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Predictive coding: a more cognitive process 
than we thought? 
Highlights 
Predictive coding (PC) models propose 
that predictions are generated in higher-
order areas and feed back to lower-
order areas, where they are compared 
with sensory inputs. Mismatches gener-
ate prediction errors. 

The local–global oddball paradigm is 
used to study PC. Local oddballs are 
formed from repetition-based predic-
tions and do not necessarily imply a pre-
dictive code. Global oddballs dissociate 
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In predictive coding (PC), higher-order brain areas generate predictions that are 
sent to lower-order sensory areas. Top-down predictions are compared with bot-
tom-up sensory data, and mismatches evoke prediction errors. In PC, the predic-
tion errors are encoded in layer 2/3 pyramidal neurons of sensory cortex that feed 
forward. The PC model has been tested with multiple recording modalities using 
the global–local oddball paradigm. Consistent with PC, neuroimaging studies re-
ported prediction error responses in sensory and higher-order areas. However, 
recent studies of neuronal spiking suggest that genuine prediction errors emerge 
in prefrontal cortex (PFC). This implies that predictive processing is a more cog-
nitive than sensory-based mechanism – an observation that challenges PC and 
better aligns with a framework we call predictive routing (PR). 
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stimulus repetition from predictability. 

Neuroimaging and intracortical spiking 
data have been used to investigate the 
local–global paradigm. Signatures of 
global oddball processing in sensory 
cortex are found in neuroimaging but 
not spiking data. 

This provides evidence against PC. We 
provide a conceptual framework to 
guide future work, which we call predic-
tive routing (PR). 

We apply PR to autism spectrum disor-
der and schizophrenia.
Predictive coding models of brain function 
Brains have evolved to create mental models that explain the regularities in the environment [1,2]. 
According to PC (see Glossary), these mental models issue internal predictions to drive sensa-
tion, thought, and action to reduce energetic costs while maintaining an efficient neuronal code 
[3–5]. This is achieved via the implementation of an approximation of Bayesian inference, 
which involves combining predictions (priors) with sensory inputs (likelihood) to create a posterior 
probability (posterior). The posterior is an optimal combination of the prior beliefs with current sen-
sory evidence [6,7]. It serves as the brain’s best guess of the state of the world and body [8]. 
When sensory inputs arrive that do not accord with this internal model, a prediction error is gen-
erated [5]. Prediction errors are modulated according to their gain [4,9,10]. 

‘Classical’ PC models [1,4,5,11] propose that predictions are generated in higher-order areas of 
the brain and feed back down the hierarchy to lower-order areas, where they are compared with 
sensory inputs. Prediction errors travel in the opposite direction. They feed forward up the hierarchy 
to update internal models to make better predictions. Feedback predictions are thought to be sub-
tractive. Predictable stimuli are uninformative, so they should drive less overall neuronal activity to 
save energy. By contrast, surprising/unpredictable stimuli enhance neuronal activity [12–14]. 

This classical PC model has now been tested using both neurophysiological studies in animals 
and noninvasive studies as subjects were presented with the local–global oddball paradigm 
(Figure 1A), which is designed to evoke prediction errors at two distinct stages of hierarchical pro-
cessing. Here, we focus mostly on studies in nonhuman primates and humans using this para-
digm, given that primates have a deeper and more distinct cortical hierarchy than rodents [15] 
and that the concept of hierarchy plays a central role in PC.

Studies recording data using electroencephalography (EEG), magnetoencephalography (MEG), fMRI, 
and intracranial local field potentials (LFPs) largely supported classic PC by showing widespread
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Figure 1. Local and global oddballs and recent evidence of their encoding in neuronal spiking activity. 
(A) Schematic of the local–global oddball paradigm. Neuronal responses to local oddballs can be caused either by true 
prediction error signals or by a release from sensory adaptation. Global oddballs are caused by habituation to a stimulus 
sequence. For example, in the sequence AAAB, AAAB, AAAB, the fourth stimulus is predicted to change. The infrequent 
stimulus (AAAA) is a global oddball, because the fourth tone is unpredicted despite being a repetition. The timescale of a 
trial is typically one to a few seconds. The timescale of a sequence is typically tens of seconds. For our review of the 
literature, we consider studies that have used stimulus repetition-based predictions as local oddballs vs studies that have 
used more complex designs where prediction and repetition are dissociated as global oddballs. We note that local 
oddballs that are also global oddballs (AAAB, AAAB, AAAA) also dissociate prediction from adaptation, but only if there is 
sufficient time between the oddballs to rule out adaptation (see [59]). (B) Area legend on a macaque cortex flat map. (C) A 
recent study showing the lack of global oddball responses in population spiking [awake Tpt and frontal eye field (FEF) in Ci 
and Ciii, respectively, and anesthetized Tpt and FEF in Cii and Civ, respectively] [32]. (D) Spiking activity in V1 and V4 [33] 
is identical to a stimulus when it occurs in the expected position (green traces) as well as when it is unexpectedly early 
(purple traces) or late (yellow traces) in the sequence.

Glossary 
Autism spectrum disorder (ASD): a 
developmental condition characterized 
by challenges with social 
communication, limited interests, and 
repetitive behaviors [92]. 
Bayesian inference: a model that uses 
known information, termed ‘priors’,  and  
incoming stimuli to form a prediction 
about its sensory environment. Priors 
are used to give probabilities to incoming 
stimuli, while the incoming stimuli are 
used to update these probabilities to 
better represent the current 
environmen t.
Gain: the brain’s ability to determine the 
importance of prediction errors based 
on prior knowledge. Prediction errors 
with low gain will not be signaled to 
higher-order cortex. 
Local field potential (LFP): an overall 
signal of local network activity from a 
large number of neurons surrounding 
the recording site, with a spatial 
resolution of 120–250 mm 
Local–global oddball paradigm: an 
auditory oddball paradigm with two 
levels of regularity used to measure 
cognitive and attentional capabilities of 
the brain. 
Mismatch negativity (MMN): an 
auditory event-related potential that 
occurs when a sequence of repetitive 
auditory stimuli is interrupted by an 
occasional ‘oddball’ sound that differs in 
frequency or duration. 
Neuronal spiking: electrical impulses 
generated from single neurons reflecting 
action potentials that can be recorded 
using invasive microelectrodes in 
experimental settings. 
Prediction error: when environmental 
sensory inputs arrive that do not accord 
with the brain’s predicted internal model. 
Predictive coding (PC): a  theory  of  
brain function that proposes that the 
brain is constantly generating and 
updating a model of its sensory 
environment. Internal predictions feed 
back to inform sensory processing, 
which feeds forward prediction errors .
Predictive routing (PR): a theory that 
hypothesizes a flexible system for 
predictions that is dependent on the 
state of learning, context, and conscious 
state and is implemented via specific 
cortical layers and neuronal rhythms. 
Schizophrenia (ScZ): a severe mental 
illness involving symptoms such as 
delusions, hallucinations, disorganized 
speech, troubled thinking, and lack of 
motivation [92].

Local oddball/
global regular

global oddball

global oddball

global regular

Local oddball/

Local regular/
cortical activation during stimuli that should evoke prediction errors. However, recent evidence from 
studies measuring neuronal spiking in nonhuman primates has shown sparser and higher-order 
origins for prediction errors, inconsistent with the proposal that feedforward processing represents 
prediction error. These recent results challenge the classic PC models. Our aim here is to review 
these studies and suggest an alternative framework for how predictions are implemented: PR.

The local–global oddball paradigm 
Initial evidence for prediction error coding came from studies using the mismatch negativity 
(MMN) response [16–18]. These paradigms rely on stimulus repetition to create predictions,
628 Trends in Cognitive Sciences, July 2025, Vol. 29, No. 7
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and rare deviant stimuli elicit increased neural responses, consistent with a prediction error re-
sponse. However, the neuronal activity caused by release from adaptation to an unrepeated stim-
ulus versus genuine prediction error is conflated in this experimental design. Neuronal adaptation, 
a low-level mechanism whereby stimulus repetition causes decreased responses due to neuronal 
fatigue [19], can explain these responses without invoking hierarchical, Bayesian brain processes 
[20–22]. To dissociate expectation violation from adaptation, paradigms such as deviance detec-
tion [23–25] and the local–global oddball paradigm (Figure 1A; [26]) were developed.

The local–global oddball paradigm uses local oddballs to violate a locally repeated context (e.g., in 
sequence AAAB, B is the oddball and violates the prediction that A will repeat). Global oddballs 
violate a pre-habituated pattern [16,27–30]. Global oddballs involve changes in a stimulus within 
a sequence (in the sequence, AAAB, AAAB, AAAA, the final A is the global oddball). This disso-
ciates a violation of expectation from a release of adaptation. 

PC posits that brains construct complex models that are compared with sensory inputs during 
inference, with mismatches driving prediction error computations. This implies that neurons 
should actively respond to stimuli, not merely passively adapt. Local oddballs and repetition-
based oddballs, which persist under anesthesia [31,32] when top-down connections are func-
tionally inactive (Figure 1C; [32]), provide limited evidence for PC [33]. For PC to explain cortical 
responses ubiquitously, more complex types of prediction errors (e.g., global oddballs) should 
evoke responses [1]. Indeed, neuronal model implementations of PC hypothesize that a rare rep-
etition in an environment of frequent alternations (i.e., global or omission oddballs) will elicit predic-
tion error signals at each layer of the network architecture [17,123]. 

While both local and global oddballs trigger prediction errors, they may do so at distinct hierarchi-
cal levels. Basic errors (local oddballs) may be more strongly encoded at earlier levels of the hier-
archy, while complex errors (global oddballs) might be more prominent at later levels. However, 
both types of oddballs should modulate activity in sensory cortical areas for the claim that feed-
back responses instigate predictive models and that feedforward responses primarily signal pre-
diction error to hold true. If sensory cortex primarily shows passive adaptation (e.g., responds 
only to local oddballs where prediction error and release from adaptation are conflated), this 
would weaken the argument for PC as an active, canonical, cortex-wide mechanism. 

fMRI, M/EEG, and LFP studies indicate widespread local and global oddball coding 
fMRI [26,34], M/EEG [16–18,35,36], and LFP studies demonstrated widespread representations 
of local [17,26,37,38]  (Figure 2A,C,E, Key figure) and global (Figure 2B,D,F) oddballs, with some 
studies indicating that even primary and secondary sensory areas (highlighted in green and purple 
outlines in Figure 2) encode these oddball types [26,31,34,37,39–41]. These studies aligned with 
the classic PC proposal that sensory cortex compares top-down predictions with bottom-up 
sensory inputs and issues prediction errors due to their mismatch. They suggested a canonical 
computation for prediction error [11] and inspired more mechanistic studies of neuronal spiking 
to investigate the neuronal code associated with prediction error computations.

Do sensory neurons feed forward prediction errors? 
Spiking responses to local oddballs are observed throughout cortex (Figures 1C,D and 2G), from 
primary sensory areas to higher-order cortex [12,32,33,42–45]. However, studies of neuronal 
spiking to global oddballs tell a different story (Figure 2H). We recently reported on spike and 
LFP responses in mid-level auditory cortex area Tpt and from higher-order PFC [the frontal eye 
fields (FEFs), part of PFC] during the auditory local–global oddball task in macaque monkeys 
(Figure 1C). Local oddballs were robustly signaled in neuronal spiking both in auditory cortex
Trends in Cognitive Sciences, July 2025, Vol. 29, No. 7 629
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Figure 2. The numbers related in the figure refer to Broadman areas (BAs). The shaded (red vs blue) regions represent activation (or lack of) to local and global. Negative 
(blue shading) results are only shown for spiking studies. Blue/green borders represented higher- vs lower-order auditory/visual cortices. Flat maps are from macaques 
[100,101] and human results are depicted in the homologous areas. (A) Local oddball fMRI results [26,34,39]. (B) Global oddball fMRI results [26,34,39,102]. (C) Local 
oddball magnetoencephalography (MEG)/electroencephalography (EEG) results [26,41,103,104]. (D) Global oddball M/EEG results [26,41,103,104]. (E) Local oddball 
local field potential (LFP) (note that we consider here also studies employing electrocorticography) results [12,26,31,32,37,39,105]. (F) Global oddball LFP results 
[26,31,32,37,39]. (G) Local oddball spiking results [12,32,33,42,106–108]. (H) Global oddball spiking results [13,14,32,33,45,48,109]. For further details, see Table S1 
in the supplemental information online.

Current state of the local and global oddball literature 
and FEFs, but global oddballs did not register in the population response (Figure 1Ci,iii). Spiking 
activity to global oddballs was also examined in macaque visual cortex (areas V1 and V4) by vary-
ing the list order in which a stimulus would fall relative to a predicted order (Figure 1D). Neurons 
did not encode prediction errors [33]. Instead, firing rates of neurons in V1 and V4 could be
630 Trends in Cognitive Sciences, July 2025, Vol. 29, No. 7
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described by their classic bottom-up properties, including their orientation preference and stim-
ulus repetition, along with enhanced spiking to unrepeated stimuli. 

These observations argue against classical PC because they do not show that predictions sup-
press population activity spiking in sensory areas to save energy during processing of predictable 
stimuli. Neurons spiked equally to unpredictable and predictable stimuli, after controlling for adap-
tation. So, if predictions in these studies failed to emerge in spiking studies at the level of V1 and V4 
in visual processing (Figure 1D) and in mid-level auditory processing (Figure 1C), is it possible that 
genuine predictive codes emerge later in the hierarchy than previously thought? A recent study ex-
amined this possibility using a visual local–global oddball paradigm and recordings in monkey PFC 
[45]. Prefrontal neurons spontaneously formed internal models of the task structure, including both 
local and global oddballs. While global oddballs were decodable from the population response, 
they did not constitute the primary neuronal representation (i.e., the overall neuronal response in 
PFC was not enhanced during global oddballs [45]). Only a small fraction of PFC (~2% in [45], 
9% in [32]) neurons had a significant response at the individual (spiking) channel level to global odd-
balls, challenging the idea that prediction errors drive widespread and robust representations. 

To determine how widespread population decoding of global oddballs was and whether it was a 
feature of the conscious state [26,31,40], we examined spike decoding of the stimulus, local oddball, 
and global oddball status in the auditory cortex (area Tpt) and FEF (a part of the PFC) as we manip-
ulated consciousness with the anesthetic propofol. Notably, global oddball decoding was absent in 
all states in auditory cortex (Figure 1Cv). In FEF, global oddballs were decodable in the awake state, 
but decoding fell to chance levels in the unconscious state (Figure 1Cvi; note that spike rate reduc-
tions in FEF may have contributed to the lack of decoding). These studies of spiking neurons during 
local/global predictions (Figures 1C,D and 2H) challenge classic PC models. Genuine predictive 
codes emerged late in processing, not early as hypothesized. In PFC, neurons flexibly created inter-
nal representations of all the sensory and latent task elements, supporting the idea of multidimen-
sional, mixed selectivity in PFC [46,47]. However, these predictions did not result in suppression 
of overall firing rates, as they were present in only a sparse subspace of neuronal coding. These pre-
dictive codes remained undetectable from spiking activity in early to mid-levels of the auditory and 
visual sensory hierarchies (although genuine predictive codes have been reported in inferotemporal 
cortex, a late stage of visual sensory processing [13,14,48]). 

To summarize, these studies of neuronal spiking diverged in their conclusions from previous fMRI, 
M/EEG, and LFP data (Figure 2) by demonstrating that feedforward processing in early to mid-
levels of sensory cortex does not represent prediction errors, and that predictions did not exert 
an overall suppressive influence on the population response, as hypothesized in PC. Below we 
consider, and argue against, the notion that the observed failures in detecting genuine PC in sen-
sory cortex can be attributed to factors such as recording methodology, lack of cell-type speci-
ficity, and lack of explicit task engagement. We also consider to what extent the local oddball 
effects, which are present in spike rate studies in sensory cortex, can be considered a genuine 
form of PC. We argue that none of these factors can rescue classical PC and that a new perspec-
tive, PR (Figure 3), can more parsimoniously explain the current data.

Recording methodology? 
The discrepancy between the fMRI, M/EEG, and LFP versus spikes may be explained by the dif-
ferent nature of the signals recorded across studies. Although fMRI has spatial resolution on the 
order of a millimeter, it has poor temporal resolution, which means that early (the first ~150 ms of 
response, reflecting feedforward processing [49]) versus late (after ~150 ms from the onset of a 
visual stimulus; can reflect both feedforward and feedback influences) response elements are
Trends in Cognitive Sciences, July 2025, Vol. 29, No. 7 631
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Figure 3. Predictive coding and predictive routing. (A) The classical predictive coding model as realized in a laminar cortical 
circuit with two levels of hierarchy. Prediction error is computed within a cortical column and then fed forward via superficial-layer 
(layer 2/3) cells to higher-order cortex. Prediction is fed back via deep-layer (layer 5/6) cells from higher-order area. The proposed 
computation is given as the shaded equation, where ξ is the precision weighted error, ε is the error term, and Π is the precision (i 
denotes the level of cortical hierarchy). ε is calculated with a subtraction between state μ and top-down prediction f, implying a 
local inhibitory mechanism commonly thought to be realized via superficial-layer inhibitory cells (in red). (B) The predictive routing 
framework integrates the function of neural oscillations into the predictive processing mechanism in the cortex. Prediction error is 
carried by gamma, which feeds forward via superficial layers, and prediction is carried by alpha/beta, which feeds back via deep 
layers. Predictive routing provides the following novel elements: (i) preparatory rhythmic activity, shown as alpha/beta oscillations 
in the figure (but note that other mechanisms for rhythmic preparation are also possible; e.g., [110]), that (ii) suppresses specific 
sensory channels (left subpanel: top-down predictions for stimulus A are sent to A selective neurons, to suppress processing of 
A). This removes the need for explicit prediction error neurons, as prediction ‘errors’ are the result of sensory inputs to unprepared 
cortex (right subpanel), and (iii) sparser predictive suppression in sensory cortex (only relevant representations are suppressed). 
Previous studies are consistent with the idea that prediction error computations emerge from the interaction between cortical 
rhythms and layers [12,32,37,53,72,111,112].
conflated. As a result, fMRI maps may reflect the processing occurring in each area as well as the 
top-down inputs to an area. M/EEG and LFP reflect transmembrane currents, which can be the 
result of the inputs to an area as well as its local computations [50,51]. Only neuronal spiking 
activity can unambiguously resolve which computations occur  where  and  when  in  the  b  rain
(see Box 1 for more in-depth discussion). 
Box 1. Recording modalities and their relationships: fMRI, EEG/MEG, LFP, and spiking 

Extracellular recording of spiking activity represents the action potential output of neurons surrounding the recording contact. 
By contrast, LFP signal represents the superposition of ionic cellular currents in the brain at the location of the recording [51], 
with >95% of contributors to the (high-frequency portion) of the LFP from within ~250 μm of the recording electrode [113]. 
However, fMRI represents the intravascular magnetic susceptibility due to hemodynamic changes and blood oxygenation 
[50]. Investigations of neurophysiological correlates of the blood oxygenation level-dependent (BOLD) signal have found that 
BOLD  correlates  strongly  with  local  field potential signal in the gamma frequency range but very weakly with the spike rate 
response [50]. This suggests that the BOLD fMRI signal primarily reflects the input of an area instead of the output and local 
cortical computation, which is better represented in spiking. BOLD signals have also been found to correlate with gamma 
power particularly in superficial layers of cortex [114]. These are the layers of cortex that receive the primary anatomical feed-
back connections (via layer 1 [115]) and contain pyramidal neurons that project feedforward outputs (primarily via layers 2 and 
3  [101]). This suggests that BOLD signals and gamma (and other frequencies) LFP represent an integration of top-down in-
puts with local processing, and perhaps an integration of these signals to compute prediction error [116]. In sum, divergence 
between LFP/fMRI and spiking results can be explained by their respective underlying neural processes, with EEG/LFP/fMRI 
reflecting composite signals that better represent input to a given area and spiking reflecting the neuronal output and local 
computation within an area. We note that a similar divergence between EEG/LFP/fMRI results showing extensive top-down 
modulation in sensory areas but spiking studies showing weak or no top-down modulation has also been encountered in 
studies of working memory [117] and attention [118].

632 Trends in Cognitive Sciences, July 2025, Vol. 29, No. 7
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These considerations suggest that, to understand where and how predictive codes emerge, it is 
necessary to complement fMRI, M/EEG, and LFP studies with better coverage of neuronal spik-
ing. Traditional single-unit recordings were limited to just one or two areas and a handful of neu-
rons at a time, limiting this method’s field of view. This makes it easy to potentially miss a sparse 
signal such as global oddball encoding which may engage a small proportion of neurons. To mit-
igate this, we and others have recently worked to expand the scope of brain areas and neurons 
that can be measured using multi-area, high-density, laminar neurophysiology (MaDeLaNe 
[52–54]; Box 2). The emerging evidence from studies employing MaDeLaNe is largely consistent 
with Figures 1 and 2 and shows that genuine predictive codes emerged at much later cortical 
processing stages than hypothesized by classical PC [54]. 

Cell-type specificity? 
Although difficult to study in primates with current methods (but see [55–57]), cell-specific circuits 
during local oddballs have been investigated in mice. These studies often utilized passive tasks 
and repetition to establish a predictable stimulus [42,58]. For example, deviance detection (a pre-
diction error signal using repetition to establish prediction) is abolished in mouse V1 when top-
down inputs from PFC to V1 are suppressed [42]. Two specific cell types may be involved in 
this type of predictive processing. Pharmacogenetic blockade of somatostatin+ (SOM+ ) cells in 
mouse V1 eliminated deviance detection. Also in mouse V1, a study found that vasointestinal 
peptide-positive interneurons (VIP+ ) increased their activity to repeated (predictable) stimuli, sug-
gesting that VIP interneurons play a role in signaling predictions [58]. In addition, chemogenetic 
blockade of these neurons disrupted deviance detection [58] and VIP+ interneurons signaled un-
expected omissions [59]. It is therefore possible that genuine PC does emerge within specific 
neuronal populations. These signals, contrary to the hypotheses of classical PC, appear insuffi-
cient to drive robust prediction error responses that could evoke feedforward processing. They 
failed to elicit a significant population response to global oddballs in the sensory areas [54,59], 
largely consistent with the studies in monkeys (Figures 1 and 2). 

Explicit task engagement? 
Finally, it is important to consider task and behavioral context. In PC, prediction errors are modu-
lated by their gain ([4,9], but see [5], where prediction errors are assumed to be an automatic fea-
ture of neuronal activity). Gain can be parameterized as a form of attention [9]. The primate studies 
that reported failures in detecting global oddballs in sensory areas [32,33] used paradigms where 
oddballs were presented passively, and therefore the gain on prediction errors may have been low. 
However, attentional modulation is unlikely to account for the lack of global oddballs in these stud-
ies. First, even without an explicit task, PFC neurons spontaneously formed inner models of the
Box 2. The importance of MaDeLaNe recording techniques 

Classical PC models have been difficult to test experimentally because the model makes use of multiple stages of cortical 
processing, with distinct cell types, cortical layers, areas, and directions of feedforward/feedback processing contributing 
to the hypothesized computation. Rigorous testing of PC therefore requires methodologies that can capture each of these 
dimensions. A method is needed that delivers simultaneously good spatial (neuronal specific) resolution, temporal resolu-
tion (to determine when the computation happens), together with sufficient coverage to track the evolution of the cortical 
responses across the hierarchy (a comparison of currently used methods is shown in Figure I). We and others have em-
ployed multiple high-density electrodes (Figure I), combined with novel analytical tools [53] to gain layer information during 
predictive processing in multiple cortical areas [44,54,119,120]. Methods such as calcium imaging, optogenetics, and 
high-density recording can be used in conjunction to distinguish neuronal cell types during predictive processing 
[54,58,59,63]. Taken together, such methods are necessary to make further progress in understanding PC and PR, to un-
derstand the contributions of distinct layers, cortical cell types, and processing stages [54]. We propose to further refine 
and improve MaDeLaNe methodology to further gain spatial coverage along with cellular specificity, and to utilize this 
method in diverse species (including at a minimum both rodents and primates; e.g., [54]) and, where deemed clinically ap-
propriate, in the human brain (e.g., [121,122]) to uncover the circuitry underlying distinctly human forms of prediction [112].
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Figure I. Multi-area, high-density, laminar neurophysiology (MaDeLaNe) sampling compared with fMRI, 
electroencephalography (EEG)/magnetoencephalography (MEG), and local field potential (LFP). 
Comparison of commonly used neuroimaging and neuronal recording methods in neuroscientific research and their 
respective spatial coverage, spatial resolution, and temporal resolution. Traditional methods that offer brain-wide 
sampling (M/EEG and fMRI) suffer from either poor spatial or temporal resolution. Electrocorticography (ECoG) (which 
we have grouped together with studies measuring LFPs from intracortical electrodes) retains high spatiotemporal 
resolution with large-scale coverage but does not sufficiently resolve layers and neurons in the spatial resolution axis 
[64]. Traditional invasive recordings using single-unit microelectrodes have poor spatial coverage (typically, a few 
neurons at a time in one or two areas). MaDeLaNe methods retain high spatiotemporal resolution (for detecting single 
neurons) while also sampling densely across layers and in multiple areas [44,54,120]. Note that the goal of future 
methodological development is greater spatial coverage, and finer spatial and temporal resolution to obtain neuronal 
and cell-type specificity (illustrated here as towards the reader in the projected 3D diagram). 
task structure [32,45], including global context/deviance, which was eliminated during uncon-
sciousness [32]. This implies that some level of awareness/attention was present in the passive 
local–global oddball tasks. Second, selective attention in V1, V2, and V4 cortex modulates the neu-
ronal response by ~5–23% [60]. It is unlikely that this level of modulation would create a robust 
global oddball response despite its absence in the reported data. Nevertheless, future studies 
should carefully control the state of selective attention during oddball processing to explicitly 
study the neuronal mechanisms of gain modulation of prediction errors [10,61].

Sensory cortical neurons encoded local oddballs, so they may be described as encoding a local 
prediction that the current features of the sensory environment will persist (and repeat). One might
634 Trends in Cognitive Sciences, July 2025, Vol. 29, No. 7
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be tempted to call this a predictive code. Indeed, this locally predictive code based on adaptation 
at different timescales is sufficient to compute a probability distribution [62]. However, although 
local oddballs might be modulated by top-down processes, it is worth remembering that these 
repetition-based local predictions persist in deep anesthesia (Figure 1Ci) during which frontal cor-
tex becomes inactive (Figure 1Civ) [31,32]. Local oddball responses therefore do not require the 
active feedback machinery envisioned by PC to pass high-level predictions down the hierarchy. 

What functions can top-down predictive inputs serve in sensory cortex if they do 
not drive spiking? 
Based on the current evidence, we believe that genuine prediction errors are computed in higher-
order cortex and do feedback to sensory areas but do not drive a population spiking response 
(e.g., no prediction errors detectable in the mean spike rates) in those areas. What might be 
the function of this feedback if it does not drive a suprathreshold response? We speculate that 
this top-down feedback may be sparse and selective, such that a population response is not ob-
served in lower-order cortex but that some neurons do receive preparatory feedback that matters 
for a small population, perhaps especially involving subpopulations of inhibitory interneurons 
[59,63]  (but  se  e [54]). A second possibility is that top-down feedback exists via extraclassical 
mechanisms that do not drive a population spike response, but still modulates sensory areas 
via mechanisms such as subthreshold oscillatory coupling [12,32,64–66], ephaptic coupling 
[67,68], or dendritic mechanisms [69]. A third possibility is that top-down feedback is used to 
drive the motor system for behaviorally relevant predictions [63], which many of the current par-
adigms do not address. Table 1 summarizes the neuronal activity observed during local and 
global oddballs. 

How to reconcile these observations? Predictive routing 
The findings reviewed here on global oddball responses suggest that genuine predictions emerge 
only at high levels of the hierarchy, inconsistent with classical PC (Figure 3A). We argue that the 
existing evidence can be well accommodated within an updated model, PR (Figure 3B) [12] 
(see also [70]). The PR framework builds on several properties of neuronal oscillations. Gamma 
frequency (40–90 Hz) increases in power with sensory stimuli and is positively correlated with 
spiking activity [71,72]. Gamma/spiking is anticorrelated with alpha/beta frequency (8–30 Hz) os-
cillations, which strengthen in PFC (and its coherence with other cortical areas) during top-down 
tasks, such as selective attention [73,74] and when stimuli are predictable [12,37] (for reviews of 
the top-down effects of beta during cognition, see [72,75,76]). This suggests that alpha/beta may
Table 1. What activity do local and global oddballs elicit? A chart summarizing activity elicited from local and
global oddballs as demonstrated in the current literature 

Local oddballs Global oddballs 

Hierarchical 
emergence 

Widespread (Figure 2A,C,E,G) Higher-order areas in spiking 
(Figure 2H) 

Cortical layer Superficial layers dominant [12,42,58,86] Agranular layers (activation outside 
L4) [54] 

Frequency of neuronal 
response 

Increased gamma; decreased alpha/beta 
[12,32,37,39,111] 

Decreased alpha/beta [39,111] 

Attentional 
dependence (gain) 

Not dependent [41] Dependent [26,41] 

Cell type All cell types that are released from adaptation 
[54,58] 

Specific inhibitory cell types 
[29,59,63], but see [54] 

Consciousness 
dependent 

Yes in higher-order cortex, no for lower-order 
cortex [31,32,40] 

Yes [31,32,40,102] 
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act as an executive control mechanism by turning up or down the amount of gamma/spiking 
needed for a task [72]. 

PR involves learning-driven formation of dynamic ensembles [77,78] in higher-order areas. This 
involves mixed selectivity neurons, which have been frequently observed in PFC [45–47]. Neu-
rons with this property can form complex predictions in real time based on any combination of 
inputs, rather than respond based on static receptive field characteristics. Once a predictive en-
semble is formed among these mixed-selectivity neurons, feedback connections can transmit 
these signals from higher-order to lower-order cortical regions utilizing alpha/beta rhythms 
[12,37,64,65,79–81] and prepare sensory areas for stimulus processing. Alpha/beta rhythms 
can have an inhibitory effect on neuronal spiking and gamma [12,82–85] at specific  phases
[82,84], leading to a state of relative inhibition or ‘preparation’ in predicted pathways [12]. 
Unpredicted stimuli arriving in unprepared cortical areas elicit enhanced spiking and gamma-
frequency (40–90 Hz) oscillations, engaging enhanced feedforward communication (Figure 3B) 
[12,31,37,39,64,65,86]. 

The key difference between PC and PR is that in PR, there are no explicit prediction error neurons 
[12]. By contrast, in PC there is dedicated canonical circuitry in cortical layers 2 and 3 for predic-
tion error computation (Figure 3A). In PR, higher-order cortex issues selective preparatory signals 
that suppress sensory processing. A prediction ‘error’ is a result of inputs arriving at an unpre-
pared cortex (Figure 3B). Higher-order cortex can issue these predictions in a sparse and selec-
tive manner, such that predictive suppression targets only relevant representations. This is 
compatible with the idea of redundant coding in sensory cortex, when neurons in early to mid-
levels of the hierarchy fire away to even the most highly predictable stimuli and are not modulated 
by global oddballs (Figure 1C,D). Higher-order predictions (e.g., global oddballs) depend on tem-
poral integration across longer timescales at the level of the full sequence (Figure 1A; typically, 
several seconds). Neurons in early sensory cortex have fast timescales of temporal integration 
[87] and would be ill equipped to receive predictive suppression for sequences with long time-
scales. PR proposes that complex predictions are formed in PFC and selectively suppress sen-
sory areas with longer time constants, such as high-level visual areas [88]. In PR, predictions are a 
higher-order, more selective, and sparser signal than in PC, and are implemented via 
spectrolaminar mechanisms rather than dedicated error circuits. 

We recently tested PR using propofol-mediated unconsciousness during the auditory local– 
global oddball paradigm [32]. Propofol essentially inactivated PFC (Figure 1Civ) while sparing 
bottom-up sensory drive to auditory cortex (Figure 1Cii). Alpha/beta band power modulation 
was also eliminated with propofol. Under these conditions of no top-down input from PFC, we 
presented local oddballs and recorded neuronal activity in sensory cortex. Paradoxically, we 
found that, during unconsciousness, local oddball-related gamma increased [32] relative to the 
awake state. We interpret this as evidence for PR: without beta-band activity (which normally in-
creases during processing of predicted stimuli) and without top-down inputs from PFC, sensory 
cortex became disinhibited and generated more oddball-related gamma (along with temporally 
exaggerated spiking to oddballs; Figure 1Cii) compared with the conscious state. 

Implications for clinical disorders 
The proposed PR model (with its emphasis on selective suppression of specific sensory areas) of-
fers a valuable framework for understanding the neural mechanisms underlying sensory process-
ing and PC, in particular for schizophrenia (ScZ) and autism spectrum disorder (ASD).  A  key  
neural deficit in ScZ is reductions in MMN signals and reductions in sensory-induced gamma os-
cillations [89–91], which implies that there may be profound deficits in bottom-up sensory
636 Trends in Cognitive Sciences, July 2025, Vol. 29, No. 7



Trends in Cognitive Sciences

Outstanding questions 
Do active tasks (and attention) 
enhance the gain of prediction error 
responses to global oddballs in 
sensory cortex? 

Is there a generic canonical 
microcircuit for prediction error that 
operates with similar computations for 
local, global, omission, and other 
types of violation? 

How can new high-density, cell-type-
specific methods be used to learn 
which areas and specific cell types 
are involved in predictions in the 
primate brain? 

How can the mechanisms of the PR 
model be causally tested? Does rhyth-
mic alpha/beta activity exert specific 
suppression via distinct interneuron 
subtypes? 

Do distinct species represent 
predictions at different stages of 
cortical processing and with distinct 
mechanisms? 

How can PC/PR-derived experimental 
paradigms be used to address 
bottom-up vs top-down theories of 
clinical disorders such as ScZ? Does 
feedforward sensory processing via 
dampened gamma result from de-
creased functionality of parvalbumin 
interneurons?
processing and predictive processing [92]. Reduced bottom-up sensory processing in ScZ may 
lead to weakened top-down predictive models and disrupted top-down beta [89,93]. Without ac-
curate input from the sensory environment, the brain is left to generate its own internal model of the 
world, which can lead to false predictions due to the lack of reliable sensory input 
(i.e., hallucinations and delusions). This feedforward sensory processing via dampened gamma 
may be the result of decreased functionality of parvalbumin interneurons [94,95], which contribute 
to gamma oscillations [96] and are decreased in ScZ in specific  areas  and  layer  s [95,97]. 

By contrast, ASD symptomology presents as abnormally increased prediction errors [92]. A re-
cent study recording electrocorticography from nonhuman primates with an induced form of 
ASD showed abnormally high sensory responses to local oddballs in the local–global oddball 
task [98]. Additionally, individuals with ASD often struggle with shifting attention between different 
stimuli or tasks [99]. This impairment could affect their ability to process global oddballs, as it re-
quires flexible attentional allocation and the ability to update mental models. 

Given the evidence, we propose that sensory cortex primarily employs a redundant code, ensur-
ing robust representation of sensory input. By contrast, higher-order cortical areas may rely more 
on a predictive code, utilizing top-down predictions to efficiently process information. Imbalances 
in this process may underlie the distinct clinical presentations of ASD and ScZ. We propose that 
the local–global oddball task and its variants be systematically applied to studies of ScZ and ASD 
(and other clinical disorders) as functional assays for sensory and higher-order cognition. The use 
of these tasks in animal models of these clinical disorders is another exciting avenue, which could 
generate biomarkers for states of disorder and provide objective markers to drive therapeutics 
targeted to specific types of processing (e.g., local/global oddballs). 

Concluding remarks 
The literature on local–global oddball processing presents a challenge to PC models: M/EEG, 
fMRI, and LFP data indicated that both local and global oddballs modulate activity in both sensory 
and higher-order cortex. However, studies of neuronal spiking in primates have failed to find ro-
bust global oddballs in lower- and mid-level sensory areas. Predictive codes emerged in PFC but 
only in a sparse subspace of neuronal encoding. Therefore, predictions may not be as broadly 
suppressive or as canonical as hypothesized. From the perspective of PR, global oddballs are 
an emergent feature of higher-order cortex neurons displaying flexible, mixed selectivity. Predic-
tions are sent to the appropriate level of processing. Early to mid-sensory processing may be 
largely immune from the effects of prediction. More sophisticated task designs and higher-
density neuronal recordings will provide further insights into the cortical circuitry for prediction. 
This may lead to a better understanding of clinical disorders that depend on intact predictions 
(see Outstanding questions). 
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