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Abstract
Planning is critical for adaptive behaviour in a changing world, because it lets us anticipate the future and
adjust our actions accordingly. While prefrontal cortex is crucial for this process, it remains unknown how
planning is implemented in neural circuits. Prefrontal representations were recently discovered in simpler
sequence memory tasks, where different populations of neurons represent different future time points.
We demonstrate that combining such representations with the ubiquitous principle of neural attractor
dynamics allows circuits to solve much richer problems including planning. This is achieved by embedding
the environment structure directly in synaptic connections to implement an attractor network that infers
desirable futures. The resulting ‘spacetime attractor’ excels at planning in challenging tasks known to
depend on prefrontal cortex. Recurrent neural networks trained by gradient descent on such tasks learn
a solution that precisely recapitulates the spacetime attractor – in representation, in dynamics, and in
connectivity. Analyses of networks trained across different environment structures reveal a generalisation
mechanism that rapidly reconfigures the world model used for planning, without the need for synaptic
plasticity. The spacetime attractor is a testable mechanistic theory of planning. If true, it would provide a
path towards detailed mechanistic understanding of how prefrontal cortex structures adaptive behaviour.

Introduction1

While different cortical areas support different func-2

tions, common computational principles are shared3

across many areas. For functions as disparate as4

sensory processing, spatial reasoning, and language5

comprehension, features of the environment are in-6

ferred from partial information. To do so, structural7

knowledge about the world must be embedded in8

synaptic connections (Ko et al., 2011; Burak and Fi-9

ete, 2009; Iacaruso et al., 2017; Turner-Evans et al.,10

2020). This constrains neural circuits to represent11

meaningful interpretations of the environment, and12

inputs select between these interpretations. It is13

not known whether similar principles generalise to14

complex prospective behaviours, such as planning15

extended action sequences to achieve a distant goal.16

Recent recordings from prefrontal cortex give an17

important clue. When mice or monkeys must ex-18

ecute a sequence of actions, neurons represent the19

entire sequence concurrently (El-Gaby et al., 2023;20

Xie et al., 2022). Different neuronal populations21

encode different steps of the future behaviour. If22

such a representation could be inferred from inputs23

indicating goals and constraints, the network could24

plan the future. Excitingly, this solution would use25

algorithmic principles similar to those known to26

infer features of the present in other cortical areas.27

This paper has four overlapping aims. (i) To de-28

velop a detailed circuit model that infers explicit29

representations of the future from partial inputs.30

(ii) To discern the principles of synaptic connectivity31

that enable such a model to solve complex problems32

including planning. (iii) To understand when and33

why this algorithm succeeds while simpler circuit34

models fail. (iv) To explore how it relates to pre-35

frontal representations, connectivity, and function.36

Sequence representations in PFC Recent37

work has uncovered PFC representations underlying38

sequence working memory (Xie et al., 2022; El-Gaby39

et al., 2023; Whittington et al., 2023; Botvinick40

and Plaut, 2006). Separate neural ‘subspaces’, or41

groups of neurons, represent the expected or de-42

sired state of the world at different steps along the43

sequence of future behaviour. In other words, some44

neural subspace ‘A’ represents the present, while45

subspace ‘B’ represents the immediate future, and46

subspace ‘C’ the more distant future (Figure 1A).47

Critically, these subspaces are active simultaneously.48

Together, they instantaneously represent the entire49

behavioural sequence. Importantly, El-Gaby et al.50

(2023) showed that the PFC subspaces representing51

different steps of the future are not independent.52

Neuronal correlations reflect the structure of the53

task being performed, even during rest.54
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Figure 1: Background. (A) Recent work has identified explicit sequence representations in prefrontal
cortex during working memory (Xie et al., 2022; El-Gaby et al., 2023). When an animal has to execute
a behavioural sequence (left), individual neurons represent conjunctions of location and sequence element
(centre). Separate populations (planes) therefore represent the expected location at different times in the
future. The entire sequence is represented concurrently by the simultaneous firing of different neurons that
encode the expected location at each time in the future (right). (B) An example V1 cell fires when its
receptive field is aligned with an inferred line (blue), but not for a control stimulus with no inference (orange).
Such visual inference is mediated by structural priors embedded in the circuit connectivity, where neurons
representing consistent visual features excite each other (Iacaruso et al., 2017; Shin et al., 2023). Figure
adapted from Lee and Nguyen (2001). (C) Structural knowledge is embedded in the synapses of the head
direction system (centre; Turner-Evans et al., 2020), which constrains the network to represent single angles
(Kim et al., 2017). Visual and proprioceptive inputs (left) determine which angle should be represented
(right). We suggest that a mechanism like (B) and (C) infers the representation in (A). (D) Prefrontal cortex
is particularly important in dynamic environments. Stimulus-response associations and repeated choices are
robust to prefrontal lesions (i; ii), and acortical mice can solve spatial memory tasks (iii; Zheng et al., 2024).
However, PFC is needed for reversal learning (iv; Walton et al., 2010) and when different goals are important,
or ‘rewarding’, at different times (v; Shallice and Burgess, 1991). In multiplayer board games (vi), different
resources are valuable at different stages, and opponents can dynamically change their strategy.

Planning by inferring the future The corre-55

lation structure observed in PFC resembles other56

attractor circuits known to infer the current state of57

the world, such as the instantaneous visual input or58

head direction of an animal (Figure 1B-C; Ko et al.,59

2011; Chaudhuri et al., 2019). If a similar infer-60

ence process acted on the future representation in61

PFC, it would extend its function beyond sequence62

memory to situations where entire action sequences63

are inferred from partial cues. Planning could be64

solved by inferring sequences of desired actions from65

a set of goals in a network implementation of ‘plan-66

ning as inference’ (Botvinick and Toussaint, 2012;67

Levine, 2018). The resulting algorithm would natu-68

rally cope with dynamic environments, because it69

represents each time in the future separately. This70

is intriguing because PFC is particularly important71

for problems that require the correct behaviour to72

be expressed at an appropriate time (Figure 1D;73

Shallice and Burgess, 1991; Volle et al., 2011). Plan-74

ning via attractor dynamics is also consistent with75

winner-take-all dynamics identified in frontal cortex76

during non-sequential behaviours (Ruff et al., 2025;77

Inagaki et al., 2019). Such planning as inference78

differs from most planning algorithms studied in79

cognitive science and machine learning, which of-80

ten rely on sequential search (Callaway et al., 2022;81

Schrittwieser et al., 2020). Search is easily adapted82

to new environments, but it is slow at decision time.83

In familiar environments where the structure is em-84

bedded in cortical connections, attractor dynamics85

provide a complementary mechanism for rapid eval-86

uation of many possible futures in parallel.87

A mechanistic theory In this paper, we show88

that known features of PFC representations and89

connectivity are sufficient to implement a powerful90

planning algorithm with minimal additional assump-91

tions. The resulting ‘spacetime attractor’ (STA)92

instantiates an explicit world model in the synaptic93

connections between neurons, which allows it to94

plan by inferring optimal future trajectories. This95
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algorithm resembles other cortical circuits known96

to infer features of the present, thereby unifying97

our understanding of PFC with the rest of cortex.98

The spacetime attractor excels at dynamic prob-99

lems with changing reward and transition structures,100

which PFC is critical for and existing mechanistic101

models cannot solve. RNNs trained on dynamic102

tasks implement a spacetime attractor in their dy-103

namics, suggesting that it is an efficient solution.104

Our findings provide a precise mechanistic theory105

of adaptive behaviour that reconciles prior work106

on PFC representations with other known cortical107

computations and deficits from lesions.108

Results109

An attractor network in space and time110

We now introduce the spacetime attractor in more111

detail. We first review ring and grid attractors,112

which illustrate how simple circuit motifs can guide113

inference from partial information. We then explain114

how the spacetime attractor uses similar principles115

to infer future behaviour. Neurons are assumed116

to encode single environment features, but simi-117

lar ideas apply when individual neurons represent118

combinations of variables (Clark et al., 2025).119

Ring attractors Ring attractors are neural net-120

works that can only encode circular variables such121

as angles (Zhang, 1996; Ben-Yishai et al., 1995).122

Different neurons have different ‘preferred orienta-123

tions’, and the network dynamics have a set of ‘fixed124

points’ (stable activity patterns) that encode a par-125

ticular angle. At these fixed points, neurons with a126

preferred angle near the encoded angle are active,127

and the remaining neurons are silent (Figure 2A,128

bottom left). This is achieved by a network where129

neurons are mutually excitatory if they have simi-130

lar preferred orientations, and inhibitory otherwise131

(Figure 2A, top left). The network then infers which132

angle is most compatible with noisy inputs such as133

vision and proprioception. This property underlies134

the ability of ring attractors to integrate angular135

velocity in the head direction system (Turner-Evans136

et al., 2017; Skaggs et al., 1994).137

Grid attractors Grid attractors instead encode138

position in two-dimensional space. This is achieved139

by neurons that are mutually excitatory if they rep-140

resent nearby locations in space and inhibitory if141

they represent more distant locations (Figure 2A,142

top right; Fuhs and Touretzky, 2006; Burak and143

Fiete, 2009). The fixed points of the network are144

hexagonal patterns of activity that resemble canon-145

ical grid cells (Figure 2A, bottom right; Hafting146

et al., 2005), and the inputs determine which lo-147

cation is represented at a given moment in time.148

These properties underlie the ability of grid cells to149

perform path integration (Burak and Fiete, 2009).150

Spacetime attractors Inspired by these known151

attractor networks in the brain, we propose the152

existence of a spacetime attractor in prefrontal cor-153

tex. The STA is a network that infers explicit154

representations of the future, and its fixed points155

therefore have to be entire paths through space and156

time (Figure 2B, bottom). Given such fixed points,157

any input would automatically be converted into158

a representation of future behaviour – an inferred159

plan. Similar to the ring and grid attractors, this160

is achieved by connecting STA neurons such that161

consistent states excite each other and inconsistent162

states inhibit each other. In the spacetime attrac-163

tor, each neuron has both a preferred location and164

a preferred delay δ, which determines how far into165

the future its tuning curve is defined. If a neuron166

has δ = 0, it will fire when the agent is currently at167

the preferred location of that neuron. If a neuron168

has δ = 3, it will fire when the agent expects to be169

at the preferred location after three actions. In such170

a network, consistent states are those that can be171

part of a single trajectory, while inconsistent states172

cannot be part of the same trajectory. The connec-173

tivity between neurons in subspaces with preferred174

delays δ and δ+1 should therefore correspond to the175

structure – more specifically the adjacency matrix –176

of the environment (Figure 2B, top).177

Reward input selects the future By embed-178

ding a world model in its connections, the spacetime179

attractor creates fixed points that are future tra-180

jectories through space and time. It can then use181

reward information from the environment to bias182

the representation towards trajectories that repre-183

sent desirable futures. This resembles how visual184

and proprioceptive inputs to a ring attractor bias its185

representation towards particular orientations (Kim186

et al., 2019). Reward information must similarly be187

an input to the STA to enable fast adaptation to188

changing rewards without rewiring the synaptic con-189

nections. Importantly, the STA can accommodate190

time-varying reward structures known to engage191

PFC (Figure 1D; Shallice and Burgess, 1991; Volle192

et al., 2011; Carlesimo et al., 2014). This is possible193

because different neural populations that represent194

different times in the future can receive different195

inputs. Given a restaurant booking in 2 hours and196

a cinema ticket in 4 hours, the δ = 2 neurons would197

receive reward input at the restaurant, and the198

δ = 4 neurons at the cinema. The network dynam-199
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Figure 2: The spacetime attractor. (A) Left; in a one-dimensional ring attractor, neurons representing
similar directions excite each other (top, red), and different directions inhibit each other (blue). Connections
are shown for the green example cell. Stable network states (fixed points) have neurons at a particular
encoded angle being most active (bottom). Right; grid cells (bottom) emerge from a two-dimensional attractor
network (top), where cells with similar preferred location excite each other (red) and intermediate distances
inhibit each other (blue). (B) The spacetime attractor is a three-dimensional generalisation, where neurons
have both a preferred location (planes) and delay (horizontal axis). This resembles the PFC representation in
Figure 1A. Cells that represent adjacent locations in both space and time excite each other (top, red), and
different locations at the same time inhibit each other (blue). Given inputs indicating the current location
(mouse) and future reward (cheese), the fixed points represent reward-maximising paths through space and
time (bottom). While this example has a single static goal, reward inputs can also differ between subspaces if
the reward is dynamic. (C) Dynamics of the spacetime attractor. Initial activity is diffuse (left), followed
by convergence to a stable representation of a plan (centre). At convergence, a policy is read out from the
subspace that represents the next location along the desired trajectory. When the agent moves to the next
state, neural activity updates to represent the remaining plan-to-go (right; El-Gaby et al., 2023).

ics would then infer a future where the agent is at200

each location at the appropriate time.201

To summarise, the spacetime attractor has four202

main components: (i) different neural populations203

represent different times in the future; (ii) the neu-204

rons are connected according to the structure of the205

environment; (iii) the current location is an input to206

the ‘present’ subspace; and (iv) the reward structure207

is an input to all future subspaces. The resulting208

fixed points (Figure 2B, bottom) represent trajecto-209

ries that maximise cumulative reward. The network210

dynamics implement a gradual relaxation process,211

where reward inputs bias the representation in each212

subspace towards high-reward locations, while in-213

puts from neighbouring subspaces constrain their214

representations to be consistent. Together, these215

two processes converge to a stable representation216

of a coherent future plan (Figure 2C).217

The STA guides behaviour After computing218

an explicit representation of a plan, it can be used219

to inform behaviour. In particular, an agent should220

simply take whichever action leads it to the next221

location on the inferred trajectory (Figure 2C, mid-222

dle). The entire representation of the future then223

needs to move by one ‘action’, so the state that224

was previously represented in subspace δ is now in225

subspace δ − 1. The resulting dynamics resemble226

a ‘conveyor belt’ that allows the STA to execute227

entire trajectories without recomputing the policy228

after every action. Such conveyor belt dynamics229

have been observed experimentally during sequence230

working memory (El-Gaby et al., 2023). Impor-231
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tantly, the representation remains a fixed point of232

the spacetime attractor dynamics, because the loca-233

tion and reward inputs are updated due to (i) the234

movement of the agent, and (ii) the passing of time.235

World models for planning Planning requires236

access to an internal world model that predicts the237

consequences of different actions. However, the238

spacetime attractor uses such a world model differ-239

ently from many other planning algorithms. Most240

algorithms apply a world model sequentially to sim-241

ulate actions one by one. The spacetime attractor242

instead instantiates multiple copies of the world243

model explicitly in the synapses between different244

neural subspaces. This allows the network to simu-245

late many possible futures in parallel. Entorhinal246

grid cells are also thought to embed a world model247

in their connectivity (McNaughton et al., 2006),248

but they do not represent the distant future ex-249

plicitly (Ouchi and Fujisawa, 2024). Instead, they250

infer a single location at a time. The spacetime251

attractor therefore suggests that circuit principles252

in prefrontal cortex resemble other cortical areas253

that use structural knowledge to infer features of254

the world. We propose the major difference to be255

that PFC instantaneously represents the world at256

many points in time, which extends known circuit257

principles to complex planning problems. This also258

requires knowledge of the reward available in dif-259

ferent states, which could be estimated separately260

by other neural circuits. In this work, we simply261

assume access to ground-truth rewards.262

STAs are flexible planners263

Prefrontal cortex is particularly important for tasks264

that require flexible behaviour in changing envi-265

ronments (Figure 1D; Burgess and Wu, 2013). To266

understand whether the spacetime attractor is a267

good model of planning in PFC, we therefore need268

to (i) study its behaviour and performance in such269

dynamic tasks, and (ii) characterise when and how270

it differs from existing models. We will see that271

the spacetime attractor is well-suited to dynamic272

‘PFC-like’ problems, which other mechanistic mod-273

els struggle to solve.274

From static to dynamic tasks We designed275

a set of four tasks that vary in how much the re-276

ward changes in space and time (Figure 3A). The277

tasks are all embedded in Euclidean space for sim-278

plicity of exposition, but the underlying principles279

generalise to any environment with known struc-280

ture. Task 1 is simple navigation towards a static281

goal that remains constant across trials. In task 2,282

the static goal changes between trials. Task 3 is283

navigation to a goal that also moves within each284

trial, where each location is only rewarded when the285

goal is there. Task 4 generalises the idea of time-286

dependent goals to a non-binary reward landscape.287

Reward magnitudes are sampled independently be-288

tween -1 and +1 for each location at each time point289

in each trial. The objective is to maximise cumula-290

tive reward over the trial, which requires balancing291

immediate reward with the potential for future re-292

ward (Figure 3A, right). This is reminiscent of293

the example from Figure 1D, where the restaurant294

and cinema are desirable at different times. To295

better understand how the STA solves these tasks,296

we compare it to two models commonly studied in297

systems neuroscience. The first is temporal differ-298

ence (TD) learning, which has neural correlates in299

striatum (Sutton, 1988; Schultz et al., 1997). The300

second is the successor representation (SR), which301

has neural correlates in hippocampus (Dayan, 1993;302

Stachenfeld et al., 2017). These models assume303

fixed rewards across trials (TD) or within a trial304

(SR). Unlike the spacetime attractor, they do not305

generalise well when the reward changes rapidly.306

Simpler models can solve static tasks TD307

learners gradually propagate value from rewarded308

locations to all other locations, and optimal policies309

are only learned when rewards are constant across310

both time and trials (Figure 3B-C, orange). The311

SR agent uses the environment structure and trial-312

specific reward function to compute values, and it313

can solve tasks where the goal changes between314

trials (Figure 3B-C, green). The STA can also solve315

these tasks, but it does so by inferring an entire316

spatial trajectory to the goal instead of computing317

a value function (Figure 3B-C, blue). Because the318

reward is constant throughout a trial, each sub-319

space receives the same reward input. However,320

the inferred representation differs across subspaces321

because it is also constrained to satisfy the current322

agent location and the transition structure of the323

world. As we will see, the inference of an explicit324

spacetime representation by the STA increases its325

flexibility compared to the amortised state values326

computed by TD and SR agents.327

Only the STA solves dynamic tasks While the328

SR agent can adapt to rewards that change across329

trials, the reward structure still needs to remain330

constant for the duration of the planning horizon.331

This is because the SR computes time-averaged oc-332

cupancy and lacks fine-grained information about333

when the agent is where. When the reward changes334

within a trial, the SR is limited to computing av-335

erage values across time-within-trial, and it fails336

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2025. ; https://doi.org/10.1101/2025.09.23.677709doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/


B

A

D

Fixed static goal Moving goal Arbitrary reward landscape

TD agent SR agent Spacetime attractor

C

Fi
xe

d 
st

at
ic

 g
oa

l

Spacetime attractor

reward
optimal
policy time within trial agent forgos

immediate reward
... for a larger reward

later in the trial

computes correct value computes correct value

C
ha

ng
in

g 
st

at
ic

 g
oa

l computes correct valueaverages value over trials

infers an explicit path to the goal

infers an explicit path to the goal

Model performance

Static DynamicTask complexity

SR agent
averages value over

time-within-trial

E
infers a path that intercepts the goal at the 

appropriate point in space and time

M
ov

in
g 

go
al

Reward landscape

Changing static goal

trial 2 trial 1

Figure 3: Model comparisons in static and dynamic tasks. (A) Example tasks with different degrees
of dynamic reward. Colours indicate reward at each location (white to green), and red arrows indicate the
optimal policy. In the ‘moving goal’ task, the agent intercepts a target that moves along a different trajectory
in each trial (arrow). In the ‘reward landscape’ task, the reward is sampled independently in space and time.
The agent has to maximise cumulative reward, and it can be optimal to forgo immediate reward for a later
payoff. (B) Representations and performance in the static goal task with a fixed goal. Left: value functions
learned by TD and SR agents. Centre: STA representation at convergence, which encodes a path through
space and time. The final plane is a max projection that summarises the path. Right: performance of each
model in the task (grey: random baseline). (C) As in (B), now for the task where the static goal changes
between trials. (D) Representations and performance in the moving goal task. Left: the SR computes a
value function that averages reward across time-within-trial. Middle: the STA takes into account the moving
goal and computes a path that intercepts it. Right: performance of each agent. (E) Performance in the
reward landscape task. All error bars indicate 1 standard deviation across 20 agents and environments (dots).

to intercept the goal at the correct point in space337

and time (Figure 3D). In contrast to the TD and338

SR agents, the STA can solve the moving goal task339

because the input to each subspace is the reward at340

that specific moment in time. The representation341

is therefore biased towards coinciding with the goal342

in both space and time, and the network dynamics343

relax to a future trajectory that correctly intercepts344

the goal (Figure 3D). The advantage of the STA is345

exacerbated in the more dynamic reward landscape346

task, where very different locations can be rewarded347

at different times (Figure 3E). These results suggest348

that different algorithms could contribute differently349

to decision making. TD learning could drive rapid350

decisions in environments with stable rewards; the351

SR would be more flexible when rewards change352

on intermediate timescales; and the STA could en-353

able adaptive behaviour in environments with rapid354

changes. Finally, sequential search would facilitate355

slower planning in novel environments and could be356

guided by partial plans from a spacetime attractor.357
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STAs are efficient planners358

We have seen that a handcrafted spacetime attractor359

can solve dynamic problems that simpler algorithms360

cannot. However, this requires many neurons to361

explicitly represent the future. We therefore inves-362

tigated whether superior solutions exist to these363

‘PFC-like’ problems by training a recurrent neural364

network (RNN) to solve them efficiently (Mante365

et al., 2013; Stroud et al., 2023). We will see that366

regularised RNNs solve dynamic planning problems367

with an STA-like algorithm, suggesting that it is ef-368

ficient. This result also demonstrates that the STA369

is consistent with a prominent theory that PFC370

resembles a recurrent meta-learner (Wang et al.,371

2018). In this view, PFC learns connections over372

long timescales that implement adaptive behaviour373

on short timescales through recurrent dynamics.374

This is exactly how planning happens in the STA,375

which embeds task structure in the weights and376

uses recurrent dynamics for rapid decision mak-377

ing with different rewards. We extend the meta-378

learning theory of PFC by showing that an STA379

is the mechanism implemented in the dynamics of380

RNNs meta-trained on challenging planning tasks.381

The three defining features that allow a spacetime382

attractor to plan via inference are: (i) it has an383

explicit representation of the future; (ii) the connec-384

tivity embeds a model of the world; and (iii) attrac-385

tor dynamics infer the future representation. We386

will see that RNNs trained on the reward landscape387

task exhibit all of these properties. The RNNs were388

trained with supervised learning to generate optimal389

actions from inputs that indicated the current loca-390

tion and trial-specific reward structure (Figure S1;391

Methods; see Supplementary Note for a discussion392

of different modelling choices). The reward input393

was only provided during an initial ‘planning phase’394

prior to the ‘execution phase’ of the task, and the395

loss function also penalised the magnitude of neural396

firing rates and network weights to encourage an397

efficient solution.398

RNNs learn explicit future representations399

Spacetime attractors compute explicit representa-400

tions of the future (Figure 4A-B). Critically, these401

representations generalise over trajectories. In other402

words, the representation in subspace δ depends403

only on the expected location in δ actions, and404

not on the rest of the trajectory or the history of405

the agent (Figure 4A, right). To confirm that the406

RNN learned such a representation, we trained lin-407

ear decoders to predict the future from its hidden408

state. To ensure generalisation across trajectories,409

we trained the decoders while holding out each ‘cur-410

rent location’ and computed the test accuracy only411

from those held out locations. The RNN had an412

explicit representation of the future during both413

planning and execution (Figure 4C-D; Figure S2).414

In a spacetime attractor, the same subspace always415

encodes location δ actions into the future. The fu-416

ture representation of the RNN also exhibited such417

‘conveyor belt’ dynamics (Figure 4E). The neural418

representation of the RNN is thus consistent with419

a spacetime attractor.420

Intriguingly, RNNs trained on the simpler static and421

moving goal tasks did not reliably learn explicit fu-422

ture representations (Figure S3). Additionally, the423

RNN trained on the reward landscape task could424

solve these simpler tasks, while RNNs trained on425

the simpler tasks failed in the reward landscape426

task (Figure 4F). Alternative solutions therefore427

exist in the simpler tasks, and these solutions are428

favored by a pressure to be energetically efficient429

(Figure 4G). We identify a tradeoff between gen-430

erality and efficiency, where the PFC-like solution431

is general but needs more neurons and synapses,432

while simpler algorithms can solve simpler tasks433

more efficiently. Unlike other theories of PFC such434

as value coding, this suggests a reason why PFC435

occupies such a large cortical territory.436

RNNs learn a world model In a spacetime at-437

tractor, subspaces that represent expected future lo-438

cations are connected according to the environment439

structure. Testing this prediction in the RNN re-440

quires interpretation of the network weights, which441

is challenging because the functions of individual442

neurons are unknown. We therefore project the443

weights into a coordinate system, where the axes444

are orthogonal directions in neural state space that445

predict each point in spacetime (Methods). While446

this does not perfectly recover the true subspaces447

in the handcrafted STA, it is a good estimate. The448

projected RNN weights can therefore be interpreted449

as interactions between representations of different450

points in spacetime (Figure 5A).451

Remarkably, the recurrent weights between adjacent452

subspaces closely resembled the adjacency matrix453

of the environment (Figure 5B; Figure S4; mean454

± std correlation of 0.91 ± 0.07 vs. 0.72 ± 0.06455

for control environments). The RNN thus learned456

a world model explicitly in its recurrent weights.457

Consistent with a spacetime attractor, the δ = 0458

subspace received input indicating the current agent459

location, and subspace δ received input indicating460

the reward in δ actions (Figure 5C). The RNN461

also learned weaker connections between more dis-462

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2025. ; https://doi.org/10.1101/2025.09.23.677709doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/


C D EB

Performance
Test with static goal Test with moving goal Test with reward landscape

Metabolic costGF

R

st

st+1

Weights Firing rates

training task training task training task training task training task

RNN represents the 
future during execution

ST
A

R
N

N
Va

lu
e-

ba
se

d

RNN representation 
shifts in time

A Neural activity after 1 actionTrial 1 Neural activity after planning 

Subspace now
encodes later location

Trial 2

Representation
generalises across

trajectories

Time of this
location

Location
at this time

RNN represents the future 
at the end of planning

Trained to
predict t=3 location 

from t=1 activity

Generalisation

After planning

Figure 4: RNNs learn spacetime representations in the reward landscape task. (A) An STA infers
the entire future during planning and represents the ‘future-to-go’ during execution (left). The representation
in each subspace generalises across all trajectories passing through that location in spacetime (right). (B) We
compare a spacetime attractor; an RNN trained on the reward landscape task; and an agent that computes
an exact value function in space and time. The value-based agent computes an optimal policy from ‘neural
activity’ containing (i) the value function, (ii) the agent location, and (iii) the time-within-trial (Methods).
(C) Decoding accuracy at the end of planning for: left; agent location at each time in the future. Right; the
time at which the agent will be at a given location, plotted as a function of the actual time the location was
visited. Decoders were trained in crossvalidation across the current agent location (Methods). (D) Decoding
accuracy during execution of location at each time in the past or future. (E) We trained a single decoder to
predict location at time 3 from neural activity at time 1 (black circle). The same decoder predicted location
at time t + 2 from neural activity at any other t, demonstrating ‘conveyor belt’ dynamics. (F) Performance
in the static goal (left), moving goal (centre), and reward landscape (right) tasks for RNNs trained on either
task (x-labels; colours). (G) Normalised parameter magnitudes of the three RNNs (left) and average firing
rates in the static goal task (right). All error bars indicate 1 standard deviation across 5 RNNs (dots).

tant subspaces, and these connections reflected the463

environment structure (Figure 5D-E; Supplemen-464

tary Note). In summary, the RNN learned all of465

the structural components that allow a spacetime466

attractor to infer future actions by integrating ex-467

pected reward across time using a world model.468

RNNs learn attractor dynamics In a space-469

time attractor, the structured connections give rise470

to attractor dynamics with fixed points correspond-471

ing to explicit representations of desirable futures.472

To demonstrate similar attractor dynamics in the473

trained RNN, we artificially perturbed its neural474

activity at the end of planning. This resembles how475

attractor dynamics have been demonstrated in bio-476

logical circuits (Inagaki et al., 2019; Kim et al., 2017;477

Vinograd et al., 2024). An attractor network should478

be robust to small perturbations, and the represen-479

tation should be more sensitive to perturbations480

towards other attractor states than perturbations481

along random directions in neural state space. We482

analysed the RNN in a setting with two ‘good’ paths483

that were close in value (Figure 5F). Like the hand-484

crafted STA, the RNN initially converged to a stable485

representation of the better path, which persisted486

in the presence of weak perturbations. Stronger487

perturbation of a single location on the alternate488
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Figure 5: RNNs learn a world model. (A) The weights of RNNs trained on the reward landscape task
are projected into an orthonormal coordinate system with axes that predict different points in spacetime
(top). The projected weights are interactions between points in spacetime (bottom). (B) The average
recurrent weights between subspaces separated by a single action resemble the environment adjacency matrix
(bottom, ‘RNN’). ‘Empirical STA’ is the same analysis performed on approximate subspaces estimated from
neural activity in the handcrafted STA. ‘True STA’ indicates weights between the ground truth future-coding
subspaces in the handcrafted STA. Green box in ‘True STA’ indicates weights between (i) the single location
denoted by a green circle in ‘Prediction’, and (ii) all locations in the subspace indicated by a green square.
(C) Input weights to the ‘current’ (δ = 0; left) and a ‘future’ (δ = 2; right) subspace. Consistent with an STA,
the current subspace of the RNN receives location input, and future subspaces receive reward information.
(D) Average recurrent weights between an example location (green arrow) and other locations at increasing
time differences (∆; planes). Locations in subspaces ∆ apart are more strongly connected if they can be
reached in ∆ actions. Light green circles indicate these ∆th order adjacency matrices (∆ = 0 corresponds to
the identity). (E) Correlation between (i) the average connectivity between subspaces separated by ∆ actions
(lines; legend), and (ii) different order adjacency matrices (x-axis). Shading indicates standard deviation across
5 RNNs. (F) Example environment with a high-value path and a lower-value path. (G) Weak stimulation
does not affect the spacetime representation of the RNN, but strong stimulation switches it to the lower-value
path. (H) Magnitude of representational change over time across stimulation strengths (Methods).
path caused a discrete switch to a representation of489

this entire path, including in subspaces not directly490

perturbed (Figure 5G). Perturbations of similar491

magnitude in random control directions had little492

effect (Figure 5G, grey). Unlike the handcrafted493

STA, the RNN representation relaxed back to the494
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original fixed point after removing the perturbation495

(Figure 5H; Figure S5), which suggests that the496

RNN learned an attractor landscape that is less497

susceptible to local minima.498

Together, our analyses show that RNNs trained on499

a dynamic planning task learn to closely approx-500

imate a spacetime attractor. This was also true501

across variations in model architecture (Methods;502

Figure S6; Figure S7). Finally, RNNs with too few503

hidden units to learn a spacetime attractor failed504

to solve the task (Figure S8), suggesting that other505

solutions are not readily learned by gradient de-506

scent. The spacetime attractor is thus an efficient507

solution to dynamic planning problems, and it is508

consistent with a prominent theory that PFC can509

be understood as a recurrent meta-learner.510

STAs can generalise across environments511

Hardwiring the transition structure of the environ-512

ment into the synapses of a spacetime attractor513

seems prohibitive, because it might prevent the net-514

work from generalising across different structures515

(Figure 6A). Here, we show that is not the case.516

RNNs trained in environments with changing struc-517

ture still learn spacetime attractors. The network518

dynamics are adapted to each environment through519

input-mediated gating of a generic scaffold. This is520

a simple mechanism for rapid adaptation that pre-521

serves the ability to plan under changing rewards.522

Representations adapt to the environment523

To study planning in environments with changing524

structure, we trained RNNs on a variant of the re-525

ward landscape task, where the transition structure526

was different on every trial (Methods). The struc-527

ture was provided to the RNN as a binary input that528

indicated whether pairs of otherwise adjacent states529

were separated by a wall. Importantly, the network530

had to adapt to each new environment through its531

dynamics while keeping the weights fixed across en-532

vironments (Wang et al., 2018; Jensen et al., 2024).533

The generalising RNNs performed nearly as well534

as networks trained in a single environment (Fig-535

ure 6B), raising the question of how generalisation536

is achieved. The neural representation resembled537

a spacetime attractor in any single environment538

(Figure S9B). However, the effective connectivity539

between subspaces changed between environments.540

Remarkably, the connectivity reflected the transi-541

tion structure of whichever environment the agent542

was currently in (Figure 6C-D). This indicates a543

general solution that allows recurrent networks to544

use attractor dynamics for planning in any similar545

environment, without requiring synaptic plasticity.546

A model of generalisation We can understand547

how the network adapts to the environment at both548

the ‘population level’ and at a mechanistic level.549

At a population level, the directions in neural state550

space that represent each point in spacetime were551

more similar in different trials from the same envi-552

ronment than across trials from different environ-553

ments (Figure 6E, left). This change allows the554

network to align its representation with the ap-555

propriate components of the connectivity matrix556

(Figure 6E, right). How is this achieved mechanisti-557

cally? We hypothesised that the network explicitly558

represents future transitions rather than future loca-559

tions. In other words, there are directions in neural560

state space that represent ‘in δ actions from now,561

move from state si to state sj ’, which we denote τ ij
δ .562

This is different from the vanilla spacetime attrac-563

tor, which has a representation of future locations564

that is invariant to the subsequent state.565

While it requires more neurons, explicitly repre-566

senting future transitions allows the network to use567

input-mediated inhibition to adaptively gate off568

transitions that are not available in any particular569

environment. The learned structure of the remain-570

ing transitions is then used for planning (Figure 6F).571

Importantly, the scaffold only needs to include tran-572

sitions that are possible in at least one environment.573

This model makes three predictions that we verified:574

(i) the network explicitly represents future transi-575

tions (Figure S9C), (ii) the representations of future576

transitions are connected by a world model (Fig-577

ure 6G), and (iii) input indicating a wall between578

si and sj specifically inhibits representations of fu-579

ture transitions between those states (Figure 6H).580

These analyses show that the spacetime attractor581

is an efficient planning algorithm in structurally582

changing environments, and they suggest a general583

mechanism for adaptive behaviour.584

Discussion585

We have taken inspiration from known cortical at-586

tractor dynamics and recent findings on prefrontal587

sequence representations (Figure 1) to develop a588

new theory of planning. This spacetime attractor589

model uses different neural subspaces to represent590

the expected location of an agent at different times591

in the future. The subspaces are connected ac-592

cording to the structure of the environment, which593

allows the network to infer optimal future trajecto-594

ries (Figure 2). The spacetime attractor can solve595

problems with dynamic rewards, which PFC is im-596

portant for and simpler algorithms struggle with597

(Figure 3). It solves these problems using inter-598
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Figure 6: Spacetime attractors can adapt to changing structure. (A) Changing structure requires
adaptation. (B) Performance of RNNs trained on the reward landscape task in a single maze or with a
different structure on every trial, when evaluated in either a single maze (top) or across changing mazes
(bottom). (C) Two example mazes (left) and their corresponding adjacency matrices (centre). The effective
connectivity between adjacent subspaces in a single RNN (right) reflects the structure of each maze. (D) Av-
erage correlation between subspace connectivity in a maze and the structure of either the same (blue) or a
random (grey) maze. (E) The spacetime representation is more similar across distinct trials from the same
maze than trials from different mazes (left). By using slightly different subspaces in different environments,
the network can match their connectivity to the environment structure (right; orange vs. blue). (F) Putative
mechanism for structural generalisation. Instead of representing each future location, neurons encode expected
future transitions (black arrows in example state). Each transition τ ij

δ (green) connects to transitions that
can follow (τ jk

δ+1) or precede (τ li
δ−1) it (red arrows). Structural input to PFC inhibits transitions that are

not available in a given environment (blue), preventing planning between states that would otherwise be
connected (light red arrows). (G) Effective connectivity between directions in neural state space that encode
‘consistent’ consecutive future transitions (τ ij

δ and τ jk
δ+1; green to red), ‘adjacent’ transitions (green to blue),

or any other transitions (green to grey). (H) Projection of the input from wall wij onto representations of
future transitions through the wall (τ ij ; dark blue), transitions to other adjacent states (τ ik; light blue), or
any other transitions (grey). All error bars indicate 1 standard deviation across 5 RNNs (dots).

nal representations that closely resemble prefrontal599

representations during sequence working memory,600

thereby unifying working memory and planning601

in PFC. RNNs trained to solve dynamic planning602

tasks learn to implement the spacetime attractor603

algorithm in their internal dynamics, suggesting604

that it is an efficient solution (Figure 4; Figure 5).605

Finally, spacetime attractors can generalise across606

environments with different transition structures607

through rapid gating of a general scaffold to reflect608

each particular environment (Figure 6).609

Experimental predictions The spacetime at-610

tractor is inspired by data and makes precise pre-611

dictions that can be tested in future experiments:612

• After planning a behavioural sequence, differ-613

ent subspaces of PFC activity should represent614

distinct steps of the plan.615
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• Optogenetic activation of neurons in a future sub-616

space should bias representations and behaviour617

towards the stimulated state at a delay corre-618

sponding to the stimulated subspace.619

• The effective connectivity between subspaces620

should reflect the structure of the environment.621

This could be tested in noise correlations across622

neurons or by explicit holographic stimulation.623

• Different patterns of neurons should represent624

the future in environments with different transi-625

tion structures.626

• The neurons active in each environment should627

be connected according to its structure. Inputs628

that mediate this gating could come through629

sensory cortex in observable environments or630

hippocampus when the structure is learned.631

The first two predictions would also be true of inde-632

pendent subspaces used to store sequence memories633

(Xie et al., 2022; El-Gaby et al., 2023), while the634

last three are unique predictions of a structured635

network that plans behavioural sequences.636

Decision making across the brain Our com-637

parisons of different models across different tasks638

suggest complementary contributions of different639

brain regions to decision making. Striatum is640

thought to implement temporal difference learn-641

ing (Schultz et al., 1997), which facilitates rapid642

responses in stable environments. Hippocampus em-643

beds the structure of the world, but it is thought to644

either average representations over future timesteps645

in a successor representation (Stachenfeld et al.,646

2017) or represent one state at a time in a sequence647

(George et al., 2021; Whittington et al., 2020; Jensen648

et al., 2024). This provides an efficient solution649

to problems with consistent spatial structure and650

rewards that change on intermediate timescales.651

A spacetime attractor in frontal cortex facilitates652

adaptive behaviour in dynamic environments with653

a familiar structural scaffold that has been embed-654

ded in PFC. Finally, explicit search would facilitate655

slower planning in novel environments and could be656

guided by partial plans from a spacetime attractor.657

While spacetime attractors are particularly useful658

in dynamic environments, they can also solve sim-659

pler problems. It is therefore possible that animals660

have developed a spacetime attractor because they661

sometimes need it for planning, and then reuse it662

in simpler tasks. However, it is also plausible that663

many laboratory behaviours instead engage simpler664

algorithms in the basal ganglia or hippocampus.665

If that is the case, richer spacetime problems may666

be needed to query the representations used for667

planning in prefrontal cortex.668

Interactions with other planning algorithms669

Planning via inference in a spacetime attractor dif-670

fers from most models of planning in cognitive sci-671

ence. In particular, the spacetime attractor posits672

that planning can happen via recognition, where673

the sequence of steps needed to reach some de-674

sired state is directly inferred. In contrast, many675

studies of human planning focus on explicit search,676

where different paths are simulated and evaluated677

sequentially. We suggest that these two processes678

coexist, with spacetime attractor dynamics facili-679

tating rapid planning as inference in familiar envi-680

ronments, where the structure has been embedded681

in prefrontal connections. The STA could also help682

focus explicit search towards putative high-value683

paths and evaluate the utility of different paths.684

This could happen through interactions with hip-685

pocampal activity sequences that have been pro-686

posed to facilitate planning (either replays or theta687

sequences; Foster, 2017; Widloski and Foster, 2022;688

Jensen et al., 2024). In particular, Jensen et al.689

(2024) suggest that PFC biases which sequences are690

replayed in hippocampus. PFC would then update691

its representation to make high-reward sequences692

more likely in an iterative policy improvement pro-693

cess. Hippocampal replay has also been proposed694

to implement a ‘DYNA’ algorithm, where past ex-695

perience is used to learn a model-free policy during696

rest or sleep (Mattar and Daw, 2018). This is com-697

plementary to both the spacetime attractor and698

explicit search. DYNA facilitates rapid decision699

making when the optimal policy remains stable700

across time, while decision-time planning allows701

adaptation to changing environments.702

Learning a spacetime attractor In the hand-703

crafted spacetime attractor, we embedded copies of704

the environment adjacency matrix in the connec-705

tions between every pair of consecutive subspaces.706

The RNN analyses show that such structure can be707

learned from repeated experience. However, learn-708

ing copies of the same parameters independently709

for each pair of subspaces is inefficient. It would710

be more efficient to store a cache of experienced711

trajectories that can be used to learn all of the pa-712

rameters. Hippocampal replay has been proposed713

to build cognitive maps via such interactions with714

prefrontal cortex (Bakermans et al., 2023; Ou et al.,715

2025). In particular, Ou et al. (2025) suggest that716

hippocampal replay consolidates structural infor-717

mation from hippocampus into cortex. Replay from718

hippocampus to PFC during sleep or rest could719

therefore provide a mechanism for learning all of720

the STA parameters from the same data.721
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The state space of planning We have assumed722

that planning happens at the level of individual723

locations in the environment. However, humans724

often plan in more abstract spaces, which improves725

efficiency by reducing the required planning depth.726

We also plan hierarchically by first computing an727

abstract plan that can be refined in increasing lev-728

els of detail (Eckstein and Collins, 2020). Multiple729

spacetime attractors operating at different levels730

of abstraction can be coupled to implement such731

a hierarchical planner. One ‘abstract’ STA would732

compute a high-level plan. A second STA would733

treat the next abstract state as a goal and compute734

a detailed plan to get there. Stacking spacetime at-735

tractors in this way allows inference of plans that are736

exponentially long in the depth of the hierarchy, and737

therefore the number of neurons, in contrast to the738

linear scaling of a non-hierarchical STA. However,739

learning appropriate abstractions and embedding740

them in an STA remains an unsolved challenge.741

Bidirectional environment interactions We742

have focused on environments that evolve indepen-743

dently of the agent. The rewards and structure744

of the environment can therefore be estimated up745

front and provided as inputs to a spacetime at-746

tractor in PFC. However, many problems involve747

structure that depends on the behaviour of an agent.748

One example is ‘key-door’ problems, where moving749

through a locked door becomes possible only after750

picking up the key. We posit that such problems can751

be solved by structural gating of a learned scaffold,752

similar to the STA that generalises across environ-753

ment structures (Figure 6). The structural gating754

would no longer be an external input, but instead a755

function of the spacetime representation itself. For756

example, activating a cell that represents ‘being at757

the key’ could disinhibit ‘transitioning through the758

door’ at a later time.759

Another important example of bidirectional interac-760

tions is social behaviours, where agents can change761

their plans in response to each other. A system of762

two spacetime attractors could simulate the joint763

dynamics of two such agents. The first STA ‘A’764

infers future behaviour for agent A. The reward765

input would be the output of a different STA ‘B’766

that predicts the behaviour of another agent. The767

reward for STA B would itself be an output of STA768

A, which couples the predicted behaviour of the769

two agents. The combined system relaxes to a fixed770

point where the behaviour of A is optimal given771

the predicted behaviour of B and vice versa – a772

putative neural implementation of ‘theory of mind’.773

Outlook We have developed a new theoretical774

framework for planning in prefrontal cortex. It775

builds on recently discovered prefrontal working776

memory representations and known attractor dy-777

namics in other neural circuits. The spacetime778

attractor extends these principles to prospective779

behaviours in complex and changing environments –780

a setting that has previously eluded mechanistic cir-781

cuit models. Existing data does not allow us to test782

these ideas explicitly. Instead, we have provided783

a series of concrete predictions for future experi-784

ments. We hope this will inspire new work in both785

experimental and computational neuroscience.786
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Methods1070

Tasks1071

We used three different classes of tasks to train and compare models in this work – the ‘static goal’ task, the1072

‘moving goal’ task, and the ‘reward landscape’ task. All tasks had agents navigate mazes on a 4x4 grid, with1073

walls preventing transitions between some pairs of otherwise adjacent states. The wall configurations defining1074

the mazes were sampled as described by Jensen et al. (2024). For most analyses, the wall configuration1075

remained fixed across all trials, and only the reward function changed. For the analyses in Figure 6, the wall1076

configuration changed across trials, and the agent had to adapt to the new transition structure through its1077

recurrent network dynamics. In all tasks, the agent location was sampled randomly at the beginning of each1078

trial. At the beginning of each trial, the agent location and reward function were ‘frozen’ for 5-7 (randomly1079

sampled on each trial) iterations of the environment. This constituted an initial ‘planning’ phase that was1080

followed by an ‘execution’ phase, where (i) the agent took actions that changed its location, and (ii) the1081

reward function updated as described in more detail below. For all analyses, the full reward function was1082

provided to the agent during the initial planning period. For the handcrafted STA and the RNN in Figure S6,1083

the input provided reward information that was relative in time during execution – it indicated what the1084

reward would be at a given location in δ steps rather than at time t. The reward input was zero for all δ that1085

corresponded to time points beyond the end of the trial. For all other RNN analyses, the reward input was1086

set to zero during execution.1087

Moving goal task1088

In this task, a full goal ‘trajectory’ was sampled on each trial. The goal trajectory was sampled as a random1089

walk that could only turn around if it reached a dead end. The start location of the agent was restricted1090

to not coincide with the start location of the goal. The trial terminated when the agent was at the same1091

location as the goal at a given moment in time, or after a maximum of six actions. The reward input to the1092

agent, R ∈ RT ×N , was a matrix indicating the location of the goal at every point in the future. The reward1093

input consisted of ‘+0.6’ for the goal location and ‘-0.6’ for all other locations at each moment in time. In1094

other words, Rδi was ‘+0.6’ if the goal would be at location si δ steps into the future, and −0.6 otherwise.1095

Static goal task1096

This task was identical to the moving goal task, except that the goal remained stationary for the duration1097

of each trial. The static goal task was implement in two different variants – one where the goal remained1098

fixed across all trials, and one where the goal was resampled at random in every new trial. The handcrafted1099

models were evaluated in both of these tasks, while the RNNs were only trained with a goal that changed1100

between trials.1101

Reward landscape task1102

In this task, every element R(t, s) of the reward function R was sampled uniformly and independently between1103

-1 and +1. The complete future reward structure was provided as an input to the agent as described above.1104

Every trial finished when the agent had taken six actions.1105

Quantification of performance1106

For most performance comparisons, we computed the probability of choosing the optimal first action in1107

each trial. We define the optimal first action as the first action of the trajectory that maximises cumulative1108

reward over the entire trial. We use this metric rather than the actual cumulative reward for two reasons. (i)1109

We are interested in the process of planning, whereby an agent balances immediate and long-term reward.1110

This is most challenging for early actions, while the greedy policy is optimal for the last action. (ii) The1111

probability of choosing an optimal action is readily interpretable as a number between 0 and 1. All results1112

were qualitatively similar if we instead used the probability of choosing an optimal action averaged over the1113

entire trial as a performance metric, or if we used the average empirical reward.1114

Handcrafted models1115

Here we provide an overview of the handcrafted STA, TD, and SR agents used in the paper.1116
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Spacetime attractor model1117

The spacetime attractor is a recurrent neural network with an exponential nonlinearity and within-subspace1118

normalisation. We define zδi as the ‘potential’ and rδi as the ‘firing rate’ of a neuron that represents ‘being1119

at location si in δ actions’. The spacetime attractor then has the following network dynamics:1120

τ żδi = −zδi + R̂δi + max

ϵ, log
∑

j

Aijrδ−1,j

+ max
(

ϵ, log
∑

k

Akirδ+1,k

)
+ η (1)

zδi = max

ϵ, zδi − log
∑

j

rδj

 (2)

rδi = ezδi . (3)

Here, τ = 50 iterations is the time constant of the dynamics, ϵ = −100 is a small constant that thresholds1121

the maximum inhibition between and within subspaces, and η ∼ N (0, σ = 0.1) is white noise added to the1122

network dynamics. Aij are weights corresponding to the adjacency matrix, which indicates whether si can be1123

reached from sj in one action. R̂δi is an input that reflects the normalised reward available at location si in δ1124

actions. In particular, eR̂δi ∝ eβRδi , where Rδi is the trial-specific reward described above, and we set β = 9.1125

To provide an input indicating the current agent location, we set R0i = 20 if si is the current location and 01126

otherwise. Since the activity is explicitly normalised within each subspace, the resulting rδi can be interpreted1127

as a distribution over desired locations in δ actions. When simulating the behaviour of the STA, we took1128

the policy of the agent to be greedy in the representation in subspace δ = 1 of locations accessible from the1129

current state, a = argmaxi∈N (s) [r1i]. We also added a small amount of noise ηij ∼ U(−0.025, −0.015) to1130

each element of the weight matrix instead of using the exact adjacency matrix. Noise was added to ensure1131

robustness, and it was restricted to be negative by adding a bias term that prevents representations from1132

‘teleporting’ between locations (Supplementary Note). An additional ‘feedforward component’ in the form of1133

the identity matrix was added to the connectivity between subspace δ and δ − 1 during the first 100 network1134

iterations (2 time constants) after every action. This is inspired by the ‘update neurons’ of the fruit fly1135

head direction circuit (Turner-Evans et al., 2017) and stabilises the ‘conveyor belt’ dynamics, but it is not1136

necessary for any of the main results in the paper (Supplementary Note). We ran the STA dynamics for 4001137

network iterations before each action to ensure convergence to a stable representation.1138

Baselines1139

Here we provide details of the temporal difference and successor representation baselines that we compare the1140

spacetime attractor to. For further details, we refer to Jensen (2023). Common to both of these frameworks1141

is that they explicitly estimate the ‘value function’ under some policy π:1142

V π(s) = Eτ∼pπ(τ)

∑
t′≥t

γt′−trt′ |st = s

 . (4)

Here, Eτ∼pπ(τ)[·] indicates an expectation taken over trajectories τ resulting from the agent following π. The1143

‘TD’ and ‘SR’ heatmaps in Figure 3 show the computed value functions. In both cases, we take the policy of1144

the agent to be greedy in the value function evaluated at all locations accessible from the current state.1145

Temporal difference learning We implement vanilla temporal difference learning, which computes a1146

value function by iteratively applying the update1147

∆V (st) = α(−V (st) + rt + γV (st+1)). (5)

We set the temporal discount factor to γ = 1, since we are interested in maximising the non-discounted1148

cumulative reward. We allowed the TD agent to interact with the environment for 4,000 trials with a learning1149

rate of α = 0.05 before analysing its performance.1150
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Successor representation In the successor representation formalism, the value function is decomposed as1151

V π(s) = Eπ

[∑
t=0

γtrt|s0 = s

]
(6)

=
∑
t=0

γt
∑

s′

pπ(st = s′|s0 = s)r(s′) (7)

= rTmπ
s . (8)

Here, r is a vector of the average reward associated with each state, and mπ
s is a vector of the expected1152

discounted future occupancy of state s′ if the agent starts in state s and follows policy π:1153

Mπ
ss′ =

∑
t=0

γtpπ(st = s′|s0 = s). (9)

The full matrix Mπ, constructed from stacking the mπ
s corresponding to all states s, is denoted the ‘successor1154

matrix’, and it allows us to write down a vector of expected rewards from all states as1155

vπ = Mπr. (10)

Mπ can be learned using a TD-like algorithm as above. However, since the STA algorithm also has explicit1156

access to the transition structure of the environment, we simply computed the exact successor matrix as1157

the geometric series Mπ = I + γT π + γ2(T π)2 + . . . = (I − γT π)−1 with γ = 0.95. When computing the1158

successor matrix, we take π to be the diffusion policy, and T π is therefore the diffusion matrix. This is similar1159

to how the adjacency matrix serves as a global structural prior in the STA.1160

Spacetime value agent In Figure 4, we compare representations to an agent that computes a value1161

function in a state space consisting of space and time. This agent uses dynamic programming to compute the1162

value of being at location s at time t under an optimal policy for every combination of s and t:1163

V (T, s) = R(T, s) (11)
V (t, s) = R(t, s) + max

s′∈N (s)
V (t + 1, s′). (12)

At time t, the optimal policy is then greedy in the value of accessible locations at time t + 1. For the decoding1164

analyses in Figure 4, we took the ‘neural representation’ to be the concatenation of (i) the flattened value1165

function vf ∈ RT N , (ii) a one-hot representation of the current location, and (iii) a one-hot representation of1166

the current time-within-trial. These three quantities are sufficient to compute an optimal policy.1167

Recurrent neural networks1168

In this section, we provide details of how recurrent neural networks were trained and analysed. All networks1169

were fully connected with Nrec = 800 hidden units (except Figure S8) and ReLU nonlinearities. The network1170

dynamics were given by1171

τ ż = −z + Winx + Wrecr + brec + η, (13)
r = [z]+ (14)
y = Woutr + bout. (15)

Here, z is the network potential, r is the ‘firing rate’, x is the input, θ = {Win,Wrec,Wout, brec, z0, bout} are1172

the network parameters, and η ∼ N (0, σ = 10−3) is Gaussian noise. All simulations used a time constant of1173

τ = 5 iterations. The output policy was defined in global allocentric coordinates as the desired next state,1174

π ∝ ey. In Figure S7, we also analyse a network that produced a policy in ‘local’ coordinates that indicated1175

the desired movement direction. The input consisted of (i) a one-hot representation of the current location1176

in the environment; (ii) a binary representation of the location of all walls (Jensen et al., 2024); and (iii)1177

the reward Rδi as described for the tasks above. Gaussian noise with a standard deviation of σ = 10−3 was1178

added to the inputs before passing them to the RNN.1179
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For all analyses in the main text, the RNN performed 10 network iterations per environment iteration (action).1180

Reward input was only provided during the planning phase and set to 0 during the execution phase. This1181

was done to avoid biasing the execution-time representation towards a ‘relative’ subspace representation1182

by providing reward input in that format (Supplementary Note). For comparison with this RNN, we also1183

trained an RNN with reward input during both the planning and execution phase, which learned qualitatively1184

similar representations and dynamics (Figure S6). For this network, the reward input was given relative to1185

the current time as in the handcrafted STA, and the number of network iterations was randomly sampled1186

between 9 and 11 before each environment iteration.1187

We optimised all network parameters θ to minimise the loss function1188

L(θ) = λθLparams(θ) + Eτ∼πθ,opt

[∑
t

Lt
acc + λrLt

rate + λeLt
ent

]
(16)

Lparams(θ) = |θ|22 (17)

Lt
acc =

∑
a∈At

opt

−πt(a) (18)

Lt
rate = |rt|22 (19)

Lt
ent =

∑
a

πt(a) log πt(a). (20)

At
opt is the set of optimal actions at time t, and Eτ∼πθ,opt

[·] indicates an expectation over trajectories induced1189

by the policy of the agent, renormalised over optimal actions. That is, we consider an imitation learning1190

setting where ties between equally optimal actions are broken according to the actual policy of the agent.1191

We used λθ = 2 × 10−7, λr = 10−5, and λe = 10−4 for all analyses. The RNNs were trained using Adam1192

(Kingma and Ba, 2015) with a learning rate of 3 × 10−4 for 200,000 batches of 200 trials (250,000 batches for1193

the RNNs trained in changing mazes).1194

All results are reported as mean and standard deviation across 5 separate RNNs that were trained from1195

different random seeds and with different environment transition structures.1196

Analyses1197

In this section, we describe the analyses used to compare different handcrafted models and trained RNNs.1198

Decoding analyses1199

To decode future locations from neural activity (Figure 4C-D), we used scikit-learn (Pedregosa et al., 2011)1200

to train L2-regularised logistic regression models that predicted location at time tL from neural activity at1201

time tN with an inverse regularisation strength of C = 1.0. We performed this analysis in crossvalidation1202

across locations at time tN . In other words, we trained a decoder on data where the agent was in any state1203

stN
̸= s to predict all locations at time tL, and we then tested this decoder in trials where the agent was in1204

state s at time tN . We repeated this analysis across all test locations s and averaged performance across the1205

resulting 16 folds. We did this to test whether the RNN had a generalisable representation of future location,1206

rather than an encoding of e.g. current location and neighboring values.1207

In Figure 4C (left), we plot the performance of decoders trained on tN = −1 to predict location at any1208

tL ≥ 1. In Figure 4D, we trained decoders on every pair of tN ∈ [0, 5] and tL ∈ [0, 5]. We then averaged the1209

performance across every ‘delay’ tL − tN .1210

To investigate the generalisation of decoders in Figure 4E, we trained a single decoder using neural activity1211

at time tN = 1 to predict location at time tL = 3. We then applied the same decoder to neural activity at all1212

times t′
N and quantified how well it predicted location at all times t′

L. This analysis was again performed in1213

crossvalidation. A separate decoder was trained while holding out each location s1 = s, and then tested only1214

on trials where t′
N = s. Performance was averaged across all held-out locations and across 5 independently1215

trained RNNs. Figure 4E shows the time at which the average predictive performance was highest for each1216

t′
N . Figure S2 shows the full generalisation behaviour of the decoder.1217

To predict the time at which the agent would be at a particular location in Figure 4C (right), we analysed1218
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every state s separately, and then averaged over all s. For each s, we identified trials where the RNN passed1219

through s exactly once. We trained a decoder to predict the time at which s was visited and computed the1220

test performance as a function of the true time at which s was visited. As before, all decoders were trained in1221

crossvalidation across current agent location.1222

Comparisons of RNN performance and efficiency1223

In Figure 4F-G, we compare three classes of RNNs, which were trained on either the reward landscape task,1224

the moving goal task, or the static goal task with a goal that changed between trials. The performance of1225

each RNN was quantified in each of the three tasks as the probability of choosing the optimal first action (see1226

above). We also computed the average parameter magnitudes of all the networks, |θ|22. Finally, we computed1227

the average firing rate of each network in the static goal task as Eτ∼π

[∑
t |rt|22

]
. All other RNN analyses1228

apart from Figure S3 used networks trained on the reward landscape task.1229

Subspace identification1230

Prior work has investigated the extent to which working memory subspaces are orthogonal (Xie et al., 2022;1231

Dorrell et al., 2024). However, we are primarily interested in the dynamics between subspaces, which are1232

easier to interpret in an orthonormal coordinate system. We therefore asked whether there exists a set of1233

orthogonal subspaces that predict the location of the agent at every time in the future. To do so, we first1234

simulated 6,000,000 trials and collected pairs of neural activity at time t and location at t′(δ) separately for1235

each δ. We did this in two different ways. To estimate ‘planning’ subspaces, subspace δ was defined as a1236

decoder that predicts location at time t′(δ) = δ from neural activity at times t ∈ {−2, −1}. To estimate1237

‘execution’ subspaces, subspace δ was defined as a decoder that predicts location at t′(δ) = t + δ from neural1238

activity at any t ≥ 0.1239

We then defined a predictive distribution parametrised by ϕδ for each δ:1240

pϕδ
(st′ = si) ∝ exp (cδ,irt + bδ) . (21)

Finally, we minimised an objective function that combines the accuracy across δs and the overlap between1241

subspaces:1242

L(θ) =
∑

δ

[
Ert,st′(δ)∼D

[
− log pϕδ

(st′(δ))
]

+ α1|ϕδ|1 + α2|ϕδ|22
]

+ αorthLorth, (22)

Lorth : =
∑
δk,δl

∑
i,j

ĉT
δk,iĉδl,j . (23)

ĉδk,i indicates the normalised parameter vector that predicts being at location si at a delay of δk. The1243

parameters were optimised using ADAM with a learning rate of 5 × 10−3 until convergence or for a maximum1244

of 2000 iterations. We used α1 = 10−4, α2 = 10−3, and αorth was annealed from 0 to 2 × 10−3 over 5001245

iterations. These hyperparameters were chosen because they resulted in a good approximation to the ‘true’1246

subspaces in the handcrafted STA.1247

Estimating effective connectivity1248

To compute the effective connectivity between representations of different points in spacetime, we projected1249

the learned network parameters into a coordinate system defined by the parameter vectors C ∈ RNT ×Nrec .1250

Each row of C is a normalised vector ĉδ,i that predicts a particular point in spacetime. In this coordinate1251

system, the input weights are given by W eff
in = CWin; the output weights by W eff

out = WoutC
T ; and the1252

recurrent weights by W eff
rec = CWrecC

T . To analyse weights between ‘adjacent’ subspaces, we averaged the1253

blocks of W eff
rec that corresponded to weights from any subspace δ to δ + 1 and from any subspace δ to δ − 1.1254

To avoid our analyses being biased by the fact that the networks were trained with supervised learning to1255

predict optimal locations that could only be adjacent, we did not include the weights between subspaces 01256

and 1 in this average.1257

To quantify the similarity between the recurrent weights in this spacetime coordinate system and different1258

order adjacency matrices for the environment, we computed point-biserial correlations. The ∆th order1259

adjacency matrix A∆ ∈ RN×N was defined as a binary matrix with elements equal to 1 for pairs of states1260
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that can be reached from one another in ∆ actions, and 0 for all other pairs of states. The 0th order adjacency1261

matrix was defined as the identity matrix.1262

Perturbation analyses1263

For the perturbation analyses in Figure 5F-H, we constructed an environment where the reward function R(t, s)1264

was (i) 1.0 for (t, s) ∈ {(0, 0), (1, 1), (2, 2), (3, 6), (4, 10), (5, 10), (6, 10)}, (ii) 0.7 for (t, s) ∈ {(1, 4), (2, 8), (3, 9)},1265

and -1 for all other points in spacetime. The RNN reliably converged to a representation of the optimal path.1266

We first ran the network dynamics for 10 environment iterations without perturbation after the end of the1267

normal planning period. We then continued to run the network dynamics for 10 environment iterations with a1268

bias term defined by bstim
rec = brec + αĉ2,8, where α is the stimulation strength. The perturbed representation1269

was defined as the representation at the end of this perturbation period. The two example representations in1270

Figure 5G used α = 0.3 (‘weak’) and α = 10 (‘strong’). The quantification in Figure 5G used a range of α1271

from 0 to 10 for the RNN, and from 0 to 500 for the handcrafted STA. This is because the attractor wells are1272

deeper in the handcrafted STA, and a stronger perturbation is therefore required to push the network out of1273

an attractor state. The control analyses (grey lines in Figure 5G and Figure S5C) were performed by running1274

the same analysis on the RNNs, but with stimulation of the same magnitude in a random direction in neural1275

state space. For the analysis in Figure 5H, we also removed the perturbation and ran the network dynamics1276

for 10 environment iterations after the end of the perturbation period. All analyses in the main text focused1277

on representations in the space of implied future trajectories, pϕδ
(st′ = si). The ‘representational change’1278

was quantified as the L1 norm of the difference from the spacetime representation at the end of the normal1279

planning period. See Figure S5 for an analysis of the raw firing rates.1280

RNNs trained in changing environments1281

For the analyses in Figure 6, we trained another set of RNNs in a version of the reward landscape task1282

where the transition structure changed between trials. The locations of all walls in the environment were1283

provided as a binary input to the agent (see Jensen et al., 2024 for details). For the performance comparison1284

in Figure 6B (top), we evaluated the performance of these networks in the environments that the ‘single1285

structure’ networks had been trained on.1286

The effective connectivity in Figure 6C-D was computed as in the RNNs trained on a single structure. For1287

these analyses, we identified the subspaces from 1,000,000 trials in a single environment, and repeated this1288

analysis across 30 different environments. We computed similarities between (i) the effective connectivity1289

estimated in an environment and the adjacency matrix of the same environment, and (ii) the effective1290

connectivity and the adjacency matrix from a different control environment. In Figure 6E, the ‘subspace1291

similarity’ was defined as the correlation between the set of vectors that define the subspaces, averaged1292

over all points in spacetime. We computed the similarity between (i) subspaces identified from two sets of1293

independent trials from the same maze, and (ii) the same number of trials from two different mazes. Recall1294

that the effective recurrent weights between subspaces are given by W eff
rec = CWrecC

T . By using different1295

subspaces in different environments, the RNN changes C between environments, which changes the effective1296

connectivity between pairs of future subspaces (Figure 6E).1297

For the analyses in Figure 6G-H, we repeated the subspace identification procedure, but with two notable1298

differences. First, we used trials across many environments to find generalised directions in neural state space1299

that predict the future in any environment. Second, we defined the objective function in terms of future1300

transitions τ ij
δ instead of locations. Figure 6G quantifies the effective connectivity between future transitions1301

in consecutive subspaces (τ ij
δ and τkl

δ+1) that are either ‘consistent’ (k = j), ‘adjacent’ (j ̸= k but si and sk1302

are adjacent in an environment with no walls), or any other transitions. In Figure 6H, we first projected the1303

input corresponding to a given wall location wij onto each subspace and normalised the projection within1304

each subspace. We then calculated the dot product between this projection and the normalised directions in1305

neural state space that predict either (i) transitions between si and sj , (ii) transitions from si or sj to some1306

other state sk, or (iii) transitions that do not originate at si or sj . Projection magnitudes were averaged1307

over transitions within each of these three groups, then across subspaces, and finally the mean and standard1308

deviation were computed across 5 RNNs.1309
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Supplementary figures1310

C DTraining curve Performance against 
time-within-trial

Value strongly 
predicts behaviour

Reward weakly 
predicts behaviour

BA

Figure S1: RNN performance during and after training. Each line in this figure corresponds to one of
the five RNNs that were used for analyses in the main text. (A) Performance over the course of training,
averaged over all actions within each trial. (B) Performance at the end of training as a function of the action
number within the trial. When assessing performance at time t, trials were only included that had optimal
choices up to time t − 1. (C) Probability of choosing the action with highest value as a function of the value
difference between the two actions with highest value. This analysis shows that errors are only made then
the optimal action is close in value to the second best action. (D) Probability of choosing the action with
highest reward as a function of the reward difference between the two actions with highest reward. Reward
is less predictive of behaviour than value, confirming that the RNNs compute long-term value rather than
relying on greedy reward.

C DDifferent decoder
for each data point

Single decoder (trained on    )
applied to all data points

Quantification across 
delays and RNNs

BA

R

st

st+1

ST
A

R
N

N
Va

lu
e-
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se
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Figure S2: Additional analyses of learned RNN representations. (A) We compare a spacetime
attractor; an RNN trained on the reward landscape task; and an agent that analytically computes a full
spacetime value function. The value-based agent computes an optimal policy from ‘neural activity’ containing
(i) the value function, (ii) the current location, and (iii) the time-within-trial (Methods). (B) Decoding
accuracy of agent location at different times (x-axis) from neural activity at every other time (lines; legend).
All decoders were trained in crossvalidation across the current agent location (Methods). This is why the
accuracy is zero when decoding location from activity at the same time. (C) We trained a single decoder to
predict location at time 3 from neural activity at time 1 (green circle). The same decoder predicts location at
time t + 2 (x-axis) from neural activity at any other t (lines). (D) Similarity of decoding patterns to idealised
representations of future location in ‘relative’ or ‘absolute’ time (schematics).
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Static goal
working memory

A Static goal
continual reward

Moving goal
working memory

Moving goal
continual reward

B

Figure S3: RNNs trained on simpler tasks do not learn spacetime representations. In this figure,
we analyse the representations of four RNNs trained on all combinations of (i) the static goal or the moving
goal task, and (ii) reward input throughout the task (‘continual’) or reward input only during the planning
phase (‘working memory’). For all analyses in this figure, we only included trials where an optimal agent
would intercept the goal in 3 to 6 actions. (A) Decoding accuracy for agent location at different times (x-axis)
from neural activity at the end of the planning period. Decoders were trained in crossvalidation across the
current agent location. Only the RNN trained on the moving goal task in a working memory setting seems to
learn a generalisable representation of the future. This network is also unlikely to have learned a full STA,
since it fails catastrophically on the reward landscape task (Figure 4F). Note that the decoding accuracy
generally increases slightly for the true STA as a function of time-within-trial. This is because the navigation
tasks have stronger correlations between consecutive positions, which leads to some degree of overfitting on
the training data. This overfitting is less prominent later in a trial, where the space of possible locations
conditioned on the current location is larger. (B) In this analysis, we trained a decoder to predict whether
the agent would be at a particular location at any time in the trial from neural activity at the end of planning.
Binary decoders were trained for each possible future location in crossvalidation across the current agent
location. Bars indicate the average predictive accuracy across all binary decoders and current locations. The
simpler networks seem to learn a representation of whether they will be at a given location at some point in
the future.
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Recurrent weights between planning subspaces Recurrent weights between execution subspaces

Input weights to planning subspaces
Output weights from
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Environment structure

Overlap between planning 
and execution subspaces

Figure S4: Parameters learned by the reward landscape RNN. Network weights are projected into
an orthonormal coordinate system with axes that maximally predict future locations. All weight matrices are
for a single example RNN, since the environment differs between networks, and the connectivity is therefore
slightly different. (A) Structure of the environment that the RNN was trained in, illustrated as the 0th order
adjacency matrix (the identity matrix), the 1st order adjacency matrix, and the 2nd order adjacency matrix
(B) Recurrent weight matrix estimated during the planning period, which shows structure resembling the
environment adjacency matrix in the off-diagonal blocks. (C) Recurrent weight matrix estimated during
the execution period, which shows an additional ‘feedforward’ component that copies information from
later to earlier subspaces. We posit that this component of the connectivity matrix helps implement the
conveyor belt dynamics identified in Figure 4E (Supplementary Note). (D) Input weight matrix estimated
during the planning period. The ‘current’ subspace receives location input, and future subspaces receive
reward corresponding to the appropriate time in the future. (E) Output weight matrix estimated during the
execution period. The policy is read out from the ‘immediate future’ subspace as expected in a spacetime
attractor. (F) Overlap between subspaces estimated during the planning and execution periods. This analysis
was performed both for the standard RNN (‘WM’), and for a network trained with continual reward input
throughout the trial instead of only during the planning phase (‘continual’; Figure S6). The WM RNN
uses separate subspaces for computation of the plan and subsequent execution, consistent with the different
connectivity patterns in (B) and (C). The continual RNN can use the same subspaces for planning and
execution since it always receives the same type of input.
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CBA RNN spacetime representation

stim
ulation strength

Handcrafted STA RNN raw firing rates

Figure S5: Additional analyses of attractor dynamics. (A) Change in implied spacetime representation
over time in the trained RNN for different perturbation strengths (reproduced from Figure 5H). (B) Change in
spacetime representation over time in the handcrafted spacetime attractor for different perturbation strengths.
In contrast to the trained RNN, the ‘low value’ path is a fixed point of the perturbation-free network dynamics
in the handcrafted network. At the end of a sufficiently strong perturbation, the representation can therefore
stay in this new fixed point. (C) Change in RNN firing rates for different perturbation strengths. While
the change in implied spacetime representation completely saturates with perturbation strength, the change
in firing rates continues to increase with perturbation strength. This is expected because the network has
a non-saturating ReLU nonlinearity. Small external perturbations are still quenched when quantifying the
change in representation using the raw firing rates instead of the implied spacetime representation.
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Figure S6: RNNs trained with continual reward input also learn spacetime attractors. In the
main text, we focused on an RNN that was trained with reward input provided during an initial ‘planning
phase’, while no information was given about the reward function during subsequent ‘execution’. In this figure,
we perform some of the same analyses on an RNN that receives reward input throughout the entire task. In
this setting, the task could in theory be solved using a ‘feedforward’ strategy that does not rely on recurrent
dynamics at all. However, the RNNs still learn a spacetime attractor-like solution. (A) Decoding accuracy of
agent location at different times (x-axis) from neural activity at every other time. Each line corresponds to
predictions from neural activity at a different time in the trial from t = 0 (yellow) to t = 4 (blue). Decoders
were trained in crossvalidation across the current agent location. (B) We trained a single decoder to predict
location at time 3 from neural activity at time 1 (green circle). The same decoder predicts location at time
t + 2 (x-axis) from neural activity at any other t (lines). (C) Similarity of decoding patterns to idealised
representations of future location in ‘relative’ or ‘absolute’ time (Figure S2). (D) The average recurrent
weights between subspaces separated by a single action resemble the adjacency matrix of the environment.
(E) Correlation between (i) the average connectivity between subspaces separated by ∆ actions (lines; legend),
and (ii) different order adjacency matrices (x-axis). (F) Input weights to the ‘current’ subspace (δ = 0).
(G) Input weights to a ‘future’ subspace (δ = 2).

26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2025. ; https://doi.org/10.1101/2025.09.23.677709doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/


CDifferent decoder
for each data point

Single decoder (trained on    )
applied to all data points

Quantification across 
delays and RNNs

BA D Δ = 1 recurrent
weights

GFE

Adjacency
matrix

input location

ou
tp

ut
 lo

ca
tio

n

input location

Figure S7: RNNs with a local action space also learn spacetime attractors. In the main text, we
analysed an RNN that generated a global allocentric policy, consisting of a probability distribution over
all locations that was renormalised over ‘adjacent’ locations before sampling an action. In this figure, we
perform some of the same analyses on a network that outputs a ‘local’ policy in an action space consisting of
‘north’, ‘south’, ‘east’, and ‘west’. This RNN also learns a spacetime attractor. (A) Decoding accuracy of
agent location at different times (x-axis) from neural activity at every other time. Each line corresponds to
predictions from neural activity at a different time in the trial from t = 0 (yellow) to t = 4 (blue). Decoders
were trained in crossvalidation across the current agent location. (B) We trained a single decoder to predict
location at time 3 from neural activity at time 1 (green circle). The same decoder predicts location at time
t + 2 (x-axis) from neural activity at any other t (lines). (C) Similarity of decoding patterns to idealised
representations of future location in ‘relative’ or ‘absolute’ time (Figure S2). (D) The average recurrent
weights between subspaces separated by a single action resemble the adjacency matrix of the environment.
(E) Correlation between (i) the average connectivity between subspaces separated by ∆ actions (lines; legend),
and (ii) different order adjacency matrices (x-axis). (F) Input weights to the ‘current’ subspace (δ = 0).
(G) Input weights to a ‘future’ subspace (δ = 2).
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Figure S8: RNN representations and performance across network sizes. We trained a series of
RNNs with different network sizes ranging from 50 (dark blue) to 800 (yellow) hidden units. (A) Networks
with approximately 300 or more units learned a spacetime representation, and the future could be decoded
from the hidden state of the network at the end of the planning period. (B) Task performance saturated as a
function of network size at approximately 300 hidden units. (C) Task performance increased with the ability
of the network to represent the entire future explicitly. These results mirror the findings of Whittington et al.
(2023) that RNNs trained on working memory tasks learn a similar ‘slot-like’ solution only if the network is
large enough.
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Figure S9: Additional analyses of RNNs trained with changing environment structure. (A) Learn-
ing curves of RNNs trained on the reward landscape task in a single maze (‘fixed maze’; orange) or with
a different structure on every trial (‘changing maze’; blue). (B) We took the RNNs trained across many
mazes and evaluated them in a single maze (blue). Future states could be decoded almost as well as in
the RNNs trained in a single maze (orange). Additionally, the representations in each maze were more
similar to idealised representations of future location in ‘relative’ than ‘absolute’ time (right). (C) When
considering data across many mazes, future transitions could be decoded in a way that generalised across
current transition and maze structure (blue). Such a representation did not exist in RNNs trained in a single
maze (orange).
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Supplementary discussion of architecture and modelling choices1311

In this section, we discuss some of the many architectural and modelling choices that went into our work.1312

As is the case for much work in modern computational neuroscience, the space of models was vast – and1313

larger than we could feasibly explore fully in a single paper. In what follows, we aim to further motivate the1314

choices that were made in the main paper and to provide additional intuition for the importance and effect of1315

various architectural choices and hyperparameters in our work. This note is also not exhaustive, but we hope1316

that it will be useful both for the reader looking to gain a deeper understanding of our work, and for those1317

who want to draw inspiration from it in their own research.1318

Reward input format1319

When training RNNs with a reward function that changes in time, there are multiple different ways this1320

could be provided as an input to the agent. The three most natural choices are:1321

1. A relative encoding, where a given input channel always reflects the reward in δ actions.1322

2. An absolute encoding, where a given input channel always reflects reward at time t.1323

3. A ‘working memory’ setting, where reward input is only provided during a planning period prior to the1324

first action. At this time, the relative and absolute representations are identical, and no choice has to1325

be made between the two.1326

One might expect a relative reward input to bias RNNs towards relative future representations, and ‘conveyor1327

belt’ dynamics, and an absolute reward input to bias RNNs towards an absolute code. While RNNs trained1328

with relative reward input did show strong relative coding of the future (Figure S6), RNNs trained with an1329

absolute input learned somewhat mixed representations that were harder to interpret.1330

To avoid having to choose between these two, most of the analyses in the paper were done on an RNN trained1331

in the ‘working memory’ setting. We also saw slightly stronger ‘spacetime’ representations in the working1332

memory setting. In fact, Figure S6 shows that the effective planning horizon of the ‘relative’ model is only 4-51333

steps, and predictive performance of future states drops off beyond that. This is presumably because a shorter1334

planning horizon is sufficient for near-optimal performance in the task, and the regularisation encourages1335

networks to not encode more information than necessary. The RNN therefore effectively re-plans at every1336

step using a spacetime attractor with a depth of approximately 4.1337

The handcrafted spacetime attractor always received a ‘relative’ reward input. Otherwise, it would need to1338

include either (i) an additional ‘memory’ component, (ii) a transformation from absolute to relative inputs,1339

or (iii) a mechanism for changing the readout between subspaces. We expect that if biological agents use1340

spacetime attractor-like dynamics, there may be settings where the code is relative and settings where it is1341

absolute. This might depend on whether the plan is shaped around constraints in relative time (e.g. having1342

to meet someone in 10 minutes) or absolute time (e.g. having to meet someone at 1 pm).1343

Planning period1344

When training the RNNs, we included a planning period prior to the first action. During this period, the1345

output of the network had no effect on the environment. We did this (i) to separate the ‘planning’ period1346

from the ‘execution’ period in the working memory setting, and (ii) because it slightly improved performance.1347

In the handcrafted STA, there is no distinction between planning and execution, since the inputs are the1348

same in both cases. However, convergence is slower before the initial action because the network state starts1349

further from a fixed point. This means that the STA can be run for fewer iterations after the first action,1350

which effectively corresponds to a longer ‘planning phase’ followed by faster execution.1351

Network iterations per action1352

For all RNNs, we used a variable number of planning iterations. This is because we were interested in stable1353

representations of future behaviour, rather than networks learning to time their dynamics to initiation. In the1354

RNNs with a relative reward input, we also varied the number of network iterations between each action for1355

the same reason. However, this is not possible in the working memory RNN, since it would not know when it1356
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had taken an action. There are two possible solutions to this problem. (i) we can provide a specific ‘action’1357

input that tells the network when the environment has updated. (ii) we can use a fixed number of network1358

iterations between every action and allow the network to learn the speed of the environment. We opted for1359

the second option to keep the inputs as simple as possible. We suspect that this could lead to changes in the1360

subspaces used at different ‘phases’ of the dynamics, but we did not test this explicitly. Instead, we focused1361

on the planning period when analysing the connectivity of the working memory RNNs to circumvent this1362

potential complication. When analysing the activity during ‘execution’ in Figure 4D, we used only neural1363

activity right before each action.1364

Execution-time dynamics1365

The fixed points of the STA dynamics are input-dependent, and the inputs to the handcrafted model1366

change when it takes an action, because the location and/or future reward will be different. For this reason,1367

the representation can automatically update to reflect the ‘path-to-go’ after each action. However, this1368

involves recomputing the future to some extent, which is ‘wasteful’ since it has already been computed once.1369

Additionally, the representation can get stuck in local minima because the barrier to switching between1370

representations is non-zero. We therefore included an additional component in the STA weight matrix, which1371

was 1 for all off-diagonal elements that implement a transfer of information to earlier subspaces. This transfer1372

component was only active for 100 network iterations (two time constants) after each action to update the1373

representation before settling into a new fixed point. This is similar to how the fruit fly head direction circuit1374

uses populations of ‘shift’ (PEN-1) neurons to update the internal heading, and these PEN-1 neurons are1375

gated by angular velocity input (Turner-Evans et al., 2017, 2020). Including an explicit shift component in1376

the STA is not necessary for any of the main results in the paper, but it stabilises the dynamics to some1377

extent. We posit that the RNNs learn something similar, as suggested by the feedforward component of the1378

‘execution period’ parameters in Figure S4C.1379

Noise sensitivity1380

The handcrafted STA is more or less susceptible to different types of noise. The model is very robust to noise1381

added to the neural potential (‘z’; Methods), which can be interpreted as a spacetime distribution in log1382

probability space. This is because non-desirable locations in spacetime can have very negative values, which1383

are not very noise sensitive. The STA is more sensitive to noise added to the firing rates (‘r’; Methods),1384

which can be interpreted as a spacetime distribution in actual probability space. This is because addition of1385

positive noise to some location si in subspace δ will propagate through the adjacency matrix to all neighboring1386

locations at time δ + 1. This can lead to representations that ‘teleport’ between distant locations if si is near1387

the reward location and therefore receives strong input from the reward function or future subspaces.1388

The STA is sensitive to structural noise for a similar reason. Adding a small positive value to weights1389

corresponding to elements of the adjacency matrix that are meant to be zero leads to dynamics that include a1390

finite probability of teleporting between these distant locations. In this work, we mitigate the structural noise1391

sensitivity by using a ‘pessimistic’ estimate of the adjacency matrix as the base weights before adding noise1392

(Methods). In other words, we subtract a small constant from all weights to ensure that distant locations are1393

connected with weights that are zero or negative, even though they are noisy. This may be less of a problem1394

in biological networks, since Dale’s law ensures that synapses are either excitatory, inhibitory, or absent.1395

The sensitivity to both rate noise and structural noise is higher when the input strength is larger (β; Methods),1396

which biases the representation more strongly towards rewarded locations. Conversely, the converged1397

representation is more diffuse if the input strength is weaker, because there is a smaller bias towards rewarded1398

locations. This is particularly true when planning towards distant rewards. The strength of the reward input1399

therefore has to balance the planning depth with the susceptibility to teleporting representations. If there is1400

no noise in the system, the input strength can safely be very large, which leads to robust performance for long1401

planning horizons. If there is more noise in the system, the input strength should be smaller, which increases1402

noise robustness at the expense of a shorter effective planning horizon. When training RNNs across tasks,1403

they will naturally learn to balance the robustness of the representation with the required planning depth.1404

Indeed, the analyses in Figure S5 suggest that RNNs learn to do so better than our handcrafted models.1405

30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2025. ; https://doi.org/10.1101/2025.09.23.677709doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/


Choice of RNN learning algorithm1406

We used supervised learning to train all RNNs in this paper. In other words, the RNNs were trained to1407

predict the behaviour of an optimal agent. An alternative would have been to train the networks end-to-end1408

using reinforcement learning. We opted for the supervised setting for two reasons. Firstly, supervised learning1409

is more stable, which leads to more robust results that are less sensitive to hyperparameters and use less1410

compute. These features make it much simpler for others to build on our work. Secondly, we do not think1411

cortical representations are learned from scratch via reinforcement learning. Instead, we are of the opinion1412

that cortical representations are likely learned via predictive or ‘semi-supervised’ learning. The basal ganglia1413

can then use reinforcement learning to map these representations onto actions (Blanco-Pozo et al., 2024;1414

Zintgraf et al., 2019). We expect that training the RNNs with reinforcement learning would yield similar1415

results, but we have not tested this explicitly.1416

Convergence of RNN training1417

Convergence was in general fairly good, but it did vary with hyperparameters to some extent. For some com-1418

binations of regularisation strengths, the networks sometimes got trapped in local minima that corresponded1419

to incomplete structural learning. These networks would partially learn the structure of the environment,1420

but they would fail to learn connections between some pairs of states that were actually connected, which1421

impaired performance. Similarly, some RNNs trained on the changing maze task erroneously ‘hard coded’1422

some transitions instead of having them flexibly modulated by the inputs. In general, the accuracy of the1423

learned structure was correlated with model performance for both the networks trained in a single maze and1424

networks trained in changing mazes. Additionally, the overall loss was higher for the networks that failed to1425

learn the full task structure, suggesting that it is an issue of convergence rather than regularisation making1426

the partially learned solution optimal.1427

Long distance parameters in the RNN1428

In Figure 5 and Figure S4, we saw that the trained RNNs learn some long-range connections between1429

subspaces separated by more than one action. This differs somewhat from the handcrafted STA, which only1430

has connections between adjacent subspaces. However, the presence of long-range connections in the RNN is1431

not too surprising. In particular, we expect this additional structure to stabilise fixed points corresponding to1432

possible trajectories, since it inhibits any trajectory that includes impossible n-step transitions. We suspect1433

that stabilising the dynamics through weaker connectivity between all subspaces is cheaper than strong1434

connectivity exclusively between adjacent subspaces. This may be a consequence of the L2 regularisation used1435

to train the networks, which favors many small parameters over few large parameters. In future work, it could1436

be interesting to explore whether the degree of long range connectivity is lower when using L1 regularisation1437

instead. The result of such an analysis may also depend on how disentangled the spacetime representations1438

are, which we did not explore in the present paper.1439

Discrete space and time1440

We have discretised space and time throughout this work. This makes the models and analyses simpler,1441

because the action space is discrete and one action always leads to a step change in the environment. However,1442

we expect that the basic ideas extend to continuous space and time as well. In this case, neurons would still1443

represent particular points in spacetime. Pairs of neurons would be connected as a function of their difference1444

in preferred location in a way that reflects which locations can be reached in a unit time. This is similar to1445

the mechanism used for angular velocity integration in ring attractors and path integration in grid attractors.1446

If the speed of the agent can vary, it might be necessary to represent different speeds in different connections1447

or neurons, and the desired speed at every point in time could be inferred together with the trajectory.1448

Stochastic environments1449

We have worked with deterministic environments throughout this paper. This choice greatly simplifies the1450

spacetime attractor, since the deterministic adjacency matrix can be built into the network connectivity. When1451

working in a stochastic environment, we would intuitively want the connections to represent maxa p(st+1|st, a),1452

which is a generalisation of the adjacency matrix for deterministic environments. We have not explored this1453

explicitly but consider it an important extension for future work. One potential challenge in the stochastic1454

case is that the spacetime attractor as formulated here effectively performs planning as inference under the1455
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assumption that the posterior distribution over locations factorises across time. This assumption may have1456

more severe consequences in stochastic environments, where correlations are more important. In particular,1457

this assumption generally leads to a collapse to a ‘modal’ representation of a single trajectory rather than1458

representations of entire distributions of trajectories. In stochastic environments, that means it is possible to1459

converge to a single representation of a trajectory that is unlikely to happen in reality, even with the correct1460

choice of actions.1461

Relationship to sequence working memory1462

The spacetime attractor is strongly inspired by representations identified for sequence working memory1463

(El-Gaby et al., 2023; Xie et al., 2022; Chen et al., 2024; Tian et al., 2024; Whittington et al., 2023). These1464

sequence memory tasks have notable similarities to the reward landscape task studied in this work. In1465

particular, sequence working memory often involves presenting an animal with a sequence of 2-4 options1466

(e.g. ‘a’, ‘b’, and ‘c’) that are sampled from a set of N possible states or actions (Xie et al., 2022; El-Gaby1467

et al., 2023). The animal is then rewarded for repeating the sequence at response time. The task therefore1468

has a reward function that is categorical (only one element is rewarded at a given moment in time) and1469

changes in time (first ‘a’ is rewarded, then ‘b’...). This is very similar to the changing reward function in the1470

reward landscape task. A notable difference is that the sequence memory tasks have no constraints on the1471

possible transitions – any element can be produced before or after any other element. For this reason, each1472

sequence element can be treated independently, and there is no need to pass reward or value information1473

between subspaces. The independent sequence working memory task can therefore be seen as a special case1474

of the reward landscape task, where (i) only one state is rewarded at each point in time, and (ii) any state1475

can be reached from any other state, so the adjacency matrix is uniform. Interestingly, theoretical work1476

shows that explicit representations of the future preferentially emerge for sequence working memory when1477

correlations (or more precisely, ‘range dependence’) between subsequent elements are weak, and the space of1478

possible sequences is therefore large (Dorrell et al., 2024). This is reminiscent of our finding that spacetime1479

representations for planning preferentially emerge in RNNs trained on the reward landscape task, where the1480

space of possible optimal trajectories is larger than in the static and moving goal tasks.1481

Comparisons with TD and SR agents1482

In Figure 3, we compare the representations and performance of the STA to temporal difference learners and1483

successor representation agents. We show that the STA solves ‘dynamic’ problems that these algorithms1484

struggle with. This is in some sense a property of the state space rather than the decision making algorithm.1485

It would be possible to construct TD and SR agents in a ‘space-by-time’ state space, which would allow them1486

to solve these dynamic problems. Our message is not that this is not possible. Instead we are highlighting1487

that the way these algorithms are usually implemented involves representations that are ‘flat’ across time,1488

and we use them as a comparison to show why spacetime representations can be useful. If a TD learner was1489

implemented with a space-by-time state space, it would be able to solve tasks where the reward changes1490

within a trial but the same pattern is seen across all trials. The SR agent with a space-by-time state space1491

could solve the general reward landscape task. In the simplest implementation, this would require inversion1492

of a matrix T ∈ RNT ×NT , which is computationally expensive. However, it is possible that the structure of1493

T could be exploited to invert it more efficiently, which would be an interesting avenue for future research.1494

Summary1495

As is evident from this discussion, many choices went into this work that could have been different. We1496

do not claim to have explored the full space of models and tasks, and we are not trying to argue that the1497

spacetime attractor is a silver bullet for planning and decision making. Instead, we have tried to argue that1498

STA-like models are interesting solutions to a range of problems that are relevant to prefrontal cortex and not1499

widely studied in systems neuroscience. However, many open questions remain, some of which we have briefly1500

motivated here. We therefore hope that this paper will inspire others to further explore these questions both1501

experimentally and computationally.1502
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