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SUMMARY

Sensory evidence tends to be fleeting, often unavailable when we categorize or estimate world features.

To overcome this, our brains sustain sensory information in working memory (WM). Although keeping that

information accurate while acting on it is vital, humans display two canonical biases: estimates are biased

toward a few stimuli (‘‘stimulus-specific bias’’) and prior decisions (‘‘decision-consistent bias’’). Integra-

tive—especially neural mechanistic—accounts of these biases remain scarce. Here, we identify drift

dynamics toward discrete attractors as a common source of both biases in orientation estimation, with de-

cisions further steering memory states. Behavior and neuroimaging data reveal how these biases co-evolve

through the decision-steered attractor dynamics. Task-optimized recurrent neural networks suggest neural

mechanisms that enable categorical decisions to emerge from WM for continuous stimuli while updating their

trajectory, warping decision-consistent biases under stimulus-specific drift.

INTRODUCTION

Adapting to our surroundings engages us in various perceptual

tasks on the same object,1,2 like judging its categorical state

(e.g., whether an apple is ‘‘small’’ or ‘‘large’’) and estimating its

exact state (e.g., ‘‘precise size’’ of an apple). These tasks often

occur in succession, with cognitive processes for earlier tasks

influencing later ones. ‘‘Decision-consistent bias’’ is a prime

example, where our estimate of a feature aligns with the categor-

ical state of our previous decision (e.g., after deciding on ‘‘large,’’

size estimates tend to be larger than the actual size). Under-

standing this can provide insights into the brain’s flexible use

of feature representations under varying task demands. While

research has clarified how categorical decisions are formed

from sensory evidence,3–7 how the decision-forming process in-

fluences the subsequent retention of sensory evidence for future

reuse remains unclear.

Decision-consistent bias, once viewed as a perceptual illusion

caused by biased readouts of unbiased sensory representa-

tions,2 has been recently reconceptualized8–11 as involving

post-perceptual processes. In these studies,2,8–11 since sensory

inputs from target stimuli are no longer available during a subse-

quent estimation task, sensory evidence must be held in working

memory (WM).12 However, efforts to explain decision-consistent

bias in the context of WM have been surprisingly scarce, espe-

cially given WM’s dynamic nature13–15 and its close relationship

with decision-making (DM).15–18

Alongside decision-consistent bias, perceptual estimation ex-

hibits another prominent bias: estimates tend to cluster around

specific points in a feature space (e.g., position estimates

deviate from cardinal to oblique meridians). This phenomenon,

called ‘‘stimulus-specific bias,’’ is common across various do-

mains, including spatial position,19,20 motion direction,21,22

orientation,23,24 and color.25,26 Although Bayesian approaches

have yielded normative accounts of why stimulus-specific bias

occurs,27–29 our understanding of its neural-mechanistic origins

remains limited. Moreover, its relationship with decision-consis-

tent bias has not been explored, despite both occurring in similar

estimation tasks. These gaps underscore the need for an inte-

grated, mechanistic-level account to clarify their coexistence
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and interaction in a dynamic context. Focusing on only one bias

might ignore the interconnected roots linked to the other.

We hypothesized two intrinsic dynamics of WM that critically

influence the co-evolution and interaction of the two biases.

Memory states may gradually and randomly shift in a feature

space, engendering diffusive representations that grow noisier

yet remain unbiased13,14,30 (Figure 1A). Alternatively, memory

states may not only diffuse but also drift toward a few stable

points (attractors), engendering drift, and diffusive representa-

tions that become increasingly biased and noisy26,31–33
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Figure 1. Probing the impact of WM dynamics on behavioral biases

(A–D) Single-trial memory trajectories simulated under diffusion-only (A and C) and drift-diffusion (B and D) dynamics. Gray arrows indicate drift directions. (A and

B) Impact on stimulus-specific bias. (C and D) Impact on decision-consistent bias. Decision timing (gravel) varies between top (early) and bottom (late) panels.

(E) Task paradigm. Top: yellow and green dots serve as the reference for discrimination and the response frame for estimation, and dotted lines, arrows, and white

text are shown for illustration purposes. Bottom: blue and teal bars represent the task epochs in early- and late-DM trials.

(F) Psychometric curves of discrimination, pooled across individuals. Late-DM shows shallower slopes (inset: thin lines, individuals; error bars, SEM; paired t test,

p = 0:0008).

(G–I) Behavioral signatures of stimulus-specific (G), decision-consistent (H), and choice-induced (I) biases. (G) Estimation errors captured via von Mises function

derivatives: thin, individuals; thick, mean across participants ± SEM. (H) Choice-conditioned distributions of estimation errors: dots, means for individuals;

patches, pooled densities. (I) Error variability measured as interquartile range: circles with error bars, mean ± SEM; curve with a gray shadow, Gaussian fit to the

data with SEM; inset, variability ratio histogram, with a significant tendency above 1, Wilcoxon signed-rank test, p < 10− 5. ∗ ∗ ∗ p < 0:001.
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(Figure 1B). Assuming decision-formation processes steer

ongoing memory states in the choice-consistent direction

(Figures 1C and 1D, arrows), we expect that the two biases will

undergo different time courses depending on whether WM dy-

namics are driven by diffusion alone (Figure 1C) or by both diffu-

sion and drift (Figure 1D), and when decisions are made

(Figures 1C and 1D, top versus bottom panels).

To examine these expectations, we designed a task in which

participants made sequential categorical choices and point esti-

mates about a remembered stimulus orientation, with varying

intervening delays (Figure 1E). Monitoring human individuals’

task performance through their choices and estimates while de-

coding orientation memory from functional magnetic resonance

imaging (fMRI) of their visual cortex, we tracked the behavioral

and neural signatures of both biases over a prolonged delay

period. To further examine whether simple neural mechanisms

could recapitulate WM and DM interaction in humans, we also

trained recurrent neural networks (RNNs) on the same task and

analyzed their dynamics.

Our results across behavioral, fMRI, and RNN analyses con-

vergingly indicate ‘‘decision-steered attractor dynamics of

WM’’ as the core mechanism underlying the co-evolution of

stimulus-specific and decision-consistent biases. Memory

states drift toward attractors, influencing categorical decisions,

which in turn bias memory trajectories, creating cascading ef-

fects that amplify both biases. RNN simulations mirrored human

behavior and fMRI dynamics, showing that decisions emerge

through modular interactions among three populations: a WM

population maintaining orientation memory and two DM popula-

tions competing for choices, with feedback from DM populations

steering WM attractor dynamics. Our work provides an inte-

grated neural-mechanistic explanation of the fundamental

biases in perceptual estimation and their evolving interaction,

which have not been previously addressed.

RESULTS

Behavioral signatures of stimulus-specific and decision-

consistent biases

During the fMRI scan, participants memorized the orientation of

a briefly shown grating and reported it after a 16.5-s delay. To

probe the impact of DM on WM, they first performed a discrim-

ination task during the delay (Figure 1E, top). In this task, a dot

pair around the fixation (‘‘reference’’) appeared, and participants

decided, under moderate time pressure (1.5 s), whether the

remembered orientation was tilted clockwise (CW) or counter-

clockwise (CCW) relative to the reference, whose angle was

randomly determined. The timing of the discrimination task var-

ied, occurring either 4.5 or 10.5 s after stimulus offset (Figure 1E,

bottom). As anticipated from the temporal deterioration of

WM,15,18 discrimination performance declined when tested later,

as indicated by a shallower psychometric curve (Figure 1F). In

the estimation task, participants rotated another dot pair (‘‘report

frame’’) to match the remembered orientation, starting from a

randomly chosen angle within 180◦.

We confirmed stimulus-specific bias in the estimation task: es-

timates were repelled from cardinal orientations and attracted

toward oblique orientations (Figure 1G). This well-known phe-

nomenon, called ‘‘cardinal repulsion,’’23,27,34,35 showed modest

variation in shape and size among individuals.

Decision-consistent bias was also evident when estimation

errors were conditioned on discrimination choices, deviating

from the reference in line with the choice. This phenomenon,

also known as ‘‘reference repulsion,’’2,9 was pronounced in trials

where the reference orientation was close to the stimulus ( − 4∘,

0∘, and 4∘ on the x axis in Figure 1H). As noted previously,9 if

choices induce a bias in estimates, the marginal error distribution

must widen as the stimulus and reference become more similar in

orientation (see Figures S1D–S1K for the rationale). Consistent

with this, error variability was greater in near-reference (relative

orientation ~θ ∈ { − 4∘, 0∘, 4∘}) trials compared with far-reference

(~θ ∈ { − 21∘, 21∘}) trials (Figure 1I). This increased variability was

confirmed across various datasets when the reference was rele-

vant to decisions but not when it served as a distractor

(Figures S1A–S1C). We will call this bias ‘‘choice-induced bias,’’

to distinguish it from decision-consistent bias. The latter refers

to any deviation aligned with a choice,2,9,10 measurable from

any joint observations of discrete choices and continuous esti-

mates (Figure 1H). Choice-induced bias is a particular kind of de-

cision-consistent bias, where commitment to a categorical choice

influences estimates beyond what statistical conditioning would

predict8 (Figure 1I).

Predicting how WM dynamics affect the time courses of

biases

We developed phenomenological models to predict how WM

dynamics influence bias time courses, with minimal assumptions

about sensory encoding and decision commitment’s impact on

memory. One model incorporates only diffusion dynamics, al-

lowing random shifts of memory states across trials without

bias (Figures 2A–2D), while the other includes additional drift dy-

namics that systematically drive memory states in specific direc-

tions (Figures 2E–2H).

Both models assumed initial orientation memory states follow

the efficient encoding principle,27–29 which allocates more re-

sources to frequently encountered stimuli,36 leading to higher

encoding precision around cardinal orientations. This results in

specific error patterns: a mean repulsion away from cardinal ori-

entations and increased variance around oblique ones, aligning

with behavioral data. These biases are embedded in the sensory

input to the WM system, so memory states already show stim-

ulus-specific bias from the start (Figures 1A, 1B, 2B, and 2F,

darkest curves). To incorporate choice-induced bias into dy-

namic WM, we also assumed that memory states are abruptly

shifted in the chosen direction by a constant amount during

the discrimination epoch (vertical arrows in Figures 1C and

1D). This pulse-like shift expands the marginal error distribution

for near-reference trials, pushing choice-conditioned distribu-

tions apart (Figures 2A and 2E).

Based on these assumptions, we predicted how WM dy-

namics influence biases in both the diffusion-only and drift-diffu-

sion models. If diffusion solely governs the dynamics (Figures 1A

and 2A), stimulus-specific bias remains unchanged (Figure 2B)

because stochastic fluctuations of memory states with a zero

mean do not cause any systematic deviations (gray arrows in

Figure 1A). Conversely, decision-consistent bias varies with
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decision timing: as previous studies8,9 indicate, stochastic sen-

sory fluctuations, when conditioned on a choice, contribute to

this bias. When diffusion governs WM dynamics, the distribution

of memory states broadens over time. Thus, more delayed deci-

sion timing leads to greater separation of memory states associ-

ated with different choices (colored dashed lines in Figure 2A),

resulting in an increased decision-consistent bias (Figure 2C).

Next, suppose both diffusion and drift govern WM dynamics

(Figures 1B and 2E). Then, both biases vary with decision timing.

A recent study on WM for color26 suggests that drift causes

memory states to approach discrete attractors, leading to

increased stimulus-specific bias over time, while many

others27–29,37–41 attribute this bias to sensory encoding. Similar

drift dynamics may also govern WM for orientation (gray arrows

in Figure 1B), causing stimulus-specific bias to grow over time

(gray vertical bars in Figure 2F). As previously noted, decision-

consistent bias will also increase with decision timing due to

WM diffusion (colored vertical bars in Figure 2G).

Furthermore, diffusion dynamics predict that the broadening

of the estimate distribution in near-reference trials—indicating

choice-induced bias—will be more pronounced in the late-DM

condition than in the early one (Figures 2D and 2H). This is

because, despite equal choice-induced bias in both conditions

(colored arrows in Figures 2A and 2E), its effect on distribution

expansion intensifies with decision delay under diffusion dy-

namics (marginal distributions in Figures 2A, 2E, and S1K).

In summary, both diffusion-only and drift-diffusion models

predict that, with decision delay, decision-consistent bias

and estimation variability increase in near-reference trials

(Figures 2C, 2D, 2G, and 2H). However, they differ in stimulus-

specific bias: it stays constant over time in the diffusion-only

model but increases in the drift-diffusion model (Figures 2B

and 2F).

Growth and decision-timing dependency of behavioral

biases

To determine whether stimulus-specific bias increases during

the delay, we compared the bias magnitude at the early (4.5 s

post-stimulus) and late (10.5 s post-stimulus) discrimination

epochs. Since direct estimation errors were unavailable during

discrimination, we inferred the bias from the psychometric curve

for each stimulus orientation (Figure 1F), using the deviation of

subjective equality from the actual orientation as a proxy. For

this, we fitted the bias weight parameter, assuming the bias

varies in magnitude but retains its shape (see STAR Methods).

We found that the bias increased over time, with a significantly

A DB C

E HF G

Figure 2. Model predictions of biases under WM dynamics

(A–D) Diffusion-only model.

(E–H) Drift-diffusion model. (A and E) Choice-conditioned memory distributions for early (top) and late (bottom) DM trials, with conditional means indicated by

horizontal dashed lines. Colored arrows and lime markers represent choice-induced bias during discrimination. Green densities represent marginal error dis-

tributions during estimation, alongside dashed densities representing those without choice-induced bias. (B and F) Stimulus-specific biases across different task

epochs. (C and G) Decision-consistent biases for early- and late-DM trials. (D and H) Choice-induced bias captured by near-reference variability for early- and

late-DM trials, alongside dashed gray regions representing error variability without choice-induced bias.
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greater bias at the late compared with the early decision

(Figure 3A).

In contrast to their distinct predictions for stimulus-specific

bias, both models predicted similar patterns of decision-consis-

tent bias and near-reference variability (Figures 2C, 2D, 2G, and

2H). Consistent with these, both measures were greater in the

late-DM condition (Figures 3B and 3C). To test the prediction

regarding decision-consistent bias, we compared the reported

orientation between CW-choice and CCW-choice trials for the

near-reference condition, and the difference was significantly

larger in the late than the early DM condition (Figure 3B). For

near-reference variability, we examined the difference in error

variance between choice-unconditioned near-reference and

far-reference trials, and the difference was also greater in the

late-DM condition (Figure 3C).

To quantify drift dynamics, we fitted the models—with and

without drift—to behavioral data (see STAR Methods). The

model with drift outperformed the one without drift, according

to the Bayesian information criterion (BIC) in conjunction with

cross-validated log likelihoods (Figure S2A). Drift rate param-

eters indicate memory states drift modestly (less than 1∘=s in

median; wK in Figure S2C). In ex-post simulations, the drift

model accurately reproduced the observed growth and shape

of stimulus-specific bias (Figures 3D, S3A, and S3B), unlike

the non-drift model (Figures 3G and S3C). Both models

captured the observed decision-consistent bias patterns

and variability increases in near-reference trials (Figures 3E,

3F, 3H, and 3I), but a model solely based on efficient

coding, without drift or diffusion dynamics, failed to do so

(Figures S3D–S3F).
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Figure 3. Biases in human behavior and models

(A–C) Human data. (A) Stimulus-specific bias at discrimination: left: bias estimates across orientations (lines with shades, means ± SEMs across individuals); right:

bias weights relative to estimation bias (bars, mean; lines, individuals; error bars, ± SEM; paired t test, p = 0:0032). (B) Decision-consistent bias in estimation (left)

and their averages across near-reference trials (right): dots and thin lines, individuals; circles, medians ± SEM; paired t test, p = 0:0052. (C) Error variability for

early- and late-DM (left) and near-/far-reference variability ratio (right): circles, across-individual means; lines, individuals; Wilcoxon signed-rank test, p = 0:0450.

(D–I) Biases simulated by drift-diffusion (D–F) and diffusion-only (G–I) models. Format as in (A–C).

Paired t test, p < 10− 10 (D), p < 10− 10 (E), p = 0:3614 (G), p = 0:0001 (H); Wilcoxon signed-rank test, p < 10− 5 (F), p = 0:0007 (I). ∗ ∗ ∗ p < 0:001, ∗∗ p < 0:01, ∗ p <

0:05; ns p > 0:05.
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In summary, incorporating drift-and-diffusion dynamics with

transient shifts in the chosen direction into WM effectively ex-

plains the growth of stimulus-specific and decision-consistent

biases observed in our task.

Influence of stimulus-specific drift on decision-

consistent bias before and after DM

Our analyses indicate that memory states consistently drift to-

ward attractors, with decision-consistent bias increasing with

decision timing. This implies that decision-consistent bias fol-

lows distinct time courses depending on the stimulus’s position

relative to these attractors in orientation space. We will first

formalize this implication using our earlier drift-diffusion model,

then test it against human data.

This implication involves dividing decision-consistent bias into

its pre-decision and post-decision components. The pre-deci-

sion bias (bpre) refers to the difference in mean between the

choice-conditioned distributions of memory states present at

the onset of discrimination, whereas the post-decision bias

(bpost) develops after discrimination until estimation (see STAR

Methods and Method S1.1 for definitions).

Under diffusion-only dynamics, bpre is expected to be greater

in the late-DM condition than the early DM condition, due to

increased separation between choice-conditioned distributions

(Δbpre > 0; dark gray patch in Figure 4A). Conversely, bpost should

remain constant in both conditions if choice-induced bias re-

mains unchanged in magnitude, as assumed (Δbpost = 0; light

gray patch in Figure 4A). These predictions were confirmed by

the bpre and bpost values derived from the ex-post simulation of

the diffusion-only model (Figure 4D).

However, under drift-diffusion dynamics, the two components

of decision-consistent bias display distinct, stimulus-dependent

patterns. Consider the case where drift, diffusion, and choice-

induced bias are moderate, so that memory states starting far

from the attractors do not reach them during the delay, consis-

tent with the best-fit parameters from the behavioral data

(Figure S2). For orientations positioned between the attractors

(e.g., cardinal orientations), memory states diverge from the

stimulus (pink lines around 0∘ in Figure 1B), increasing the sepa-

ration of choice-conditioned memory distributions over time,

driven by the congruence between the diverging direction and

the decision-consistent direction (Figure 4B). This leads to a

greater bpre in the late versus early DM condition (Δbpre > 0;

dark gray patch in Figure 4B), while bpost should be smaller in

the late-DM condition (Δbpost < 0; light gray patch in Figure 4B).

Conversely, near the attractors (e.g., oblique orientations),

converging drift decreases the separation of choice-conditioned

memory distributions over time, counteracting the choice-condi-

tioned separation (Figure 4C).

The drift-diffusion model also implies a covariation across in-

dividuals. While the best-fit drift rates are moderate (maximum

wK < 2:5∘=s in Figure S2C), their differences across individuals

predict systematic changes in decision-timing-dependent

biases. Specifically, higher drift rates lead to more pronounced

changes in both Δbpre and Δbpost. Thus, given their opposite

signs and dependence on drift rate, a negative correlation be-

tween Δbpre and Δbpost is predicted across individuals, driven

by drift rate variability (Figures S3G and S3H).

These two implications were confirmed by the ex-post simula-

tion data from the drift-diffusion model (Figure 4E), along with hu-

man data analyses that did not rely on model estimates

(Figure 4F). First, the Δbpre and Δbpost were positive and nega-

tive, respectively, for diverging drift orientations (pink in right

panels), but both were near zero for converging drift orientations

(green in right panels). The joint distributions of Δbpre and Δbpost

were significantly separated. Here, considering the individual dif-

ferences in stimulus-specific bias shape (Figure 1G), we deter-

mined whether a converging or diverging drift governs a given

orientation based on participant-specific bias curves (see

STAR Methods). Second, when the data were pooled across ori-

entations (Figures 4E and 4F, left panels), the Δbpre and Δbpost

were still positive and negative, respectively. This was antici-

pated because the Δbpre and Δbpost were large near diverging

drift orientations. Across individuals, the Δbpre and Δbpost were

negatively correlated (Figure 4F).

In summary, phenomenological models reveal how the drift-

diffusion dynamics of WM intricately shape decision-consistent

bias before and after decisions in a stimulus-specific way, sup-

ported by human behavior.

Drift-diffusion dynamics in cortical signals of

orientation memory

The behavioral analysis examined the biases at snapshot mo-

ments of discrimination and estimation. To verify and expand

on these findings beyond these moments, we decoded the

WM signal of stimulus orientation from the blood-oxygenation-

level-dependent (BOLD) measurements via inverted encoding

analysis,42–44 tracking the biases over time in that decoded

signal. Focus was primarily on early visual areas, V1, V2, and

V3, given their high-fidelity WM for orientation,43,45,46 with parie-

tal and frontal areas included for comparison (Figures S4E–S4I).

As implied by drift-diffusion dynamics, the cortical signal of

orientation memory confirmed the growth of stimulus-specific

bias over time. Stimulus orientation in WM was decodable

from the early visual cortex with significant fidelity across all trial

time points (Figure S4D), unattributable to eye movement con-

founds (Figure S5). Its trajectories, conditioned on stimulus ori-

entations, drifted away from cardinal and toward oblique orienta-

tions (Figure 5A). To quantify these attractor dynamics, we

tracked bias strength using linear regression weights that related

each time point’s bias to each individual’s behavioral stimulus-

specific bias (thin gray curves in Figure 1G). The bias weight

was initially low, consistent with the efficient coding frame-

work28,29,37 (Figure S7), and increased to match those observed

in the behavioral errors (Figure 5B). Additionally, representational

similarity analyses47 and simulated population responses with

heterogeneous tuning curves (Figure S6; Method S2.1)

confirmed the growth of stimulus-specific bias in memory

representations.

We note two caveats in inferring WM dynamics from BOLD

signals. First, BOLD signals may appear to change more gradu-

ally than actual neural activity due to hemodynamic effects. Sec-

ond, the limited temporal resolution of BOLD signals can cause

interference between stimulus and reference orientations during

the discrimination epoch. Indeed, the brain signals transiently

shifted toward the near-reference orientation, especially in the
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late-DM condition (Figure 5A, right), resulting in a transient drop

in stimulus-specific bias (Figure 5B, right) around the discrimina-

tion epoch. To properly compare BOLD signals with model pre-

dictions, we addressed these issues through event-related

anaylsis48: convolving the predicted trajectories of WM with

the canonical hemodynamic response function (HRF) and

incorporating memory attraction to reference orientation into

the model prediction through regression weights (see STAR

Methods). With these corrections, we examined whether cortical

signals align with the implications of the drift-diffusion dynamics

on decision-consistent bias.

The decision-consistent bias in BOLD signals was estimated

as follows: (1) mean decoding errors conditioned on choice at

each time point were calculated for near-reference trials

(Figure 5C, colored shades), (2) piecewise linear functions were

fitted to these error trajectories (Figure 5C, dashed lines), and

(3) the bias was quantified by averaging the deviations of the

fitted functions from zero at the estimation epoch. Consistent

with diffusion-only and drift-diffusion dynamics, we found

that the bias increased significantly with decision timing

(Figure 5D). Importantly, the decision-timing-dependent mea-

sure of bias increase derived from the inferred trajectories

A D

B
E

C F

Figure 4. Decision-consistent biases

before and after DM

(A–C) Schematics of pre- and post-decision bia-

ses under diffusion-only (A), diverging-drift (B),

and converging-drift (C) WM dynamics. Top:

memory dynamics on energy landscapes: gray to

dark red circles, early to late states; dotted circles,

states shifted by DM; red arrows, choice-induced

biases; black arrows, post-decision biases. Bot-

tom: decision-consistent bias trajectories: dark/

light lines, early/late-DM conditions.

(D) Across-individual Δbpre and Δbpost values

simulated by the diffusion-only model, shown as

joint (left bottom) and marginal (top, right) distri-

butions: dashed lines with shades, regression

lines; dots, individuals.

(E) Simulations by the drift-diffusion model.

Format as in (D), except for the right panel, where

across-individual averages of Δbpre and Δbpost are

shown separately for diverging and converging

orientations.

(F) Human data, with format as in (E).

Signs of Δbpre and Δbpost were tested with one-

sample t test (Δbpre, p < 10− 4, Δbpost , p = 0:5924

in D; Δbpre, p < 10− 10, Δbpost , p = 0:0024 in E;

Δbpre, p < 10− 4, Δbpost , p = 0:0022 in F). Correla-

tions were Pearson’s coefficients (r = 0:203,

p = 0:1568 in D; r = − 0:726, p < 10− 8 in E; r =

− 0:829, p < 10− 10 in F). Distances along

regression lines were measured (1:941◦, p < 10− 4

in (E); 4:215◦, p = 0:0457 in F). ∗ ∗ ∗ p < 0:001, ∗∗

p < 0:01, ∗ p < 0:05; ns p > 0:05.

(Δbpre and Δbpost) matched the predic-

tions from the drift-diffusion model

(Figure 5E), showing positive Δbpre,

negative Δbpost, negative correlation be-

tween Δbpre and Δbpost, and distribution

separation between Δbpre and Δbpost for the stimulus orienta-

tions with converging and diverging drifts.

Lastly, to assess how accurately cortical signals reflect behav-

ioral biases, we convolved the predicted memory trajectories from

the best-fit diffusion-only and drift-diffusion models with the ca-

nonical HRF (see STAR Methods and Figures S4A and S4B). The

stimulus-specific trajectories predicted by the drift-diffusion

model (Figures S7A and S7B) closely matched the BOLD signals

of orientation memory (Figures 5A and 5B), unlike those from the

diffusion-only model (Figures S7C and S7D). For most individuals,

the cosine score indicated a better fit of the drift-diffusion model to

the observed BOLD trajectories (Figure 5F).

In summary, the WM signals in the visual cortex corroborated

the behavioral findings, confirming the implications of the drift-

diffusion dynamics.

RNNs with drift dynamics reproduce the human data

We demonstrated that both behavioral and cortical responses

support the importance of drift dynamics in explaining the

temporal evolution of biases, deriving their implications

from phenomenological models. We utilized task-optimized

RNNs4,49,50 to investigate whether simple network mechanisms
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could underlie WM and DM interaction beyond the phenomeno-

logical level.

We trained 50 independent RNNs using a task equivalent to

that for humans and a joint loss function that penalizes both

discrimination and estimation errors (Figure 6A). Given the

spatial separation of the stimulus and reference, we fed these in-

puts to distinct RNN populations. The stimulus inputs were

assumed to have greater variability near oblique compared

with cardinal orientations, consistent with the efficient coding

principle.27,36 This heterogeneity in variability prompted the

RNNs to drift toward oblique orientations, as this reduced the

overall training loss.

The trained RNNs exhibited all the features characteristic of

human data, as implied by the drift-diffusion model. Stimulus-

specific bias increased over time (Figures 6B, 6E, and 6F), and

decision-consistent bias grew (Figures 6C and 6G) with decision

timing. A negative correlation was found between Δbpost and

Δbpre (Figure 6H, left), while Δbpre and Δbpost were amplified in

orientations with diverging drift (Figure 6H, right).

The RNNs displayed sensory drive effects linked to the refer-

ence presentation during the discrimination epoch (transient

dips in Figures 6E–6G), as assumed in our BOLD-response model.

This is because all neurons in the RNNs, including those receiving

the reference, contribute to the estimation (Figure 6A). The RNNs

also exhibited increased variability in estimation errors in near-

reference trials, indicating choice-induced bias, which increased

with decision timing (Figure 6D, solid symbols). Importantly, these

increases in estimation errors in near-reference trials vanished

when RNNs were penalized only for estimation errors (Figure

6D, dashed symbols), highlighting DM’s critical role in generating

choice-induced bias.

In summary, training RNNs to minimize both discrimination

and estimation errors while imposing drift dynamics is sufficient

for RNNs to display the main features of the estimation biases

seen in human data.

RNN mechanism for decision-formation and choice-

induced bias

The task-optimized RNNs exhibit a characteristic of choice-

induced bias (Figure 6D), mirroring human behavior (Figures 1I,

3C, S1A, and S1B). Investigating the formation of DM from WM

and its impact on WM in RNNs may reveal the neural mecha-

nisms underlying this bias, which remains elusive.

To avoid complications from drift dynamics, we studied the

interplay between DM and WM in ‘‘homogeneous RNNs’’ trained

on inputs devoid of orientation-specific variability, which there-

fore do not display drift. The average connectivity matrix showed

a block-wise structure reflecting separate input and output

A C

B

D

E F

Figure 5. Cortical signals of stimulus-specific drift

(A and B) Evolution of stimulus-specific bias, depicted by decoded orientations (A) and bias weight relative to behavioral estimation bias (B).

(C) Evolution of decision-consistent bias, depicted by choice-conditioned decoded errors. Dashed lines mark the BOLD dynamics constructed from the

piecewise linear fit (see STAR Methods). (A–C) Gray bars indicate decision timing, with a 4-s hemodynamic delay. Shades, ± SEMs across trials. (B and C) Black

bars mark significant non-zero bias points (B) or between-condition differences (C) p < 0:05, permutation test, Bonferroni-corrected for time points.

(D) Decision-consistent biases at early and late DM, estimated from the model fit described in (C): gray lines, individuals (p = 0:0176, paired t test).

(E) Decision-timing-dependent changes in the pre-decision and post-decision biases, estimated from the model fit described in (C) (format as in Figure 4F;

one-sample t test, Δbpre, p < 10− 5; Δbpost , p = 0:0142; correlation between Δbpre and Δbpost , r = − 0:431, p = 0:0018; distance along regression line, 3:069◦,

p = 0:0451).

(F) Model comparison in cosine scores of decoded cortical signals (paired t test, p < 10− 6): ∗ ∗ ∗ p < 0:001, ∗ p < 0:05.
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pathways (Figure 7A), leading us to analyze interactions among

three subpopulations: units receiving stimulus input (rθ), those

receiving reference input and favoring the CW (rcw
ρ ) and CCW

choices (rccw
ρ ) (Figure 7B).

All three populations exhibit bump-like activity through ‘‘feed-

forward’’ (rθ to rρ) and ‘‘feedback’’ (rρ to rθ) connections. The

peaks of rθ encode and maintain stimulus orientations faithfully,

while rcw
ρ and rccw

ρ shift in CCW and CW directions, respectively

(Figure 7C). These shifts reflect rθ-to-rρ connectivity, well-

approximated by scaled rotations in opposite directions

(Figure 7B). Asymmetric connections and shifted memory repre-

sentations resemble a head-direction system where interactions

between opposing populations update direction in response to

velocity signals.51 Similarly, the input from rρ updates rθ with a

reference input (Figure 7C, shaded horizontal bars).

The feedforward dynamics from rθ to rρ underlies DM. Sup-

pose the stimulus is at 0∘, and reference is at − 7:5∘, placing

the stimulus CW to the reference. Reference onset increases

rcw
ρ , already rotated CCW, while rccw

ρ decreases (Figure 7C, bot-

tom). The DM-mapping matrix reads this amplitude asymmetry

into a choice that the stimulus is CW to the reference.

A

B

F

E

C

H
D

G

Figure 6. Biases in task-optimized RNNs

(A) RNN architecture with time-varying inputs and

outputs.

(B–D) Stimulus-specific bias growth (B), decision-

timing-dependent decision-consistent biases (C),

and near-reference variability (D). Format as in

Figures 3A–3C. In (D), solid and dashed lines

represent the original and estimation-loss-only

RNNs. Paired t test, p < 10− 10 in (B); p < 10− 10 in

(C); Wilcoxon signed-rank test, p = 0:0390 in (D).

(E–G) Evolution of stimulus-specific biases (E and

F) and decision-consistent biases (G). Format as in

Figures 5A–5C, without hemodynamic convolu-

tion.

(H) Decision-timing-dependent changes in pre-

decision and post-decision biases. Format as in

Figure 4F. One-sample t test, Δbpre, p < 10− 7;

Δbpost , p = 0:0277; correlation between Δbpre

and Δbpost , r = − 0:897, p < 10− 10; distance

along regression line, 11:491◦, p < 10− 4; ∗∗

p < 0:01, ∗ ∗ ∗ p < 0:001.

The DM mechanism can be analyzed

geometrically through state-space anal-

ysis (Figures 7D–7I). In a 2D-principal-

component analysis (PCA) space defined

by rθ (see STAR Methods), the memory

manifolds of the three populations form a

ring, initially with rcw
ρ and rccw

ρ being

rotated about 45◦ in the opposite direc-

tions from rθ (Figures 7D–7F, dotted cir-

cles). During DM, reference input vectors

(Iext
ρ , Figure 7G) are added to rρ, making

rcw
ρ (winning population) expand and rccw

ρ
(losing population) contract (Figures 7D

and 7E, arrows on circles). In geometrical

terms, correct DM is achieved through a

‘‘rotation-addition’’ mechanism.

During DM, feedback dynamics implement choice-induced

bias. Before DM, the feedback from rcw
ρ and rccw

ρ to rθ is balanced,

keeping memory at the stimulus orientation. However, with Iext
ρ on,

feedback from the winning population dominates, updating rθ in

the choice-consistent direction, inducing bias (Figure 7F). After

Iext
ρ is off, rρ quickly returns toward its pre-DM state (Figures S8I

and S8J) and ceases reference-related influence. This supports

our phenomenological model’s assumption (Figures 1C, 1D, 2A,

and 2E): choice induces an immediate, pulse-like update of mem-

ory states only during the discrimination epoch.

Further analysis revealed that choice-induced bias ultimately

arises from a displacement in feedback dynamics. By linearizing

the dynamics along the memory manifold, we found that the

feedback rotation opposes the feedforward rotation but over-ro-

tates with a displacement (denoted by φ; gray area in Figure 7H

for over-rotation in rcw
ρ → rθ). This creates an imbalance in feed-

back inputs Icw
ρ→θ and Iccw

ρ→θ with Iext
ρ on, causing a choice-induced

bias proportional to both Iext
ρ and sin(φ) (Figures 7I and S8C–S8E;

Method S4.2). The essential role of the feedback connections is

evident when they are ablated before training: discrimination re-

mains intact, but the choice-induced bias does not emerge
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(Figures S8K–S8M). Furthermore, decision variable strength

scales with choice-induced bias magnitude (Figure S8F), under-

scoring its functional significance in enabling robust DM

under noise.

RNN mechanism of the interaction between stimulus-

specific and choice-induced biases

Building on our characterization of how the homogeneous

RNNs instantiate choice-induced bias, we revisited the original

heterogeneous RNNs—those exhibiting stimulus-specific

bias—to identify the mechanism mediating the interaction be-

tween stimulus-specific and choice-induced biases. Despite dif-

ferences in recurrent connectivity (Figure S8B), both RNNs

represent stimulus orientations with ring manifolds in similar

low-dimensional subspaces. This allows us to project the het-

erogeneous RNN responses onto the homogeneous RNN state

space (Figures 8A–8C).

In the heterogeneous RNNs, ring manifolds in rρ were warped

into elliptic shapes before the reference input (Figures 8A and

8B), with cardinal orientations more sparsely represented than ob-

lique ones, consistent with efficient coding theories for sensory

network.32 In drift dynamics, cardinal and oblique orientations

correspond to diverging and converging stimuli, respectively.

The warped geometry in rρ effectively reverts to a circle shape

in rθ by elongating along the minor axis more than the major

axis (Figure 8C; Method S4.1). This anisotropic elongation causes

Iext
ρ to have a stronger influence at diverging orientations

(Figure 8D) than converging orientations (Figure 8E), resulting

in greater choice-induced bias for diverging orientations

(Figures 8C and 8D, dotted circles). Stimulus-specific drift further

amplifies this effect: perturbations near diverging and converging

stimuli are magnified and mitigated, respectively (Figures 4B and

4C), leading to larger biases for diverging orientations (Figure 8F).

Human behavioral data validated this prediction: errors in near-

reference trials were most biased around cardinal orientations

and declined toward oblique orientations (Figure 8G).

In conclusion, the warping geometry of orientation representa-

tion and its anisotropic elongation are the key mechanisms

mediating the intricate interplay of stimulus-specific, choice-

induced, and decision-consistent biases in RNNs.

DISCUSSION

Two unique aspects of our paradigm enable us to identify deci-

sion-steered attractor dynamics as a source from which two

crucial biases, stimulus-specific and decision-consistent biases,

unfold interactively. First, the prolonged delay allows us to probe

memory states at sufficiently distant moments through behav-

ioral and neural measurements. Second, the mnemonic discrim-

ination task eliminates sensory access to the target stimulus and

thus prevents decision processes from interfering with sensory

encoding, unlike previous studies.2,8–10,12 With this paradigm,

we demonstrated that stimulus-specific bias intensifies over

the delay while guiding decisions, and decision-consistent bias

increases with decision timing in a stimulus-specific manner.

Analyzing the dynamics of task-optimized RNNs offered valu-

able insights into the WM-DM interactions. Simplification into

three subpopulations, one for WM and two for DM, demon-

strated how categorical decisions emerge from continuous

orientation memory and how decisions immediately update

memory, creating choice-induced bias. Central to both pro-

cesses was asymmetric connectivity among these subpopula-

tions, modeled as opposing rotation matrices, with their degree

and scaling determining bias strength. This network property,

within attractor dynamics, predicted stronger choice-induced

bias for orientations with diverging drift, which was confirmed

by behavioral data. Further, targeted ablation revealed that feed-

back from DM to EM populations, which causes the bias, can

enhance decision robustness against noise, offering a rational

basis for its presence.

Drift dynamics are not the sole source of stimulus-specific

bias. Both our phenomenological and RNN models assume

that sensory encoding variability—grounded in efficient encod-

ing27,28—also contributes.36,37 While downstream readout com-

putations play a role as well,27–29,52 the observed growth of stim-

ulus-specific bias in behavioral, BOLD, and RNN data highlights

ongoing WM updating via stimulus-specific drift during the

delay. Notably, our use of ‘‘stimulus-specific drift’’ differs from

‘‘memory drift’’ in prior literature, which typically refers to random

shifts in bump activity within a trial.14,53 Many prior studies attri-

bute such shifts to noise-driven diffusion.13,30 By contrast, stim-

ulus-specific drift refers to a systematic drift toward fixed attrac-

tors amid diffusion, evident when averaged across trials. For that

matter, our BOLD-based analyses provide the first neural evi-

dence of stimulus-specific bias growth through systematic drift

over tens of seconds.

Stimulus-specific drift toward oblique orientations prompts

questions about its mechanisms. Panichello et al.26 demon-

strated that discrete attractor dynamics in delayed color esti-

mation could reduce errors by biasing memory toward

frequently encountered stimuli. However, as in our and prior

studies,24,37 orientation estimates are repelled from the

frequent, cardinal orientations27,28,36 (similarly for location

memory33). Thus, placing attractors around frequent stimuli

does not apply to orientation. Instead, our phenomenological

and RNN models propose that sensory input to the WM system

varies according to the efficient encoding principle, explaining

biases and variances inconsistent with traditional attractor

models. Recent work32 indicates that orientation error evolution

cannot be fully explained by single-module attractor models,

emphasizing the roles of sensory and memory network interac-

tions. Further work is needed to understand how these interac-

tions influence error patterns across different features like color

and orientation.

Our work clarifies source attributions for decision-consistent

bias by differentiating drift toward attractors, stochastic

noise,13,30 and choice-induced bias.2,9 Notably, stimulus-spe-

cific drift introduces a dynamic component: it initially biases

memory, which biases choices, and then continues to bias mem-

ory in line with the biased choice. This has two key implications.

First, models of DM and WM should account for how choices

feed back into memory. Second, accurately explaining deci-

sion-consistent bias requires accounting for drift dynamics

alongside stochastic noise, as neglecting this may misattribute

post-decision drift to choice-induced bias. Additionally, it offers

a perspective on confirmation bias,54–56 suggesting it may arise
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from decision-consistent bias carried from pre-decision to post-

decision phases, facilitated by stimulus-specific drift.

Beyond drift-diffusion dynamics, we provided a mechanistic

account of choice-induced bias. Our phenomenological models

assumed that decision-formation transiently shifts memory

states in the chosen direction during DM, supported by the

RNNs. While this bias is attributed to the DM epoch, it may

also originate earlier in encoding or later in decoding, with their

contributions varying by task structure. Previous accounts2,10

suggested that choice-induced bias arises from a non-uniform

weighting strategy optimized for DM and subsequently reused

for estimation. This reliance on readout optimization makes it

difficult to learn a stable decision boundary when reference in-

puts vary across trials. Consistent references may allow for

late-stage readout strategies via selective information flow57 or

memory recall.12 In our paradigm, these optimization or selection

strategies seem unlikely, as the reference varies each trial and is

briefly available during DM. Further, unlike earlier proposals,9,12

situating choice-induced bias during DM predicts specific neural

trajectories, verifiable by examining the decision-related and

memory-related neural responses with high temporal resolution,

as shown by our RNNs.

G H

D E F

I

A

C

B

Figure 7. Mechanisms of decision-making and choice-induced bias in homogeneous RNNs

(A) Subpopulations and average connectivities.

(B) Left: scaled-rotation approximation of feedforward and feedback connections: rθ, stimulus-receiving units; rcw
ρ /rccw

ρ , reference-receiving, CW/CCW-

projecting units. Right: three-ring system with rotation-based recurrent interactions.

(C) Activity changes during decision: top: input profiles over labeled neurons; middle: time courses of rcw
ρ , rccw

ρ , and rθ, with discrimination epoch marked with

triangles; and bottom: activity snapshots at the onset (light) and offset (dark) of reference.

(D–F) Geometrical analysis of winning (rcw
ρ , D) and losing (rccw

ρ , E) reference units and stimulus units (rθ, F) in 2D state space of rθ during discrimination: isotropic

rings, initial memory states; color saturation, time tracked for different stimulus orientations; short arrows, rotation directions; dashed lines and radial arrows,

stimulus and reference input for four sample orientations. Dashed circles spotlight the rotation dynamics for 0∘ stimulus.

(G–I) Linear description of choice-induced bias using low-rank approximation of trained J (see Method S4.1). As rcw
ρ and rccw

ρ gravitate toward reference input

(Iext
ρ ), they shift outward and inward, respectively (G). Their feedback to rθ rotates by a displacement φ (H), yielding summed inputs of Icw

ρ→θ and Iccw
ρ→θ that bias activity

in choice-consistent direction (black dashed circle in I).
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Our work offers novel insights into how the brain processes

task-relevant features before, during, and after categorical deci-

sions, while optimizing performance in mnemonic discrimination

and estimation. These insights warrant further validation and

refinement. The mechanism by which our RNNs instantiate

choice-induced bias—asymmetric connections and population

dynamics—can be explored through synaptic connectivity and

state-space dynamics.58 Our integrated account of stimulus-

specific and decision-consistent biases can also be extended

to incorporate effects of memory load24,59,60 and serial depen-

dence,61–63 which may modulate WM dynamics, possibly

through divisive normalization37 or short-term synaptic plas-

ticity.64,65 Overall, our work highlights the necessity of consid-

ering WM dynamics to fully understand perceptual biases with

multiple origins, previously investigated in isolation.
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Figure 8. Orientation-dependent biases in

heterogeneous RNNs

(A–C) Drift-warped geometry of rcw
ρ , rccw

ρ , and rθ

during discrimination, shown in the same 2D state

space and format as Figures 7D–7F.

(D and E) Linear description of choice-induced bias

for cardinal (D, 0∘) and oblique (E, 45∘) stimuli. The

feedback from rρ to rθ is anisotropic, producing

greater elongation along cardinal (wc) than oblique

(wo ) orientations (ellipse above the gray arrows).

With wc > wo, choice-induced bias is more pro-

nounced near cardinal orientations (right panels in D

and E; see Method S4.2).

(F) Orientation dependency of near-reference bias.

As the reference signal increases in strength, near-

reference bias increases while maintaining consis-

tent orientation dependence (darker gray scales with

three example bias patterns for different ρ values).

(G) Similar orientation-dependent bias observed in

human behavior. One-sample t test on individual

slopes, p = 0.0304. *p < 0.05.
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study was conducted in accordance with the guidelines of and under the approval of the Institutional Review Board of Seoul

National University. 50 healthy individuals (30 females, 19 − 32 years old; normal or corrected-to-normal vision) completed at least

two or all of the three-day sessions of the main fMRI experiment across three days. Each participant provided written informed con-

sent prior to the experiment and was naı̈ve to the purpose of the study.

METHOD DETAILS

Experiments

Experiment stimuli and procedure

Stimuli were generated using MGL67 and presented by an LCD projector (60Hz). Participants viewed the stimuli at a visual angle of

22∘ (width) × 17∘ (height). The stimuli were displayed within a whole field (radius, 8:5∘) gray circular Gaussian envelope aperture on a

black background. A black fixation dot (0:07∘) and a surrounding black fixation ring (0:83∘to 0:9∘) were constantly present at the center

of the screen. There were 20 runs across the three scanning sessions, each run consisting of 12 trials. Some runs were excluded due

to excessive motion (maximum motion across axes in rotation and translation surpassed T2 ∗-weighted voxel size). Participants

completed a one-hour practice session a few days before the main fMRI experiment.

Inside the scanner, participants maintained central fixation throughout each run and responded using a button box with linearly

aligned keys labeled Key1 to Key4. Before each trial, the fixation dot dilated (0:14∘) for 0:5s to cue the stimulus onset. Each trial started

with a 1:5s presentation of an alternating (8/3 Hz) donut-shaped oriented grating (spatial frequency, 1 cycle/degree) spanning the

peripheral visual field (aperture radii: inner, 2∘; outer, 8:5∘). The stimulus orientations ranged from 0∘ to 172:5∘ with a step size of

7:5∘. The target stimulus presentation was followed by a first-epoch delay, a discrimination task, a second-epoch delay, and an esti-

mation task. Two conditions were considered: early DM trials with 4:5s first-epoch and 10:5s second-epoch delays, and late DM trials

with 10:5s first-epoch and 4:5s second-epoch delays.

In the discrimination task, participants viewed an oriented reference frame, a virtual line connecting the two yellow nonius dots

(mark size, 0.1◦) on the fixation ring. The fixation dot turned yellow and transiently dilated to 0:14∘ for 0.5s to cue the discrimination

task onset. Participants indicated whether the target was tilted counter-clockwise or clockwise relative to the reference by pressing

the Key2 (CCW) or Key3 (CW) with their left or right thumb, respectively. Relative orientations of the reference to the target stimulus

were uniformly selected from [ − 21∘; − 4∘;0∘;4∘;21∘], whose range approximately matches those of the previous studies.2,9 Partic-

ipants had 1.5s to respond, with their responses recorded without their knowledge, with a 0:5s buffer. If a response was made, the

fixation dot dilated to 0:14∘ and turned blue for 0.75s; if no response was made within 1.5s, the fixation dot dilated to 0:14∘ and turned

red for 0.75s. The reference frame disappeared upon button press.

In the estimation task, the participants reproduced the target stimulus from memory by rotating the two green nonius dots with

Key2 (CCW) and Key3 (CW) within the 4.5s. The fixation dot turned green and transiently dilated to eccentricity 0:14∘ for 0.5s to

cue the estimation task onset. Participants confirmed their adjustments by pressing Key1 using their thumbs. If a response was

made, the fixation dot dilated to 0:14∘ and turned blue for 0.75s; if no response was made within 4.5s, the fixation dot dilated to

0:14∘ and turned red for 0.75s. The starting orientation of the estimation nonius dots was randomly chosen from 0∘ to 180∘. The esti-

mation task was followed by a 5.5s inter-trial interval (ITI). Each trial lasted 28s, with a total run time of 336s. After each run, partic-

ipants received a summary of their performance.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Behavior data (preprocessed) This paper Open Science Framework: https://osf.io/6q95m

fMRI data (preprocessed) This paper Open Science Framework: https://osf.io/6q95m

Behavior and fMRI data (raw) This paper OpenNeuro: https://openneuro.org/datasets/ds005381

Software and algorithms

fMRIprep 20.2.0 Esteban et al.66 https://fmriprep.org/en/20.2.0/index.html; RRID: SCR_016216

MGL Gardner et al.67 https://github.com/justingardner/mgl, https://zenodo.org/records/1299497

mrTools Gardner et al.68 https://github.com/justingardner/mrTools, https://zenodo.org/records/1299483

Custom code This paper https://github.com/hyunwoogu/dynamic_bias
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MRI data acquisition and preprocessing

MR data were collected using a Siemens 3 Tesla Tim Trio with a 32-channel head matrix coil at the Seoul National University Brain

Imaging Center. Participants underwent T1-weighted, high-resolution (0:8× 0:8× 0:8mm3) anatomical scans (repetition time (TR),

2:4s; inversion time (TI), 1s; time to echo (TE), 2:19ms; flip angle (FA), 8∘). Over three separate days, they participated in the main

T2*-weight fMRI scanning sessions: Day 1 with of retinotopy-mapping run (96s), hemodynamic impulse response function (HIRF)

estimation run (96s), and 6 task runs (336s), Day 2 with 8 task runs, and Day 3 with 6 task runs. Scan parameters for the retino-

topy-mapping, HIRF, and task runs were: voxel size, 2:3× 2:3× 2:3mm3; TR, 2:0s; TE, 30ms; FA, 77∘. After the acquisition of

fMRI scanner data, the initial preprocessing steps for the anatomical and functional images followed the fMRIprep workflow66

(version 20.2.0) with field map-free distortion correction option (–use-syn-sdc). For control analyses, we included the projections

onto the FSL MNI space (MNI152NLIN6Asym).

ROI definition and voxel selection

The V1, V2, and V3 were defined using standard traveling wave methods.69 Two 15∘-wide wedge bowties on the vertical and horizontal

meridians served as stimuli as in our previous study.70 To measure the voxel-wise signal-to-noise ratio (SNR), we used a checkerboard

whole-field impulse (radius, 8∘) at a 1/24Hz frequency in the HIRF scan. Using the retinotopy scan, subjects’ V1, V2, and V3 regions

across the left and right hemispheres and across dorsal and ventral areas were defined and combined for BOLD analysis. Voxel-

wise SNR was calculated as the stimulus frequency (1/24Hz) amplitude in the HIRF scan divided by the average amplitude of fre-

quencies above the third harmonics, discarding voxels with SNRs under two, following our previous research.71 For control analyses,

we used the publicly available visual atlas for IPS72 as well as the frontal regions,73 IFC and DLPFC. Each voxel’s time series was con-

verted into percent signal change by dividing by its average over the entire time series. To minimize the artifacts, fMRIprep-derived

confounding variables were regressed out, consisting of white matter, CSF, and six additional three-dimensional motion regressors,

along with the discrete cosine transform bases below 0.008Hz to reduce low-frequency components. No additional spatial smoothing

was applied. The confounders were regressed out simultaneously to minimize the potential artifacts from the stepwise regression.74

Resulting time series were z-scored voxel-by-voxel and run-by-run for further analyses.

Analysis of data

Quantifying the stimulus-specific bias from behavior data

The stimulus-specific bias was quantified from the estimation data or the discrimination data. As for the estimation data, we

computed the stimulus-conditioned means of estimation errors ε(θ), the difference between the estimation (θ̂) and the stimulus

(θ), and fitted a smooth function κ(θ) to ε(θ). For each participant, the best-fit smooth function κ̂(θ) = v(θ)⊤ω∗ was found by finding

ω that minimizes the sum of squared errors,

ω∗ = argminω

∑Ntrial

j = 1

(
v
(
θj

)⊤ω − ε
(
θj

))2
(Equation 1)

where v(θ) = [1; v′1(θ);⋯; v′Nbasis
(θ)]⊤ with v′k being the derivative of the von Mises density function with a center of 2jπ=Nbasis, a pre-

cision of Nbasis=2, and Nbasis set to 12.

As for the discrimination data, we fitted psychometric functions Ψ to the discrimination choices (ĉ1;⋯; ĉNtrial
) by maximizing the

likelihood of choices ĉ ∈ { − 1; + 1}, corresponding to CCW ( − 1) and CW ( + 1), as follows:

L
(
ĉ1;⋯; ĉNtrial

)
=
∏Ntrial

j = 1

Ψ
(
θj; ρj;ϑj

)(1 + ĉj)=2(
1 − Ψ

(
θj; ρj; ϑj

))(1 − ĉj)=2
; (Equation 2)

Ψ(θ; ρ; ϑ) = λ + (1 − 2λ) ⋅ Φ
(
~ρ; μ; σ2

)
(Equation 3)

where θ; ρ; ϑ are stimulus orientation, reference orientation, and decision timing (ϑ ∈ {early;late}); ~ρ is the orientation of the reference

relative to the stimulus (~ρ = ρ − θ); Φ is the cumulative Gaussian distribution function with a mean μ and a standard deviation σ; λ is

the lapse rate. While fitting Ψ, to parameterize the modulation of the stimulus-specific bias by decision timing (Figure 3A), we con-

strained the stimulus-specific mean of Φ with the best-fit smooth function κ̂(θ), as follows: μ = wϑ κ̂(θ), where, wϑ denotes the bias

weight for the early (wearly ) or late (wlate) DM conditions. Consequently, the maximum-likelihood fitting involved 5 free parameters in

total: {wearly ;wlate;σearly ;σlate;λ}, where σearly and σlate are the standard deviations of Φ for early and late DM conditions, respectively.

To characterize the idiosyncratic patterns of stimulus-specific bias across participants, we defined the converging and diverging

stimuli based on each individual’s κ̂(θ). We first identified the zero-crossing of κ̂(θ) and estimated the local slopes. Then, for each

participant, the nearby orientations (within ± 8∘) were labeled as diverging (if the slopes were positive) and converging (if the slopes

were negative) stimuli.

Quantifying the near-reference variability from behavior data

As a signature of the choice-induced bias, the marginal distribution of estimation error spreads more in near-reference trials than in

far-reference trials (Figures S1D–S1K). We referred to this signature as the near-reference variability and characterized it by

comparing the variability of the reference-conditioned estimation error distributions across the reference conditions. As a robust
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measure of variability, we used the interquartile range (IQR), the difference between the first and third quartiles of the distribution. To

capture the trend that the IQR increase as the reference nears the stimulus, we fitted a centered Gaussian density function,

allowing the baseline, width, and amplitude parameters to vary.

To further validate our findings regarding the near-reference variability, we applied the same analysis procedure to publicly avail-

able datasets from previous studies (Figures S1A and S1B). In the work of Zamboni et al.10 and Fritsche and de Lange,8 the reference

was used as a decision boundary as in our study, allowing us to assess whether the near-reference variability is a generalizable signa-

ture of the choice-induced bias and is well captured by our procedure. Additionally, to further confirm that the near-reference vari-

ability does not occur when a decision-making is not imposed as a task demand, even in the presence of a reference-like stimulus, we

also applied the same analysis to another publicly available dataset from Rademaker et al.,75 where the intervening orientation stim-

ulus acts only as a distractor (Figure S1C). For the Rademaker et al.’s dataset, we included a relative stimulus range of [− 25∘, 25∘] in

the analysis. Across all datasets, a reference was considered near if the relative stimulus orientation fell within [− 8∘, 8∘].

Quantifying the decision-consistent bias from behavior data

To characterize the decision-consistent bias, we computed the conditional mean of estimation errors ε given choice ĉ, denoting it as

b = (𝔼[ε|ĉ = cw] − 𝔼[ε|ĉ = ccw])=2. Previous studies2,9 showed that the decision-consistent bias is prominent only when the

reference is near the stimulus orientation. Thus, we analyzed b only for the near-reference trials (~ρ ∈ { − 4∘; 0∘; 4∘}) for further

analyses.

Decomposition of the decision-consistent bias based on behavior data

We decomposed b into a component occurring before DM (pre-decision bias, bpre) and the one after DM (post-decision bias, bpost):

b = bpre + bpost: (Equation 4)

The decomposition was achieved in two steps, first quantifying the decision-consistent bias at the onset of DM from the discrim-

ination data (bpre) and then quantifying the additional decision-consistent bias accumulated after DM up until the moment of estima-

tion (bpost). Conceptually, bpre corresponds to the difference between the choice-conditioned means of memory states at the moment

of discrimination time tdm:

bpre =
(
𝔼
[
mtdm ;

⃒
⃒ĉ = cw

]
− 𝔼

[
mtdm ;

⃒
⃒ĉ = ccw

]) /
2 (Equation 5)

Here, the underlying distribution of memory states mtdm ; can be inferred from the parameters of the discrimination psychometric

curve Ψ(θ; ρ; ϑ) (defined in Equation 3), by applying the formalism offered by Signal Detection Theory.76 Roughly put, this formalism

relates the horizontal center and slope of Ψ to the mean and dispersion of the inferred distribution of memory states mtdm
. Then the

choice-conditioned means of this distribution, 𝔼[mtdm
|ĉ = cw] and 𝔼[mtdm

|ĉ = ccw], can readily be derived. We detailed this deri-

vation in Method S1.1.

Next, having determined bpre, we quantified bpost from the distribution of estimation errors ε, as follows. First, to enable the single-

trial estimation, we first sign-flipped the estimation errors according to the choice direction, aligning their signs with bpre, yielding

sign-corrected errors ε∗ = ĉ⋅ε. We then subtracted bpre from ε∗ for each trial to compute the residuals, ε∗ − bpre. These residuals

provide trial-to-trial estimates of how estimation errors are further deviated beyond bpre. To quantify the decision-timing dependent

changes in bpost, we performed a linear regression with condition indicators as regressors:

𝔼
[
ε∗ − bpre

⃒
⃒θ; ρ;ϑ

]
= β0 + β1 ⋅ 1late + β2 ⋅ ~ρ (Equation 6)

where β0 corresponds to the b
early
post , β1 to Δbpost, and β2 was introduced as a nuisance parameter to capture the previously known

attraction towards the reference75.

For an additional comparison between the converging (conv) versus diverging (div) orientation conditions, we expanded Equation 6

to incorporate the converging-vs-diverging orientation factor, as follows:

𝔼
[
ε∗ − bpre

⃒
⃒θ; ρ; ϑ

]
= β′

0 + β′
1 ⋅ 1late + β′

2 ⋅ 1div + β′
3 ⋅ 1late;div + β4 ⋅ ~ρ (Equation 7)

where β′
0 corresponds to b

early;conv
post , β′

1 to Δbconv
post , β′

2 to b
early;div
post − b

early;conv
post , β′

3 to Δbdiv
post − Δbconv

post , and β4 to the reference attraction.

BOLD decoding of orientation memory states based on inverted encoding analysis

We decoded stimulus orientation from the population BOLD responses in the early visual cortex (V1, V2, and V3) using inverted en-

coding analysis.42,43 For each trial, the time courses of population BOLD responses X (Nvoxels ×Ntrials) were modeled as a linear com-

bination of channel responses Y (Nchannels × Ntrials) with weights W (Nvoxels × Nchannels), as follows:

X = WY; (Equation 8)

where each column of Y corresponds to the vector of channel responses to stimulus orientation θj in a given trial j: y(θj) =

[yψ1
(θj);⋯; yψ8

(θj)]
⊤

, where yψ(θ)= |cos(θ − ψ)|8 with channel centers ψ1;⋯;ψ8 tiling uniformly the orientation space [0;π].
In the following steps, we carried out the decoding analysis using a leave-one-run-out cross-validation procedure. First, we desig-

nated one run as a held-out validation run and the remaining runs as train runs. Second, we constructed a matrix of population BOLD

responses XT and a matrix of channel responses YT from the train runs, along with a matrix of population BOLD responses XV from the
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held-out validation run. Third, given XT and YT, the weight matrix that yields the minimum squared errors Ŵ was determined as

follows:

Ŵ = XTYT
⊤
(YTYT

⊤
)
− 1
: (Equation 9)

Fourth, we reconstructed the channel responses to the stimulus orientations presented in the validation run ŶV based on Ŵ and the

matrix of population BOLD responses in the validation run XV, as follows:

ŶV = (Ŵ⊤Ŵ)
− 1

Ŵ⊤XV: (Equation 10)

Fifth, to refine ŶV at a fine scale, we repeated the third and fourth steps while repositioning the centers of the eight channels,

thereby defining ŶV for a total of 120 channel centers ψ = [0∘;1:5∘;⋯; 178:5∘]
⊤

. We repeated the whole steps for each run, decision

timing, and time point, resulting in the reconstruction of channel response vectors ŶV(t), with the columns corresponding to all the

trials for a given time point t of interest 3–14 TRs.

From these reconstructed channel responses ŶV(t), we decoded the single-trial stimulus orientation by mapping the recon-

structed channel response in each trial j and time point t (Ŷ j(t)) to a point readout on the circular orientation space, as follows:

θ̂bold
j (t) = atan 2

(
sin (2ψ)

⊤
Ŷ j(t); cos (2ψ)

⊤
Ŷ j(t)

)/
2: (Equation 11)

Estimating the time course of stimulus-specific bias in the memory states decoded from BOLD activity

The memory states decoded from BOLD activity exhibited the growth of the stimulus-specific bias over the delay. To track this

growth, we estimated the amplitude of the bias at each time point based on the assumption that its across-stimulus profile is a scaled

copy of the stimulus-specific bias estimated from the behavioral orientation estimates κ̂(θ), which was defined by the optimal param-

eters using Equation 1 for each participant. Accordingly, for each participant and each time point of BOLD measurement, we fitted the

multiplicative weight of κ̂(θ) to the stimulus-specific errors of the memory states decoded from BOLD activity, ε̂bold(t) = θ̂bold(t) − θ.

For further analyses, we also considered the sign-corrected decoding errors ε̂∗;bold(t) = ĉ⋅ε̂bold(t), for which we flipped the signs of

decoding errors ε̂bold(t) for each trial according to the choice direction.

Decomposition of the decision-consistent bias based on BOLD activity

For the BOLD activity, we estimated the decision-consistent bias (bbold) and its pre-decision (bbold
pre ) and post-decision (bbold

post) compo-

nents in the following steps. First, we modelled the time course of the latent, decision-consistent bias in memory states with a piece-

wise linear function g(t) that incorporates the linear increase of the decision-consistent bias over time t along with the pulse-like shift

due to the choice-induced bias during DM tdm, as we assumed in our phenomenological models:

g(t) = (c0 + c1 ⋅ t)1t≤ tdm
+
(
c∗

2 + c3 ⋅ (t − tdm)
)
1t > tdm

(Equation 12)

where the first term on the right-hand side of captures the initial bias by c0, the linear increase over time by c1⋅t up to the time of DM,

and the second term inherits the first term by including c0 and c1⋅tdm into c∗
2 = c0 + c2 + c1⋅tdm while capturing the pulse-like choice-

induced bias by c2 and the linear increase over time by c3⋅(t − tdm).

Second, we converted g(t) to ε̂∗;g(t)using a transfer function v, which convolves any given function with the canonical double-

gamma hemodynamic response function77 h(t) while incorporating the input driven by the target stimulus θ and the reference stim-

ulus ρ, which can be expressed as an argument of the complex number system as follows:

ε̂∗;g(t) = ν(g(t); θ; ρ) = arg
(
h(t) ∗

(
e2ig(t) + βθ ⋅ e2iθ ⋅ 1t∈ T θ + βρ ⋅ e2iρ ⋅ 1t∈ T ρ

)) /
2; (Equation 13)

where βθand βρ denote the beta weights of visual events48 driven by the presentation of the stimulus θ and the reference ρ, while T θ

and T ρ are the presentation time windows of θ and ρ.

Third, to estimate the influence of the stimulus and the reference (i.e., βθand βρ), we assumed that the impact of DM is negligible in

ε̂∗;bold(t) (as defined at the end of the previous section) in the far-reference trials and defined its model correspondence by plugging

the zero bias in the transfer function defined in Equation 13 instead of g(t): ε̂∗;0 = ν(0; 0; ~ρ) (see Figure S4A). Then, we found the values

of βθand βρ that minimize the L2 difference between ε̂∗;bold(t) and ε̂∗;0.

Fourth, having estimated βθand βρ, we then identified the parameters (ĉ0;ĉ1;ĉ2;ĉ3) of the time course of the latent, decision-consis-

tent bias in memory states g(t) that minimize the L2 difference between ε̂∗;bold(t) in the near-reference trials and ε̂∗;g(t).
Lastly, we obtained the estimates of the decision-consistent bias (bbold) and its pre-decision (bbold

pre ) and post-decision (bbold
post) com-

ponents, as follows:

b̂bold
pre = ĉ0 + ĉ1 ⋅ tdm; b̂bold

post = ĉ2 + ĉ3 ⋅ (tem − tdm); b̂bold = b̂bold
pre + b̂bold

post (Equation 14)

where tem denotes the time of orientation estimation.
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BOLD decoding of orientation memory states based on representational similarity analysis

As an alternative method for decoding orientation memory states from BOLD activity, we computed representational similarity

matrices (RSMs) using the same population BOLD responses (X) used in the inverted encoding analysis. Following previous

studies,78,79 we averaged the across-voxel patterns of BOLD responses to each stimulus θ across trials (xθ) and then normalized

xθ by subtracting the across-stimuli mean (xθ) from it. We defined the correlation matrix Ω (Nstimulus × Nstimulus) by computing the Pear-

son correlation of xθ − xθ for each pair of orientation stimuli, while excluding identical cases that correspond to the diagonal ele-

ments. Such Ω was defined for each time point. We then estimated the orientation memory states (θ̂rsm
i ) from Ω defined for each

time point by taking the circular mean of each row, Ωi, corresponding to stimulus θi:

θ̂rsm
i = atan 2

(
∑

j∕=i

sin
(
2θj

)
Ωij;
∑

j∕=i

cos
(
2θj

)
Ωij

)/

2 (Equation 15)

We quantified the ‘‘categorical’’ nature of orientation representation using a previously suggested category40: whether a stimulus is

on the clockwise or counter-clockwise side with respect to the vertical orientation. To model this categorical pattern, we used a

‘‘block’’ matrix Mblock (each row is + 1 for within-category and − 1 for across-category) as well as a ‘‘cosine’’ matrix Mcosine (each

row is the cosine value of the corresponding stimuli). To quantify the relative contribution of each pattern, we used the weight

wcvx between zero and one, such that the convex combination Mcvx = wcvxMblock + (1 − wcvx)Mcosine approximates Ω, indicating

a higher categorical representation by a higher value of wcvx. For comparison, we normalized Ω into the range [− 1; + 1] and

used the least squares method to find wcvx for each time point.

Eye-tracking

To ensure participants’ eyes remained fixed on the central fixation marker throughout the experiment, we monitored their eye posi-

tions using an MR-compatible video-based eye tracker (EyeLink-1000, SR Research). The eye tracker was set up at a sampling rate

of 500 Hz. For each participant, we recalibrated the eye tracker before each session using the built-in five-point routine (HV5). Eye-

tracking data were corrupted or not recorded for five participants due to technical issues. Data was further excluded from analysis for

the scan runs where experimenters noted calibration issues, which were attributable to eye occlusion by the head coil, unreliable

tracking due to reflective sources like MRI goggles, or excessive blinking patterns.

Phenomenological models: diffusion-only and drift-diffusion models

Model description

We posited that the memory states in a single trial m(t) undergo the following dynamics within the orientation space spanning [0; π]
with a periodic boundary:

mt = m0 +

∫ t

0

K(ms)ds +

∫ t

0

D(ms)dWs + α
(
mtdm

; ρ
)

⋅ 1t≥ tdm
; (Equation 16)

where K(ms) and D(ms) are the terms instantiating drift and diffusion dynamics, respectively, and Ws follows the Wiener process.

We considered two classes of models, one with the diffusion term only (diffusion-only model) and the other with both drift

and diffusion terms (diffusion-only model). The diffusion term D(m), which is shared by both models, was set to w2
D. For the

drift-diffusion model, the drift term K(m) was defined in a stimulus-specific manner to instantiate the stimulus-specific drift, as

follows:

K(m) = wK ⋅ κ̂†(m); (Equation 17)

where wK is the drift rate, and κ̂† is the normalized stimulus-specific bias, κ̂† = κ̂=max|κ̂|, with κ̂(θ) defined by the optimal parameters

found using (Equation 1) for each individual.

The last term of the right side of Equation 16 instantiates (i) the choice-induced bias by incurring an impulse-like shift in the memory

trajectory in the choice-consistent direction and (ii) the reference-attraction bias at the moment of DM tdm:

α(m; ρ) =

⎧
⎨

⎩

wρ⋅~ρ + wα⋅ĉ(m; ρ); ~ρ ∈ { − 4∘; 0∘;4∘}

wρ⋅~ρ; ~ρ ∈ {− 21∘;21∘}

; (Equation 18)

where ~ρ denotes the relative reference orientation; wρ is the strength of reference attraction, mimicking towards-distractor biases75;

wα is the strength of choice-induced bias only present in the near reference conditions ~ρ ∈ { − 4∘;0∘;4∘}, following the previous ob-

servations.2,9 The choice term ĉ was determined by the relative difference between the reference orientation ρ to the memory state at

the moment of DM: ĉ = ĉ(m;ρ) = sign(m − ρ).
To generate the discrimination and estimation reports, we used an instantaneous memory state at the corresponding moments of

time: m(t) at tdm = 6s and tdm = 12s to determine ĉ in the early and late DM conditions, respectively; m(t) at tem = 18s to determine an

estimation report.
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Constraining the initial memory states based on the principle of efficient sensory encoding

We constrained the stimulus-specific distributions of initial memory states p(m0|θ) based on the principle of efficient coding.27

At the core of this principle is the encoding transformation function F(θ), which captures how encoding resources are allocated.

F(θ) maps an orientation value θ in the stimulus space onto a measurement in the sensory space, in which the measurement

is corrupted by the encoding noise. Therefore, using this framework, we first inferred F(θ) from data and then used it to

derive p(m0|θ).
We estimated the stimulus-to-sensory mapping F based on a previously derived relationship between the stimulus-specific bias

κ(θ) and the derivative of F(θ)28:

F′ ∝
(∫

κdθ
)− 1=2

: (Equation 19)

To compute the integral term in Equation 19,
∫

κdθ, we used previously estimated stimulus-specific bias κ̂(θ) as an estimate

for κ(θ). Given that κ̂(θ) = v(θ)⊤ω∗, where v(θ) = [1; v′1(θ);⋯; v′Nbasis
(θ)]⊤and ω∗ is obtained from Equation 1, the integral be-

comes V(θ)⊤ω∗, where V(θ) = [v1(θ);⋯; vNbasis
(θ)]⊤ excluding the constant term. We then defined K̂(θ), our estimate of

∫
κdθ,

with an additional adjustment by a shape parameter s in [0; 1], which controls the extent to which the stimulus-specific bias

constrains F′:

K̂(θ) = (1 − s) ⋅ rescale(V(θ)⊤ω∗ ) + s; (Equation 20)

where rescale( ⋅) denotes the min-max scaling between zero and one. As s approaches 0, the stimulus-to-sensory mapping

becomes increasingly constrained by the integration of stimulus-specific bias function, and s = 1 corresponds to the case of uni-

form mapping. This estimator K̂(θ) allows us to specify F via Equation 19, by computing F′∝(K̂(θ))− 1=2
with the constraint

∫
F′(θ′)dθ′ = π.28

Having specified the encoding transformation F(θ) and the sensory noise level wE , we can determine the initial distribution of mem-

ory states p(m0|θ) by modeling their initial states in the sensory space F(m0) as a von Mises distribution centered around F(θ) with

dispersion proportional to wE . The density function is computable using the change of variables:

p(m0|θ) =
F′(m0)

2π⋅I0
(

1
̅̅̅̅̅̅
wE

√

) ⋅ exp

(
1
̅̅̅̅̅̅
wE

√ ⋅ cos(2(F(m0) − F(θ)))
)

(Equation 21)

where F′ is the derivative of F, and I0 is the modified Bessel function of order 0. As such, we can fully constrain the stimulus-specific

distribution of the initial memory states, p(m0|θ), with the previously estimated κ̂ and additional two parameters, s and wE , which are

fitted for both drift-diffusion and diffusion-only models (Figure S2).

Fitting the models to behavioral reports

To fit the models to the behavioral reports, we translated Equation 16 into the corresponding Fokker-Planck equation:

∂
∂t

p(m; t) = −
∂

∂m
K∗(m; t)p(m; t) +

w2
D

2

∂2

∂m2
p(m; t); (Equation 22)

where K∗(m;t) = K(m) + α(m;ρ)δ(t − tdm), where δ( ⋅) is the Dirac delta function. We numerically solved the equation by discretiz-

ing m with a unit Δm = π=Ndisc, where Ndisc = 96 (see Method S3.1 for detailed numerical procedure for model fitting). For each

participant, we fit the models to the discrimination choices ĉj and the estimation reports θ̂ j by finding the set of model parameters

(8 parameters listed below) with the maximum joint likelihood L(parameters|data) given the experimental condition, which is spec-

ified by stimulus orientation θj, reference orientation ρj, and decision timing ϑj:

L(parameters|data) =
∏Ntrial

j = 1

p
(
ĉj; θ̂ j

⃒
⃒θj; ρj;ϑj

)
: (Equation 23)

We used the optimization routines provided by SciPy, with 20 iterations, while randomizing initial parameters by drawing from the

constrained ranges of the model parameters (see Table S1). The parameters set free to be fitted were wK (drift rate) (set to 0 for the

diffusion-only model), wD (diffusion rate), wα (choice-induced bias), wρ (reference bias weight), wE (encoding variability), wP (produc-

tion variability), wλ (decision-making lapse), and s (encoding function shape). To compute cross-validated log likelihoods, we ran 10

independent runs of 5-fold cross-validation of log likelihoods (each with 20 iterations) by separating the data used for fitting the

models including the estimation of κ̂.

Evaluating the correspondence between the drift-diffusion model and BOLD activity

We validated the drift-diffusion model’s prediction of the memory state dynamics by evaluating how closely it follows the trajectories

of the memory states decoded from BOLD activity. For this evaluation, we translated the model prediction of memory states mt, as

defined in Equation 16, into its equivalent in BOLD signal using the transfer function ν(mt; θ;ρ), as defined in Equation 13. Then, for

each trial j in the near-reference conditions, we evaluated the correspondence between the model prediction ν(mj; θj; ρj) and the
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memory states decoded from BOLD activity θ̂bold
j by quantifying the average cosine distance between them with a correspondence

score Sj, as follows:

Sj = 𝔼
[
cos

(
2
(

θ̂bold
j − ν

(
mj; θj; ρj

)))]
: (Equation 24)

Recurrent neural network model

RNN dynamics

The following equations describe the dynamics of RNN:

τ
dr

dt
= − r + f(Jr + Jθuθ + Jρuρ + η); (Equation 25)

τ′
dη
dt

= − η +
̅̅̅̅̅̅
2τ′

√
ξ; (Equation 26)

where r is the Nrec-dimensional (Nrec = 96) unit activity with a time constant τ = 100 ms, and η is the stochastic noise with a time

constant τ′ = 200 ms, modeled as the Ornstein–Uhlenbeck process80; uθ and uρ are the Nin-dimensional (Nin = 24) stimulus and

reference inputs, respectively, whose units are orientation tuned, modeled as a von Mises distribution; J;Jθ and Jρ are the weights

of the recurrent, stimulus, and reference inputs, respectively; f = 1=(1 + exp(− x)) is the sigmoid activation function; ξ is the inde-

pendent Gaussian noise with a standard deviation of 0:05. The values for r and η were initialized at 0s. We approximated the equa-

tions above using the forward Euler approximation with a discretization time step Δt = 20ms.

Considering that the stimulus and reference inputs occupied different parts of the visual field in the task paradigm, uθ and uρ were

projected onto two separate 48-dimensional populations of the recurrent units r, namely rθ and rρ. uθ is centered at veridical orien-

tation θ, given as

(uθ)i = γθ ⋅ exp(κθ(cos(2(θ − θi)) − 1)); (Equation 27)

where θi is the preferred orientation of the unit i; γθ is the strength of the stimulus input, fixed at 1; κθ is the concentration parameter,

fixed at 5. uρ during the discrimination epoch was determined by a one-hot vector:

(uρ)i = γρ ⋅ δρ;ρi
; (Equation 28)

where ρ is the reference orientation, and ρi is the preferred orientation of the unit i; γρ is the strength of the reference input, fixed at 2,

which is higher than the one for uθ considering the higher level of certainty. We used Nθ = 24 ranging from 0∘ to 172:5∘ with 7:5∘ in-

crements. The reference input was constrained to |ρ − θ| ≤ 30∘ with 7:5∘ steps, resulting in 9 possible relative references. During the

‘‘train episode,’’ we excluded ρ = θ to facilitate training but included it during the ‘‘generalization episode’’ (see the next section for the

definition of the ‘‘train episode’’ and ‘‘generalization episode’’).

Discrimination and estimation outputs, zdm and zem, were

zdm = Jdmr; zem = Jemr; (Equation 29)

where zdm = (zdm
1 ; zdm

2 ) for CW and CCW choices, respectively, and zem, a 24-dimensional ‘labeled line’ response vector, consists of

equally discretized points within [0;π]. Input and output weights, Jθ; Jρ; Jem, and Jdm, were fixed, defined as

Jθ(j; k) = Jρ(j; k) = γin⋅cos(2π(j − k)=Nin); (Equation 30)

Jem(j; k) = γem⋅cos(2π(j − k)=24); (Equation 31)

Jdm(j; k) = 1j∈Icw
⋅ 1k = 1 + 1j∈Iccw

⋅ 1k = 2; (Equation 32)

where γin = 1; γem = 0:4; a balanced voting for the two choices, with Icw = {j + 1 : (j mod 48) < 24} and Iccw =

{j + 1 : (j mod 48) ≥ 24}.

RNN training

We trained RNNs using a paradigm equivalent in structure to the one used for human participants. RNNs were first trained on a short

task timescale (‘‘train episode’’) and then generalized to an extended timescale (‘‘generalization episode’’). As we confine RNNs as a

proof of principle, the time scales of dynamics were not directly aligned with the human experiment. Each trial in the train episode had

the following structure: an initial fixation epoch with no inputs (0:1s) was followed by stimulus presentation (0:6s), first delay (0:3s), DM

(0:6s), second delay (0:3s), and estimation report (0:1s) epochs. In the generalization episode, respecting the human task structure,

the first and second delays were extended to 1:8 s and 4.2 s for the early DM condition, and 4:2s and 1.8 s for the late DM condition,

while the lengths of the other epochs remained the same.
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For the supervised learning, we defined desired outputs qdm and qem as

qdm = [1θ > ρ; 1θ < ρ]
⊤
; (Equation 33)

(qem)j = exp
(
κθ
(
cos

(
2
(
θ − θj

))
− 1

))
; (Equation 34)

where qdm and qem were 2-dimensional and 24-dimensional vectors, respectively. We trained the recurrent weight J while maintain-

ing other weights fixed. Before training, J was initialized as zero. The joint loss L was Ldm + Lem, where both Ldm and Lem are the

time-averaging cross entropies between the network output and the desired output, given as:

Ldm =

〈
∑

j∈{cw;ccw}

Mdm(t)⋅zdm
j (t)⋅log

(
1
/

qdm
j (t)

)
〉

t

; (Equation 35)

Lem =

〈
∑

j∈{1;⋯;24}

Mem(t)⋅zem
j (t)⋅log

(
1
/

qem
j (t)

)
〉

t

; (Equation 36)

where Mdm(t)is a binary mask, non-zero only during the discrimination epoch, while Mem(t) is non-zero except for the initial fixation

epoch. The loss was minimized using backpropagation in PyTorch with the Adam optimizer (with a learning rate of 0:02). We under-

took 300 iterations per network training, generating 128 trials per iteration. In each of those trials, the stimulus and relative reference

orientations were determined randomly.

To dissociate the effects of drift dynamics and the choice-induced bias, we independently trained 50 ‘‘homogeneous’’ RNNs, along

with the original ‘‘heterogeneous’’ RNNs. For the heterogeneous RNNs (Figures 6 and 8), to approximate the orientation-specific vari-

ability that reflects the efficient sensory encoding principle, we added Gaussian noise to the orientation input θ, allowing the centers of

uθ for a given stimulus orientation θ0 to vary as follows:

p(θ|θ0)∼N
(
θ0; γD⋅|sin(2θ0)|

2
)
; (Equation 37)

where the spread term γD was set at 102. In contrast, no such noises were added for the homogeneous RNNs (θ|θ0 = θ0; Figure 7). All

training details, except for stimulus input-level encoding variability, were identical for the homogeneous and heterogeneous RNNs.

To inspect the effect of feedback connections on the choice-induced bias, we independently trained 50 feedback-connection-ab-

lated RNNs by zeroing the connectivity from the units receiving uρ to those receiving rθ. To examine the effect of fine-tuning the

readout connection after training the feedback-ablated RNNs, we further trained the readout connection independently (mapping

from recurrent activities r to both discrimination and estimation outputs zdm and zem).

RNN analysis

From the output vectors zdm and zem of the 50 independently trained RNNs, we determined their discrimination choice ĉrnn and esti-

mation report θ̂rnn, as follows:

θ̂rnn = atan 2

(
∑24

j = 1

zem
j sin 2θj;

∑24

j = 1

zem
j cos 2θj

)/

2; (Equation 38)

ĉrnn = sign
(
zdm

1 − zdm
2

)
: (Equation 39)

We then conducted the same analyses on ĉrnn and θ̂rnn; as we did on human discrimination choices ĉ and estimation reports θ̂, to

assess the stimulus-specific and decision-consistent biases.

To depict RNNs’ population dynamics during the discrimination epoch in a low-dimensional state space, we applied PCA

on average RNNs, taking the mean of individually trained J for the homogeneous and heterogeneous RNNs separately. We

generated trials from both types of RNNs without network noise (i.e., ξ = 0 in Equation 26) for this state-space analysis. We

analyzed the dynamics and connectivity patterns by further separating both rθ and rρ into the CW- and CCW-projecting populations

based on Jdm (e.g., rcw
ρ denotes the reference-receiving and CW-projecting population). For illustration, we used a near reference,

θ − ρ = 7:5∘, with winning/losing populations as rcw/rccw.

To inspect the dynamics of the homogeneous and heterogeneous RNNs, we projected the activities of mean homogeneous and

heterogeneous RNNs onto the principal components from mean homogeneous RNNs, assuming slow drift dynamics in heteroge-

neous RNNs. We first stacked the activities of rθ = (rcw
θ + rccw

θ )=2 of the mean homogeneous RNNs for each condition (Nθ = 24 stim-

ulus orientations and Nρ = 9 relative reference orientations) to form a column-mean-centered data matrix 𝔇, that is, (Nθ ⋅Nρ ⋅T)× 24,

where T is the total time steps. In the text, rθ is used in the place of rθ for brevity. The PC projection matrix V𝔇 was computed from the

singular value decomposition of 𝔇 as 𝔇 = U𝔇S𝔇V⊤
𝔇. We used the first two PCs to project population activities of rcw

ρ , rccw
ρ , and rθ.

The first two PCs explained more than 92% of the total variance. For intuitive presentation, we sign-flipped and rotated the projection

axes to align different stimulus conditions clockwise, with 0∘ stimulus points upright in rθ space, resulting in oblique stimuli ( ± 45∘)

along the x-axis and cardinal stimuli (0∘, 90∘) along the y-axis.
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QUANTIFICATION AND STATISTICAL PROCEDURES

For the quantitative evaluations of phenomenological models (Figures 4D, 4E, and 5F), we simulated the trajectories of memory

states based on 10,000 Monte-Carlo iterations. For the statistical analyses of population-level differences in the decision-consistent

biases around converging and diverging fixed points in the human behavior and drift-diffusion model (Figures 4E and 4F), the BOLD

signals (Figure 5E), and RNN models (Figure 6H), we ran bootstrap-based permutation test using 10,000 random iterations.
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