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SUMMARY
To process sequential streams of information, e.g., language, the brain must encode multiple items in
sequenceworkingmemory (SWM) according to their ordinal relationship. While the geometry of neural states
could represent sequential events in the frontal cortex, the control mechanism over these neural states re-
mains unclear. Using high-throughput electrophysiology recording in the macaque frontal cortex, we
observed widespread theta responses after each stimulus entry. Crucially, by applying targeted dimension-
ality reduction to extract task-relevant neural subspaces from both local field potential (LFP) and spike data,
we found that theta power transiently encoded each sequentially presented stimulus regardless of its order.
At the same time, theta-spike interaction was rank-selectively associated with memory subspaces, thereby
potentially supporting the binding of items to appropriate ranks. Furthermore, this putative theta control can
generalize to length-variable and error sequences, predicting behavior. Thus, decomposed entry/rank-WM
subspaces and theta-spike interactions may underlie the control of SWM.
INTRODUCTION

Daily events of our lives all occur within the river of time. Our

perception and memory of an event are based not only on the

event’s constituent features but also on its temporal context.

Writing down a friend’s phone number, for instance, requires

one to sequentially memorize the identity of each digit and its

ordinal position, then bind all digits into sequence working mem-

ory (SWM) for later action. However, it remains unclear how

exactly the brain coordinates the entry of multiple temporally or-

dered external stimuli into SWM. To explore the neural mecha-

nisms of stimulus item-ordinal rank binding under SWM, we

need to find out how the brain (1) represents sensory inputs

(rank-independent) and their associated rank-dependent WMs

and (2) selectively controls and transforms rank-independent

stimulus entry into rank-dependent memory.

Regarding the first question (on item/rank representations),

our colleagues recently discovered that sequential visuospatial

items were first entered into a common entry subspace consist-

ing of frontal cortical neurons and then sent into rank-selective

SWM subspaces,1 whose activity could be maintained

throughout the whole delay period following stimulus presenta-

tion.2 As for the second question (on item-rank binding), it was

often proposed that such binding of multiple WM aspects could

be achieved by oscillations synchronizing neurons that represent

different features of the same perceptual object.3–5 Experimental

evidence suggests a more general role of oscillatory control over
Curr
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neural activity in multiple cognitive functions, including atten-

tion,6,7 perception,8,9 and memory.10–14 It remains unclear

whether compositional item-rank representations could be iden-

tified from oscillatory neural signals as in neuronal unit popula-

tions, nor whether oscillatory control plays a role in the contex-

tual binding of incoming sequential stimuli to appropriate

ordinal ranks. Advancements on these fronts could potentially

lead to non-invasive monitoring applications that allow decoding

of complex compositional neural representations, e.g., those

involved in language production.

Among the various frequency bands where WM-relevant neu-

ral oscillations have been found, theta (typically 3/4–8/9 Hz) and

higher-frequency gamma (typically greater than 50–60 Hz), in

particular, are known to modulate population coding in feature-

specific ways during cognitive processing.15,16 Theta oscillation

has been widely observed in the formation and storage of asso-

ciative memories, which require the binding of different co-

occurring elements.17 Theta-coordinated neural activities are

also often found among distant brain regions, and such global

activation is associated with conscious perception of sensory

stimuli.14,18 Regarding SWM, certain human temporal lobe neu-

rons appear to encode consecutive items by precise firing pat-

terns at distinct theta oscillatory phases, resembling spatial

sequence encoding by the rodent hippocampus.19,20

Computational studies have proposed that the control of infor-

mation selection in visual signal processing and WM is

embedded in the communication and transformation between
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representative subspaces,21,22 in line with our earlier hypothe-

sized linkage between entry and memory subspaces.2 Despite

its clear involvement, whether theta oscillation reorganizes

sequential items in an ordinal rank-dependent manner remains

an open question. Since sequence representation can be re-

garded as a specific binding problem to link the physical stimuli

to temporal order, the selective binding of sequential stimuli to

proper ordinal ranks may rely on oscillatory control over different

SWM subspaces. To address this hypothesis, we analyzed

neural data from macaque monkeys performing visuospatial

delayed sequence reproduction tasks. The data were collected

using a 157-channel high-throughput electrophysiological re-

cording system, including spiking activities and local field poten-

tial (LFP) across the macaque frontal cortex.

RESULTS

Behavioral paradigm and performance
Three macaque monkeys, O, L, and G, were trained to learn an

SWM task (Figure 1A). Each trial was initiated by visual fixation

on the center of a monitor/touchscreen facing the animals. Dur-

ing the sample period, two stimuli were presented sequentially

on the monitor screen while the monkeys kept fixation on the

center. Each stimulus only remained on the screen for 250ms af-

ter onset, so the monkeys had to maintain the sequence item(s)

in memory during both the post-S1 inter-stimulus interval and

the post-S2 delay. After the delay period, the monkeys were

prompted to reproduce memorized sequences by making

consecutive touches to the appropriate locations on the screen.

The behavioral performance of length-2 sequences in all mon-

keys was significantly better than chance and balanced across

both stimuli identities (i.e., six dot positions on screen) and

ordinal ranks (two ranks: R1 for stimulus S1, R2 for stimulus

S2) (Figures 1B, S1A, and S1B). Parts of the behavioral data

were published in our previous studies.1,2,23,24 Each monkey

received implantation of a 157-channel micro-drive25 over the

left frontal cortex (Figures 1C and S1C) upon training completion,

allowing us to simultaneously record both single neuron spikes

and LFP (Figures 1D and 1E). Due to relatively poor behavioral

response (Figure 1B, right column) and lower recording quality

(�20 units per recording session vs. >100 in monkeys O/G),

we excluded monkey L from the rest of this work.

Task-relevant single-channel LFP activities
According to previous findings,1,2 in SWM, initially rank-indepen-

dent representations of external stimuli (item) are assigned to a

given context (order), thereby turning entry signals into rank-

dependent memories (Figure 1F). While neuronal unit spiking-

based representations of the two primitives, i.e., rank-indepen-

dent ‘‘entry’’ and rank-dependent ‘‘memory’’ in SWM, had already

been found in themacaque frontal cortex,2 no similar LFP features

that contained task information had been identified. We first per-

formed time-frequency analysis using channel-wise data aligned

to stimulus onsets, thereby obtaining an overview of average LFP

activity across correctly performed trials (Figure 1E, with evoked

potential subtracted26; see Figure S1D for unadjusted examples;

subsequent analyses using unadjusted data were comparable

to present results [data not shown]). Only channels with spiking

units were used for this and all subsequent analyses involving
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LFP. In each recording session, prominent post-stimulus-onset

(0–500 ms) increases of event-related spectral power in classical

theta and/or high gamma (HG) bands were observed across a

substantial portion of channels (on average over sessions,

56.1% ± 4.10% and 49.0% ± 7.63% of all channels for monkeys

O and G, respectively). We then examined the item tuning of theta

(4–8 Hz) and HG (80–120Hz; with spike removal preprocessing to

reduce contamination; STAR Methods) Hilbert amplitudes

(Figures 1G, 1H, and S1F). We found that, as was the case for

spike tuning (Figure S1G; see also previous work2), theta and

HGamplitude changeswithin trials also encoded target item iden-

tities, but the two frequency bands yielded distinct response pat-

terns. LFP channelswith item selectivity in theta amplitude specif-

ically displayed rank-independent transient tuning (Figure 1G). By

contrast, channelswith selectivity inHGamplitude tended to have

two separable dynamic components similar to those found in

neurons: a rank-independent transient component (Figure S1F)

and a sustained rank-dependentmemory component (Figure 1H).

To quantitatively evaluate task-relevant LFP activities, we next

extracted channel-wise theta/HG power to compute the ordinal

rank-specific percentage of explained variance (PEV) across the

encoding period. As shown in the example from one recording

session (Figures 2A and S1E) and overall distributions of signifi-

cant PEV timing (Figures 2B, 2C, S2A, and S2B), theta response

preferentially occurred early and in a transient manner befitting

stimulus entry and/or temporarily required WM control. By

contrast, while some channels did show transient burst-like

HG PEV, relatively prolonged/sustained memory-like activity

occurred more often in HG, corresponding to the spatial tuning

patterns seen previously (Figures 1G and 1H). This divergence

in WM representation patterns was also observed via categoriz-

ing rank-independent vs. rank-dependent item tuning signifi-

cance (Figure S2C), where theta channels predominantly fell

within the former and unit/HG the latter.

While the temporal dynamics of theta and gamma activity at

the single-channel level reflected characteristics of entry and

memory in our data, it remained unclear at the group level

whether they genuinely encode entry and memory information

during the sequential WM processing—analogous to phenom-

ena previously observed at the population neuronal level.2 To

remedy this, we performed targeted dimensionality reduction

(TDR) over multi-unit/channel data (firing rates for units, instanta-

neous powers for theta/gamma) to reduce the neural signals into

their most representative two dimensions. This decomposition

yielded a rank-independent subspace and multiple orthogonal

(as guaranteed via QR factorization) rank-dependent subspaces

in a time period-targeted manner (Figures 2D–2H) for each of

the three data types. To identify the rank-independent entry

subspaces, we stacked post-S1-onset and post-S2-onset

0–250 ms signals together (Figure 2D) as independent trials

when building the initial unit/channel-by-trial matrices for TDR.

This allowed us to locate for each data type a subspace that

could simultaneously describe spatial location encoding under

both ordinal ranks R1 and R2 (Figure 2E). When projecting

neural activity at each time point across the trial time to the iden-

tified entry subspaces found by this procedure, the resulting

temporal dynamics—transient increase and rapid decay post-

stimuli—indeed resembled the earlier tuning dynamics of rank-

independent/putative entry neurons and theta/HG channels



Figure 1. Macaque SWM task structure and sample electrophysiological recording data

(A) Task design. After the delay period, the sequencewas reproduced frommemory by touch. Each stimulus’s corresponding ordinal rank ismarked by a set color

across all figures (blue, S1; red, S2). Repeat, report stimuli in received order; mirror, report stimuli in reversed order. ISI, inter-stimuli-interval.

(B) Behavioral performance: correct rates of responses at each ordinal rank (values for individual sessions marked by dots).

(C) Illustrations of monkey O’s implanted microdrive with inserted electrodes (left) and of the electrode tip positions flattened against the lateral cortical surface of

the left hemisphere (right).

(D) Example single-trial local field potential (LFP) data recorded from one channel in the frontal cortex (ventral area 46). Top: raw trace with Gaussian-smoothed

(100 ms window) overlay. Middle/bottom: theta-/high gamma (HG)-bandpassed (4–8 Hz/80–120 Hz) LFP, respectively. Gray shading: stimulus on-screen times.

(E) Example time-frequency plot of LFP (with evoked potential subtraction; see Figure S1D for plot with unadjusted data). Data here are from (D)’s channel in

correctly performed trials. Both theta and HG bands show significant responses (0 = non-significance mask) to S1/S2 (onsets aligned to vertical white lines).

ERSP, event-related spectral perturbation.

(F) Diagram depicting distinct representations of ordinal rank-independent stimulus entry (left) and of rank-dependent memories (right) by orthogonal neural

subspaces.

(G and H) Sample bandpassed LFP recordings showing rank-independent theta (G) and rank-dependent HG (H) tuning patterns. For each panel, top: trial-wise

instantaneous amplitudes grouped by item identity (vertical color blocks, with colored triangles for preferred item identity); bottom: mean amplitudes over item-

grouped trials.

See also Figure S1.
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(Figures 2G and S2D). Furthermore, as expected from rank-inde-

pendent subspaces, we found no particular difference in theta

decoding accuracy between ranks (Figure S2F).

To compute rank-dependent memory subspaces, we ex-

tracted neural activity within the last 250 ms of the late delay

period (Figure 2D), applying a generalized linear model to obtain
subspaces that encoded S1-memory and S2-memory in a sus-

tained manner (Figure 2F). We then projected data from the

entire trial onto these late delay-derived subspaces. This

approach enabled us to assess whether memory-related signals

remained stably maintained from post-stimulus onset all the way

through to the delay period. Previous studies have suggested
Current Biology 35, 1495–1507, April 7, 2025 1497



Figure 2. SWM representation by oscillatory neural activities

(A) Rank-specific significant percent explained variance (PEV) computed from unit spiking and oscillatory neural activity (evoked potential subtracted) across

monkey O’s frontal channels in one recording session. For theta PEV using ERP-unadjusted data, see Figure S1E.

(legend continued on next page)
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that gamma activity encodes working memory information in a

burst-like manner at the single-channel level.27 By contrast,

our subspace analysis revealed that at the population level,

gamma signals, akin to neuronal ensembles,2 can maintain

sequential working memory information across multiple orthog-

onal and stable subspaces (Figures 2H and S2E).

Our results above on the representational geometry of SWM

demonstrated that the entry and rank WMs could be held in

separate low-dimensional subspaces based on different oscilla-

tory components of neural activity, even though entry and mem-

ory information appears intensively mixed at the single neuronal

level (Figure S2C). In addition, putative functional segregation

between theta and unit/HG was further supported by selectively

higher decoding accuracies using subspace projection magni-

tudes (Figure 2I), with theta’s rank-independent entry subspace

being more informative than that of HG, and HG’s memory sub-

spaces being more informative than those of theta. To verify that

our neural subspaces identified above faithfully captured stim-

ulus item information from each neural data type, we also per-

formed classical linear support vector machine (LSVM)-based

cross-time and cross-rank decoding using unit firing rates and

channel-wise theta/HG power. We found the decoding results

to be similar to those of the TDR analysis (Figures S3A–S3L). Be-

sides theta and HG, beta oscillations were also found to be

involved in tasks requiring control over WM27,28; therefore, we

performed cross-time and cross-rank decoding using beta po-

wer also but did not find sufficient evidence of beta’s involve-

ment in our task (Figures S3M and S3N). Overall, our previous

analyses indicated that, while HG appeared generally similar to

units in terms of WM representations, i.e., supporting both entry

and memory subspaces, but preferentially the latter, theta pre-

dominantly carried item information in a transient manner

following stimuli onsets (Figures 1E, 2A–2C, 2G, 2I, S2A, S2B,

and S2D).

Spatiotemporal characteristics of encoding theta befit
putative role in WM control
WM control and maintenance are two distinct cognitive needs,

likely served by different neural mechanisms.28,29 This mecha-

nistic segregation allows for flexible cognitive control that is
(B) Distributions of monkey O’s post-S1-onset (left) and post-S2-onset (right) sign

(C)’s monkey G counterparts, see Figures S2A and S2B.

(C) Average-across-channel standard deviations in significant post-stimuli PEV t

variable than theta (***p < 0.001, paired two-sample t tests).

(D) Illustration of trial-wise data segments used to compute two types of target d

rank-dependent memory).

(E and F) Item identity-specific unit activity across the encoding period generates

per panel).

(E) Geometry of example subspace supporting rank-independent stimulus entry

(F) Geometry of example subspace supporting rank-dependent item memories (

(G and H) Accuracy-over-time trajectories based on stimulus item (S1/S2) identi

data here are from all recording sessions of monkey O (n = 13). For monkey G (n =

individual sessions’ traces. Gray shading: 0–250 ms post-S1/S2 onsets. Blue/re

accuracy for S1/S2, respectively (a = 0.05, permutation tests).

(G) Theta/HG/unit activity-based rank-independent TDR subspaces showing tra

(H) HG/unit activity-based rank-dependent TDR subspaces showing prolonged/

(I) Theta vs. HG subspace-based item-decoding accuracies. Except for one outli

performance than those of HG, and the opposite was true for memory subspaces.

in (D). Each pair of dots represents one recording session (n = 10 total). Paired t

See also Figures S1–S3.
not dependent on the specific WM content being controlled

(i.e., rank-specific memory subspaces in our task). Given that

theta does not appear to support rank-specific memory sub-

spaces (Figure 2H) like unit/HG, and that theta frequency activ-

ities are nonetheless important in cognitive control,30,31 it is

reasonable to hypothesize that theta oscillations may be

involved in regulating the stimulus entry-to-memory pipeline.

Therefore, our subsequent analyses primarily focused on theta

oscillations and theta-unit interactions. Building on established

theories regarding WM control (e.g., spatial computing),28,32

control-related activity (i.e., assigning items to corresponding

ranks) may arise from a distinct source separate from the initial

entry activity in neurons. We thus hypothesized that LFP oscilla-

tion-based top-down control signals would capture spatially

organized information about the order of items. For theta to be

such a candidate control signal, it would ideally possess the

following spatiotemporal characteristics: first, it would preferen-

tially occur over the time period where entry-to-memory transi-

tion happens (in our case, over the limited time windows after

stimulus onsets), and second, the source of task-relevant theta

activity would be spatially segregated from the memory repre-

sentations to avoid interference.

To evaluate temporal relationships among entry and memory

subspaces, we extracted the initial significance timings of each

recording session’s subspace geometry-based decoding pro-

files (as in Figures 2G, 2H, S2D, and S2E). We found as expected

among spiking unit-based subspaces general temporal prece-

dence of entry over memory (Figure 3A). Theta entry subspaces

also became significantly informative at earlier times than unit

memory subspaces (Figure 3B) and stayed informative over

short post-stimulus-onset time windows where entry and mem-

ory subspace decoding profiles overlapped (Figure 3A).

To determine whether recording sites contributing to different

subspaces exhibit distinct spatial organizations, we identified

each neuron/channel’s contribution toward entry and memory

subspaces by its feature weight (FW; see STAR Methods sub-

section ‘‘subspace decomposition of unit and LFP activity’’)

and then projected the FW onto the anatomical space of the

recording electrode arrays (Figures 3C and S4A–S4C). We found

that the segregation among neural subspaces in terms of
ificant theta/HG power-based PEV times over the encoding period. For (B) and

imes over all recording sessions of monkey O. HG appears significantly more

imensionality reduction (TDR)-based subspaces (rank-independent entry and

a ring-like geometrical structure in each TDR subspace (data from one session

(same data as top panel of G).

same data as top panel of H).

ty decoding with unit and LFP activity subspaces’ projection magnitudes, and

10), see Figures S2D and S2E. Bold lines: means across sessions; lighter lines:

d horizontal bars atop each panel denote times of significant mean decoding

nsient (entry-like) decoding profiles.

sustained (memory-like) decoding profiles.

er recording session of monkey G, theta entry subspaces had better decoding

Accuracy values are averaged over timewindows of subspace identification as

wo-sample t test, ***p < 0.001.

Current Biology 35, 1495–1507, April 7, 2025 1499



Figure 3. Spatiotemporal characteristics of

theta-based rank-independent subspace

(A) Theta entry subspaces are significantly infor-

mative over likely entry-to-memory transition pe-

riods. Top: illustrations of unit activity-based rank-

independent entry (black) and rank-dependent

memory (blue, S1; red, S2) subspaces’ target de-

coding accuracy-over-time profiles (cf. Figures 2G

and 2H, averaged across sessions), alongside

times of theta entry subspace decoding signifi-

cance (yellow, significant times shared across

sessions). Bottom: individual recording sessions’

first significant times for unit entry and memory

subspaces, overlaid with theta entry subspace’s

decoding accuracy-over-time profiles. Unit entry

subspaces become informative at generally earlier

times thanmemory subspaces (paired two-sample

t tests, sessions from both monkeys combined).

Gray shading: stimulus-on times. ***p < 0.001

(paired two-sample t tests).

(B) Theta entry subspaces become informative at

significantly earlier times than unit memory sub-

spaces (paired two-sample t tests as in A,

***p < 0.001).

(C) Estimated regions (in monkey O’s microdrive

array space) of highest contribution to theta/

spike entry subspaces (left) and to spike memory

subspaces with marginal histograms (right). For

monkey G, see Figure S4B. Color bars indicate counts of permutations where peak FW locations fell within each spatial bin (see Figure S4C).

See also Figure S4.
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representational geometry could be extended to anatomical

space as predicted. Specifically, channels with high FW of theta

entry subspace often occupied areas different from those of

spike entry subspace, hinting at potentially different roles during

encoding (Figure 3C, left; Wilcoxon rank-sum tests, p < 0.001 for

x/y-marginals, effect sizes = 0.812/0.310; for monkey G, see

Figure S4B, top). Channels with high FW of spike memory S1

subspace and those with high FW of S2 subspace also tended

to differ in spatial locations (Figure 3C, right; rank-sum tests be-

tween x/y-marginal histograms: both p < 0.001, effect sizes =

0.537/0.406; for monkey G, see Figure S4B, bottom). In sum-

mary, theta-based rank-independent activity was spatially

distinct from unit-based WM representations and temporally sit-

uated at entry-to-memory transition windows, thereby appear-

ing to be a suitable candidate WM control signal.

Theta-mediated selective control over neural states
with rank-dependent memory information
Previously, it had been established that neurons carrying WM

task-relevant information were more likely to be modulated by

theta-range LFP.26,33 We therefore investigated whether, as

befitting our previous hypothesis on SWMcontrol through segre-

gated theta control signal, post-stimulus-onset differences in

theta modulation patterns were associated with the rank-depen-

dent unit memory subspaces. To evaluate if cross-channel

theta-spike coordination actually reflected information transfer

from stimulus entry to rank-dependent memories (Figure 4A),

we verified the presence of LFP-organized spiking activity by

computing pairwise cross-channel spike-field coherence

(SFC). Each channel pair consisted of one LFP phase source

and one unit source, and channels with no units or multiple units

recorded were not included for analysis. We first used spikes/
1500 Current Biology 35, 1495–1507, April 7, 2025
LFP from the same channels as those used in previous sub-

space-based analyses to evaluate SFC over a wide frequency

range (4–140 Hz), with data from 0 to 500 ms post-stimulus on-

sets (Figure 4B). This allowed us to confirm that theta-range SFC

appeared uniquely informative among the examined frequencies

(Figures 4B and S4D). This result could not be explained by firing

rate differences between target-informative/non-informative

neuronal groups alone (Figure S4E). To establish further links be-

tween theta SFC and WM, we went on to tally unit-wise ‘‘SFC

strength’’ as a metric for how much each unit’s activity may be

influenced by theta elsewhere (Figure 4C). Since we have previ-

ously identified rank-specific memory subspaces based on

spiking units, it seemed straightforward to examine whether

SFC strength could be associated with unit-wise contributions

to spike memory subspaces (Figure 4D) in a rank-selective

manner. More specifically, if SFC-based cross-channel connec-

tivity did reflect rank-selective control, then SFC strengths (sums

of SFC matrices across theta source dimension) computed at

different ranks should selectively correspond to spike memory

subspace FW at those ranks (Figures 4C and 4E).

To further quantify SFC3 FW relationships and to test the pre-

diction above, we then built multiple linear regression models

with both ranks’ SFC strength together as predictors and spike

S1- or S2-memory subspace FW as the response variable,

combining data from all sessions within each animal. To reduce

confounds from irrelevant sites of the recording array, only chan-

nels with significant memory information under ANOVA analysis

(Figure S2C) were included in these models. We found that, as

expected, S1 SFC strength was significantly associated only

with spike S1 memory subspace, and S2 SFC strength only

with spike S2 memory subspace, indicating the presence of

rank-selective theta modulation (Figure 4F). This rank selectivity



Figure 4. Theta modulation of spiking activity reveals rank-selective gating mechanism

(A) Upon stimulus entry, information held by the currently active neural population (left end of timeline) may be guided via oscillatory control into the ordinal rank-

appropriate memory subspaces to achieve faithful SWM representation (right end of timeline). Black dashed lines on bottom timeline: stimulus presentation

(legend continued on next page)
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was retained when the models were rebuilt using only SFC

strength of units that did not have significantly different post-

S1/S2 firing rates, such that rank-dependent SFC 3 FW associ-

ations could not be explained by differences in firing rates across

ranks alone (Figure S4F). By contrast, we did not find consis-

tently significant rank selectivity in control models where theta

SFC strength was replaced with spike firing rates or with theta

power/beta SFC (Figures S5A–S5C). We also did not find signif-

icant differences between ranks in terms of memory-encoding

neurons’ preferred theta phase distributions (Figure S5D).

Notably, while the same neuronal units were used to compute

S1/S2 SFC and S1/S2 memory subspaces, the neural activities

used for memory subspace computations did not come from

the same time period as SFC computations (late delay for

TDR, post-S1/S2 onsets for SFC). Thus, the observed correla-

tions between S1/S2-SFC and S1/S2-FW were unlikely to be

due to overlapping data. Additional analyses with session-wise

built multiple linear regression models provided further evidence

of SFC strength-specific rank selectivity, allowing us to examine

the difference between models built with data from correct trials

(Figures 4G, left, and S5E) and error trials (Figures 4G, right, and

S5F). While S1 SFC strength was preferentially associated with

higher spike S1 FW even using error trial data, the same did

not hold for S2 SFC strength 3 spike S2 FW (Figures 4G, right,

and S5F). Quantifying the degree of rank selectivity of SFC 3

FW using correct vs. error trials also yielded comparatively

greater selectivity with correct trials (Figure 4H). Overall, these

results suggested that proper spike-theta coupling may be

crucial to transforming rank-independent entry into appropri-

ately rank-dependent memories.

Information binding generalization to 3 items
Thus far, using data from the 2-item SWM task across all

correctly performed trials, we were able to identify orthogonal

representations of rank-independent stimulus entry and rank-

dependent memories from both unit and LFP signals. We had

focused on spike-theta coupling as the main conduit through

which rank-independent information was selectively gated into

SWM. If our hypothetical theta control mechanism indeed
periods (0–250 ms post-onset). Solid-colored circles represent neurons involved

responding to sequence stimuli at a given stage. Orange circles represent the so

(B) Post-stimulus-onset theta-range (4–8 Hz) spike-field coherence (SFC) appear

represent grand averages over session-wise SFC (monkey O: n = 13; for monkey

based on ANOVA analysis as in Figure S2C), with shading for SEM across session

was in turn averaged from unit-wise SFCmeans over all possible theta sources. El

alone (Figure S4E). ***p < 0.001, two-sample t tests (Sig vs. NonSig for each freq

(C) Example SFC from all possible theta source channel pairings of one unit sour

SFC post-S2 (right).

(D) Illustration of unit activity-based TDR subspace feature weights (FWs) as unit

(E) Illustration of putative SFC3 subspace FW relationship. If SFC strength sufficie

then higher SFC strength should in turn predict larger FW of the corresponding s

(F) SFC strength (here measured unit-wise as sums of pairwise SFC across all p

memory FW, i.e., R1 SFC x S1 memory FW association is stronger than R2 SFC3

each session and then concatenated. Gray violins indicate distributions of perm

coefficient values. ***p < 0.001; **p < 0.01; ns, non-significant.

(G) Single-session results of correct (left) vs. error (right) trial SFC strength3 FW li

For monkey-wise results, see Figures S5E and S5F. Paired two-sample t tests: *

(H) SFC selective indices (sum of [b(SFC-S1) � b(SFC-S2)] magnitudes) of correc

two-sample t test, p = 0.00596). Sessions from monkeys O and G are pooled he

See also Figures S4 and S5.
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operated as expected, we should be able to gather further sup-

porting evidence through the maintenance of rank selectivity in

tasks with longer sequence length. We therefore trained both

monkeys to learn a 3-item sequence reproduction task (Fig-

ure 5A) to test whether such theta control can generalize to

longer sequences. Both monkeys performed the task well (Fig-

ure 5B). We computed S1/S2/S3 SFC matrices using similar

post-stimulus periods as before and extracted TDR entry/mem-

ory subspace FWs in the samemanner as for the 2-item task.We

found that the distinct anatomical segregation of spike memory

subspaces remained significant as in the 2-item task (Figure 5C;

p < 0.001 for all x/y-marginal difference tests except S2 vs. S3

x-marginal of monkey O; effect sizes: monkey O, S1 vs. S3:

0.613/0.623, S1 vs. S2: 0.617/0.140, S2 vs. S3: 0.0469/0.601;

monkey G, S1 vs. S3: 1.06/1.02, S1 vs. S2: 0.245/1.03, S2 vs.

S3: 1.12/0.238). We next evaluated whether the extended

rank-dependent spike memory subspaces would also preferen-

tially associate with SFC strength of corresponding ranks, in line

with our proposed stimulus-to-memory pipeline via theta con-

trol. We constructed multiple linear regression models, each

with the 3 rank-specific SFC strengths as predictor variables,

and with one rank’s spike memory subspace FW as response

variable. For both monkeys, we found significant rank selectivity

via stepwise regression, whereby S1/S2/S3 memory FW ap-

peared most associated with S1/S2/S3 SFC, respectively

(Figures 5D and S5G; Table S1). Stepwise models were chosen

over simple 3-predictor linear models to better describe FW 3

SFC relationships in light of greater collinearity andwith less prior

assumption on predictor membership. As was the case under

the 2-item task, this rank selectivity was in turn impaired in error

trials (Figure S5H). Our key results based on 2-item sequences

were therefore generalizable to 3-item sequences.

DISCUSSION

By decomposing unit and LFP data from macaque electrophys-

iological recordings, besides previously identified unit-based

rank-independent entry and rank-dependent memory sub-

spaces,2 we discovered that theta band LFP could support entry
in the entry or memory subspaces, while hollow circles represent neurons not

urce channels of theta oscillations in the SFC.

ed consistently greater for task-relevant units than for other units. Solid traces

G, see Figure S4D) of either informative or non-informative units (Sig/NonSig,

s, and each session’s SFC over frequencies (computed in ±2Hz frequency bins)

evation of Sig SFC over NonSig could not be explained by firing rate differences

uency bin).

ce with generally higher SFC post-S1 (left) and another unit source with higher

-wise contributions toward subspace geometry.

ntly describes the degree of rank-selective theta control received by each unit,

pike memory subspace. Example 1/2 units are the same ones in (B).

ossible theta sources) displays rank selectivity in their correlations with spike

S1 FW, and vice versa for S2 FW. SFC/TDR-FW was computed separately for

utation-based linear model coefficients, and plus-sign markers show actual

near models. Note that rank selectivity seen in (F) is not preserved in error trials.

**p < 0.001; **p < 0.01; ns, non-significant.

t trials are generally higher than those of the same sessions’ error trials (paired

re.



Figure 5. Generalization of SFC-based selective gating in 3-item trials

(A) Diagram for the encoding period of 3-item trials in additional recording sessions.

(B) 3-item task performance (x axis for the animal’s actual reports, colored lines for the task demands). Note the relatively higher error chance when the animals

should report ranks 2/3. Error bars: standard deviation across sessions (n = 10/11 for monkey O/G).

(C) Estimated regions of microdrive array space of highest contribution to 3-item task spike memory subspaces. Color bars indicate counts of permutations as in

Figures 3C and S3B.

(D) Rank-selective gating is reflected among correlations between SFC strength values and rank-specific spike memory subspace FW for monkey O. Gray violins

depict distributions of permutation-based linear model (based on final models in Table S1) coefficients, and plus-signmarkers show the actual model coefficients

(dash line markers indicate predictors removed during stepwise regression). For monkey G, see Figure S5G. ***p < 0.001.

See also Figure S5 and Table S1.
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subspaces. Theta oscillations also displayed rank selectivity via

unit-LFP coupling, with units contributing rank-dependently to

different memories of constituent items within a sequence,

providing a possible neural mechanism for the information trans-

fer between entry and memory subspaces. Such a control pro-

cess was apparently disrupted in error trials and could be gener-

alized to longer sequences. Thus, our research combines the

representational geometry of SWM in macaque frontal neuronal

populations and neural oscillations to arrive at a potential mech-

anism of selective gating, i.e., unit-LFP coupling controls the

ordinal rank-appropriate transformation of stimulus-entry repre-

sentation into SWM.

Our sequence task with multiple WM items possessing visuo-

spatial and ordinal aspects also gives us the opportunity to

probe the more general question of contextual variable binding

as a form of cognitive control. In our task, during rank-selective

gating of incoming visuospatial stimuli, the unit-based entry

and memory subspaces were the objects being controlled, and

the theta SFC-based rank-to-item binding controls the transfor-

mation from entry-to-memory subspaces. The rank-dependent

memory signal is the result of the binding process and is respon-

sible for the maintenance of working memory after binding. Se-

lective gating could thereby be seen as a special case of variable

binding, which has been proposed to rely on the prefrontal cor-

tex and is crucial to human cognition.34,35 Our results regarding

frontal theta control in SWMmay therefore have broader implica-

tions on how the brain achieves flexible symbolic processing,

namely that lower frequency oscillatory activity is capable of
carrying rules of operation while higher-frequency oscillatory/

spiking activity simultaneously carries the operand(s). Besides

our own work, recent experimental evidence pointing in the

same direction also exists in the form of cross-structural (frontal

to hippocampal) theta-gamma/unit coupling to integrate WM

storage and control.36 On the more theoretical front, there

have been ongoing attempts to generalize cognitive control

along the stimulus-to-memory pipeline by integrating attention,

WM, and long-termmemory,22,37,38 such that the putative selec-

tive gating mechanism we have identified in this work could, in

principle, be extrapolated by follow-up studies onto more volun-

tary perceptive/attentional selection22 and/or memory (re)-acti-

vation with flexible weights into fixed activation slots.38

While cognitive control over WM items via neural oscillations

is conceptually well-established, particularly with regard to

theta-modulated unit activity18,26,36 and the theta-gamma

code,15,30,39,40 much of the currently accumulated evidence re-

mains at the level of behavioral correlations with presence/

absence of theta-unit modulation18,26 or theta-gamma cou-

pling,15,16 and seldom venture into providing direct evidence for

mechanistic descriptions of theta control. By exploiting the inher-

ently composite characteristics of sequences in WM, we were

able to extract from neural data (both unit and LFP) orthogonal

subspaces representing stimulus entry andmaintainedmemories

of stimulus identity. Our group’s earlier works with unit-based

subspace analysis have shown that the formation of sequential

memory involves a transition from a shared rank-independent en-

try subspace to rank-dependent memory subspaces that are
Current Biology 35, 1495–1507, April 7, 2025 1503
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separate and orthogonal.1,2 Therefore, the key to this perception-

to-cognition transition lies in controlling the selective binding of

rank-independent target representation to a given ordinal rank.

As suggested by another recent study, the control signals (e.g.,

the rank of each item) modulating the item representations en-

coded by different locations in a networkmay be reflected in neu-

ral oscillations that act on separate neuronal populations.28 Our

results have explicitly demonstrated how the item information

might be controlled to selectively bind to the corresponding rank

through theta-unit coupling, and such coupling can flexibly allo-

cate the weights of neurons corresponding to different rank-

dependent memory subspaces to achieve the transformation of

entry to specific memory subspaces. This SWM control mecha-

nism could, in principle, be extended to studies involving (partic-

ularly frontal theta) oscillatory control beyond selective gating

and SWM, such as conscious awareness,12 decision-making,41

or voluntary attention against distraction,33 to improve our under-

standing of neural dynamics underlying key cognitive functions.

In our work, both memory maintenance and control could be

implemented locally, i.e., within the frontal cortex, despite non-

local theta-spike locking occurring at a relatively smaller scale

as represented by spike-based subspaces and oscillation-

based connectivity patterns. Although frontal theta activity is

frequently investigated and has been our focus throughout

this study, theta oscillations are by no means so limited in

scope or origin.42–44 Classical cross-regional theta-WM associ-

ations have been found over the neocortical frontoparietal

network,33,45,46 as well as cortico-subcortical coupling that in-

volves the hippocampus and/or basal ganglia.34,36,47,48 The

binding of items to corresponding ranks might also occur in

the hippocampus, which could organize the sequence received

via cortical inputs and relay it back to the frontal cortex as

needed.20 Another possibility is that, rather than directly modu-

lating frontal neurons, frontal theta oscillations might primarily

modulate hippocampal neurons.36 The frontal neurons modu-

lated by theta oscillations may represent those that synchronize

with hippocampal neuronal activity, likely facilitating communi-

cation between the two regions. While our recordings covered

a larger extent of the frontal neocortex than would be possible

with more traditional microelectrode arrays,25 they leave room

for further exploration of brain-wide large-scale thetamodulation

as a key aspect of cognitive control. The present results do not

exclude the possibility that multiple cognitive control mecha-

nisms may coexist with our proposed form of theta control,

potentially sharing oscillatory components and/or participant

brain regions.

Crucially, cross-channel frontal theta modulation over spikes

in our results appeared to disambiguate between competing

memories at a given ordinal rank in time, implying that control-

related information may be carried by changing spatial coupling

distribution. Similar conceptualization of ‘‘spatial computing,’’

where changing spatial distributions of active neural compo-

nents could encode aspects of WM task control, has only

recently been proposed regarding beta-gamma activity.28,49

Our work is among the first to provide direct evidence of such

spatial computing and likely the first to extend this formulation

to meso-scale cross-channel coupling. In addition, the anatom-

ical segregation of theta entry channels from spike entry/mem-

ory indicates that theta oscillation may play a role as a driver
1504 Current Biology 35, 1495–1507, April 7, 2025
for such spatial computing-based subspace transformation,

which could theoretically allow generalization of spatially distrib-

uted oscillatory modulation to other cognitive control demands

beyond rank-item associations. While our results differed from

earlier demonstrations of beta-based spatial computing in that

our putative control signal lies in the theta range (with no clear ev-

idence for beta having a similar role), these findings are not in

conflict. Besides potential frequency band-wise multiplexing of

information processing as already observed in the gamma

band,50 beta-based WM control was potentially regulating se-

lective inhibition of information,49 such as attention selection in

salience-goal conflict tasks51 and sensory input selection in

working memory tasks with distractors.33 By contrast, our

theta-based WM control mechanism is more closely associated

with stimuli gating. Similarly, our results on similar preferred

phase distributions across ranks were also obtained from the en-

coding period instead of the delay period during which earlier

findings of different preferred phases for multiple WM items26

were established, and present data are insufficient to claim

that WM control via phasic modulation would preclude spatial

computing, or vice versa. Regardless, since low-frequency oscil-

latory activity seems generally more suited to large-scale control

due to relative ease of propagation,52 future studies may be able

to generalize our findings to other oscillatory couplings of the

form ‘‘low-frequency controller/modulator and high-frequency

(bottom-up) information-aspect carrier.’’

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the lead

contact, Liping Wang (liping.wang@ion.ac.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability
d Data used for analyses in this study are available fromScienceDB via the

DOI listed in the key resources table as of the date of publication.
d All original code has been uploaded to ScienceDB and is publicly avail-

able via the DOI listed in the key resources table as of the date of pub-
lication.

d Any additional information required to reanalyze the data is available
from the lead contact upon reasonable request.
ACKNOWLEDGMENTS

We thank Dahui Wang and Yang Xie for their comments on the manuscript.

This work was supported by the National Science and Technology Innovation

2030 Major Project 2021ZD0204100 (2021ZD0204102), the National Science

Fund for Distinguished Young Scholars (32225022), the CAS Project for Young

Scientists in Basic Research (YSBR-071), and the CAS Strategic Priority

Research Program XDB1010202 to L.W.; by the National Science and Tech-

nology Innovation 2030 Major Project 2021ZD0204200 (2021ZD0204204)

and the CAS Youth Innovation Promotion Association (2023000024) to W.F.;

and by the National Natural Science Foundation of China grants to W.F.

(32100830) and to X.J. (32200834). L.W. is a SANS (Shanghai Academy of Nat-

ural Sciences) Exploration Scholar.

AUTHOR CONTRIBUTIONS

Conceptualization, L.W.; methodology, L.W., F.W., and X.J.; formal analysis,

F.W. and X.J.; investigation, J.C. and C.Z.; writing – original draft, X.J. and

mailto:liping.wang@ion.ac.cn


ll
Article
F.W.; writing – review & editing, L.W., F.W., and X.J.; funding acquisition, L.W.,

F.W., and X.J.; resources, J.C. and C.Z.; supervision, L.W.

DECLARATION OF INTERESTS

The authors declare no competing interests.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include

the following:

d KEY RESOURCES TABLE

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

d METHOD DETAILS
B Behavioral task

B Surgical procedures and implants

B Electrophysiological recording and data preprocessing

B Time-frequency analysis

B Single neuron and band-limited LFP tuning properties

B Cross-time/rank generalization decoding of stimulus location

B Subspace decomposition of unit and LFP activity

B Comparing distributions of subspace feature weights

B Percent explained variance (PEV) analysis

B Spike-field coherence (SFC)

B Linear models for decoding weights and SFC
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

cub.2025.02.031.

Received: November 28, 2024

Revised: January 27, 2025

Accepted: February 17, 2025

Published: March 13, 2025
REFERENCES

1. Xie, Y., Hu, P., Li, J., Chen, J., Song, W., Wang, X.-J., Yang, T., Dehaene,

S., Tang, S., Min, B., et al. (2022). Geometry of sequence working memory

in macaque prefrontal cortex. Science 375, 632–639. https://doi.org/10.

1126/science.abm0204.

2. Chen, J., Zhang, C., Hu, P., Min, B., andWang, L. (2024). Flexible control of

sequence working memory in the macaque frontal cortex. Neuron 112,

3502–3514.e6. https://doi.org/10.1016/j.neuron.2024.07.024.

3. Singer, W., Engel, A.K., Kreiter, A.K., Munk, M.H., Neuenschwander, S.,

and Roelfsema, P.R. (1997). Neuronal assemblies: necessity, signature

and detectability. Trends Cogn. Sci. 1, 252–261. https://doi.org/10.

1016/S1364-6613(97)01079-6.

4. Fries, P. (2015). Rhythms for cognition: communication through coher-

ence. Neuron 88, 220–235. https://doi.org/10.1016/j.neuron.2015.09.034.

5. Gray, C.M., König, P., Engel, A.K., and Singer, W. (1989). Oscillatory re-

sponses in cat visual cortex exhibit inter-columnar synchronization which

reflects global stimulus properties. Nature 338, 334–337. https://doi.org/

10.1038/338334a0.

6. Steinmetz, P.N., Roy, A., Fitzgerald, P.J., Hsiao, S.S., Johnson, K.O., and

Niebur, E. (2000). Attention modulates synchronized neuronal firing in pri-

mate somatosensory cortex. Nature 404, 187–190. https://doi.org/10.

1038/35004588.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Three healthy male adult rhesus monkeys (Macaca mulatta, 7-8 years old, 9-10 kg, group housing with individually separate enclo-

sures), with no prior history of research participation, were used in our experiments. All research procedures (surgical and experi-

mental) were conducted following approval by the ethical committee of the Center for Excellence in Brain Science and Intelligence

Technology (formerly the Institute of Neuroscience), Chinese Academy of Sciences, and conformed to the regulatory standards of the

Chinese National Guidelines (GB/T 35892-2018) on animal welfare.

METHOD DETAILS

Behavioral task
After acclimation to custom-built primate chairs over 2-3 weeks, for each task session, monkeys were seated facing a 21.5’’ LED

monitor, with head position fixed and a liquid reward guide tube set in front of their lips. A horizontal slot on the chair allowed reaching

and pulling of a rod/lever that could send pull/release time markers to the electrophysiology recording computer. Each trial was initi-

ated when the performingmonkey voluntarily pulled the rod andmaintained visual fixation for 1 second over a yellow cross appearing

at the center of the monitor. Eye positions were recorded by an infrared eye-tracking system (Eyelink, SR Research Ltd.) at >250 Hz

sampling rate. Once the monkey achieved fixation and held the rod in place (both must then be maintained until the cue to respond

appeared, or the current trial would terminate early), the center dot would becomewhite (‘‘cue-frame’’), and the sample period for the

current trial would begin after 500 ms.

In each trial, during the sample period, 2 stimuli identical in size (2� in diameter, 11� away from the screen center) and in color (white)

were presented sequentially. The stimuli were randomly drawn from six candidate spatial locations—marked by empty circles 100ms

appearing after fixation—of a hexagon surrounding the center dot without replacement. The probability for all possible sequences

(30 in total, since stimuli 1 and 2 cannot appear at the same location) to appear for each trial was balanced so that each unique

sequence appeared in�1/30 of trials of a given task session. Each stimulus was set to disappear after 250 ms, so that after the sec-

ond stimulus was presented, the monkeys had to maintain the ordinal ranks and spatial locations of the stimuli in working memory in

order to receive the reward at trial’s end. The interval between stimulus 1’s disappearance/offset and stimulus 2’s appearance/onset

was randomly set to between 300 and 500 ms for each trial.

After the delay period following stimulus 2’s offset (500-700 ms), a ‘‘rule’’ cue (pictures of various fruits) was presented adjacent to

the center dot to signal the correct way to reproduce the sequence, i.e. in either the sample order (‘‘repeat’’ trial) or the reverse order

(‘‘mirror’’ trial), by making sequential touches to the appropriate locations on the screen. Each trial’s reproduction rule was deter-

mined pseudo-randomly prior to trial start. Following the 3R principles of animal use in research,56 the monkeys used in this study

were taught to learn behavioral tasks most relevant to the largest number of research projects; therefore, while this work only utilized
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data and behavioral records for the encoding period (prior to rule cue) of this task, the full task structure is reported here for

completeness.

After the rule cue offset (250 ms) and another delay (500-800 ms, set randomly each trial), the center white dot turned blue (‘‘go’’

cue), initiating the response period. From this point on, the monkeys were freed from fixation and could release the rod to touch the

screen. Touching correct locations would turn them white, while touching erroneous locations would turn them blue. The trial termi-

nation criterion was set to be ‘‘error-stop’’: whenever an erroneous location was reported, the trial was terminated. When a sequence

was reproduced correctly in full, a drop of water was given as reward. All monkeys (O, L, and G) were given length-2 sequences with

reproduction order rules during electrophysiological recording, as well as additional sessions with length-3 sequences where the

reproduction rule was set to forward repetition only. For monkeys O, L, and G, daily electrophysiological recording sessions (with

task whenever animal condition permits) took place over 6, 8, and 5months, respectively. Only recording sessions with >60%overall

sequence reproduction accuracy and with more than 100 units were included for analysis. Due to poor recording quality (averaging

20 units per session), monkey L had no recording session that could fit both criteria.

Surgical procedures and implants
Each monkey received implantation of a 157-channel semi-chronic icrodrive recording system (Gray Matter Research USA)25 with

independently adjustable tungsten electrodes (AlphaOmega, �1MU, 1.5 mm spacing) in the left hemisphere over the frontal cortex.

Custom-built (i.e. form-fitted to the skull surface) recording chamber and head holder were designed for eachmonkey and aligned to

pre-surgical MRI/CT in 3D Slicer,57 so that the chamber and the enclosed microdrive could cover as large an extent of the frontal

cortex as possible, and that the head holder over the right hemisphere could be securely attached to the skull alongside the chamber

on the left side.

Four surgeries were performed per animal over 2-3weeks: 1, implant the head holder; 2, implant the recording chamber; 3, perform

craniotomy; 4, install the microdrive. To fix both the chamber and the head holder to the skull, screws (ceramic for head holder, ti-

tanium for chamber) and bone cement were applied during surgery. Immediately after chamber implantation, Single Bond Universal

Adhesive resin cement (3M Inc., USA) was applied over the chamber-skull junction for sealing. Oneweek after chamber implantation,

biological fluid found in the recording chamber was removed by swab and cultured to verify sterility. The craniotomy surgery was then

performed to remove only the skull within the chamber, trimming the boundary of the craniotomy to align with the chamber’s internal

walls while leaving the dura intact. A dummy plug was then applied to seal the chamber, and a sterility test was performed after

another week. During the next (and last) surgery, the leftover dura within the craniotomy was removed; the microdrive was implanted

afterwards, then mounted to the chamber with screws. The gap between the microdrive’s bottom end and the cortical surface was

filled with dura gel for protection. All pre-surgical and surgical procedures conformed to the regulatory standards of the Chinese Na-

tional Guidelines (GB/T 35892-2018) on animal welfare.58

Electrophysiological recording and data preprocessing
Individual microelectrodes were gradually advanced into the cortical surface from two days post-microdrive implantation. All elec-

trodes were moved across the electrically insulative dura gel and into the cortical surface (as evaluated by nanoZ impedance tester)

within one week to avoid blockage due to dura hyperplasia. Electrode advancement was then slowed down to allow daily check of

spike waveforms online, which were recorded alongside broadband electrophysiological signals at 40 kHz through the data acqui-

sition system (OmniPlex, Plexon Inc.), where eye position and task event markers were also simultaneously registered. For offline

spike sorting, the broadband signal was bandpassed via Butterworth filter between 300 and 8000 Hz, then clustered using Ironclust

(variant of JRCLUST55) and manually curated with the Plexon Offline Sorter.

To prepare local field potential (LFP) data for subsequent analyses, offline preprocessing was performed using the Fieldtrip

toolbox54 and customs scripts under MATLAB 2020b. Broadband data were downsampled to 1000 Hz and notch-filtered (zero-

phase) with 50 Hz harmonics up to 150 Hz. Electrode positions were identified by alignment of post-surgical CT with pre-surgical

MRI, and corresponding channels where electrode tips fell within white matter or ambiguously identified regions were excluded

from this study. Channels with frequent sharp transient artifacts due to animal movement and/or faulty cable contact were also

excluded after visual inspection with Fieldtrip. A common median reference was then applied to the remaining channels. For

2-item task sessions, two additional preprocessing steps were performed: 1, due to common low-frequency noise from contact be-

tween headstage cable and port, a 32-channel-wise common average re-referencing was applied; 2, due to the prevalent occupancy

of spikes in the majority of channels potentially introducing spurious spike-LFP coupling, unit spike waveforms were removed from

the original 40 kHz signal using a Bayesian algorithm59 before other LFP preprocessing steps. Prior to further analyses, stimulus-

locked low-frequency ‘‘evoked potential’’ responses were subtracted from trial-wise trimmed LFP data to minimize interference

with task-relevant oscillatory signals.26

A total of 13/10 2-item task recording sessions for monkeys O and G with the best overall behavioral performance and recording

quality were included in this study. For monkey O, a total of 1,390 frontal neurons (originally 1,508; 1,390 is the number on channels

with usable LFP andwith one sorted neuron per electrode; rare occurrences (<<1%of data) with the same channel recordingmultiple

units were excluded from this study) were recorded across days (one data set per day); for monkey G, 824 suitable neurons were

recorded. 10/11 sessions of 3-item task data from monkeys O and G were also included in this study, containing a total of 937/

939 neurons. After LFP preprocessing, 146 and 141 out of 157 total channels in monkeys O and G, respectively, were retained for

further analyses.
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Time-frequency analysis
Time-frequencymatrices of sequenceworkingmemory task event-related spectral power (ERSP, as shown in Figure 1E) were gener-

ated from the preprocessed LFP using EEGLAB,60 with ERP removal via subtraction of channel-wise mean LFP over trials.26 Each

channel’s ERSP was calculated from 2 to 200 Hz in 1 Hz steps with Morlet wavelets (<=1-second window; linearly increasing cycles

from 1 cycle onward up to 50 cycles, Hanning-tapered window applied) over LFP segments covering [-1500, 5500] ms around the

post-fixation cue-frames (as detailed in the ‘‘Behavioral task’’ section above) of all correctly performed trials, then time-warped61 to

match subsequent visual stimuli occurrence times across trials. The resulting time-frequency matrix was then normalized with

respect to mean power at -1000 to -500 ms before the cue-frame time, and masked with false discovery rate (FDR)-corrected

two-tailed bootstrapping significance (n=200, a=0.05) using the same pre-cue-frame time range as baseline. Channels were deemed

to contain significant event-related LFP signal if they coveredmore than +-2.5x ERSP versus baseline across all significant bins of the

time-frequency matrix, or had >5 significant bins at >=80 Hz during encoding.

Single neuron and band-limited LFP tuning properties
For each unit defined by spike sorting (or each channel’s bandpassed LFP), its tuning property was visualized (Figures 1G, 1H, S1F,

and S1G) by computing mean firing rates (mean Hilbert amplitude for LFP) of all correct trials in 100 ms consecutive time bins with

50 ms steps, then computing across-trial averages grouped by stimulus identity (dot positions 1-6 on the screen). To further evaluate

neuronal/LFP tuning with respect to participation in stimulus entry and/or in memory maintenance during the two-item sequence

task, three distinct time periods were defined: 0-250 ms after first stimulus presentation (stimulus period S1), 0-250 ms after second

stimulus presentation (stimulus period S2), and -250-0 ms before the rule cue (delay period). Each neuron’s mean firing rate (FR) (or

each channel’smeanHilbert amplitude) for each period across each trial group (first or second stimulus/target, dot positions 1-6) was

then computed, and an ANOVA test was conducted over all periods and firing rates/amplitudes to identify significant selectivity (Fig-

ure S2C). Neurons/channels with selective spatial tuning in both stimulus periods and no significant interaction of stimulation position

and rank were designated as stimulus entry-related, while those with tuning in the delay period were designated as memory-related;

these designations are not mutually exclusive.

Cross-time/rank generalization decoding of stimulus location
Time generalization decoding (Figures S3A, S3C, S3E, S3G, S3I, S3K, and S3M) was performed with support vector machine clas-

sifiers implemented using the scikit-learn toolbox. Classifiers were first trained to identify the stimulus location (1 out of 6 possible) of

rank-1 or rank-2 from each time window, then applied to predict the target location at all time windows across the whole trial. Three-

fold cross-validation was implemented by splitting the neural data into 3 subsamples, each randomly drawn from the entire dataset.

Decoders were then trained on 2 of the subsamples and tested on the remaining subsample, with this process repeated using all 3

subsamples as test data once. This cross-validation process was repeated 1000 times and the overall decoding accuracy was taken

as the mean across the 1000 repetitions. Statistical significance for decoding accuracy was determined by comparing mean decod-

ing accuracy from the original data of each time window against the accuracy from the shuffled data of the corresponding time. For

the rank generalization decoding (Figures S3B, S3D, S3F, S3H, S3J, S3L, and S3N), we trained classifiers of rank-1 (rank-2) stimulus

location (i.e., target item identity) from each time window to predict the stimulus location of rank-2 (rank-1) across the whole trial.

Subspace decomposition of unit and LFP activity
Targeted dimensionality reduction (TDR)62 was performed to identify low-dimensional entry and memory subspaces capturing vari-

ance related to the stimulus location of each rank (Figures 2E–2I and S2D–S2F). To construct the TDR space, multivariate linear

regression was applied to build generalized linear models (GLM), thereby estimating how the stimulus location in different ranks

affected the responses of each unit (power of each channel). The neural data were first averaged across the given time windows,

and the activity of a given neuron/LFP channel was centered by subtracting its mean response from all trials. To determine the mem-

ory subspace, the neural activity was averaged from the last 250 ms of the post-S2 delay period, and the time windows 250 ms post

stimuli onset were used for entry subspace. Since the target location l is a categorical variable, dummy coding (using x-1 dimensions

to describe x categories) was used to represent the variables in the linearmodel. The z-scored responses of unit (channel) n as a linear

combination of these two ranks could be described as follows:

RnðiÞ =
Xr

1

X5

1

bnðr; lÞxrðlÞ+bnð0Þ

Where RnðiÞ is the z-scored response of unit/channel n on trial i, and xrðlÞ is the stimulation location in rank-r. The regression coef-

ficient bnðr; lÞ estimates how much trial-by-trial firing rate of unit/channel n depends on the corresponding rank.

To identify the subspace of each rank, the regression coefficients bðr; lÞ (dimension: neuron/channel number n 3 5) were used to

represent the low dimensional subspaces containing the most response variance at different ranks. For each rank (e.g. bðr;lÞ;r = 1;

l = 1;.;5), principal component analysis was performed to identify the first two axes that captured themost response variance. The

rank-r subspace is:

Wr = bnðr; lÞ U2
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Where U2 holds the first two dimensions of the PCA projection matrix.

The orthogonal subspaces of different ranks were obtained by orthogonalizing the two-dimension subspaces of all ranks with the

QR-decomposition:

W = QR

WhereW is amatrix whose columns correspond to the dimensions of all rank subspaces,Q is an orthogonal matrix, andR is an upper

triangular matrix. The first two columns of Q (Wt
1 ) correspond to the orthogonalized axes of rank-1 subspace, while the third and forth

columns of Q (Wt
2 ) correspond to the orthogonalized axes of rank-2 subspace.

The TDR analysis is similar for determining entry subspaces, with several changes to the GLM design. To capture the variance of

target stimulus identity while ignoring the rank information, neural activity of both ranks (0-250 ms after rank-1 and rank-2 stimuli on-

sets) were grouped. Thus, the linear model is:

RnðiÞ =
Xl

1

bnð lÞxðlÞ+bnð0Þ

Where xðlÞ is the stimulus location of rank-1 and rank-2 in all trials with dimension of (trial number * 2) 3 5, and RnðiÞ is the neural

activity of each neuron/channel.

To evaluate the variance explained by each subspace, we performed SVM decoding on the data projected onto the memory and

entry subspaces. The overall decoding accuracy was taken as the mean across all recording sessions/days. The chance level was

estimated from the shuffled data of the corresponding time. 99% confidence interval of the shuffled data was determined by aver-

aging the confidence intervals from all days. Then, the statistical significance for decoding accuracy was determined by comparing

mean decoding accuracy from the original data of each time window against the accuracy from the shuffled data of the correspond-

ing time.

To determine the contribution of each neuron/channel to a given subspace, the corresponding vector of the original neuron/chan-

nel axis was projected onto a given rank subspace. The norm of the projection vector on the rank subspace measured the degree of

neuron/channel n’s contribution to the rank subspace:

fwn = normðWtðnÞÞ
Where fwn is the feature weight of neuron/channel n. WtðnÞ is the n-th projection vector corresponding to the neuron/channel n.

TDR subspace feature weights could then serve as summaries of howmuch individual theta channels and single neurons contributed

to higher-dimensional neural population dynamics; the degree to which theta and unit feature weights for subspaces of similar nature

could share channel origins could then describe also their functional/anatomical overlap or the lack thereof (e.g., Figure 3C).

Comparing distributions of subspace feature weights
Mean (over sessions) feature weights of theta entry, spike entry, and spikememory subspaces were plotted onto 2D projection maps

of the microelectrode array grid in anatomical space (defined by lateral-medial and anterior-posterior axes) to obtain spatial distri-

butions (Figures S4A and S4C). For better evaluation of the true anatomical distributions of peak mean feature weight locations,

1,000 random resamples were taken over the original mean feature weights (40 locations per resample, computing mean location

of top 4 within) to generate 2D spatial distributions of estimated peak locations and the corresponding 1D marginal histograms

(Figures 3C and S4B). Statistical evaluations of marginal histogram center location differences were performed via two-sample Wil-

coxon rank sum tests, with effect sizes computed accordingly (test metric divided by square root of sample size).63

Percent explained variance (PEV) analysis
The percentage of explained variance (PEV) was used to evaluate the degree to which the variance of a single neuron/LFP channel

can be used to explain visuospatial stimulus locations. Generally, PEV can be expressed as a statistical value of h2, i.e., the variance

ratio between groups to the total variance. As the statistical value of h2 has a strong positive bias for a small sample, the unbiased u2

statistical value (uPEV) was used.64,65 The uPEV was calculated in each time bin to characterize the temporal dynamics of neural

information of stimulation location. The baseline for each ordinal rank was defined as the period of 0-250 ms before that rank’s stim-

ulus onset. Permutation tests using 1,000 random resamplings of trials were then performed to determine whetheruPEV of each time

bin significantly differs from the baselineuPEV. Only time periods that remained significant for three consecutive time windows were

marked as having significant uPEV, i.e. encoding information regarding stimulus location (Figures 2A and S1E).

Spike-field coherence (SFC)
To evaluate the coupling between theta activity and neuronal spiking during the encoding period of sequenceworkingmemory tasks,

cross-channel SFC (both magnitude and overall preferred phase) was computed using the Chronux toolbox.53 For each ordinal rank,

0-500ms (except for Figure 4Cwhere 500 ms size, 50 ms step sliding windows were taken) post-stimulus-onset was chosen to build

a time-by-trial LFP matrix and a trial-wise spike train set for every channel pair: one channel as the source of LFP from 2-140 Hz with

shifting 4 Hz bins (2 Hz step, for Figures 4B and S4D) or from the theta band (4-8 Hz, for other analyses), the other as the source of

spikes. Channel x unit pairings are unique; rare cases where multiple units were recorded by the same channel had been excluded
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from this study (see ‘‘Electrophysiological recording and data preprocessing’’ subsection above). To obtain an estimate of the theta-

range spectrum over a given spike train, for instance, the time-bandwidth product was set to 3, using 5 tapers spanning 2-10 Hz. The

multi-taper estimate of spike spectrum SðfÞ at frequencies f across all T taper functions is usually computed as:

SðfÞ =
1

T

XT � 1

t = 0

ED
T ðfÞ

with ED
T representing eigenspectral estimates obtained from individual taper functions over D samples. Given the limited post-stim-

ulus timewindow, a single taper equivalent to a Hammingwindowwas chosen from themulti-taper estimate that could best cover the

range of 4-8 Hz. SFC could then be computed for each channel pair as coherence magnitude between the chosen spectral estimate

of the current spike train set and the corresponding LFP, yielding a square matrix of trial-average SFC at each ordinal rank, with rows

for theta-origin and columns for spike-origin. Sums across columns, denoted as SFC strength (i.e., higher value indicating local unit

being influenced by more widespread theta activity), would thereby allow evaluation of selective association between SFC and

different neural subspaces on a channel-wise basis.

Linear models for decoding weights and SFC
Linear regression models were built to examine the relationships among unit/LFP TDR subspace feature weights (i.e. mean b values

over all trained linear support vector machine classifiers and across the time period used for subspace decomposition) and SFC

strength. Modeling SFC strength with spike memory subspace feature weights to establish theta modulation as a putative selective

gating mechanism required multiple linear regression models (data concatenated across days; spike feature weights normalized by

z-score before concatenation) where all ordinal ranks’ SFC strength were set as predictor variables, with each rank’s memory feature

weights as response variable. To better illustrate rank-selective associations between spike subspace and SFC strength, permuta-

tion tests with 1,000 sets of channel identity-shuffled feature weights were performed to compare each model coefficient against a

random distribution (Figures 4, 5, S4F, S5A–S5C, S5G, and S5H). Models using three-item task data were produced via stepwise

regression (Table S1) with linear terms and with SSE (p-value for an F-test of the change in the sum of squared error) as criterion

to add (p <= 0.05) or remove (p >= 0.1) terms.
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