bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A mechanistic theory of planning in prefrontal cortex

Kristopher T. Jensen®!3, Peter Doohan?, Mathias Sablé-Meyer', Sandra Reinert!, Alon
Baram?, Thomas Akam'?, and Timothy E. J. Behrens !

I Sainsbury Wellcome Centre, University College London, London, UK
2 Department of Experimental Psychology, University of Oxford, Oxford, UK
3 Oxford Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
@ Corresponding author (Kris. Torp.Jensen@gmail.com)

Abstract

Planning is critical for adaptive behaviour in a changing world, because it lets us anticipate the future and
adjust our actions accordingly. While prefrontal cortex is crucial for this process, it remains unknown how
planning is implemented in neural circuits. Prefrontal representations were recently discovered in simpler
sequence memory tasks, where different populations of neurons represent different future time points.
‘We demonstrate that combining such representations with the ubiquitous principle of neural attractor
dynamics allows circuits to solve much richer problems including planning. This is achieved by embedding
the environment structure directly in synaptic connections to implement an attractor network that infers
desirable futures. The resulting ‘spacetime attractor’ excels at planning in challenging tasks known to
depend on prefrontal cortex. Recurrent neural networks trained by gradient descent on such tasks learn
a solution that precisely recapitulates the spacetime attractor — in representation, in dynamics, and in
connectivity. Analyses of networks trained across different environment structures reveal a generalisation
mechanism that rapidly reconfigures the world model used for planning, without the need for synaptic
plasticity. The spacetime attractor is a testable mechanistic theory of planning. If true, it would provide a
path towards detailed mechanistic understanding of how prefrontal cortex structures adaptive behaviour.

Introduction

While different cortical areas support different func-
tions, common computational principles are shared
across many areas. For functions as disparate as
sensory processing, spatial reasoning, and language
comprehension, features of the environment are in-
ferred from partial information. To do so, structural
knowledge about the world must be embedded in
synaptic connections (Ko et al., 2011; Burak and Fi-
ete, 2009; Tacaruso et al., 2017; Turner-Evans et al.,
2020). This constrains neural circuits to represent
meaningful interpretations of the environment, and
inputs select between these interpretations. It is
not known whether similar principles generalise to
complex prospective behaviours, such as planning
extended action sequences to achieve a distant goal.
Recent recordings from prefrontal cortex give an
important clue. When mice or monkeys must ex-
ecute a sequence of actions, neurons represent the
entire sequence concurrently (El-Gaby et al., 2023;
Xie et al., 2022). Different neuronal populations
encode different steps of the future behaviour. If
such a representation could be inferred from inputs
indicating goals and constraints, the network could
plan the future. Excitingly, this solution would use
algorithmic principles similar to those known to
infer features of the present in other cortical areas.

This paper has four overlapping aims. (i) To de-
velop a detailed circuit model that infers explicit
representations of the future from partial inputs.
(ii) To discern the principles of synaptic connectivity
that enable such a model to solve complex problems
including planning. (iii) To understand when and
why this algorithm succeeds while simpler circuit
models fail. (iv) To explore how it relates to pre-
frontal representations, connectivity, and function.

Sequence representations in PFC Recent
work has uncovered PFC representations underlying
sequence working memory (Xie et al., 2022; El-Gaby
et al., 2023; Whittington et al., 2023; Botvinick
and Plaut, 2006). Separate neural ‘subspaces’, or
groups of neurons, represent the expected or de-
sired state of the world at different steps along the
sequence of future behaviour. In other words, some
neural subspace ‘A’ represents the present, while
subspace ‘B’ represents the immediate future, and
subspace ‘C’ the more distant future (Figure 1A).
Critically, these subspaces are active simultaneously.
Together, they instantaneously represent the entire
behavioural sequence. Importantly, El-Gaby et al.
(2023) showed that the PFC subspaces representing
different steps of the future are not independent.
Neuronal correlations reflect the structure of the
task being performed, even during rest.

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Visual inference C Inference of head direction

e “\&:ﬁ* o5

A PFC represents an entire path at once

PFC representation Spike
times

Path to goal
Inferred orientation

stimuli

firing rate

neuron
—

V1 activity

preferred angle

preferred y loc
-
! -
-
ajel Buui4

receptive field alignment vision

PFC involvement

SIZ (] |
ASIA 1

Dynamic

(vi) Complex plans

(i) Stimulus-response (ii) Binary decisions (i) Spatial memory (iv) Reversals (v) Time-dependent goals

Figure 1: Background. (A) Recent work has identified explicit sequence representations in prefrontal
cortex during working memory (Xie et al., 2022; El-Gaby et al., 2023). When an animal has to execute
a behavioural sequence (left), individual neurons represent conjunctions of location and sequence element
(centre). Separate populations (planes) therefore represent the expected location at different times in the
future. The entire sequence is represented concurrently by the simultaneous firing of different neurons that
encode the expected location at each time in the future (right). (B) An example V1 cell fires when its
receptive field is aligned with an inferred line (blue), but not for a control stimulus with no inference (orange).
Such visual inference is mediated by structural priors embedded in the circuit connectivity, where neurons
representing consistent visual features excite each other (Iacaruso et al., 2017; Shin et al., 2023). Figure
adapted from Lee and Nguyen (2001). (C) Structural knowledge is embedded in the synapses of the head
direction system (centre; Turner-Evans et al., 2020), which constrains the network to represent single angles
(Kim et al., 2017). Visual and proprioceptive inputs (left) determine which angle should be represented
(right). We suggest that a mechanism like (B) and (C) infers the representation in (A). (D) Prefrontal cortex
is particularly important in dynamic environments. Stimulus-response associations and repeated choices are
robust to prefrontal lesions (i; ii), and acortical mice can solve spatial memory tasks (iii; Zheng et al., 2024).
However, PFC is needed for reversal learning (iv; Walton et al., 2010) and when different goals are important,
or ‘rewarding’, at different times (v; Shallice and Burgess, 1991). In multiplayer board games (vi), different
resources are valuable at different stages, and opponents can dynamically change their strategy.

Planning by inferring the future The corre-
lation structure observed in PFC resembles other
attractor circuits known to infer the current state of
the world, such as the instantaneous visual input or
head direction of an animal (Figure 1B-C; Ko et al.,
2011; Chaudhuri et al., 2019). If a similar infer-
ence process acted on the future representation in
PFC, it would extend its function beyond sequence
memory to situations where entire action sequences
are inferred from partial cues. Planning could be
solved by inferring sequences of desired actions from
a set of goals in a network implementation of ‘plan-
ning as inference’ (Botvinick and Toussaint, 2012;
Levine, 2018). The resulting algorithm would natu-
rally cope with dynamic environments, because it
represents each time in the future separately. This
is intriguing because PFC is particularly important
for problems that require the correct behaviour to
be expressed at an appropriate time (Figure 1D;
Shallice and Burgess, 1991; Volle et al., 2011). Plan-
ning via attractor dynamics is also consistent with

winner-take-all dynamics identified in frontal cortex
during non-sequential behaviours (Ruff et al., 2025;
Inagaki et al., 2019). Such planning as inference
differs from most planning algorithms studied in
cognitive science and machine learning, which of-
ten rely on sequential search (Callaway et al., 2022;
Schrittwieser et al., 2020). Search is easily adapted
to new environments, but it is slow at decision time.
In familiar environments where the structure is em-
bedded in cortical connections, attractor dynamics
provide a complementary mechanism for rapid eval-
uation of many possible futures in parallel.

A mechanistic theory In this paper, we show
that known features of PFC representations and
connectivity are sufficient to implement a powerful
planning algorithm with minimal additional assump-
tions. The resulting ‘spacetime attractor’ (STA)
instantiates an explicit world model in the synaptic
connections between neurons, which allows it to
plan by inferring optimal future trajectories. This

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

algorithm resembles other cortical circuits known
to infer features of the present, thereby unifying
our understanding of PFC with the rest of cortex.
The spacetime attractor excels at dynamic prob-
lems with changing reward and transition structures,
which PFC is critical for and existing mechanistic
models cannot solve. RNNs trained on dynamic
tasks implement a spacetime attractor in their dy-
namics, suggesting that it is an efficient solution.
Our findings provide a precise mechanistic theory
of adaptive behaviour that reconciles prior work
on PFC representations with other known cortical
computations and deficits from lesions.

Results

An attractor network in space and time

We now introduce the spacetime attractor in more
detail. We first review ring and grid attractors,
which illustrate how simple circuit motifs can guide
inference from partial information. We then explain
how the spacetime attractor uses similar principles
to infer future behaviour. Neurons are assumed
to encode single environment features, but simi-
lar ideas apply when individual neurons represent
combinations of variables (Clark et al., 2025).

Ring attractors Ring attractors are neural net-
works that can only encode circular variables such
as angles (Zhang, 1996; Ben-Yishai et al., 1995).
Different neurons have different ‘preferred orienta-
tions’, and the network dynamics have a set of ‘fixed
points’ (stable activity patterns) that encode a par-
ticular angle. At these fixed points, neurons with a
preferred angle near the encoded angle are active,
and the remaining neurons are silent (Figure 2A,
bottom left). This is achieved by a network where
neurons are mutually excitatory if they have simi-
lar preferred orientations, and inhibitory otherwise
(Figure 2A, top left). The network then infers which
angle is most compatible with noisy inputs such as
vision and proprioception. This property underlies
the ability of ring attractors to integrate angular
velocity in the head direction system (Turner-Evans
et al., 2017; Skaggs et al., 1994).

Grid attractors Grid attractors instead encode
position in two-dimensional space. This is achieved
by neurons that are mutually excitatory if they rep-
resent nearby locations in space and inhibitory if
they represent more distant locations (Figure 2A,
top right; Fuhs and Touretzky, 2006; Burak and
Fiete, 2009). The fixed points of the network are
hexagonal patterns of activity that resemble canon-
ical grid cells (Figure 2A, bottom right; Hafting

et al., 2005), and the inputs determine which lo-
cation is represented at a given moment in time.
These properties underlie the ability of grid cells to
perform path integration (Burak and Fiete, 2009).

Spacetime attractors Inspired by these known
attractor networks in the brain, we propose the
existence of a spacetime attractor in prefrontal cor-
tex. The STA is a network that infers explicit
representations of the future, and its fixed points
therefore have to be entire paths through space and
time (Figure 2B, bottom). Given such fixed points,
any input would automatically be converted into
a representation of future behaviour — an inferred
plan. Similar to the ring and grid attractors, this
is achieved by connecting STA neurons such that
consistent states excite each other and inconsistent
states inhibit each other. In the spacetime attrac-
tor, each neuron has both a preferred location and
a preferred delay §, which determines how far into
the future its tuning curve is defined. If a neuron
has § = 0, it will fire when the agent is currently at
the preferred location of that neuron. If a neuron
has § = 3, it will fire when the agent expects to be
at the preferred location after three actions. In such
a network, consistent states are those that can be
part of a single trajectory, while inconsistent states
cannot be part of the same trajectory. The connec-
tivity between neurons in subspaces with preferred
delays ¢ and d+1 should therefore correspond to the
structure — more specifically the adjacency matrix —
of the environment (Figure 2B, top).

Reward input selects the future By embed-
ding a world model in its connections, the spacetime
attractor creates fixed points that are future tra-
jectories through space and time. It can then use
reward information from the environment to bias
the representation towards trajectories that repre-
sent desirable futures. This resembles how visual
and proprioceptive inputs to a ring attractor bias its
representation towards particular orientations (Kim
et al., 2019). Reward information must similarly be
an input to the STA to enable fast adaptation to
changing rewards without rewiring the synaptic con-
nections. Importantly, the STA can accommodate
time-varying reward structures known to engage
PFC (Figure 1D; Shallice and Burgess, 1991; Volle
et al., 2011; Carlesimo et al., 2014). This is possible
because different neural populations that represent
different times in the future can receive different
inputs. Given a restaurant booking in 2 hours and
a cinema ticket in 4 hours, the § = 2 neurons would
receive reward input at the restaurant, and the
0 = 4 neurons at the cinema. The network dynam-

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A Ring attractor Grid module B Example location & reward Different location & reward
(19} [9) T 62 = =
8 (5 N (5™ P
2 <\ 8 _2 (] . . i o ’\Jf. .J Location input to
2 > ks current subspace
2 B : i " Elaib W .
£ g 2 ' 2 , o
|53
o [2 2 o
: U Unebicige B0 Ung ity ..
S D5 |Q'L — 3 p,\ .. 2 » Reward input to
neura: population) neurai population
\. preferred x loc EA arpopulat f+/o mpopuldy future subspaces
2 - e 9
c % state 1] o o [
[} o .
Q o Sle ° i i 0
° £ ~|0® . - -
3/ € 3 4l B ' -
B g ° 5 ' s 8 —
o 2 state 2 5 QL 2 Firing rate
Q0 o s oe o 2 o
el 2 g ® od =@ V0 Vg 5
£ . . - - - . - - - >
g \ 5 [] 'O’ef neurai populadon D’& neural populaton
LU preferred 6 preferred x loc N 00
C Connectivity drives dynamics Agent moves
Initial random activity .. 0 Fixed point is a ‘plan’ New fixed point
A - ﬁ
»~
B Y& Y Visy ¢ Activity shifts (]
Location Reward Policy New location
input input input

Figure 2: The spacetime attractor. (A) Left; in a one-dimensional ring attractor, neurons representing
similar directions excite each other (top, red), and different directions inhibit each other (blue). Connections
are shown for the green example cell. Stable network states (fixed points) have neurons at a particular
encoded angle being most active (bottom). Right; grid cells (bottom) emerge from a two-dimensional attractor
network (top), where cells with similar preferred location excite each other (red) and intermediate distances
inhibit each other (blue). (B) The spacetime attractor is a three-dimensional generalisation, where neurons
have both a preferred location (planes) and delay (horizontal axis). This resembles the PFC representation in
Figure 1A. Cells that represent adjacent locations in both space and time excite each other (top, red), and
different locations at the same time inhibit each other (blue). Given inputs indicating the current location
(mouse) and future reward (cheese), the fixed points represent reward-maximising paths through space and
time (bottom). While this example has a single static goal, reward inputs can also differ between subspaces if
the reward is dynamic. (C) Dynamics of the spacetime attractor. Initial activity is diffuse (left), followed
by convergence to a stable representation of a plan (centre). At convergence, a policy is read out from the
subspace that represents the next location along the desired trajectory. When the agent moves to the next
state, neural activity updates to represent the remaining plan-to-go (right; El-Gaby et al., 2023).

ics would then infer a future where the agent is at
each location at the appropriate time.

To summarise, the spacetime attractor has four
main components: (i) different neural populations
represent different times in the future; (ii) the neu-
rons are connected according to the structure of the
environment; (iii) the current location is an input to
the ‘present’ subspace; and (iv) the reward structure
is an input to all future subspaces. The resulting
fixed points (Figure 2B, bottom) represent trajecto-
ries that maximise cumulative reward. The network
dynamics implement a gradual relaxation process,
where reward inputs bias the representation in each
subspace towards high-reward locations, while in-
puts from neighbouring subspaces constrain their
representations to be consistent. Together, these

two processes converge to a stable representation
of a coherent future plan (Figure 2C).

The STA guides behaviour After computing
an explicit representation of a plan, it can be used
to inform behaviour. In particular, an agent should
simply take whichever action leads it to the next
location on the inferred trajectory (Figure 2C, mid-
dle). The entire representation of the future then
needs to move by one ‘action’; so the state that
was previously represented in subspace § is now in
subspace § — 1. The resulting dynamics resemble
a ‘conveyor belt’ that allows the STA to execute
entire trajectories without recomputing the policy
after every action. Such conveyor belt dynamics
have been observed experimentally during sequence
working memory (El-Gaby et al., 2023). Impor-

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

tantly, the representation remains a fixed point of
the spacetime attractor dynamics, because the loca-
tion and reward inputs are updated due to (i) the
movement of the agent, and (ii) the passing of time.

World models for planning Planning requires
access to an internal world model that predicts the
consequences of different actions. However, the
spacetime attractor uses such a world model differ-
ently from many other planning algorithms. Most
algorithms apply a world model sequentially to sim-
ulate actions one by one. The spacetime attractor
instead instantiates multiple copies of the world
model explicitly in the synapses between different
neural subspaces. This allows the network to simu-
late many possible futures in parallel. Entorhinal
grid cells are also thought to embed a world model
in their connectivity (McNaughton et al., 2006),
but they do not represent the distant future ex-
plicitly (Ouchi and Fujisawa, 2024). Instead, they
infer a single location at a time. The spacetime
attractor therefore suggests that circuit principles
in prefrontal cortex resemble other cortical areas
that use structural knowledge to infer features of
the world. We propose the major difference to be
that PFC instantaneously represents the world at
many points in time, which extends known circuit
principles to complex planning problems. This also
requires knowledge of the reward available in dif-
ferent states, which could be estimated separately
by other neural circuits. In this work, we simply
assume access to ground-truth rewards.

STAs are flexible planners

Prefrontal cortex is particularly important for tasks
that require flexible behaviour in changing envi-
ronments (Figure 1D; Burgess and Wu, 2013). To
understand whether the spacetime attractor is a
good model of planning in PFC, we therefore need
to (i) study its behaviour and performance in such
dynamic tasks, and (ii) characterise when and how
it differs from existing models. We will see that
the spacetime attractor is well-suited to dynamic
‘PFC-like’ problems, which other mechanistic mod-
els struggle to solve.

From static to dynamic tasks We designed
a set of four tasks that vary in how much the re-
ward changes in space and time (Figure 3A). The
tasks are all embedded in Euclidean space for sim-
plicity of exposition, but the underlying principles
generalise to any environment with known struc-
ture. Task 1 is simple navigation towards a static
goal that remains constant across trials. In task 2,
the static goal changes between trials. Task 3 is

navigation to a goal that also moves within each
trial, where each location is only rewarded when the
goal is there. Task 4 generalises the idea of time-
dependent goals to a non-binary reward landscape.
Reward magnitudes are sampled independently be-
tween -1 and 41 for each location at each time point
in each trial. The objective is to maximise cumula-
tive reward over the trial, which requires balancing
immediate reward with the potential for future re-
ward (Figure 3A, right). This is reminiscent of
the example from Figure 1D, where the restaurant
and cinema are desirable at different times. To
better understand how the STA solves these tasks,
we compare it to two models commonly studied in
systems neuroscience. The first is temporal differ-
ence (TD) learning, which has neural correlates in
striatum (Sutton, 1988; Schultz et al., 1997). The
second is the successor representation (SR), which
has neural correlates in hippocampus (Dayan, 1993;
Stachenfeld et al., 2017). These models assume
fixed rewards across trials (TD) or within a trial
(SR). Unlike the spacetime attractor, they do not
generalise well when the reward changes rapidly.

Simpler models can solve static tasks TD
learners gradually propagate value from rewarded
locations to all other locations, and optimal policies
are only learned when rewards are constant across
both time and trials (Figure 3B-C, orange). The
SR agent uses the environment structure and trial-
specific reward function to compute values, and it
can solve tasks where the goal changes between
trials (Figure 3B-C, green). The STA can also solve
these tasks, but it does so by inferring an entire
spatial trajectory to the goal instead of computing
a value function (Figure 3B-C, blue). Because the
reward is constant throughout a trial, each sub-
space receives the same reward input. However,
the inferred representation differs across subspaces
because it is also constrained to satisfy the current
agent location and the transition structure of the
world. As we will see, the inference of an explicit
spacetime representation by the STA increases its
flexibility compared to the amortised state values
computed by TD and SR agents.

Only the STA solves dynamic tasks While the
SR agent can adapt to rewards that change across
trials, the reward structure still needs to remain
constant for the duration of the planning horizon.
This is because the SR computes time-averaged oc-
cupancy and lacks fine-grained information about
when the agent is where. When the reward changes
within a trial, the SR is limited to computing av-
erage values across time-within-trial, and it fails

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A Task complexity Dynamic

Fixed static goal Changing static goal

MR
SHEN

Moving goal

Arbitrary reward landscape

e

= optimal i ithin tri agentforgos ... for a larger reward
reward policy timeiwithin trial immediate reward later in the trial
B TD agent SR agent Spacetime attractor Model performance
computes correct value computes correct value infers an explicit path to the goal 1 -
©
o
) -
T] L] 8 8 £
173 o
ko] @ (] X
Q
X
[04
c TD
= | averages value over trials computes correct value infers an explicit path to the goal 1 4
S
2 -
g
@ 8
2 L 800X B0AL POOL P =
2 o
© 0
& 0-
TD SR STA
D SR agent Spacetime attractor E Reward landscape
averages value over infers a path that intercepts the goal at the
time-within-trial appropriate point in space and time 14
2 200 a2
® 5
2 90 19 8
8 @ ' :
YA 0
TD SR STA TD SR STA

Figure 3: Model comparisons in static and dynamic tasks. (A) Example tasks with different degrees
of dynamic reward. Colours indicate reward at each location (white to green), and red arrows indicate the
optimal policy. In the ‘moving goal’ task, the agent intercepts a target that moves along a different trajectory
in each trial (arrow). In the ‘reward landscape’ task, the reward is sampled independently in space and time.
The agent has to maximise cumulative reward, and it can be optimal to forgo immediate reward for a later
payoff. (B) Representations and performance in the static goal task with a fixed goal. Left: value functions
learned by TD and SR agents. Centre: STA representation at convergence, which encodes a path through
space and time. The final plane is a max projection that summarises the path. Right: performance of each
model in the task (grey: random baseline). (C) As in (B), now for the task where the static goal changes
between trials. (D) Representations and performance in the moving goal task. Left: the SR computes a
value function that averages reward across time-within-trial. Middle: the STA takes into account the moving
goal and computes a path that intercepts it. Right: performance of each agent. (E) Performance in the
reward landscape task. All error bars indicate 1 standard deviation across 20 agents and environments (dots).

to intercept the goal at the correct point in space
and time (Figure 3D). In contrast to the TD and
SR agents, the STA can solve the moving goal task
because the input to each subspace is the reward at
that specific moment in time. The representation
is therefore biased towards coinciding with the goal
in both space and time, and the network dynamics
relax to a future trajectory that correctly intercepts
the goal (Figure 3D). The advantage of the STA is
exacerbated in the more dynamic reward landscape
task, where very different locations can be rewarded

at different times (Figure 3E). These results suggest
that different algorithms could contribute differently
to decision making. TD learning could drive rapid
decisions in environments with stable rewards; the
SR would be more flexible when rewards change
on intermediate timescales; and the STA could en-
able adaptive behaviour in environments with rapid
changes. Finally, sequential search would facilitate
slower planning in novel environments and could be
guided by partial plans from a spacetime attractor.

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

STAs are efficient planners

We have seen that a handcrafted spacetime attractor
can solve dynamic problems that simpler algorithms
cannot. However, this requires many neurons to
explicitly represent the future. We therefore inves-
tigated whether superior solutions exist to these
‘PFC-like’ problems by training a recurrent neural
network (RNN) to solve them efficiently (Mante
et al., 2013; Stroud et al., 2023). We will see that
regularised RNNs solve dynamic planning problems
with an STA-like algorithm, suggesting that it is ef-
ficient. This result also demonstrates that the STA
is consistent with a prominent theory that PFC
resembles a recurrent meta-learner (Wang et al.,
2018). In this view, PFC learns connections over
long timescales that implement adaptive behaviour
on short timescales through recurrent dynamics.
This is exactly how planning happens in the STA,
which embeds task structure in the weights and
uses recurrent dynamics for rapid decision mak-
ing with different rewards. We extend the meta-
learning theory of PFC by showing that an STA
is the mechanism implemented in the dynamics of
RNNs meta-trained on challenging planning tasks.

The three defining features that allow a spacetime
attractor to plan via inference are: (i) it has an
explicit representation of the future; (ii) the connec-
tivity embeds a model of the world; and (iii) attrac-
tor dynamics infer the future representation. We
will see that RNNs trained on the reward landscape
task exhibit all of these properties. The RNNs were
trained with supervised learning to generate optimal
actions from inputs that indicated the current loca-
tion and trial-specific reward structure (Figure S1;
Methods; see Supplementary Note for a discussion
of different modelling choices). The reward input
was only provided during an initial ‘planning phase’
prior to the ‘execution phase’ of the task, and the
loss function also penalised the magnitude of neural
firing rates and network weights to encourage an
efficient solution.

RNNs learn explicit future representations
Spacetime attractors compute explicit representa-
tions of the future (Figure 4A-B). Critically, these
representations generalise over trajectories. In other
words, the representation in subspace § depends
only on the expected location in § actions, and
not on the rest of the trajectory or the history of
the agent (Figure 4A, right). To confirm that the
RNN learned such a representation, we trained lin-
ear decoders to predict the future from its hidden
state. To ensure generalisation across trajectories,
we trained the decoders while holding out each ‘cur-

rent location’ and computed the test accuracy only
from those held out locations. The RNN had an
explicit representation of the future during both
planning and execution (Figure 4C-D; Figure S2).
In a spacetime attractor, the same subspace always
encodes location ¢ actions into the future. The fu-
ture representation of the RNN also exhibited such
‘conveyor belt’ dynamics (Figure 4E). The neural
representation of the RNN is thus consistent with
a spacetime attractor.

Intriguingly, RNNs trained on the simpler static and
moving goal tasks did not reliably learn explicit fu-
ture representations (Figure S3). Additionally, the
RNN trained on the reward landscape task could
solve these simpler tasks, while RNNs trained on
the simpler tasks failed in the reward landscape
task (Figure 4F). Alternative solutions therefore
exist in the simpler tasks, and these solutions are
favored by a pressure to be energetically efficient
(Figure 4G). We identify a tradeoff between gen-
erality and efficiency, where the PFC-like solution
is general but needs more neurons and synapses,
while simpler algorithms can solve simpler tasks
more efficiently. Unlike other theories of PFC such
as value coding, this suggests a reason why PFC
occupies such a large cortical territory.

RNNs learn a world model In a spacetime at-
tractor, subspaces that represent expected future lo-
cations are connected according to the environment
structure. Testing this prediction in the RNN re-
quires interpretation of the network weights, which
is challenging because the functions of individual
neurons are unknown. We therefore project the
weights into a coordinate system, where the axes
are orthogonal directions in neural state space that
predict each point in spacetime (Methods). While
this does not perfectly recover the true subspaces
in the handcrafted STA, it is a good estimate. The
projected RNN weights can therefore be interpreted
as interactions between representations of different
points in spacetime (Figure 5A).

Remarkably, the recurrent weights between adjacent
subspaces closely resembled the adjacency matrix
of the environment (Figure 5B; Figure S4; mean
+ std correlation of 0.91 4+ 0.07 vs. 0.72 4+ 0.06
for control environments). The RNN thus learned
a world model explicitly in its recurrent weights.
Consistent with a spacetime attractor, the § = 0
subspace received input indicating the current agent
location, and subspace ¢ received input indicating
the reward in § actions (Figure 5C). The RNN
also learned weaker connections between more dis-

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A Trial 1 Neural activity Neural activity /'\‘L Tl Trial 2
‘'
l ‘ [}
Time of this :
(] 5 Representation
[,\J’ location ' generalises across
trajectories
Location Subspace now f~
at this time encodes later location
C RNN represents the future D RNN represents the E RNN representation
g B ' [at the end of planning future during execution shifts in time
@ 19 1 e — 1 . 59 Generalisation
P e c \ c
s s ® .2 g4
t O %] %‘4— =] S
z AR 88 85 — STA 88 58 3
r4 O \ -» S E £EQ Eo 5
4 / "33 83 — RNN 3] Eg,
RN O =5 — =0 — value e _— =8 Trained to
o 3} a o S predict t=3 location
2 M0s o o e from t=1 activity
S K8 ’ 0 T T T 1 0 T T T 1 0 T T T 1 0
b AL (1 2 3 4 5 1 2 3 4 5 -4 -2 0 2 4 0 1 2 3
% [.. ' ‘ 0.. time in future true time in future time from now time of activity
g]
F Performance Metabolic cost
Test with static goal Test with moving goal Test with reward landscape Weights Firing rates
1 1 1
k3]
9]
= ~ ~
8 =) =
ES
0 0 0
Ny o2 ° Ny o 2 N S © Ny o ® 4 o ®
& S X &8 04\‘\ do‘? 28 q\‘\ c;'bQ & SR FO &d&?
& \’b‘\ \’b‘\ o o
training task training task training task training task training task

Figure 4: RNNSs learn spacetime representations in the reward landscape task. (A) An STA infers
the entire future during planning and represents the ‘future-to-go’ during execution (left). The representation
in each subspace generalises across all trajectories passing through that location in spacetime (right). (B) We
compare a spacetime attractor; an RNN trained on the reward landscape task; and an agent that computes
an exact value function in space and time. The value-based agent computes an optimal policy from ‘neural
activity’ containing (i) the value function, (ii) the agent location, and (iii) the time-within-trial (Methods).
(C) Decoding accuracy at the end of planning for: left; agent location at each time in the future. Right; the
time at which the agent will be at a given location, plotted as a function of the actual time the location was
visited. Decoders were trained in crossvalidation across the current agent location (Methods). (D) Decoding
accuracy during execution of location at each time in the past or future. (E) We trained a single decoder to
predict location at time 3 from neural activity at time 1 (black circle). The same decoder predicted location
at time ¢ + 2 from neural activity at any other ¢, demonstrating ‘conveyor belt’ dynamics. (F) Performance
in the static goal (left), moving goal (centre), and reward landscape (right) tasks for RNNs trained on either
task (x-labels; colours). (G) Normalised parameter magnitudes of the three RNNs (left) and average firing
rates in the static goal task (right). All error bars indicate 1 standard deviation across 5 RNNs (dots).

tant subspaces, and these connections reflected the
environment structure (Figure 5D-E; Supplemen-
tary Note). In summary, the RNN learned all of
the structural components that allow a spacetime
attractor to infer future actions by integrating ex-
pected reward across time using a world model.

RNNs learn attractor dynamics In a space-
time attractor, the structured connections give rise
to attractor dynamics with fixed points correspond-
ing to explicit representations of desirable futures.
To demonstrate similar attractor dynamics in the
trained RNN, we artificially perturbed its neural
activity at the end of planning. This resembles how

attractor dynamics have been demonstrated in bio-
logical circuits (Inagaki et al., 2019; Kim et al., 2017;
Vinograd et al., 2024). An attractor network should
be robust to small perturbations, and the represen-
tation should be more sensitive to perturbations
towards other attractor states than perturbations
along random directions in neural state space. We
analysed the RNN in a setting with two ‘good’ paths
that were close in value (Figure 5F). Like the hand-
crafted STA, the RNN initially converged to a stable
representation of the better path, which persisted
in the presence of weak perturbations. Stronger
perturbation of a single location on the alternate

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A Activity in neural space B Recurrent weights C Input to ‘current’ subspace Input to ‘future’ subspace
@
c
e c
g 2 2
> neuron2 | © g
9 [
&J |
neuron 1 o
Projection onto spacetime axes . X .
- Weights = adjacency Input = current location Input = future reward
Q
9 < o o~
& = © ®
loc+d 2 %) o o
M o 8 <4
loc+d 1 2 8 8
= 3 3
Projected weights are interactions
between points in spacetime < w
b fion ’ e 5 °© N ‘ .
Connes] I 2 3 e
5| 8 g g it
2 = @ @ ..L
= 5 o o ny ma H
al & F 2 ."
gl 3 —
L
exc. = = =
c o | ~ 9
i<l 3 u 3 o "
: s |z g - : o
o o Z 2 n 2 n
= Q o > = > LI
& s @ . o .
3 6=1reward 6=2 reward location 6=1reward 6=2 reward
input location inh. input location input input
D Example recurrent weights between distant subspaces E Structural correlates F Example paths
104 —0 —1 =—2 —3 m— better worse
Recurrent
weights from
this location
Locations
O reachable in
A actions ! r T .
0 1 2 3
distance between subspaces order of adjacency matrix
G Only strong perturbations change the RNN representation H Representation reverts after stimulation
“ Stimulation
RNN spacetime 2 [] . —
representation V [} 7 - 6 - 6 [o Z
' g 2 3
O (s} S | S
E=} E=N} I QO
¢ . L 2 24 — STA ke 241 | 5
¢ G g 6 Initial | 5
[] 85 — RNN 25 fixed point | 2
5 2 5 2- | @
[— ctrl 5} =4
[] “ = «Q
Stimulat % e s
re| res”eﬁntiaatign of Kl . @ 0 " " 0 - -
P stimulation strength time after end of planning

this point
Figure 5: RNNs learn a world model. (A) The weights of RNNs trained on the reward landscape task
are projected into an orthonormal coordinate system with axes that predict different points in spacetime
(top). The projected weights are interactions between points in spacetime (bottom). (B) The average
recurrent weights between subspaces separated by a single action resemble the environment adjacency matrix
(bottom, ‘RNN”). ‘Empirical STA’ is the same analysis performed on approximate subspaces estimated from
neural activity in the handcrafted STA. ‘True STA’ indicates weights between the ground truth future-coding
subspaces in the handcrafted STA. Green box in ‘True STA’ indicates weights between (i) the single location
denoted by a green circle in ‘Prediction’; and (ii) all locations in the subspace indicated by a green square.
(C) Input weights to the ‘current’ (6 = 0; left) and a ‘future’ (6 = 2; right) subspace. Consistent with an STA,
the current subspace of the RNN receives location input, and future subspaces receive reward information.
(D) Average recurrent weights between an example location (green arrow) and other locations at increasing
time differences (A; planes). Locations in subspaces A apart are more strongly connected if they can be
reached in A actions. Light green circles indicate these A*™" order adjacency matrices (A = 0 corresponds to
the identity). (E) Correlation between (i) the average connectivity between subspaces separated by A actions
(lines; legend), and (ii) different order adjacency matrices (x-axis). Shading indicates standard deviation across
5 RNNs. (F) Example environment with a high-value path and a lower-value path. (G) Weak stimulation
does not affect the spacetime representation of the RNN, but strong stimulation switches it to the lower-value
path. (H) Magnitude of representational change over time across stimulation strengths (Methods).

path caused a discrete switch to a representation of magnitude in random control directions had little
this entire path, including in subspaces not directly effect (Figure 5G, grey). Unlike the handcrafted
perturbed (Figure 5G). Perturbations of similar STA, the RNN representation relaxed back to the

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

original fixed point after removing the perturbation
(Figure 5H; Figure S5), which suggests that the
RNN learned an attractor landscape that is less
susceptible to local minima.

Together, our analyses show that RNNs trained on
a dynamic planning task learn to closely approx-
imate a spacetime attractor. This was also true
across variations in model architecture (Methods;
Figure S6; Figure S7). Finally, RNNs with too few
hidden units to learn a spacetime attractor failed
to solve the task (Figure S8), suggesting that other
solutions are not readily learned by gradient de-
scent. The spacetime attractor is thus an efficient
solution to dynamic planning problems, and it is
consistent with a prominent theory that PFC can
be understood as a recurrent meta-learner.

STAs can generalise across environments

Hardwiring the transition structure of the environ-
ment into the synapses of a spacetime attractor
seems prohibitive, because it might prevent the net-
work from generalising across different structures
(Figure 6A). Here, we show that is not the case.
RNNs trained in environments with changing struc-
ture still learn spacetime attractors. The network
dynamics are adapted to each environment through
input-mediated gating of a generic scaffold. This is
a simple mechanism for rapid adaptation that pre-
serves the ability to plan under changing rewards.

Representations adapt to the environment
To study planning in environments with changing
structure, we trained RNNs on a variant of the re-
ward landscape task, where the transition structure
was different on every trial (Methods). The struc-
ture was provided to the RNN as a binary input that
indicated whether pairs of otherwise adjacent states
were separated by a wall. Importantly, the network
had to adapt to each new environment through its
dynamics while keeping the weights fixed across en-
vironments (Wang et al., 2018; Jensen et al., 2024).
The generalising RNNs performed nearly as well
as networks trained in a single environment (Fig-
ure 6B), raising the question of how generalisation
is achieved. The neural representation resembled
a spacetime attractor in any single environment
(Figure S9B). However, the effective connectivity
between subspaces changed between environments.
Remarkably, the connectivity reflected the transi-
tion structure of whichever environment the agent
was currently in (Figure 6C-D). This indicates a
general solution that allows recurrent networks to
use attractor dynamics for planning in any similar
environment, without requiring synaptic plasticity.

10

A model of generalisation We can understand
how the network adapts to the environment at both
the ‘population level’ and at a mechanistic level.
At a population level, the directions in neural state
space that represent each point in spacetime were
more similar in different trials from the same envi-
ronment than across trials from different environ-
ments (Figure 6E, left). This change allows the
network to align its representation with the ap-
propriate components of the connectivity matrix
(Figure 6E, right). How is this achieved mechanisti-
cally? We hypothesised that the network explicitly
represents future transitions rather than future loca-
tions. In other words, there are directions in neural
state space that represent ‘in § actions from now,
move from state s; to state s;’, which we denote 7;”.
This is different from the vanilla spacetime attrac-
tor, which has a representation of future locations
that is invariant to the subsequent state.

While it requires more neurons, explicitly repre-
senting future transitions allows the network to use
input-mediated inhibition to adaptively gate off
transitions that are not available in any particular
environment. The learned structure of the remain-
ing transitions is then used for planning (Figure 6F).
Importantly, the scaffold only needs to include tran-
sitions that are possible in at least one environment.
This model makes three predictions that we verified:
(i) the network explicitly represents future transi-
tions (Figure S9C), (ii) the representations of future
transitions are connected by a world model (Fig-
ure 6G), and (iii) input indicating a wall between
s; and s; specifically inhibits representations of fu-
ture transitions between those states (Figure 6H).
These analyses show that the spacetime attractor
is an efficient planning algorithm in structurally
changing environments, and they suggest a general
mechanism for adaptive behaviour.

Discussion

We have taken inspiration from known cortical at-
tractor dynamics and recent findings on prefrontal
sequence representations (Figure 1) to develop a
new theory of planning. This spacetime attractor
model uses different neural subspaces to represent
the expected location of an agent at different times
in the future. The subspaces are connected ac-
cording to the structure of the environment, which
allows the network to infer optimal future trajecto-
ries (Figure 2). The spacetime attractor can solve
problems with dynamic rewards, which PFC is im-
portant for and simpler algorithms struggle with
(Figure 3). It solves these problems using inter-

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A B RNN performance C Structure Adjacency (A) Connectivity (W) D Effective connectivity

< 17 q_ " "N reflects structure

- - o " 1
T © E — o -

ke Ex T o z
= L X = .a' s 'b | T
8" .::. X n Ss
0 - ["n 5«
19 - §§
8
0

o P,
.El @ .: .'l. same different
.t. .I .- maze maze

Trial 2

Trial 2
performance in
changing maze

l w P

o
I

trained in trained in P
fixed changing W
Subspace 2 :
E Subspaces change in move 1 F Proposed mechanism
between environments
- Subspace 1
= >
. BN same maze g in maze 1
o mm di [
g different maze 2 / Subspace 1
=) £ in maze 2
L
&= o »
e 37 j
I \\“ v\“’
0.5 0.6 0.7 O,>
subspace correlation Structural input inhibits unavailable transitions
. . Transitions predicted to be
Red: predicted connections inhibited by the indicated wall
22 c 00 =
= S
b 5]
|8 @ o
5\5‘6\" € [
col § 1 5 0.2
- v . 5
0" 2 g
3 = -04
D
£ 0 g
T T T
con3|stent adjacent other Structural input through wall adjacent other

Figure 6: Spacetime attractors can adapt to changing structure. (A) Changing structure requires
adaptation. (B) Performance of RNNs trained on the reward landscape task in a single maze or with a
different structure on every trial, when evaluated in either a single maze (top) or across changing mazes
(bottom). (C) Two example mazes (left) and their corresponding adjacency matrices (centre). The effective
connectivity between adjacent subspaces in a single RNN (right) reflects the structure of each maze. (D) Av-
erage correlation between subspace connectivity in a maze and the structure of either the same (blue) or a
random (grey) maze. (E) The spacetime representation is more similar across distinct trials from the same
maze than trials from different mazes (left). By using slightly different subspaces in different environments,
the network can match their connectivity to the environment structure (right; orange vs. blue). (F) Putative
mechanism for structural generalisation. Instead of representing each future location, neurons encode expected
future transitions (black arrows in example state). Each transition 757 (green) connects to transitions that
can follow (Té_lﬁl) or precede (74 ,) it (red arrows). Structural input to PFC inhibits transitions that are
not available in a given environment (blue), preventing planning between states that would otherwise be
connected (light red arrows). (G) Effective connect1v1ty between directions in neural state space that encode
‘consistent’ consecutive future transitions (75 and 75 +1; green to red), ‘adjacent’ transitions (green to blue),
or any other transitions (green to grey). (H) Projection of the input from wall w;; onto representations of
future transitions through the wall (77; dark blue), transitions to other adjacent states (7°*; light blue), or
any other transitions (grey). All error bars indicate 1 standard deviation across 5 RNNs (dots).

nal representations that closely resemble prefrontal through rapid gating of a general scaffold to reflect
representations during sequence working memory, each particular environment (Figure 6).

thereby unifying working memory and planning
in PFC. RNNs trained to solve dynamic planning
tasks learn to implement the spacetime attractor
algorithm in their internal dynamics, suggesting

Experimental predictions The spacetime at-
tractor is inspired by data and makes precise pre-
dictions that can be tested in future experiments:

that it is an efficient solution (Figure 4; Figure 5). e After planning a behavioural sequence, differ-
Finally, spacetime attractors can generalise across ent subspaces of PFC activity should represent
environments with different transition structures distinct steps of the plan.

11

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

o Optogenetic activation of neurons in a future sub-
space should bias representations and behaviour
towards the stimulated state at a delay corre-
sponding to the stimulated subspace.

e The effective connectivity between subspaces
should reflect the structure of the environment.
This could be tested in noise correlations across
neurons or by explicit holographic stimulation.

o Different patterns of neurons should represent
the future in environments with different transi-
tion structures.

o The neurons active in each environment should
be connected according to its structure. Inputs
that mediate this gating could come through
sensory cortex in observable environments or
hippocampus when the structure is learned.

The first two predictions would also be true of inde-
pendent subspaces used to store sequence memories
(Xie et al., 2022; El-Gaby et al., 2023), while the
last three are unique predictions of a structured
network that plans behavioural sequences.

Decision making across the brain Our com-
parisons of different models across different tasks
suggest complementary contributions of different
brain regions to decision making. Striatum is
thought to implement temporal difference learn-
ing (Schultz et al., 1997), which facilitates rapid
responses in stable environments. Hippocampus em-
beds the structure of the world, but it is thought to
either average representations over future timesteps
in a successor representation (Stachenfeld et al.,
2017) or represent one state at a time in a sequence
(George et al., 2021; Whittington et al., 2020; Jensen
et al., 2024). This provides an efficient solution
to problems with consistent spatial structure and
rewards that change on intermediate timescales.
A spacetime attractor in frontal cortex facilitates
adaptive behaviour in dynamic environments with
a familiar structural scaffold that has been embed-
ded in PFC. Finally, explicit search would facilitate
slower planning in novel environments and could be
guided by partial plans from a spacetime attractor.
While spacetime attractors are particularly useful
in dynamic environments, they can also solve sim-
pler problems. It is therefore possible that animals
have developed a spacetime attractor because they
sometimes need it for planning, and then reuse it
in simpler tasks. However, it is also plausible that
many laboratory behaviours instead engage simpler
algorithms in the basal ganglia or hippocampus.
If that is the case, richer spacetime problems may
be needed to query the representations used for
planning in prefrontal cortex.

12

Interactions with other planning algorithms
Planning via inference in a spacetime attractor dif-
fers from most models of planning in cognitive sci-
ence. In particular, the spacetime attractor posits
that planning can happen via recognition, where
the sequence of steps needed to reach some de-
sired state is directly inferred. In contrast, many
studies of human planning focus on explicit search,
where different paths are simulated and evaluated
sequentially. We suggest that these two processes
coexist, with spacetime attractor dynamics facili-
tating rapid planning as inference in familiar envi-
ronments, where the structure has been embedded
in prefrontal connections. The STA could also help
focus explicit search towards putative high-value
paths and evaluate the utility of different paths.
This could happen through interactions with hip-
pocampal activity sequences that have been pro-
posed to facilitate planning (either replays or theta
sequences; Foster, 2017; Widloski and Foster, 2022;
Jensen et al., 2024). In particular, Jensen et al.
(2024) suggest that PFC biases which sequences are
replayed in hippocampus. PFC would then update
its representation to make high-reward sequences
more likely in an iterative policy improvement pro-
cess. Hippocampal replay has also been proposed
to implement a ‘DYNA’ algorithm, where past ex-
perience is used to learn a model-free policy during
rest or sleep (Mattar and Daw, 2018). This is com-
plementary to both the spacetime attractor and
explicit search. DYNA facilitates rapid decision
making when the optimal policy remains stable
across time, while decision-time planning allows
adaptation to changing environments.

Learning a spacetime attractor In the hand-
crafted spacetime attractor, we embedded copies of
the environment adjacency matrix in the connec-
tions between every pair of consecutive subspaces.
The RNN analyses show that such structure can be
learned from repeated experience. However, learn-
ing copies of the same parameters independently
for each pair of subspaces is inefficient. It would
be more efficient to store a cache of experienced
trajectories that can be used to learn all of the pa-
rameters. Hippocampal replay has been proposed
to build cognitive maps via such interactions with
prefrontal cortex (Bakermans et al., 2023; Ou et al.,
2025). In particular, Ou et al. (2025) suggest that
hippocampal replay consolidates structural infor-
mation from hippocampus into cortex. Replay from
hippocampus to PFC during sleep or rest could
therefore provide a mechanism for learning all of
the STA parameters from the same data.

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

The state space of planning We have assumed
that planning happens at the level of individual
locations in the environment. However, humans
often plan in more abstract spaces, which improves
efficiency by reducing the required planning depth.
We also plan hierarchically by first computing an
abstract plan that can be refined in increasing lev-
els of detail (Eckstein and Collins, 2020). Multiple
spacetime attractors operating at different levels
of abstraction can be coupled to implement such
a hierarchical planner. One ‘abstract’ STA would
compute a high-level plan. A second STA would
treat the next abstract state as a goal and compute
a detailed plan to get there. Stacking spacetime at-
tractors in this way allows inference of plans that are
exponentially long in the depth of the hierarchy, and
therefore the number of neurons, in contrast to the
linear scaling of a non-hierarchical STA. However,
learning appropriate abstractions and embedding
them in an STA remains an unsolved challenge.

Bidirectional environment interactions We
have focused on environments that evolve indepen-
dently of the agent. The rewards and structure
of the environment can therefore be estimated up
front and provided as inputs to a spacetime at-
tractor in PFC. However, many problems involve
structure that depends on the behaviour of an agent.
One example is ‘key-door’ problems, where moving
through a locked door becomes possible only after
picking up the key. We posit that such problems can
be solved by structural gating of a learned scaffold,
similar to the STA that generalises across environ-
ment structures (Figure 6). The structural gating
would no longer be an external input, but instead a
function of the spacetime representation itself. For
example, activating a cell that represents ‘being at
the key’ could disinhibit ‘transitioning through the
door’ at a later time.

Another important example of bidirectional interac-
tions is social behaviours, where agents can change
their plans in response to each other. A system of
two spacetime attractors could simulate the joint
dynamics of two such agents. The first STA ‘A’
infers future behaviour for agent A. The reward
input would be the output of a different STA ‘B’
that predicts the behaviour of another agent. The
reward for STA B would itself be an output of STA
A, which couples the predicted behaviour of the
two agents. The combined system relaxes to a fixed
point where the behaviour of A is optimal given
the predicted behaviour of B and vice versa — a
putative neural implementation of ‘theory of mind’.

13

Outlook We have developed a new theoretical
framework for planning in prefrontal cortex. It
builds on recently discovered prefrontal working
memory representations and known attractor dy-
namics in other neural circuits. The spacetime
attractor extends these principles to prospective
behaviours in complex and changing environments —
a setting that has previously eluded mechanistic cir-
cuit models. Existing data does not allow us to test
these ideas explicitly. Instead, we have provided
a series of concrete predictions for future experi-
ments. We hope this will inspire new work in both
experimental and computational neuroscience.

Author contributions

KTJ and TEJB developed the conceptual frame-
work with input from TA, PD, MSM, SR, and AB.
KTJ ran the simulations and performed the anal-
yses. KTJ made the figures with help from MSM,
SR, and AB. KTJ and TEJB wrote the manuscript
with input from all authors.

Code availability

Code is available at github.com/KrisJensen/pysta.
This includes code for running example models and
reproducing all results from the paper.

Acknowledgments

We are grateful to Diksha Gupta, Mohamady El-
Gaby, Will Dorrell, and Tom Mrsic-Flogel for
helpful feedback on the manuscript. This work
was supported by a Wellcome Principal Research
Fellowship (219525/7/19/Z; TEJB, KTJ, AB);
the Gatsby Initiative for Brain Development and
Psychiatry (GAT3955; TEJB); the Jean Francois
and Marie-Laure de Clermont Tonerre Foundation
(TEJB); a Wellcome Trust Career Development
Award (225926/7/22/Z; TA); the Oxford Claren-
don Fund (PD); the Human Frontier Science Pro-
gram (LT0040/2024-L; SR); EMBO (ALTF 651-
2023; SR); and a FYSSEN postdoctoral study grant
(MSM). KTJ, TEJB, MSM, and SR were also sup-
ported by the Sainsbury Wellcome Centre’s core
provided by Wellcome (219627/Z/19/Z) and the
Gatsby Charitable Foundation (GAT3755).

References

Bakermans, J. J., Warren, J., Whittington, J. C.,
and Behrens, T. E. (2023). Constructing future
behaviour in the hippocampal formation through
composition and replay. bioRziv, pages 2023-04.

Ben-Yishai, R., Bar-Or, R. L., and Sompolinsky,

https://github.com/KrisJensen/pysta
https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

H. (1995). Theory of orientation tuning in visual
cortex. Proceedings of the National Academy of
Sciences, 92(9):3844-3848.

Blanco-Pozo, M., Akam, T., and Walton, M. E.
(2024). Dopamine-independent effect of rewards
on choices through hidden-state inference. Nature
Neuroscience, 27(2):286-297.

Botvinick, M. and Toussaint, M. (2012). Plan-
ning as inference. Trends in cognitive sciences,
16(10):485-488.

Botvinick, M. M. and Plaut, D. C. (2006). Short-
term memory for serial order: a recurrent neural
network model. Psychological review, 113(2):201.

Burak, Y. and Fiete, I. R. (2009). Accurate path
integration in continuous attractor network mod-

els of grid cells. PLoS computational biology,
5(2):€1000291.

Burgess, P. W. and Wu, H. (2013). Rostral pre-
frontal cortex (Brodmann area 10). Principles of
frontal lobe function, pages 524-544.

Callaway, F., van Opheusden, B.,; Gul, S., Das,
P., Krueger, P. M., Griffiths, T. L., and Lieder,
F. (2022). Rational use of cognitive resources

in human planning. Nature Human Behaviour,
6(8):1112-1125.

Carlesimo, G. A., di Paola, M., Fadda, L., Calt-
agirone, C., and Costa, A. (2014). Prospective
memory impairment and executive dysfunction
in prefrontal lobe damaged patients: is there

a causal relationship? Behavioural neurology,
2014(1):168496.

Chaudhuri, R., Gergek, B., Pandey, B., Peyrache,
A., and Fiete, I. (2019). The intrinsic attractor
manifold and population dynamics of a canonical

cognitive circuit across waking and sleep. Nature
neuroscience, 22(9):1512-1520.

Chen, J., Zhang, C., Hu, P., Min, B., and Wang,
L. (2024). Flexible control of sequence working
memory in the macaque frontal cortex. Neuron.

Clark, D. G., Abbott, L., and Sompolinsky, H.
(2025). Symmetries and continuous attractors
in disordered neural circuits. bioRziv, pages 2025—
01.

Dayan, P. (1993). Improving generalization for
temporal difference learning: The successor rep-
resentation. Neural computation, 5(4):613-624.

14

Dorrell, W., Hsu, K., Hollingsworth, L., Lee, J. H.,
Wu, J., Finn, C., Latham, P. E., Behrens, T. E.,
and Whittington, J. C. (2024). Don’t cut cor-
ners: Exact conditions for modularity in biolog-

ically inspired representations. arXiv preprint
arXiv:2410.06232.

Eckstein, M. K. and Collins, A. G. (2020). Com-
putational evidence for hierarchically structured
reinforcement learning in humans. Proceedings of
the National Academy of Sciences, 117(47):29381—
29389.

El-Gaby, M., Harris, A. L., Whittington, J. C., Dor-
rell, W., Bhomick, A., Walton, M. W., Akam, T.,
and Behrens, T. E. (2023). A cellular basis for
mapping behavioural structure. bioRziv, pages
2023-11.

Foster, D. J. (2017). Replay comes of age. Annu.
Rev. Neurosci, 40(581-602):9.

Fuhs, M. C. and Touretzky, D. S. (2006). A
spin glass model of path integration in rat me-
dial entorhinal cortex. Journal of Neuroscience,
26(16):4266-4276.

George, D., Rikhye, R. V., Gothoskar, N., Gun-
tupalli, J. S., Dedieu, A., and Léizaro-Gredilla,
M. (2021). Clone-structured graph representa-
tions enable flexible learning and vicarious evalu-

ation of cognitive maps. Nature communications,
12(1):2392.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B.,
and Moser, E. I. (2005). Microstructure of a
spatial map in the entorhinal cortex. Nature,
436(7052):801-806.

Tacaruso, M. F., Gasler, I. T., and Hofer, S. B.
(2017). Synaptic organization of visual space in
primary visual cortex. Nature, 547(7664):449—
452.

Inagaki, H. K., Fontolan, L., Romani, S., and Svo-
boda, K. (2019). Discrete attractor dynamics
underlies persistent activity in the frontal cortex.
Nature, 566(7743):212-217.

Jensen, K. T. (2023). An introduction to reinforce-
ment learning for neuroscience. arXiv preprint
arXiv:2311.07315.

Jensen, K. T., Hennequin, G., and Mattar, M. G.
(2024). A recurrent network model of planning ex-
plains hippocampal replay and human behavior.
Nature neuroscience, 27(7):1340-1348.

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Kim, S. S., Hermundstad, A. M., Romani, S., Ab-
bott, L., and Jayaraman, V. (2019). Generation
of stable heading representations in diverse visual
scenes. Nature, 576(7785):126-131.

Kim, S. S., Rouault, H., Druckmann, S., and Jayara-
man, V. (2017). Ring attractor dynamics in the
drosophila central brain. Science, 356(6340):849—
853.

Kingma, D. P. and Ba, J. (2015). Adam: A method
for stochastic optimization. In Bengio, Y. and
LeCun, Y., editors, 3rd International Conference
on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Ko, H., Hofer, S. B., Pichler, B., Buchanan,
K. A., Sjostrom, P. J., and Mrsic-Flogel, T. D.
(2011). Functional specificity of local synap-
tic connections in neocortical networks. Nature,
473(7345):87-91.

Lee, T. S. and Nguyen, M. (2001). Dynamics of
subjective contour formation in the early visual
cortex. Proceedings of the National Academy of
Sciences, 98(4):1907-1911.

Levine, S. (2018). Reinforcement learning and con-
trol as probabilistic inference: Tutorial and re-
view. arXiv preprint arXiv:1805.00909.

Mante, V., Sussillo, D., Shenoy, K. V., and New-
some, W. T. (2013). Context-dependent compu-
tation by recurrent dynamics in prefrontal cortex.
nature, 503(7474):78-84.

Mattar, M. G. and Daw, N. D. (2018). Prioritized
memory access explains planning and hippocam-
pal replay. Nature neuroscience, 21(11):1609—
1617.

McNaughton, B. L., Battaglia, F. P., Jensen, O.,
Moser, E. I., and Moser, M.-B. (2006). Path inte-
gration and the neural basis of the’cognitive map’.
Nature Reviews Neuroscience, 7(8):663-678.

Ou, J., Qu, Y., Xu, Y., Xiao, Z., Behrens, T., and
Liu, Y. (2025). Replay builds an efficient cog-
nitive map offline to avoid computation online.
bioRxiv, pages 2025-01.

Ouchi, A. and Fujisawa, S. (2024). Predictive grid
coding in the medial entorhinal cortex. Science,
385(6710):776-784.

Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., Blondel,

15

M., Prettenhofer, P., Weiss, R., Dubourg, V.,
et al. (2011). Scikit-learn: Machine learning in
python. the Journal of machine Learning re-
search, 12:2825-2830.

Ruff, D. A., Markman, S. K., Kim, J. Z., and Co-
hen, M. R. (2025). Linking neural population
formatting to function. bioRxiv.

Schrittwieser, J., Antonoglou, I., Hubert, T., Si-
monyan, K., Sifre, L., Schmitt, S., Guez, A., Lock-
hart, E., Hassabis, D., Graepel, T., et al. (2020).
Mastering Atari, Go, chess and shogi by planning
with a learned model. Nature, 588(7839):604-609.

Schultz, W.; Dayan, P., and Montague, P. R. (1997).
A neural substrate of prediction and reward. Sci-
ence, 275(5306):1593-1599.

Shallice, T. and Burgess, P. W. (1991). Deficits in
strategy application following frontal lobe dam-
age in man. Brain, 114(2):727-741.

Shin, H., Ogando, M. B., Abdeladim, L., Durand,
S., Belski, H., Cabasco, H., Loefler, H., Bawany,
A., Hardcastle, B., Wilkes, J., et al. (2023). Re-
current pattern completion drives the neocortical
representation of sensory inference. bioRziv.

Skaggs, W., Knierim, J., Kudrimoti, H., and Mc-
Naughton, B. (1994). A model of the neural basis
of the rat’s sense of direction. Advances in neural
information processing systems, 7.

Stachenfeld, K. L., Botvinick, M. M., and Gersh-
man, S. J. (2017). The hippocampus as a predic-
tive map. Nature neuroscience, 20(11):1643-1653.

Stroud, J. P., Watanabe, K., Suzuki, T., Stokes,
M. G., and Lengyel, M. (2023). Optimal infor-
mation loading into working memory explains
dynamic coding in the prefrontal cortex. Pro-
ceedings of the National Academy of Sciences,

120(48):€2307991120.

Sutton, R. S. (1988). Learning to predict by the
methods of temporal differences. Machine learn-
ing, 3:9-44.

Tian, Z., Chen, J., Zhang, C., Min, B., Xu, B., and
Wang, L. (2024). Mental programming of spatial
sequences in working memory in the macaque
frontal cortex. Science, 385(6716):eadp6091.

Turner-Evans, D., Wegener, S., Rouault, H., Fran-
conville, R., Wolff, T., Seelig, J. D., Druckmann,
S., and Jayaraman, V. (2017). Angular veloc-
ity integration in a fly heading circuit. FElife,
6:€23496.

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Turner-Evans, D. B., Jensen, K. T., Ali, S., Pa-
terson, T., Sheridan, A., Ray, R. P., Wolff, T.,
Lauritzen, J. S., Rubin, G. M., Bock, D. D., et al.
(2020). The neuroanatomical ultrastructure and
function of a biological ring attractor. Neuron,
108(1):145-163.

Vinograd, A., Nair, A., Kim, J. H., Linderman,
S. W., and Anderson, D. J. (2024). Causal ev-
idence of a line attractor encoding an affective
state. Nature, 634(8035):910-918.

Volle, E., Gonen-Yaacovi, G., de Lacy Costello, A.,
Gilbert, S. J., and Burgess, P. W. (2011). The
role of rostral prefrontal cortex in prospective
memory: a voxel-based lesion study. Neuropsy-
chologia, 49(8):2185-2198.

Walton, M. E., Behrens, T. E., Buckley, M. J.,
Rudebeck, P. H., and Rushworth, M. F. (2010).
Separable learning systems in the macaque brain
and the role of orbitofrontal cortex in contingent
learning. Neuron, 65(6):927-939.

Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tiru-
mala, D., Soyer, H., Leibo, J. Z., Hassabis, D.,
and Botvinick, M. (2018). Prefrontal cortex as
a meta-reinforcement learning system. Nature

neuroscience, 21(6):860-868.

Whittington, J. C., Dorrell, W., Behrens, T. E.,
Ganguli, S., and El-Gaby, M. (2023). On
prefrontal working memory and hippocampal
episodic memory: Unifying memories stored in
weights and activation slots. bioRziv, pages 2023~
11.

16

Whittington, J. C., Muller, T. H., Mark, S., Chen,
G., Barry, C., Burgess, N., and Behrens, T. E.
(2020). The Tolman-Eichenbaum machine: Uni-
fying space and relational memory through gen-
eralization in the hippocampal formation. Cell,
183(5):1249-1263.

Widloski, J. and Foster, D. J. (2022). Flexi-
ble rerouting of hippocampal replay sequences
around changing barriers in the absence of global
place field remapping. Neuron, 110(9):1547-1558.

Xie, Y., Hu, P., Li, J., Chen, J., Song, W., Wang,
X.-J., Yang, T., Dehaene, S., Tang, S., Min, B.,
et al. (2022). Geometry of sequence working
memory in macaque prefrontal cortex. Science,
375(6581):632-639.

Zhang, K. (1996). Representation of spatial ori-
entation by the intrinsic dynamics of the head-
direction cell ensemble: a theory. Journal of
Neuroscience, 16(6):2112-2126.

Zheng, J., Guimaraes, R., Hu, J. Y., Perona, P.,
and Meister, M. (2024). Mice in the manhattan
magze: Rapid learning, flexible routing and gen-
eralization, with and without cortex. Cognitive
Computational Neuroscience.

Zintgraf, L., Shiarlis, K., Igl, M., Schulze, S.,
Gal, Y., Hofmann, K., and Whiteson, S. (2019).
VariBAD: A very good method for Bayes-
adaptive deep RL via meta-learning. arXiv
preprint arXiv:1910.08348.

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Methods
Tasks

We used three different classes of tasks to train and compare models in this work — the ‘static goal’ task, the
‘moving goal’ task, and the ‘reward landscape’ task. All tasks had agents navigate mazes on a 4x4 grid, with
walls preventing transitions between some pairs of otherwise adjacent states. The wall configurations defining
the mazes were sampled as described by Jensen et al. (2024). For most analyses, the wall configuration
remained fixed across all trials, and only the reward function changed. For the analyses in Figure 6, the wall
configuration changed across trials, and the agent had to adapt to the new transition structure through its
recurrent network dynamics. In all tasks, the agent location was sampled randomly at the beginning of each
trial. At the beginning of each trial, the agent location and reward function were ‘frozen’ for 5-7 (randomly
sampled on each trial) iterations of the environment. This constituted an initial ‘planning’ phase that was
followed by an ‘execution’ phase, where (i) the agent took actions that changed its location, and (ii) the
reward function updated as described in more detail below. For all analyses, the full reward function was
provided to the agent during the initial planning period. For the handcrafted STA and the RNN in Figure S6,
the input provided reward information that was relative in time during execution — it indicated what the
reward would be at a given location in § steps rather than at time t. The reward input was zero for all § that
corresponded to time points beyond the end of the trial. For all other RNN analyses, the reward input was
set to zero during execution.

Moving goal task

In this task, a full goal ‘trajectory’ was sampled on each trial. The goal trajectory was sampled as a random
walk that could only turn around if it reached a dead end. The start location of the agent was restricted
to not coincide with the start location of the goal. The trial terminated when the agent was at the same
location as the goal at a given moment in time, or after a maximum of six actions. The reward input to the
agent, R € RT*Y was a matrix indicating the location of the goal at every point in the future. The reward
input consisted of ‘4-0.6" for the goal location and ‘-0.6’ for all other locations at each moment in time. In
other words, Rs; was ‘+0.6" if the goal would be at location s; d steps into the future, and —0.6 otherwise.

Static goal task

This task was identical to the moving goal task, except that the goal remained stationary for the duration
of each trial. The static goal task was implement in two different variants — one where the goal remained
fixed across all trials, and one where the goal was resampled at random in every new trial. The handcrafted
models were evaluated in both of these tasks, while the RNNs were only trained with a goal that changed
between trials.

Reward landscape task

In this task, every element R(t, s) of the reward function R was sampled uniformly and independently between
-1 and +1. The complete future reward structure was provided as an input to the agent as described above.
Every trial finished when the agent had taken six actions.

Quantification of performance

For most performance comparisons, we computed the probability of choosing the optimal first action in
each trial. We define the optimal first action as the first action of the trajectory that maximises cumulative
reward over the entire trial. We use this metric rather than the actual cumulative reward for two reasons. (i)
We are interested in the process of planning, whereby an agent balances immediate and long-term reward.
This is most challenging for early actions, while the greedy policy is optimal for the last action. (ii) The
probability of choosing an optimal action is readily interpretable as a number between 0 and 1. All results
were qualitatively similar if we instead used the probability of choosing an optimal action averaged over the
entire trial as a performance metric, or if we used the average empirical reward.

Handcrafted models
Here we provide an overview of the handcrafted STA, TD, and SR agents used in the paper.

17

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Spacetime attractor model

The spacetime attractor is a recurrent neural network with an exponential nonlinearity and within-subspace
normalisation. We define z;; as the ‘potential’ and rs; as the ‘firing rate’ of a neuron that represents ‘being
at location s; in § actions’ The spacetime attractor then has the following network dynamics:

Ti5i = —25; + Rsi + max €, logz Aijrs—1,j | + max <e7 log Z Akir5+1’k-> +n (1)
J k
zsi = max | €, z5; — longgj (2)
J
rs; = €75, (3)
Here, 7 = 50 iterations is the time constant of the dynamics, ¢ = —100 is a small constant that thresholds

the maximum inhibition between and within subspaces, and 1 ~ A(0, = 0.1) is white noise added to the
network dynamics. A;; are weights corresponding to the adjacency matrix, which indicates whether s; can be

reached from s; in one action. Rs; is an input that reflects the normalised reward available at location s; in ¢

actions. In particular, e® o e#%si where Ry; is the trial-specific reward described above, and we set § = 9.
To provide an input indicating the current agent location, we set Ryp; = 20 if s; is the current location and 0
otherwise. Since the activity is explicitly normalised within each subspace, the resulting rs; can be interpreted
as a distribution over desired locations in § actions. When simulating the behaviour of the STA, we took
the policy of the agent to be greedy in the representation in subspace § = 1 of locations accessible from the
current state, a = argmax;c (s [r1:]. We also added a small amount of noise 7;; ~ U(—0.025, -0.015) to
each element of the weight matrix instead of using the exact adjacency matrix. Noise was added to ensure
robustness, and it was restricted to be negative by adding a bias term that prevents representations from
‘teleporting’ between locations (Supplementary Note). An additional ‘feedforward component’ in the form of
the identity matrix was added to the connectivity between subspace § and § — 1 during the first 100 network
iterations (2 time constants) after every action. This is inspired by the ‘update neurons’ of the fruit fly
head direction circuit (Turner-Evans et al., 2017) and stabilises the ‘conveyor belt’ dynamics, but it is not
necessary for any of the main results in the paper (Supplementary Note). We ran the STA dynamics for 400
network iterations before each action to ensure convergence to a stable representation.

Baselines

Here we provide details of the temporal difference and successor representation baselines that we compare the
spacetime attractor to. For further details, we refer to Jensen (2023). Common to both of these frameworks
is that they explicitly estimate the ‘value function’ under some policy 7:

V7™(s) = Erp,(r) Z vt/_trt/|st =s]. (4)

>t

Here, E..,, (r)[-] indicates an expectation taken over trajectories 7 resulting from the agent following 7. The
‘TD’ and ‘SR’ heatmaps in Figure 3 show the computed value functions. In both cases, we take the policy of
the agent to be greedy in the value function evaluated at all locations accessible from the current state.

Temporal difference learning We implement vanilla temporal difference learning, which computes a
value function by iteratively applying the update

AV (st) = a(=V(s) +re + 7V (st41)). (5)

We set the temporal discount factor to v = 1, since we are interested in maximising the non-discounted
cumulative reward. We allowed the TD agent to interact with the environment for 4,000 trials with a learning
rate of a = 0.05 before analysing its performance.

18

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Successor representation In the successor representation formalism, the value function is decomposed as

t=0
=) A Zpﬂ(st = §|sg = s)r(s) (7)
t=0 s’
=r m: (8)

Here, 7 is a vector of the average reward associated with each state, and m7 is a vector of the expected
discounted future occupancy of state s’ if the agent starts in state s and follows policy

= Z’ytpﬁ(st = §'|sp = 3). (9)
t=0

The full matrix M7, constructed from stacking the m7 corresponding to all states s, is denoted the ‘successor
matrix’, and it allows us to write down a vector of expected rewards from all states as

v =M"r. (10)

MT™ can be learned using a TD-like algorithm as above. However, since the STA algorithm also has explicit
access to the transition structure of the environment, we simply computed the exact successor matrix as
the geometric series M™ = I +~yT™ ++2(T™)? +... = (I —~T™)~! with v = 0.95. When computing the
successor matrix, we take 7 to be the diffusion policy, and T is therefore the diffusion matrix. This is similar
to how the adjacency matrix serves as a global structural prior in the STA.

Spacetime value agent In Figure 4, we compare representations to an agent that computes a value
function in a state space consisting of space and time. This agent uses dynamic programming to compute the
value of being at location s at time ¢ under an optimal policy for every combination of s and t¢:

V(T,s) = R(T,s) (11)
V(t,s) = R(t,s)+ max V(t+1,s). (12)
s'eN(s)
At time ¢, the optimal policy is then greedy in the value of accessible locations at time ¢ + 1. For the decoding
analyses in Figure 4, we took the ‘neural representation’ to be the concatenation of (i) the flattened value
function vy € RT¥, (ii) a one-hot representation of the current location, and (iii) a one-hot representation of
the current time-within-trial. These three quantities are sufficient to compute an optimal policy.

Recurrent neural networks

In this section, we provide details of how recurrent neural networks were trained and analysed. All networks
were fully connected with Nyo = 800 hidden units (except Figure S8) and ReLU nonlinearities. The network
dynamics were given by

TZ2 = —2+ VVin(L' + Wrecr + brec + n, (13)
r=[z]4 (14)
Yy = Wout? + bout- (15)

Here, z is the network potential, r is the ‘firing rate’; @ is the input, § = {Wiy, Wiec, Wout, brec, 20, bout } are
the network parameters, and n ~ N (0,0 = 1073) is Gaussian noise. All simulations used a time constant of
7 = b5 iterations. The output policy was defined in global allocentric coordinates as the desired next state,
m o e¥. In Figure S7, we also analyse a network that produced a policy in ‘local’ coordinates that indicated
the desired movement direction. The input consisted of (i) a one-hot representation of the current location
in the environment; (ii) a binary representation of the location of all walls (Jensen et al., 2024); and (iii)
the reward Rj; as described for the tasks above. Gaussian noise with a standard deviation of o = 1073 was
added to the inputs before passing them to the RNN.

19

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

For all analyses in the main text, the RNN performed 10 network iterations per environment iteration (action).
Reward input was only provided during the planning phase and set to 0 during the execution phase. This
was done to avoid biasing the execution-time representation towards a ‘relative’ subspace representation
by providing reward input in that format (Supplementary Note). For comparison with this RNN, we also
trained an RNN with reward input during both the planning and execution phase, which learned qualitatively
similar representations and dynamics (Figure S6). For this network, the reward input was given relative to
the current time as in the handcrafted STA, and the number of network iterations was randomly sampled
between 9 and 11 before each environment iteration.

We optimised all network parameters 6 to minimise the loss function

ﬁ(e) = /\9£params(9) TNﬂ'e Lopt Z Cacc + A ‘Crate +A ‘Cent (16)

‘CparamS(e) = |9|3 (17)

’C;cc = Z — T (CL) (18)
aE.AZ)pt

‘Crate = |Tt|2 (19)

ent - Z 7Tt log 7Tt) (20)

Agpt is the set of optimal actions at time t, and E,r, ,[-] indicates an expectation over trajectories induced
by the policy of the agent, renormalised over optimal actions. That is, we consider an imitation learning
setting where ties between equally optimal actions are broken according to the actual policy of the agent.
We used A\g =2 x 1077, A\, = 107°, and A\, = 10~* for all analyses. The RNNs were trained using Adam
(Kingma and Ba, 2015) with a learning rate of 3 x 10~ for 200,000 batches of 200 trials (250,000 batches for
the RNNs trained in changing mazes).

All results are reported as mean and standard deviation across 5 separate RNNs that were trained from
different random seeds and with different environment transition structures.

Analyses
In this section, we describe the analyses used to compare different handcrafted models and trained RNNs.
Decoding analyses

To decode future locations from neural activity (Figure 4C-D), we used scikit-learn (Pedregosa et al., 2011)
to train L2-regularised logistic regression models that predicted location at time t; from neural activity at
time ty with an inverse regularisation strength of C' = 1.0. We performed this analysis in crossvalidation
across locations at time ty. In other words, we trained a decoder on data where the agent was in any state
sty 7 § to predict all locations at time ¢7,, and we then tested this decoder in trials where the agent was in
state s at time t. We repeated this analysis across all test locations s and averaged performance across the
resulting 16 folds. We did this to test whether the RNN had a generalisable representation of future location,
rather than an encoding of e.g. current location and neighboring values.

In Figure 4C (left), we plot the performance of decoders trained on ty = —1 to predict location at any
tr, > 1. In Figure 4D, we trained decoders on every pair of ¢t € [0,5] and ¢, € [0,5]. We then averaged the
performance across every ‘delay’ ty, — ty.

To investigate the generalisation of decoders in Figure 4E, we trained a single decoder using neural activity
at time ty = 1 to predict location at time t;, = 3. We then applied the same decoder to neural activity at all
times ¢’y and quantified how well it predicted location at all times ¢.. This analysis was again performed in
crossvalidation. A separate decoder was trained while holding out each location s; = s, and then tested only
on trials where %y = s. Performance was averaged across all held-out locations and across 5 independently
trained RNNs. Figure 4E shows the time at which the average predictive performance was highest for each
ty. Figure S2 shows the full generalisation behaviour of the decoder.

To predict the time at which the agent would be at a particular location in Figure 4C (right), we analysed

20

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

every state s separately, and then averaged over all s. For each s, we identified trials where the RNN passed
through s exactly once. We trained a decoder to predict the time at which s was visited and computed the
test performance as a function of the true time at which s was visited. As before, all decoders were trained in
crossvalidation across current agent location.

Comparisons of RNN performance and efficiency

In Figure 4F-G, we compare three classes of RNNs, which were trained on either the reward landscape task,
the moving goal task, or the static goal task with a goal that changed between trials. The performance of
each RNN was quantified in each of the three tasks as the probability of choosing the optimal first action (see
above). We also computed the average parameter magnitudes of all the networks, |#|3. Finally, we computed
the average firing rate of each network in the static goal task as E, [Zf |rt|§} All other RNN analyses
apart from Figure S3 used networks trained on the reward landscape task.

Subspace identification

Prior work has investigated the extent to which working memory subspaces are orthogonal (Xie et al., 2022;
Dorrell et al., 2024). However, we are primarily interested in the dynamics between subspaces, which are
easier to interpret in an orthonormal coordinate system. We therefore asked whether there exists a set of
orthogonal subspaces that predict the location of the agent at every time in the future. To do so, we first
simulated 6,000,000 trials and collected pairs of neural activity at time ¢ and location at ¢'(§) separately for
each §. We did this in two different ways. To estimate ‘planning’ subspaces, subspace ¢ was defined as a
decoder that predicts location at time t'(§) = ¢ from neural activity at times ¢ € {—2,—1}. To estimate
‘execution’ subspaces, subspace § was defined as a decoder that predicts location at t'(§) =t + § from neural
activity at any ¢ > 0.

We then defined a predictive distribution parametrised by ¢ for each 4:

Doy (St = 8;) x exp (cs,s7¢ + bs) . (21)
Finally, we minimised an objective function that combines the accuracy across ds and the overlap between
subspaces:
LO)=> [Er,,,st/(5)~z> [—10g po; (s1:(5))] + arl@sh + az|ds]3 | + AortnLortn, (22)
5
Lown:= Y > &} 65 ;. (23)
0,01 %,

Cs, i indicates the normalised parameter vector that predicts being at location s; at a delay of ;. The
parameters were optimised using ADAM with a learning rate of 5 x 10~3 until convergence or for a maximum
of 2000 iterations. We used a; = 1074, oy = 1073, and aoren, was annealed from 0 to 2 x 1072 over 500
iterations. These hyperparameters were chosen because they resulted in a good approximation to the ‘true’
subspaces in the handcrafted STA.

Estimating effective connectivity

To compute the effective connectivity between representations of different points in spacetime, we projected
the learned network parameters into a coordinate system defined by the parameter vectors C € RNT*Nrec,
Each row of C' is a normalised vector ¢;,; that predicts a particular point in spacetime. In this coordinate
system, the input weights are given by W = CW,,,; the output weights by Wet = W, CT; and the

recurrent weights by W = CW,..C7T. To analyse weights between ‘adjacent’ subspaces, we averaged the

blocks of W that corresponded to weights from any subspace § to § + 1 and from any subspace & to § — 1.
To avoid our analyses being biased by the fact that the networks were trained with supervised learning to
predict optimal locations that could only be adjacent, we did not include the weights between subspaces 0

and 1 in this average.

To quantify the similarity between the recurrent weights in this spacetime coordinate system and different
order adjacency matrices for the environment, we computed point-biserial correlations. The A" order
adjacency matrix Ax € RV*Y was defined as a binary matrix with elements equal to 1 for pairs of states

21

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Oth

that can be reached from one another in A actions, and 0 for all other pairs of states. The order adjacency

matrix was defined as the identity matrix.
Perturbation analyses

For the perturbation analyses in Figure 5F-H, we constructed an environment where the reward function R(¢,)
was (i) 1.0 for (¢, s) € {(0,0),(1,1),(2,2),(3,6), (4,10), (5,10), (6,10)}, (ii) 0.7 for (¢, s) € {(1,4),(2,8),(3,9)},
and -1 for all other points in spacetime. The RNN reliably converged to a representation of the optimal path.
We first ran the network dynamics for 10 environment iterations without perturbation after the end of the
normal planning period. We then continued to run the network dynamics for 10 environment iterations with a
bias term defined by bSt™ = b,.. + aés s, where « is the stimulation strength. The perturbed representation
was defined as the representation at the end of this perturbation period. The two example representations in
Figure 5G used o = 0.3 (‘weak’) and a = 10 (‘strong’). The quantification in Figure 5G used a range of «
from 0 to 10 for the RNN, and from 0 to 500 for the handcrafted STA. This is because the attractor wells are
deeper in the handcrafted STA, and a stronger perturbation is therefore required to push the network out of
an attractor state. The control analyses (grey lines in Figure 5G and Figure S5C) were performed by running
the same analysis on the RNNs, but with stimulation of the same magnitude in a random direction in neural
state space. For the analysis in Figure 5H, we also removed the perturbation and ran the network dynamics
for 10 environment iterations after the end of the perturbation period. All analyses in the main text focused
on representations in the space of implied future trajectories, pg,(s¢ = s;). The ‘representational change’
was quantified as the L1 norm of the difference from the spacetime representation at the end of the normal
planning period. See Figure S5 for an analysis of the raw firing rates.

RNNs trained in changing environments

For the analyses in Figure 6, we trained another set of RNNs in a version of the reward landscape task
where the transition structure changed between trials. The locations of all walls in the environment were
provided as a binary input to the agent (see Jensen et al., 2024 for details). For the performance comparison
in Figure 6B (top), we evaluated the performance of these networks in the environments that the ‘single
structure’ networks had been trained on.

The effective connectivity in Figure 6C-D was computed as in the RNNs trained on a single structure. For
these analyses, we identified the subspaces from 1,000,000 trials in a single environment, and repeated this
analysis across 30 different environments. We computed similarities between (i) the effective connectivity
estimated in an environment and the adjacency matrix of the same environment, and (ii) the effective
connectivity and the adjacency matrix from a different control environment. In Figure 6E, the ‘subspace
similarity’ was defined as the correlation between the set of vectors that define the subspaces, averaged
over all points in spacetime. We computed the similarity between (i) subspaces identified from two sets of
independent trials from the same maze, and (ii) the same number of trials from two different mazes. Recall
that the effective recurrent weights between subspaces are given by Wef = CW,..CT. By using different
subspaces in different environments, the RNN changes C between environments, which changes the effective
connectivity between pairs of future subspaces (Figure 6E).

For the analyses in Figure 6G-H, we repeated the subspace identification procedure, but with two notable
differences. First, we used trials across many environments to find generalised directions in neural state space
that predict the future in any environment. Second, we defined the objective function in terms of future
transitions 75 instead of locations. Figure 6G quantifies the effective connectivity between future transitions
in consecutive subspaces (ng and 741 ,) that are either ‘consistent’ (k = j), ‘adjacent’ (j # k but s; and sy,
are adjacent in an environment with no walls), or any other transitions. In Figure 6H, we first projected the
input corresponding to a given wall location w;; onto each subspace and normalised the projection within
each subspace. We then calculated the dot product between this projection and the normalised directions in
neural state space that predict either (i) transitions between s; and s;, (ii) transitions from s; or s; to some
other state sy, or (iii) transitions that do not originate at s; or s;. Projection magnitudes were averaged
over transitions within each of these three groups, then across subspaces, and finally the mean and standard
deviation were computed across 5 RNNs.

22

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary figures

A Training curve B Performance against C Value strongly D Reward weakly
time-within-trial predicts behaviour predicts behaviour
0.94 1.0 4 1.0 4
o 0.8
o Q
= ©0.93 % 0.8 % 0.8 4
g g g g
Eos £ 3 3
£ £ S ®
g g 0.92 0.6 0.6 -
0.4
7
T T 0.91 < T T 0.4 T T 0.4 T T
0 100000 0 2 4 0.0 0.5 1.0 0.0 0.5 1.0
epoch action number value difference reward difference

Figure S1: RNN performance during and after training. Each line in this figure corresponds to one of
the five RNNs that were used for analyses in the main text. (A) Performance over the course of training,
averaged over all actions within each trial. (B) Performance at the end of training as a function of the action
number within the trial. When assessing performance at time ¢, trials were only included that had optimal
choices up to time ¢t — 1. (C) Probability of choosing the action with highest value as a function of the value
difference between the two actions with highest value. This analysis shows that errors are only made then
the optimal action is close in value to the second best action. (D) Probability of choosing the action with
highest reward as a function of the reward difference between the two actions with highest reward. Reward
is less predictive of behaviour than value, confirming that the RNNs compute long-term value rather than
relying on greedy reward.

A B Different decoder Cc Single decoder (trained on Q) D Quantification across
for each data point applied to all data points delays and RNNs
c 14 14 0.8 7
o (=} [}
> =% 2 0.6 1
88 288 g
<0 ' d :‘::% gg S 04+
» 0 °38 e £ 0.2
T =T =
o o g
o o 0.0
0 - 0
c1- 14 0.8 7
S S o
s >% >% 2 06 Ly
W) t,‘ [$] 5 o [
z|" » g2 g2 3 0.4 - 7
Z © PP S, S8 S e £
4 /o) S35 S8 g 024
RANLE *3 *3 E
a a 0.0
0 0
0.8 -
c1- c1-
= >."‘Q‘U 0 =122 =1t=4 >.'(‘9§ E‘ 0.6 4
3 . T Q =] — =3 T Q 5
o o >
|} ’ L= L= © 0.4
2 A 83 58 c
() ' ' 0 °35 °3 9 0.2 4
3w b il s S N, N b
S ™ & & 0.0 4
0+ 0 T T T T 1 —
0o 1 2 3 4 5 1 2 3 4 5 & @
S N
time in future time in future @}‘z} 060\
kA

Figure S2: Additional analyses of learned RNN representations. (A) We compare a spacetime
attractor; an RNN trained on the reward landscape task; and an agent that analytically computes a full
spacetime value function. The value-based agent computes an optimal policy from ‘neural activity’ containing
(i) the value function, (ii) the current location, and (iii) the time-within-trial (Methods). (B) Decoding
accuracy of agent location at different times (x-axis) from neural activity at every other time (lines; legend).
All decoders were trained in crossvalidation across the current agent location (Methods). This is why the
accuracy is zero when decoding location from activity at the same time. (C) We trained a single decoder to
predict location at time 3 from neural activity at time 1 (green circle). The same decoder predicts location at
time ¢ + 2 (x-axis) from neural activity at any other ¢ (lines). (D) Similarity of decoding patterns to idealised
representations of future location in ‘relative’ or ‘absolute’ time (schematics).

23

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A Static goal Static goal Moving goal Moving goal
continual reward working memory continual reward working memory
1.0
3
gos
3
§ 06 —— RNN
c
£04 — STA
8 —— RNN
Bo2{ — RW RNN
S — STA — STA — STA
0.0 + T 1 f T 1 t T 1 f T 1
1 2 1 2 1 2 3 1 2 3
B time in trial time in trial time in trial time in trial
1.00

o
3
a

o
)
a

prediction accuracy
o
a
o

o
o
S

RNN STA RNN STA RNN STA RNN STA
Figure S3: RNNSs trained on simpler tasks do not learn spacetime representations. In this figure,
we analyse the representations of four RNNs trained on all combinations of (i) the static goal or the moving
goal task, and (ii) reward input throughout the task (‘continual’) or reward input only during the planning
phase (‘working memory’). For all analyses in this figure, we only included trials where an optimal agent
would intercept the goal in 3 to 6 actions. (A) Decoding accuracy for agent location at different times (x-axis)
from neural activity at the end of the planning period. Decoders were trained in crossvalidation across the
current agent location. Only the RNN trained on the moving goal task in a working memory setting seems to
learn a generalisable representation of the future. This network is also unlikely to have learned a full STA,
since it fails catastrophically on the reward landscape task (Figure 4F). Note that the decoding accuracy
generally increases slightly for the true STA as a function of time-within-trial. This is because the navigation
tasks have stronger correlations between consecutive positions, which leads to some degree of overfitting on
the training data. This overfitting is less prominent later in a trial, where the space of possible locations
conditioned on the current location is larger. (B) In this analysis, we trained a decoder to predict whether
the agent would be at a particular location at any time in the trial from neural activity at the end of planning.
Binary decoders were trained for each possible future location in crossvalidation across the current agent
location. Bars indicate the average predictive accuracy across all binary decoders and current locations. The
simpler networks seem to learn a representation of whether they will be at a given location at some point in
the future.

24

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Adjacency 0

output subspace
output subspace
N

Adjacency 1

N
) 4
c
[0]
(&)
8,
o
< input subspace
D Output weights from
Input weights to planning subspaces execution subspaces
0 Overlap between planning
and execution subspaces
1.0 7
_ 1 0.8 4
Q [
Qo o
E £ g 06
c c E
8 g2 3 0.4
Q Q
& &
3 2 02+
3
0.0 -
WM continual
4 4

input

Figure S4: Parameters learned by the reward landscape RNN. Network weights are projected into
an orthonormal coordinate system with axes that maximally predict future locations. All weight matrices are
for a single example RNN; since the environment differs between networks, and the connectivity is therefore
slightly different. (A) Structure of the environment that the RNN was trained in, illustrated as the 0*® order
adjacency matrix (the identity matrix), the 15¢ order adjacency matrix, and the 2°¢ order adjacency matrix
(B) Recurrent weight matrix estimated during the planning period, which shows structure resembling the
environment adjacency matrix in the off-diagonal blocks. (C) Recurrent weight matrix estimated during
the execution period, which shows an additional ‘feedforward’ component that copies information from
later to earlier subspaces. We posit that this component of the connectivity matrix helps implement the
conveyor belt dynamics identified in Figure 4E (Supplementary Note). (D) Input weight matrix estimated
during the planning period. The ‘current’ subspace receives location input, and future subspaces receive
reward corresponding to the appropriate time in the future. (E) Output weight matrix estimated during the
execution period. The policy is read out from the ‘immediate future’ subspace as expected in a spacetime
attractor. (F) Overlap between subspaces estimated during the planning and execution periods. This analysis
was performed both for the standard RNN (‘WM’), and for a network trained with continual reward input
throughout the trial instead of only during the planning phase (‘continual’; Figure S6). The WM RNN
uses separate subspaces for computation of the plan and subsequent execution, consistent with the different
connectivity patterns in (B) and (C). The continual RNN can use the same subspaces for planning and
execution since it always receives the same type of input.

25

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

vr}
O

A RNN spacetime representation Handcrafted STA RNN raw firing rates

(o2}

6 a
© T © 3
c <
S S) cE g
59 59 4 c X c
E244 ge s g £
5 E clc) g 5] > 5]
0 7] [} o o = RNN
S} o
& 21 g 2 E s
< —
o o 3 ctrl
/——\ E3
[0 I ————————
time after end of planning time after end of planning time after end of planning stimulation strength

Figure S5: Additional analyses of attractor dynamics. (A) Change in implied spacetime representation
over time in the trained RNN for different perturbation strengths (reproduced from Figure 5H). (B) Change in
spacetime representation over time in the handcrafted spacetime attractor for different perturbation strengths.
In contrast to the trained RNN; the ‘low value’ path is a fixed point of the perturbation-free network dynamics
in the handcrafted network. At the end of a sufficiently strong perturbation, the representation can therefore
stay in this new fixed point. (C) Change in RNN firing rates for different perturbation strengths. While
the change in implied spacetime representation completely saturates with perturbation strength, the change
in firing rates continues to increase with perturbation strength. This is expected because the network has
a non-saturating ReLLU nonlinearity. Small external perturbations are still quenched when quantifying the
change in representation using the raw firing rates instead of the implied spacetime representation.

A Different decoder B Single decoder (trained on Q) Cc Quantification across D Adjacency A =1 recurrent
for each data point applied to all data points delays and RNNs matrix weights
c1 1 0.8
il k<] Q c
>] >% 206 2
22 23 . S
32 8e £ 5
o2 o2 2 0.2 =2
X5 X5] 5
Q Qo a S
a a 0.0
0 0 : : : T , : : - :
0 1 2 3 4 5 1 2 3 4 5 @ input location input location
)
time in future time in future @}”}
E —0 —1 —2 —3 F
||
> o
505 8 .
E g .
3
0.0
| |
location 6=1reward 6=2 reward location 6=1 reward 6=2 reward
input input

order of adjacency matrix

Figure S6: RNNs trained with continual reward input also learn spacetime attractors. In the
main text, we focused on an RNN that was trained with reward input provided during an initial ‘planning
phase’, while no information was given about the reward function during subsequent ‘execution’. In this figure,
we perform some of the same analyses on an RNN that receives reward input throughout the entire task. In
this setting, the task could in theory be solved using a ‘feedforward’ strategy that does not rely on recurrent
dynamics at all. However, the RNNs still learn a spacetime attractor-like solution. (A) Decoding accuracy of
agent location at different times (x-axis) from neural activity at every other time. Each line corresponds to
predictions from neural activity at a different time in the trial from ¢ = 0 (yellow) to ¢t = 4 (blue). Decoders
were trained in crossvalidation across the current agent location. (B) We trained a single decoder to predict
location at time 3 from neural activity at time 1 (green circle). The same decoder predicts location at time
t 4+ 2 (x-axis) from neural activity at any other ¢ (lines). (C) Similarity of decoding patterns to idealised
representations of future location in ‘relative’ or ‘absolute’ time (Figure S2). (D) The average recurrent
weights between subspaces separated by a single action resemble the adjacency matrix of the environment.
(E) Correlation between (i) the average connectivity between subspaces separated by A actions (lines; legend),
and (ii) different order adjacency matrices (x-axis). (F) Input weights to the ‘current’ subspace (§ = 0).
(G) Input weights to a ‘future’ subspace (6 = 2).

26

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

>

Different decoder B Single decoder (trained on Q) C Quantification across D Adjacency A =1 recurrent
for each data point applied to all data points delays and RNNs matrix weights
c1 14 0.8
S S o <
2% 2% 206 %
3 B g
g2 g2 3 04 8
32 8e £ =
e] S 02 s
o 8 o 8 g 8
s s 0.0
0 0 T T T T 1 T T . . . "
0 1 2 3 4 5 1 2 3 4 5 @ @ input location input location
&)
time in future time in future @}Q’\

E1_0 —_0 —1 =—2 —3 F

similarity

| | |
location 6=1 reward location 6=1 reward 6=2 reward
input input

order of adjacency matrix

Figure S7: RNNs with a local action space also learn spacetime attractors. In the main text, we
analysed an RNN that generated a global allocentric policy, consisting of a probability distribution over
all locations that was renormalised over ‘adjacent’ locations before sampling an action. In this figure, we
perform some of the same analyses on a network that outputs a ‘local’ policy in an action space consisting of
‘north’; ‘south’; ‘east’; and ‘west’. This RNN also learns a spacetime attractor. (A) Decoding accuracy of
agent location at different times (x-axis) from neural activity at every other time. Each line corresponds to
predictions from neural activity at a different time in the trial from ¢ = 0 (yellow) to ¢ = 4 (blue). Decoders
were trained in crossvalidation across the current agent location. (B) We trained a single decoder to predict
location at time 3 from neural activity at time 1 (green circle). The same decoder predicts location at time
t + 2 (x-axis) from neural activity at any other ¢ (lines). (C) Similarity of decoding patterns to idealised
representations of future location in ‘relative’ or ‘absolute’ time (Figure S2). (D) The average recurrent
weights between subspaces separated by a single action resemble the adjacency matrix of the environment.
(E) Correlation between (i) the average connectivity between subspaces separated by A actions (lines; legend),
and (ii) different order adjacency matrices (x-axis). (F) Input weights to the ‘current’ subspace (§ = 0).
(G) Input weights to a ‘future’ subspace (§ = 2).

A B Performance depends C Performance and future
Future decoding depends on network size on network size decoding correlate
0.9 4 = 0.9 | 0.9 | 0.9
[]
) \) [o [) [] .. ‘
T08 208 ° @ 0.8 @ 0.8
3 g 2 2
8 ° g g
0.7 0.7 - £0.7 4 Eo7
g = g o0 8 ')
o [[
8 0.6 B Eoc{® @ =06 A 08
© —)
[} []
0.5 - T T 0.5 T T T T 0.5 T T T T 0.5 T T
0 2 4 0 200 400 600 800 0 200 400 600 800 0.6 0.8
time in future network size network size mean decoding

Figure S8: RNN representations and performance across network sizes. We trained a series of
RNNs with different network sizes ranging from 50 (dark blue) to 800 (yellow) hidden units. (A) Networks
with approximately 300 or more units learned a spacetime representation, and the future could be decoded
from the hidden state of the network at the end of the planning period. (B) Task performance saturated as a
function of network size at approximately 300 hidden units. (C) Task performance increased with the ability
of the network to represent the entire future explicitly. These results mirror the findings of Whittington et al.
(2023) that RNNs trained on working memory tasks learn a similar ‘slot-like’ solution only if the network is
large enough.

27

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A) o C Transition representation
Learning curves State representation in single maze across mazes
1 0.8 1
s s
o Q 1
g 08 >% \ g 08 25
f = o O o
£ g 8 04 8 \
S 0.6 5] 8 c g}
B e - 8 °g
g = changing maze &7 £ 02 =g
04 fixed maze a . i
X 1Z 0.0 Q
T T T 0+ T T T 1 0+ T T T 1
0 100000 200000 -4 -2 0 2 4 & @ -4 -2 0 2 4
N »
epoch time from now @}’” & time from now
ka

Figure S9: Additional analyses of RNNs trained with changing environment structure. (A) Learn-
ing curves of RNNs trained on the reward landscape task in a single maze (‘fixed maze’; orange) or with
a different structure on every trial (‘changing maze’; blue). (B) We took the RNNs trained across many
mazes and evaluated them in a single maze (blue). Future states could be decoded almost as well as in
the RNNs trained in a single maze (orange). Additionally, the representations in each maze were more
similar to idealised representations of future location in ‘relative’ than ‘absolute’ time (right). (C) When
considering data across many mazes, future transitions could be decoded in a way that generalised across
current transition and maze structure (blue). Such a representation did not exist in RNNs trained in a single
maze (orange).

28

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary discussion of architecture and modelling choices

In this section, we discuss some of the many architectural and modelling choices that went into our work.
As is the case for much work in modern computational neuroscience, the space of models was vast — and
larger than we could feasibly explore fully in a single paper. In what follows, we aim to further motivate the
choices that were made in the main paper and to provide additional intuition for the importance and effect of
various architectural choices and hyperparameters in our work. This note is also not exhaustive, but we hope
that it will be useful both for the reader looking to gain a deeper understanding of our work, and for those
who want to draw inspiration from it in their own research.

Reward input format

When training RNNs with a reward function that changes in time, there are multiple different ways this
could be provided as an input to the agent. The three most natural choices are:

1. A relative encoding, where a given input channel always reflects the reward in § actions.
2. An absolute encoding, where a given input channel always reflects reward at time t.

3. A ‘working memory’ setting, where reward input is only provided during a planning period prior to the
first action. At this time, the relative and absolute representations are identical, and no choice has to
be made between the two.

One might expect a relative reward input to bias RNNs towards relative future representations, and ‘conveyor
belt” dynamics, and an absolute reward input to bias RNNs towards an absolute code. While RNNs trained
with relative reward input did show strong relative coding of the future (Figure S6), RNNs trained with an
absolute input learned somewhat mixed representations that were harder to interpret.

To avoid having to choose between these two, most of the analyses in the paper were done on an RNN trained
in the ‘working memory’ setting. We also saw slightly stronger ‘spacetime’ representations in the working
memory setting. In fact, Figure S6 shows that the effective planning horizon of the ‘relative’ model is only 4-5
steps, and predictive performance of future states drops off beyond that. This is presumably because a shorter
planning horizon is sufficient for near-optimal performance in the task, and the regularisation encourages
networks to not encode more information than necessary. The RNN therefore effectively re-plans at every
step using a spacetime attractor with a depth of approximately 4.

The handcrafted spacetime attractor always received a ‘relative’ reward input. Otherwise, it would need to
include either (i) an additional ‘memory’ component, (ii) a transformation from absolute to relative inputs,
or (iii) a mechanism for changing the readout between subspaces. We expect that if biological agents use
spacetime attractor-like dynamics, there may be settings where the code is relative and settings where it is
absolute. This might depend on whether the plan is shaped around constraints in relative time (e.g. having
to meet someone in 10 minutes) or absolute time (e.g. having to meet someone at 1 pm).

Planning period

When training the RNNs, we included a planning period prior to the first action. During this period, the
output of the network had no effect on the environment. We did this (i) to separate the ‘planning’ period
from the ‘execution’ period in the working memory setting, and (ii) because it slightly improved performance.
In the handcrafted STA, there is no distinction between planning and execution, since the inputs are the
same in both cases. However, convergence is slower before the initial action because the network state starts
further from a fixed point. This means that the STA can be run for fewer iterations after the first action,
which effectively corresponds to a longer ‘planning phase’ followed by faster execution.

Network iterations per action

For all RNNs, we used a variable number of planning iterations. This is because we were interested in stable
representations of future behaviour, rather than networks learning to time their dynamics to initiation. In the
RNNs with a relative reward input, we also varied the number of network iterations between each action for
the same reason. However, this is not possible in the working memory RNN; since it would not know when it

29

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

had taken an action. There are two possible solutions to this problem. (i) we can provide a specific ‘action’
input that tells the network when the environment has updated. (ii) we can use a fixed number of network
iterations between every action and allow the network to learn the speed of the environment. We opted for
the second option to keep the inputs as simple as possible. We suspect that this could lead to changes in the
subspaces used at different ‘phases’ of the dynamics, but we did not test this explicitly. Instead, we focused
on the planning period when analysing the connectivity of the working memory RNNs to circumvent this
potential complication. When analysing the activity during ‘execution’ in Figure 4D, we used only neural
activity right before each action.

Execution-time dynamics

The fixed points of the STA dynamics are input-dependent, and the inputs to the handcrafted model
change when it takes an action, because the location and/or future reward will be different. For this reason,
the representation can automatically update to reflect the ‘path-to-go’ after each action. However, this
involves recomputing the future to some extent, which is ‘wasteful’ since it has already been computed once.
Additionally, the representation can get stuck in local minima because the barrier to switching between
representations is non-zero. We therefore included an additional component in the STA weight matrix, which
was 1 for all off-diagonal elements that implement a transfer of information to earlier subspaces. This transfer
component was only active for 100 network iterations (two time constants) after each action to update the
representation before settling into a new fixed point. This is similar to how the fruit fly head direction circuit
uses populations of ‘shift’ (PEN-1) neurons to update the internal heading, and these PEN-1 neurons are
gated by angular velocity input (Turner-Evans et al., 2017, 2020). Including an explicit shift component in
the STA is not necessary for any of the main results in the paper, but it stabilises the dynamics to some
extent. We posit that the RNNs learn something similar, as suggested by the feedforward component of the
‘execution period’ parameters in Figure S4C.

Noise sensitivity

The handcrafted STA is more or less susceptible to different types of noise. The model is very robust to noise
added to the neural potential (‘z’; Methods), which can be interpreted as a spacetime distribution in log
probability space. This is because non-desirable locations in spacetime can have very negative values, which
are not very noise sensitive. The STA is more sensitive to noise added to the firing rates (‘r’; Methods),
which can be interpreted as a spacetime distribution in actual probability space. This is because addition of
positive noise to some location s; in subspace ¢ will propagate through the adjacency matrix to all neighboring
locations at time ¢ + 1. This can lead to representations that ‘teleport’ between distant locations if s; is near
the reward location and therefore receives strong input from the reward function or future subspaces.

The STA is sensitive to structural noise for a similar reason. Adding a small positive value to weights
corresponding to elements of the adjacency matrix that are meant to be zero leads to dynamics that include a
finite probability of teleporting between these distant locations. In this work, we mitigate the structural noise
sensitivity by using a ‘pessimistic’ estimate of the adjacency matrix as the base weights before adding noise
(Methods). In other words, we subtract a small constant from all weights to ensure that distant locations are
connected with weights that are zero or negative, even though they are noisy. This may be less of a problem
in biological networks, since Dale’s law ensures that synapses are either excitatory, inhibitory, or absent.

The sensitivity to both rate noise and structural noise is higher when the input strength is larger (/3; Methods),
which biases the representation more strongly towards rewarded locations. Conversely, the converged
representation is more diffuse if the input strength is weaker, because there is a smaller bias towards rewarded
locations. This is particularly true when planning towards distant rewards. The strength of the reward input
therefore has to balance the planning depth with the susceptibility to teleporting representations. If there is
no noise in the system, the input strength can safely be very large, which leads to robust performance for long
planning horizons. If there is more noise in the system, the input strength should be smaller, which increases
noise robustness at the expense of a shorter effective planning horizon. When training RNNs across tasks,
they will naturally learn to balance the robustness of the representation with the required planning depth.
Indeed, the analyses in Figure S5 suggest that RNNs learn to do so better than our handcrafted models.

30

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Choice of RNN learning algorithm

We used supervised learning to train all RNNs in this paper. In other words, the RNNs were trained to
predict the behaviour of an optimal agent. An alternative would have been to train the networks end-to-end
using reinforcement learning. We opted for the supervised setting for two reasons. Firstly, supervised learning
is more stable, which leads to more robust results that are less sensitive to hyperparameters and use less
compute. These features make it much simpler for others to build on our work. Secondly, we do not think
cortical representations are learned from scratch via reinforcement learning. Instead, we are of the opinion
that cortical representations are likely learned via predictive or ‘semi-supervised’ learning. The basal ganglia
can then use reinforcement learning to map these representations onto actions (Blanco-Pozo et al., 2024;
Zintgraf et al., 2019). We expect that training the RNNs with reinforcement learning would yield similar
results, but we have not tested this explicitly.

Convergence of RNN training

Convergence was in general fairly good, but it did vary with hyperparameters to some extent. For some com-
binations of regularisation strengths, the networks sometimes got trapped in local minima that corresponded
to incomplete structural learning. These networks would partially learn the structure of the environment,
but they would fail to learn connections between some pairs of states that were actually connected, which
impaired performance. Similarly, some RNNs trained on the changing maze task erroneously ‘hard coded’
some transitions instead of having them flexibly modulated by the inputs. In general, the accuracy of the
learned structure was correlated with model performance for both the networks trained in a single maze and
networks trained in changing mazes. Additionally, the overall loss was higher for the networks that failed to
learn the full task structure, suggesting that it is an issue of convergence rather than regularisation making
the partially learned solution optimal.

Long distance parameters in the RNN

In Figure 5 and Figure S4, we saw that the trained RNNs learn some long-range connections between
subspaces separated by more than one action. This differs somewhat from the handcrafted STA, which only
has connections between adjacent subspaces. However, the presence of long-range connections in the RNN is
not too surprising. In particular, we expect this additional structure to stabilise fixed points corresponding to
possible trajectories, since it inhibits any trajectory that includes impossible n-step transitions. We suspect
that stabilising the dynamics through weaker connectivity between all subspaces is cheaper than strong
connectivity exclusively between adjacent subspaces. This may be a consequence of the L2 regularisation used
to train the networks, which favors many small parameters over few large parameters. In future work, it could
be interesting to explore whether the degree of long range connectivity is lower when using L1 regularisation
instead. The result of such an analysis may also depend on how disentangled the spacetime representations
are, which we did not explore in the present paper.

Discrete space and time

We have discretised space and time throughout this work. This makes the models and analyses simpler,
because the action space is discrete and one action always leads to a step change in the environment. However,
we expect that the basic ideas extend to continuous space and time as well. In this case, neurons would still
represent particular points in spacetime. Pairs of neurons would be connected as a function of their difference
in preferred location in a way that reflects which locations can be reached in a unit time. This is similar to
the mechanism used for angular velocity integration in ring attractors and path integration in grid attractors.
If the speed of the agent can vary, it might be necessary to represent different speeds in different connections
or neurons, and the desired speed at every point in time could be inferred together with the trajectory.

Stochastic environments

We have worked with deterministic environments throughout this paper. This choice greatly simplifies the
spacetime attractor, since the deterministic adjacency matrix can be built into the network connectivity. When
working in a stochastic environment, we would intuitively want the connections to represent max, p(s¢1|st, a),
which is a generalisation of the adjacency matrix for deterministic environments. We have not explored this
explicitly but consider it an important extension for future work. One potential challenge in the stochastic
case is that the spacetime attractor as formulated here effectively performs planning as inference under the

31

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.23.677709; this version posted September 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

assumption that the posterior distribution over locations factorises across time. This assumption may have
more severe consequences in stochastic environments, where correlations are more important. In particular,
this assumption generally leads to a collapse to a ‘modal’ representation of a single trajectory rather than
representations of entire distributions of trajectories. In stochastic environments, that means it is possible to
converge to a single representation of a trajectory that is unlikely to happen in reality, even with the correct
choice of actions.

Relationship to sequence working memory

The spacetime attractor is strongly inspired by representations identified for sequence working memory
(El-Gaby et al., 2023; Xie et al., 2022; Chen et al., 2024; Tian et al., 2024; Whittington et al., 2023). These
sequence memory tasks have notable similarities to the reward landscape task studied in this work. In
particular, sequence working memory often involves presenting an animal with a sequence of 2-4 options
(e.g. ‘a’, ‘b’, and ‘¢’) that are sampled from a set of N possible states or actions (Xie et al., 2022; El-Gaby
et al., 2023). The animal is then rewarded for repeating the sequence at response time. The task therefore
has a reward function that is categorical (only one element is rewarded at a given moment in time) and
changes in time (first ‘a’ is rewarded, then ‘b’..). This is very similar to the changing reward function in the
reward landscape task. A notable difference is that the sequence memory tasks have no constraints on the
possible transitions — any element can be produced before or after any other element. For this reason, each
sequence element can be treated independently, and there is no need to pass reward or value information
between subspaces. The independent sequence working memory task can therefore be seen as a special case
of the reward landscape task, where (i) only one state is rewarded at each point in time, and (ii) any state
can be reached from any other state, so the adjacency matrix is uniform. Interestingly, theoretical work
shows that explicit representations of the future preferentially emerge for sequence working memory when
correlations (or more precisely, ‘range dependence’) between subsequent elements are weak, and the space of
possible sequences is therefore large (Dorrell et al., 2024). This is reminiscent of our finding that spacetime
representations for planning preferentially emerge in RNNs trained on the reward landscape task, where the
space of possible optimal trajectories is larger than in the static and moving goal tasks.

Comparisons with TD and SR agents

In Figure 3, we compare the representations and performance of the STA to temporal difference learners and
successor representation agents. We show that the STA solves ‘dynamic’ problems that these algorithms
struggle with. This is in some sense a property of the state space rather than the decision making algorithm.
It would be possible to construct TD and SR agents in a ‘space-by-time’ state space, which would allow them
to solve these dynamic problems. Our message is not that this is not possible. Instead we are highlighting
that the way these algorithms are usually implemented involves representations that are ‘flat’ across time,
and we use them as a comparison to show why spacetime representations can be useful. If a TD learner was
implemented with a space-by-time state space, it would be able to solve tasks where the reward changes
within a trial but the same pattern is seen across all trials. The SR agent with a space-by-time state space
could solve the general reward landscape task. In the simplest implementation, this would require inversion
of a matrix T' € RNTXNT " which is computationally expensive. However, it is possible that the structure of
T could be exploited to invert it more efficiently, which would be an interesting avenue for future research.

Summary

As is evident from this discussion, many choices went into this work that could have been different. We
do not claim to have explored the full space of models and tasks, and we are not trying to argue that the
spacetime attractor is a silver bullet for planning and decision making. Instead, we have tried to argue that
STA-like models are interesting solutions to a range of problems that are relevant to prefrontal cortex and not
widely studied in systems neuroscience. However, many open questions remain, some of which we have briefly
motivated here. We therefore hope that this paper will inspire others to further explore these questions both
experimentally and computationally.

32

https://doi.org/10.1101/2025.09.23.677709
http://creativecommons.org/licenses/by/4.0/

