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Figure S6: Closed-loop re-aiming reproduces the differences in WMP and OMP learning.
a. Mean squared error (mean over target readouts) achieved by closed loop control with eK = 2 command variables, as a
function of time. Each line corresponds to performance on a different decoder, with a correspondingly optimized feedback
controller, (Ĝ; b̂) (equation 41).

b. Mean squared error (mean over target readouts and over time) achieved by error feedback controllers with eK = 2
command variables. Each point corresponds to a different decoder, with medians over all decoders in each class marked by
the height of the bars.
c. Mean squared error (mean over target readouts and over time) achieved by error feedback controllers optimized for

each OMP, with eK = 2; 4; 6; 8; and 10 command variables. Light blue points denote this quantity for individual OMP’s,
larger open circles on top show the median. For reference, dotted horizontal lines show the mean squared error achieved
by optimized error feedback with eK = 2 command variables for the baseline decoder (black) and WMP’s (red); the red
dotted line shows the median over all sampled WMP’s with shading marking the upper and lower quartiles.

this time window of 1000ms. However, this asymptotic error value is typically higher for OMP’s than for1485

WMP’s (Supplementary Figure S6b), replicating the analogous result observed for the open-loop control1486

model presented in the main text (fig. 3d).1487

This again reflects the limitations of re-aiming with only K̃ = 2 command variables. In this case, this1488

manifests itself in restricting how the error can be fed back into the network: the error gets mapped to1489

a K̃-dimensional vector through equation 39 before being fed back into the network. As we saw occurs1490

for the open-loop controller, this results in a restriction of how population activity can be modulated,1491

making it difficult to generate the patterns of activity required to produce the target readouts under1492

OMP’s. Supplementary Figure S6c shows that these restrictions can be relaxed by increasing the number1493

of command variables used for re-aiming, K̃. In this case, re-aiming with only K̃ = 6 command variables1494

suffices to obtain a mean squared error less than 0.1 with OMP’s. Interestingly, this is substantially less1495

than the K̃ > 10 command variables that are necessary to achieve the same level of performance with1496

open-loop re-aiming (fig. 5a).1497

S.2 Mathematical derivations1498

S.2.1 Scale-invariance of RNN dynamics with rectified linear activation function1499

Here we prove that, whenever xi(0) = 0,1500

∀s > 0 r(t; sθ) = sr(t;θ), (42)
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where r(t; sθ) = ϕ(x(t; sθ)) and x(t; sθ) is the solution to equation 1 with inputs defined by equation 2.1501

The function ϕ(·) is the rectified linear activation function defined in equation 1.1502

We begin by demonstrating that, when xi(0) = 0,1503

∀s > 0 x(t; sθ) = sx(t;θ). (43)

We prove this by showing that the dynamics of sx(t;θ) are the same as those of x(t; sθ):

d

dt

[
sx(t;θ)

]
= s

d

dt
x(t;θ)

= −sx(t;θ) + sWrecϕ(x(t;θ)) + sWinϕ(Uθ)

= −sx(t;θ) +Wrecϕ(sx(t;θ)) +Winϕ(sUθ) ∀s > 0, (44)

where in the second line we plugged in equation 1 and equation 2 for the dynamics and upstream inputs,1504

respectively, and in the third line we used the scale-invariance of the rectified linear activation function,1505

∀s ≥ 0 ϕ(sx) = sϕ(x), (45)

It is easy to see that equation 44 exactly matches equation 1 but with sx substituted in for x; that is,1506

the dynamics of these two quantities are the same. Therefore, whenever the initial conditions match,1507

sx(0;θ) = x(0; sθ), then their trajectories will too. It is easy to see that this condition holds for any s1508

if xi(0) = 0, thus proving equation 43.1509

Along with the scale invariance of the activation function (equation 45), equation 43 implies equation1510

42:1511

r(t; sθ) = ϕ(x(t; sθ)) = ϕ(sx(t;θ)) = sϕ(x(t;θ)) = sr(t;θ), (46)

thus completing our proof.1512

S.2.2 Large M limit of quadratic metabolic cost1513

Here we derive the large M limit of the quadratic metabolic cost term in the reaiming objective function1514

(equation 4),1515

lim
M→∞

1

M

M∑
i=1

ui(θ)
2 (47)

We first note that each term in the sum depends on a sum over the randomly sampled encoding1516

weights (equation 2),1517

ui(θ)
2 = ϕ

(
K∑
j=1

Uijθj

)2

. (48)

If the encoding weights, Uij , are independent and identically distributed, then each of the terms in this1518
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sum is also independent and identically distributed. By the law of large numbers, then, as M → ∞ their1519

sum will approach an expectation over this distribution,1520

lim
M→∞

1

M

M∑
i=1

ui(θ)
2 =

〈
ui(θ)

2
〉
Uij

, (49)

where ⟨·⟩Uij
denotes an expectation over the probability distribution of the encoding weights, Uij .1521

This expectation can be evaluated by first defining the random variable z =
∑K

j=1 Uijθj to express the1522

expectation as an integral over z, and then exploiting the rectified linear activation function (equation1523

1) to simplify this integral,1524

〈
ui(θ)

2
〉
Uij

=
〈
ϕ(z)2

〉
z
=

∫ ∞

−∞
ϕ(z)2p(z)dz =

∫ 0

−∞
ϕ(z)2p(z)dz +

∫ ∞

0

ϕ(z)2p(z)dz =

∫ ∞

0

z2p(z)dz,

(50)

where we simply exploited the fact that ϕ(z) = 0 when z < 0 and ϕ(z) = z when z ≥ 0. If the distribution1525

of the encoding weights Uij is symmetric around 0, then the distribution of z is as well and we have that1526

∫ ∞

0

z2p(z)dz =
1

2

〈
z2
〉
. (51)

Finally, if the encoding weights are zero-mean and independent, we have that1527

〈
z2
〉
=

K∑
j=1

K∑
k=1

⟨UijUik⟩ θjθk =
K∑
j=1

〈
U2
ij

〉
θ2j . (52)

If Uij additionally have unit variance,
〈
U2
ij

〉
= 1 ⇒

〈
z2
〉
= ∥θ∥2. Putting this all together, we arrive at1528

the equality in equation 9:1529

lim
M→∞

1

M

M∑
i=1

ui(θ)
2 =

〈
ui(θ)

2
〉
Uij

=

∫ ∞

0

z2p(z)dz =
1

2

〈
z2
〉
=

∥θ∥2

2
. (53)

S.2.3 Reachable manifold moments for K̃ = 21530

In our analysis of the reachable manifold, we characterized its location and shape via its centroid and1531

covariance, which were evaluated as expectations over a uniform distribution on the manifold. Here we1532

derive the probability density function of this distribution and use it to calculate these expections.1533

We begin with the case of K̃ = 2 non-zero command variables, which we parameterize by their polar1534

coordinates,1535 θ1
θ2

 = s

cosφ
sinφ

 . (54)
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We then formally define the reachable manifold as follows:1536

R = {r(tend; s, φ) : s ∈ [0, smax], φ ∈ [0, 2π]} . (55)

where r(tend; s, φ) is the motor cortical activity pattern at time tend produced by a pair of command1537

variables θ1, θ2 with angle φ and norm s, with all other command variables set to 0 (θ3 = θ4 = . . . =1538

θK = 0). The function r(tend; s, φ) can be thought of as a function mapping 2D command variables,1539

(s, φ) ∈ [0, smax] × [0, 2π], to activity patterns, r ∈ RN , on the 2D surface constituting the reachable1540

manifold (the conical surface shown in fig. 3f).1541

The probability density function of the uniform distribution on this 2D surface in RN is given by its1542

area element, dV (s, φ), divided by its total area,1543

p (r(tend; s, φ)) =
dV (s, φ)

V
. (56)

The area element and total area are given by

dV (s, φ) =
√
det[J(s, φ)TJ(s, φ)] (57)

V =

∫ smax

0

∫ 2π

0

dV (s, φ) dφds, (58)

where det[·] denotes the matrix determinant and J denotes the N × 2 Jacobian of the mapping from1544

command variables to the reachable manifold,1545

J(s, φ) =

[
∂
∂sr(tend; s, φ)

∂
∂φr(tend; s, φ)

]
. (59)

To evaluate the probability density function, we must first calculate these derivatives.1546

To do so, we again resort to the scale invariance property of the rectified linear activation function1547

(equation 45),1548

r(tend; s, φ) = s r(tend; 1, φ)︸ ︷︷ ︸
r0(φ)

:= sr0(φ), (60)

where we have defined r0(φ) to be the activity generated by a pair of command variables with angle φ1549

and unit norm. The Jacobian is thus given by1550

J(s, φ) =

[
r0(φ) sr′0(φ)

]
=

[
r0(φ) r′0(φ)

]1 0

0 s

 , (61)
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where r′0(φ) :=
∂
∂φr0(φ). Plugging this into equation 57, we have that the area element is given by

dV (s, φ) =

√√√√√√det

1 0

0 s


r0(φ)T
r′0(φ)

T

[r0(φ) r′0(φ)

]1 0

0 s



=

√√√√√√det

1 0

0 s

det

 ∥r0(φ)∥2 r0(φ) · r′0(φ)

r0(φ) · r′0(φ) ∥r′0(φ)∥2

det

1 0

0 s


= s

√
∥r0(φ)∥2∥r′0(φ)∥2 − (r0(φ) · r′0(φ))

2

= s∥r0(φ)∥∥r′0(φ)∥
√
1− cos2 ω(φ)

= s∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|, (62)

where ω(φ) is the angle between r0(φ) and its derivative at ϕ, r′0(φ). The total area of the manifold is

thus

V =

∫ smax

0

∫ 2π

0

s∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ ds

=
1

2
s2max

∫ 2π

0

∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ. (63)

With these two expressions in hand, we can analytically express expectations over the probability

density function in equation 56. The mean, corresponding to the manifold centroid, r̄, is given by

r̄ :=

∫ smax

0

∫ 2π

0

r(tend; s, φ)p (r(tend; s, φ)) ds dφ

=

∫ smax

0

∫ 2π

0

sr0(φ)p (r(tend; s, φ)) ds dφ

=
1

V

∫ smax

0

s2 ds

∫ 2π

0

r0(φ)∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ

=
2

3
smax

∫ 2π

0
r0(φ)∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ∫ 2π

0
∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ

(64)

Its covariance, Σr, is given by1551

Σr = rrT − r̄r̄T , (65)
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where rrT is the matrix of second moments,

rrT :=

∫ smax

0

∫ 2π

0

r(tend; s, φ)r(tend; s, φ)
T p (r(tend; s, φ)) ds dφ

=

∫ smax

0

∫ 2π

0

s2r0(φ)r0(φ)
T p (r(tend; s, φ)) ds dφ

=
1

V

∫ smax

0

s3 ds

∫ 2π

0

r0(φ)r0(φ)
T ∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ

=
1

2
s2max

∫ 2π

0
r0(φ)r0(φ)

T ∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ∫ 2π

0
∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ

(66)

Because the integrals and derivatives in these expressions are all univariate, we can estimate them1552

accurately with discrete approximations.1553

S.2.4 Reachable manifold moments for K̃ > 21554

Analagous expressions can be derived for the case of K̃ > 2, but in these cases good estimates of the1555

integrals and derivatives quickly become numerically intractable as the number of variables increases.1556

For these cases, we therefore resorted to moments with respect to the probability distribution of activity1557

patterns generated by uniformly distributed motor commands, instead of the probability distribution of1558

activity patterns uniformly distributed on the reachable manifold.1559

We can express the covariance of this simpler distribution, which we denote by Σθ, by parameterizing

the non-zero command variables, θ̃ =

[
θ1 θ2 . . . θK̃

]
, in terms of a magnitude and direction, θ̃ =

sθ̃0, where 0 ≤ s ≤ smax and ∥θ̃0∥ = 1. This allows us to factorize the uniform distribution over

motor commands into a scalar uniform distribution for the magnitude, s ∼ Unif[0, smax], and a uniform

distribution over the unit radius (K̃−1)-sphere for the direction, θ̃0. The expectations in the covariance

thus factorize as follows:

Σθ =
〈〈

r(tend; sθ̃0)r(tend; sθ̃0)
T
〉
s

〉
θ̃0

−
〈〈

r(tend; sθ̃0)
〉
s

〉
θ̃0

〈〈
r(tend; sθ̃0)

〉
s

〉T
θ̃0

=
〈
s2
〉
s

〈
r(tend; θ̃0)r(tend; θ̃0)

T
〉
θ̃0

− ⟨s⟩2s
〈
r(tend; θ̃0)

〉
θ̃0

〈
r(tend; θ̃0)

〉T
θ̃0

=
s2max

3

〈
r(tend; θ̃0)r(tend; θ̃0)

T
〉
θ̃0

− s2max

4

〈
r(tend; θ̃0)

〉
θ̃0

〈
r(tend; θ̃0)

〉T
θ̃0

, (67)

where we used the scale invariance of the motor cortical dynamics (equation 8) to write r(tend; sθ̃0) =1560

sr(tend; θ̃0) in the second line, and in the third line we simply inserted expressions for the first and second1561

moments of s. The expectations over θ̃0 can be approximated using Monte Carlo methods by uniformly1562

sampling vectors from the corresponding unit radius (K̃ − 1)-sphere.1563

64

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.18.589952doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.18.589952


S.3 Extended methods1564

S.3.1 Estimating the intrinsic manifold1565

To estimate the intrinsic manifold, we fit a Probabilistic PCA (PPCA) model17 to the mixed and z-scored1566

calibration task responses (see Methods Section 4.8),1567

rmixed

i = S−1
r H(ri − c). (68)

Here, i indexes a particular timestep and trial during the calibration task. The PPCA generative model

assumes that each of these data points are generated from a corresponding set of ℓ uncorrelated latent

variables zi =

[
zi1 zi2 . . . ziℓ

]
as follows,

zi ∼ N (0, I) , (69a)

rmixed

i |zi ∼ N
(
Fzi, σ

2I
)
. (69b)

The model thus assumes that the activity patterns rmixed
i are concentrated within the column space of

the factor loading matrix F – it is the columns of this matrix that define the intrinsic manifold. These

parameters are fit to the mixed and z-scored calibration task data, {rmixed
i }, by maximum likelihood:

F, σ2 = argmax
F,σ2

logP ({rmixed

i }) = argmax
F,σ2

logN
(
0,FFT + σ2I

)
⇒ F =

[
√
λ1 − σ2v1

√
λ2 − σ2v2 . . .

√
λℓ − σ2vℓ

]
⇒ σ2 =

1

Nr − ℓ

Nr∑
i=ℓ+1

λi,

where λ1, λ2, . . . , λNr are the eigenvalues of the sample covariance of the calibration task activity, {rmixed
i },1568

ordered from largest to smallest (i.e. λ1 is the largest eigenvalue), and v1,v2, . . . ,vNr
are their associated1569

eigenvectors (i.e. the principal components, ordered from most to least variance explained).1570

Note, however, that the columns of F define the dimensions of the intrinsic manifold in mixed and

z-scored neural activity space (i.e. the space defined by the coordinates of the rmixed
i vectors). To convert

these to dimensions of the full N -dimensional state space, where each coordinate corresponds to the

activity of an individual neuron (i.e. the space defined by the coordinates of the ri vectors), we invert

equation 68 to obtain

ri = H−1Srr
mixed

i + c,

where we define H−1 as the N × Nr matrix containing the inverse of the tri-diagonal component of H

in its first Nr rows and 0’s filling all subsequent rows. We then apply this linear transformation to the
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columns of F to obtain an analagous N × ℓ factor loading matrix Fr defined in the full N -dimensional

state space,

Fr = H−1SrF.

Note that, since the bottom N −Nr rows of H−1 are filled with 0’s, those same rows of Fr are also filled1571

with 0’s. This reflects the fact that the intrinsic manifold is orthogonal to the dimensions of activity1572

corresponding to neurons not recorded in the experiment. Finally, we defined an orthonormal basis1573

f1, f2, . . . , fℓ ∈ RN for the intrinsic manifold by taking the left singular vectors of Fr. These are the1574

vectors used in equation 25 for figure 3g.1575

This method for estimating the intrinsic manifold is almost the same as that used by Sadtler et al.,1576

which differs only in that a Factor Analysis model was used instead of a PPCA model. In that case, the1577

maximum likelihood estimates of the model parameters cannot be evaluated in closed form and must be1578

computed via an iterative optimization algorithm (the Expectation Maximization algorithm). We found1579

that using a Factor Analysis model instead of PPCA had no noticeable effects on our results (data not1580

shown), so we reported only results with the more easily fit PPCA model.1581

S.3.2 Construction of the baseline decoder1582

As described in the Methods section, the baseline decoder has the following form

Dbase

0 = KL

K ∈ R2×ℓ, L ∈ Rℓ×Nr .

We term L the dimensionality reduction matrix and K the velocity readout matrix. Here we describe in1583

greater detail how these two matrices are fit to the calibration task data. Unless otherwise noted, these1584

procedures are exactly as those described in18 and.191585

The dimensionality reduction matrix L is derived from the mode of the posterior distribution of the

PPCA model (equation 69),

P (zi|rmixed

i ) = N
(
zi|µz|rmixed ,Σz|rmixed

)
(70a)

µz|rmixed =
(
FTF+ σ2I

)−1
FT︸ ︷︷ ︸

L̂

rmixed

i . (70b)

The Nr × ℓ matrix L̂ thus yields a linear transformation from Nr dimensions to ℓ dimensions. The z-1586

scored and mixed activity patterns {rmixed
i } from the calibration task can thus be reduced to ℓ dimensions1587

via multiplication with L̂, resulting in a corresponding set of dimensionality-reduced activity patterns1588

{ẑi} (as above, here and in the rest of this section the index i jointly indexes a timestep and trial of the1589
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calibration task).1590

To complete the construction of the dimensionality reduction matrix L, these dimensionality-reduced1591

activity patterns are then z-scored. The standard deviations of each component of the ẑi vectors are1592

calculated over all timesteps and trials of the calibration task, and collected in a diagonal matrix Sz.1593

Note that mean subtraction is not necessary since the activity vectors rmixed
i have already been z-scored1594

so are mean 0. The final dimensionality reduction matrix is then given by1595

L = S−1
z L̂ (71)

This second z-scoring step is necessary to ensure that controlling the BCI does not require neurons to1596

produce firing rates beyond the range exhibited during the calibration task.1597

The dimensionality reduction matrix used by Sadtler et al. differed from ours in that L̂ was con-1598

structed from the posterior distribution under a Factor Analysis generative model, rather than a PPCA1599

generative model. Like in PPCA, the mode of the posterior distribution of a Factor Analysis model can1600

also be expressed as a linear transformation of rmixed
i , yielding a very similar expression for L̂.1601

The velocity readout matrix K is also chosen by maximum likelihood fit of a generative model. In

this case, we assume that the z-scored dimensionality-reduced activity patterns from the calibration task,

ẑz-scored
i = Lrmixed

i , depend on the observed cursor velocities, yi, via the following latent Gaussian state

space model,

yi|yi−1 ∼ N (yi−1,Q)

ẑz-scored

i |yi ∼ N (Byi,R)

where i−1 indexes the previous timestep in the same trial. Note that the cursor velocities yi are constant

within each trial of the calibration task, so within a given trial yi = yi−1. As was done in the original

experiment of Sadtler et al., we set

Q = 2k2I,

where k = 1/.15 denotes the ratio of the cursor speeds used in our simulation (∥yi∥ = 1) and the cursor

speeds used in the original experiment (∥yi∥ = .15 m/s). Maximum likelihood estimates of the remaining

parameters are given by

B =

(∑
i

ẑz-scored

i yT
i

)(∑
i

yiy
T
i

)−1

R =
1

T

∑
i

ẑz-scored

i ẑz-scored

i
T − ẑz-scored

i (Byi)
T

where T denotes the total number of data points in the calibration task data: the number of timesteps1602
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a b c

Figure S7: Differences between sampled decoder perturbations and the baseline decoder.
a. Distribution of mean principal angle between row space of baseline decoder and row space of each perturbed decoder.
b. Distribution of mean squared error achieved by mean calibration task responses under each perturbed decoder.
c. Distribution of minimal absolute change in preferred direction needed to produce the same readouts with each perturbed
decoder as with the baseline decoder.

in each trial times the total number of trials.1603

The velocity readout matrix is then derived from the mode of the of the posterior distribution

P (yi|ẑz-scored
i , ẑz-scored

i−1 , ẑz-scored
i−2 , . . .), where the ellipses go back to the first timestep of the given trial. We

use the posterior distribution at steady state, whose mode is given by

ŷi = (I−KB) ŷi−1 +Kẑz-scored

i ,

where K is the so-called steady-state Kalman gain matrix. This matrix is given by1604

K = ΣssB
T (BΣssB

T +R)−1 (72)

where Σss is the steady-state posterior covariance, given by the solution to the discrete-time algebraic

Riccatti equation

0 = ΣssB
T (BΣssB

T +R)−1BΣss −Q

The 2 × ℓ velocity readout matrix used for the baseline decoder is thus set to the steady-state Kalman1605

gain matrix, K.1606

S.3.3 Subsampling WMPs and OMPs1607

As mentioned in the methods, we attempted to minimize any differences between within- and outside-1608

manifold perturbations that would go beyond their opposing relationship to the intrinsic manifold. To do1609

this, we first calculated every possible WMP and OMP, corresponding to each ℓ-dimensional permutation.1610

Since we set ℓ = 8, this resulted in ℓ!−1 = 40, 319 decoder perturbations of each type (minus 1 to exclude1611

the identity permutation). We then quantified how different each of these perturbations were from the1612

baseline decoder with three different metrics, and eliminated all decoder perturbations for which one or1613

more of these metrics fell outside a specific range.1614
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The first metric is the angle between the perturbed decoder’s row space and the baseline decoder’s.1615

For each decoder perturbation, DWMP
0 or DOMP

0 , we calculated the two principal angles20 between its row1616

space and that of the baseline decoder effective decoding matrix, Dbase
0 , and averaged these two angles.1617

Any decoder perturbations for which this mean principal angle was greater than 80o or less than 60o was1618

eliminated (fig. S7a).1619

The second metric is the mean squared error that would be achieved if the subject were to simply

reproduce the neural activity from the calibration task. Analagous to the procedure followed by Sadtler

et al., we averaged the calibration task responses over time and over trials for each reach target,

r̄calib

j = ⟨ri⟩i∈time points in calibration task trials with reach target j

and then computed the readouts from these time- and trial- averaged firing rate vectors under each1620

decoder perturbation, DWMP
0 or DOMP

0 . We then discarded all decoder perturbations where the mean1621

squared error between these readouts and the target readouts was greater than 0.8 or less than 0.6 (fig.1622

S7b).1623

The third metric is to ask how much the mean calibration task responses would have to change

to produce the same readouts under the perturbed decoder as under the baseline decoder. We first

calculated the time- and trial- averaged z-scored and mixed firing rates from the calibration task

r̄mixed

j = S−1
r H(r̄calib

j − c).

For each perturbed decoder, D̃0 = DWMP
0 or DOMP

0 , we then computed the activity patterns closest to

r̄mixed
j that would produce the same readouts through that decoder as the original activity patterns would

through the baseline decoder, Dbase
0 ,

r̂mixed

j

(
D̃0

)
= argmin

r
∥r− r̄mixed

j ∥2 subject to D̃0r = Dbase

0 r̄mixed

j

= r̄mixed

j + D̃T
0

(
D̃0D̃

T
0

)−1 (
Dbase

0 − D̃0

)
r̄mixed

j .

We then quantified the difference between r̄mixed
j and r̂mixed

j (D̃0) by fitting tuning curves and asking how1624

much the preferred direction changed. Tuning curves were fit by least-squares regression, exactly as1625

described in Methods Section 4.9 equation 26 (but with r̄mixed
j or r̂mixed

j (D̃0) plugged in for r̄j), and1626

preferred directions were extracted from the fitted tuning weights as described in that section. For each1627

decoder perturbation, we then computed the mean absolute difference of the preferred directions of the1628

computed activity patterns {r̂mixed
j (D̃0)}8j=1 from those of the observed calibration task mean responses1629

{r̄mixed
j }8j=1. Any perturbed decoders that resulted in a mean absolute difference of more than 45o or less1630

than 30o were discarded (fig. S7c).1631
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We typically found that about 100-200 permutations out all possible decoder perturbations satisfied1632

these criteria. We then randomly sampled 100 of them. The distributions of these three merics for the1633

100 sampled WMPs and OMPs used in the main text are shown in figures S7a, S7b, and S7c.1634
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