arrow. When
computing the average of (z,—z,,,)/At for one of the pie slices, we required z,;
tobeinside the pieslice. Thecircles have aradius of 0.2 (in the units of 2).

We found that all five arrows were pointing outwards (p < 0.5° = 0.03125) for
20 out of 27 sessions, consistent overall with the stability analysisina. f, FINDR-
inferred vector fields for all recording sessions (n =27) with more than 30
neurons and 400 trials, and sessions where the animal performed with greater
than80% accuracy. These fits were used for the summary plotsin Fig. 3. The
vector field represents the autonomous dynamics and the trajectories are trial
averagessorted by the evidence strength of each trial.
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