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Abstract 1 

Successful working memory performance requires the binding of contextual cues to item-related 2 

content. In a recent study that used a dual-serial retrocueing (DSR) procedure to test working 3 

memory for oriented gratings, the unprioritized memory item (UMI) underwent a 4 

representational transformation – a priority-based remapping – of the representation of its 5 

orientation (i.e., its content) in early visual cortex, and of the representation of the location at 6 

which it had been presented (i.e., its context) in parietal cortex (Yu, Teng, & Postle, in press). In 7 

this registered report, we will scan healthy adults with functional magnetic resonance imaging 8 

(fMRI) while they perform a DSR task with the roles of content and context reversed: stimulus 9 

location will be the to-be-reported content and stimulus orientation the task-relevant context. We 10 

will use multivariate inverted encoding modeling (IEM) to test between three models of the 11 

neural bases of the priority-based remapping of stimulus information: 1) domain-dependent -- the 12 

engagement of early visual and parietal regions in priority-based remapping depends on domain 13 

of information (orientation versus location) – 2) functional -- the engagement of these regions in 14 

priority-based remapping will depend depends on function (content versus context); 3) hybrid: 15 

predictions follow the domain-dependent model, but with the additional stipulation that IPS 16 

plays a critical role in representing context, regardless of domain.  17 

 18 

Significance Statement 19 

The binding between the content of working memory and the context in which that information 20 

was encountered is of critical importance for guiding behavior with remembered information. 21 

When attention is shifted away from a stimulus held in working memory, the representation of its 22 

content and of its context are transformed, but in different brain areas. This preregistered report 23 
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is designed to understand the principal factor underlying this dissociation: is it that different 24 

regions are specialized for representing different domains of content (e.g., an item’s orientation 25 

versus its location); that different regions are specialized for different working memory functions 26 

(i.e., representing content versus context); or some hybrid combination of these two? The results 27 

will provide important insights into the mechanisms that support visual working memory. 28 

 29 

  30 
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Introduction 31 

The retention of information in visual working memory entails the binding of item-32 

related information – the to-be-remembered content – with its trial-unique context (e.g., spatial 33 

location or the ordinal position). Furthermore, it has been proposed that the strength of this 34 

content-to-context binding may be an important determinant of the precision of a memory 35 

representation (Oberauer and Lin, 2017). Although several studies have assessed the neural 36 

representation of to-be-remembered stimulus features (e.g., Emrich et al., 2013; Harrison and 37 

Tong, 2009; Riggall and Postle, 2012; Sprague and Serences, 2013), the representation of 38 

context has received less attention (c.f.,  Foster et al., 2017; Gosseries, Yu et al., 2018). The 39 

current study is designed to assess whether the brain represents the same information differently 40 

when it serves as working memory context, rather than content. 41 

In a recent experiment, Yu, Teng, and Postle (in press) assessed the representation of 42 

content and of context in visual working memory with functional magnetic resonance imaging 43 

(fMRI). In a dual-serial retrocueing (DSR) task, two sample orientation gratings were presented 44 

sequentially in one of nine possible locations, then an ordinal retrocue (“1” or “2”) indicated the 45 

sample whose orientation would need to be reported for the first impending recall. After the first 46 

recall, subjects perform the second recall based on a second retrocue. Prior to the first retrocue, 47 

using multivariate inverted encoding modeling (IEM), the orientation of both sample stimuli 48 

could be reconstructed in early visual cortex, and their locations in early visual cortex and 49 

intraparietal sulcus (IPS). The first retrocue then designated the cued item the “prioritized 50 

memory item” (PMI) and the uncued item the “unprioritized memory item” (UMI), and the 51 

transition to UMI triggered distinctive changes in its representational format. In early visual 52 

cortex, the reconstruction of the UMI’s orientation became opposite of its reconstruction as a 53 
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PMI, whereas in IPS, the reconstruction of the UMI’s location shifted to become opposite of its 54 

reconstruction as a PMI. Importantly, these reported priority-based transformations were 55 

characterized as examples of remapping between the stimulus values and the neural patterns, not 56 

of recoding (Yu et al., in press), because they were reconstructed with IEMs trained on the PMI.  57 

This phenomenon of “priority-based remapping” has also been observed in EEG data 58 

from (Wan et al., in-principle accepted registered report) and in computational simulations of 59 

(Wan et al., 2019) a 2-back working memory task. In the present paper, we will use it as a tool to 60 

test competing models of the neural representation of content versus context in visual working 61 

memory. The results from Yu et al. (in press) are equally consistent with at least three 62 

interpretations. One is that neural loci of the representation of an item’s content and of its context 63 

are domain dependent. By this account, early visual cortex carries a privileged role in 64 

representing orientation and IPS carries a privileged role in representing retinotopic location. An 65 

alternative interpretation, however, is a functional account: Early visual cortex may be 66 

preferentially involved in representing an item’s content, and IPS in representing an item’s 67 

context. This alternative view would be consistent with evidence for IPS sensitivity to context 68 

binding demands when task-critical context is ordinal position, and location doesn’t vary 69 

(Gosseries, Yu., et al., 2018). A third possibility is a hybrid view that ascribes to the domain-70 

dependent processing of orientation in early visual cortex and of location in IPS, but that also 71 

posits an important functional role for IPS in representing the context of information, regardless 72 

of domain. This view would be consistent with findings of retinotopic maps in parietal cortex 73 

(e.g. Sereno et al., 2001; Silver et al., 2005) and with evidence for IPS’s involvement in context-74 

binding with ordinal context (Gosseries, Yu., et al., 2018). 75 
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The purpose of the present study is to compare among the three interpretations of the 76 

results from Yu et al. (in press), by switching the roles played by stimulus orientation and 77 

location. Subjects will perform a DSR task in which the two sample stimuli are each 78 

distinguished by their location and their orientation, but the subject’s task is explicitly to recall 79 

stimulus location (Figure 1). The item to be recalled for each memory probe will be retrocued by 80 

its orientation. Thus, stimulus location will serve as the content and stimulus orientation as the 81 

context. Priority-based remapping during the delay period following the first retrocue will be 82 

operationalized by a negative slope of the reconstruction of a stimulus dimension of the UMI 83 

during the final TR of the post-cue delay, with an IEM trained on that same TR during trial 84 

epochs when that item was the PMI. 85 

 86 

Materials and Methods 87 

Pre-registered hypotheses  88 

In this section, for each of the following results that our study is designed to generate, we 89 

specify what each of the three models predicts for the IEM reconstruction of stimulus 90 

information in two functionally defined regions of interest (ROI; these predictions are illustrated 91 

in Figure 2): 92 

Content of PMI in early visual cortex:  93 

All three models assume that the reconstruction of the location of the PMI with a PMI-94 

trained model will have a significantly positive slope, a replication of Yu et al. (in press).  95 

Context of PMI in early visual cortex: 96 

Domain-dependent: The reconstruction of the orientation of the PMI with a PMI-trained 97 

model will have a significantly positive slope.  98 
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Functional: The reconstruction of the orientation of the PMI with a PMI-trained model 99 

will not differ from 0. 100 

Hybrid: The reconstruction of the orientation of the PMI with a PMI-trained model will 101 

have a significantly positive slope. 102 

Content of UMI in early visual cortex:  103 

Domain-dependent: The reconstruction of the location of the UMI with a PMI-trained 104 

model will not differ from 0.   105 

Functional: The reconstruction of the location of the UMI with a PMI-trained model will 106 

have a significantly negative slope.  107 

Hybrid: The reconstruction of the location of the UMI with a PMI-trained model will not 108 

differ from 0. 109 

Context of UMI in early visual cortex:  110 

Domain-dependent: The reconstruction of the orientation of the UMI with a PMI-trained 111 

model will have a significantly negative slope.  112 

Functional: The reconstruction of the orientation of the UMI with a PMI-trained model 113 

will not differ from 0. 114 

Hybrid: The reconstruction of the orientation of the UMI with a PMI-trained model will 115 

have a significantly negative slope. 116 

Content of PMI in IPS:  117 

Domain-dependent: The reconstruction of the location of the PMI with a PMI-trained 118 

model will have a significantly positive slope.  119 

Functional: The reconstruction of the location of the PMI with a PMI-trained model will 120 

not differ from 0. 121 
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Hybrid: The reconstruction of the location of the PMI with a PMI-trained model will 122 

have a significantly positive slope. 123 

Context of PMI in IPS:  124 

Domain-dependent: The reconstruction of the orientation of the PMI with a PMI-trained 125 

model will not differ from 0.  126 

Functional: The reconstruction of the orientation of the PMI with a PMI-trained model 127 

will have a significantly positive slope. 128 

Hybrid: The reconstruction of the orientation of the PMI with a PMI-trained model will 129 

have a significantly positive slope. 130 

Content of UMI in IPS: 131 

Domain-dependent: The reconstruction of the location of the UMI with a PMI-trained 132 

model will have a significantly negative slope.  133 

Functional: The reconstruction of the location of the UMI with a PMI-trained model will 134 

not differ from 0. 135 

Hybrid: The reconstruction of the location of the UMI with a PMI-trained model will 136 

have a significantly negative slope.  137 

Context of UMI IPS:  138 

Domain-dependent: The reconstruction of the orientation of the UMI with a PMI-trained 139 

model will not differ from 0.  140 

Functional: The reconstruction of the orientation of the UMI with a PMI-trained model 141 

will have a significantly negative slope. 142 

Hybrid: The reconstruction of the orientation of the UMI with a PMI-trained model will 143 

have a significantly negative slope. 144 
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Subjects 145 

Estimated effect sizes for this preregistered study are based on data sets from Yu et al. (in 146 

press) that used data collection and analysis methods similar to what we will use for this 147 

preregistered study. Power analyses indicate we will need data from 24 subjects to achieve 90% 148 

power to detect the smallest of the predicted significant effects (significantly negative slope for 149 

the reconstruction of orientation of the UMI in early visual cortex, Cohen’s d of 0.62) with a 150 

one-tailed alpha of 0.05.  151 

Male and female subjects will be recruited at a location which will be identified if the 152 

article is published with the following inclusion criteria: being 18-35 years in age, having normal 153 

or corrected-to-normal vision, reporting no history of neurological disease, seizures, or fainting, 154 

no history of using of psychotropic drugs nor of chronic alcohol consumption, and having no 155 

contraindications for MRI scanning. Informed consent will be obtained following procedures 156 

approved by the [Author University] Health Sciences Institutional Review Board. 157 

 158 

Stimuli and procedure 159 

The stimuli used in the task will be generated with MATLAB (MathWorks) and the 160 

Psychtoolbox-3 extensions and presented with a 60-Hz Avotec Silent Vision 6011 projector 161 

(Brainard, 1997; Pelli, 1997). Subjects will view the stimuli through a coil-mounted mirror, with 162 

a viewing distance of 68.58 cm and the screen width of 33.02 cm. The stimuli during the sample 163 

period will be two oriented bars colored black (length 5°, width 0.08; presented inside a white 164 

disk of radius of 2.5°). The orientation of the two bars will be selected randomly, without 165 

replacement, from a fixed set of values (15°, 45°, 75°, 105°, 135°, or 165°; approximately 54 166 

instances of each). The locations of the disks will be selected randomly, without replacement, 167 
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from fixed a set of nine values of polar angle (20°, 60°, 100°, 140°, 180°, 220°, 260°, 300°, 340°; 168 

approximately 36 instances of each), each centered on an imaginary circle with a radius of 8° 169 

from central fixation. In order to cover the 360° space and avoid verbal encoding, on each trial, a 170 

jitter between 0° to 10° will be added to both sample locations with the same value. There will be 171 

six possible distances between the PMI and UMI in orientation space: -60°, -30°, 0°, 30°, 60°, 172 

and 90°; and nine possible distances between the PMI and UMI along the imagery circle: -160°, -173 

120°, -80°, -40°, 0°, 40°, 80°, 120°, and 160°. Distance in location, distance in orientation, and 174 

status of the second retrocue (stay/switch) will be fully counterbalanced, resulting in 108 unique 175 

trial types. This design means that the orientation of the two samples will be the same on a fixed 176 

proportion of 1/6th of trials, and the location samples will be the same on a fixed proportion of 177 

1/9th of trials. Responses will be collected with an MRI-compatible button box. 178 

Subjects will be scanned while performing working memory for locations in a DSR task 179 

(Figure 1). Each trial will begin with the 2 second presentation of two sample stimuli, followed 180 

by an initial delay period of 8 seconds (Delay 1.1). At time 10-seconds a retrocue will present 181 

(for 2 seconds) the orientation of the item whose location will be probed at the end of an addition 182 

8 second-long delay period (Delay 1.2). In order to avoid differential sensory presentation of the 183 

two orientations, the retrocue will contain two bars, one red and one blue, that correspond to the 184 

orientation of the two samples, and one of the colors (counterbalanced across subjects) will 185 

designate the valid cue. Subjects will be told the color of the valid cue at the beginning of the 186 

experiment. The recognition probe will be a white disk (radius of 2.5°) presented for 2.5 seconds 187 

at a location that matches the location of the cued item on 50% of trials, and at a location with 188 

varying distances from that of the cued item on nonmatching trials (15°,  25°, or 35°, 189 

counterbalanced across trials). Probe offset will be followed by a 1-second unfilled delay (Delay 190 
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2.1), a second retrocue (2 seconds), two additional seconds of delay (Delay 2.2), and a second 191 

memory probe. The second retrocue will be identical to the first, unpredictably, on 50% of trials 192 

(“stay” trials), and will cue the previously uncued item on 50% of trials (“switch” trials). A white 193 

fixation dot will be present throughout the trial except when replaced by the retrocues. The inter-194 

trial interval will vary randomly between 6, 8, and 10 seconds.  195 

Over the course of two scanning sessions subjects will perform a total of 324 trials (3 of 196 

each unique type). The first scanning session will consist of 13 runs during each of which a block 197 

of 12 trials will be performed, and the second scanning session will consist of 14 run/blocks. 198 

Each run/block will last 464 seconds. Before the first scanning session, each subject will 199 

complete two blocks of practice trials (12 trials per block) outside of the scanner and another 200 

block of practice within the scanner before fMRI scanning begins. During the fMRI scans, we 201 

will track subjects’ eye position using an Avotec RE-5700 eye-tracking system, to monitor 202 

central fixation.  203 

 204 

Behavioral data analysis 205 

We will first derive a descriptive measure of each subject’s performance during Probe 1 206 

and Probe 2 by calculating the percentage of correct responses and the average response time. 207 

We will compare the accuracy between Probe 1 and Probe 2 and compare the performance for 208 

stay and switch trials.  209 

 210 

fMRI Data acquisition 211 

Whole brain images will be acquired with a 3-T MRI scanner (Discovery MR750; GE 212 

Healthcare) at the [Author University]. A high-resolution T1-weighted image will be acquired 213 
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with a fast-spoiled gradient-recalled echo sequence (repetition time (TR) of 8.2 ms, echo time 214 

(TE) of 3.2 ms, flip angle of 12°, 176 axial slices, 256 x 256 in-plane, 1.0 mm isotropic). A T2*-215 

weighted gradient echo pulse sequence will be used to acquire the functional data while subjects 216 

perform the DSR task (TR of 2 s; TE of 25 ms; flip angle of 60°; 64 x 64 matrix size, 42 sagittal 217 

slices, 3 mm isotropic).  218 

 219 

fMRI Preprocessing 220 

Data will be preprocessed using the Analysis of Functional Neuroimages (AFNI) 221 

software package (https://afni.nimh.nih.gov). Before statistical analysis, the data will be first 222 

registered to the final volume of each scan with rigid-body transformations and then to the 223 

anatomical images of the first scan session, after removing the first four TRs at the beginning of 224 

each run (dummy pulses to achieve a steady state of tissue magnetization before task onset). 225 

Then volumes will be motion corrected with six nuisance regressions accounting for motion 226 

artifacts in six different directions. Linear, quadratic, and cubic trends will be removed for each 227 

run and then the data will be z-scored within each run. 228 

 229 

Region of interest (ROI) generation 230 

As with Yu et al. (in press), we will focus the analyses on two functionally defined and 231 

anatomically constrained ROIs: early visual ROI (constrained to V1 and V2 in occipital cortex) 232 

and IPS (constrained to IPS0-5). Anatomical ROIs will be generated from the probabilistic atlas 233 

of (Wang et al., 2015) and warped to each subject’s structural scan in their native space. To 234 

identify voxels maximally engaged by the task, we will fit the fMRI data to a general linear 235 

model (GLM) containing regressors for each epoch of the task -- sample (1-TR impulse), delay 236 
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1.1 (8-s boxcar), cue 1 (1-TR impulse) delay 1.2 (8-s boxcar), probe 1 (1-TR impulse), delay 2 237 

(1-TR impulse), and probe 2 (1-TR impulse), each convolved with a hemodynamic response 238 

function --  along with nuisance covariates for between-scan drift and head motion. Within each 239 

anatomically defined region, the functional ROIs will be defined as the 500 voxels with the 240 

strongest values for the sample regressor within the early visual ROI, and the 500 voxels with the 241 

strongest values for the delay 1.2 regressor within IPS. 242 

 243 

Inverted encoding model 244 

Multivariate inverted encoding models (Brouwer and Heeger, 2011, 2009; Ester et al., 245 

2015; Yu and Shim, 2017) will be used to reconstruct the neural representation of PMIs and 246 

UMIs. The responses of each voxel can be modeled as a weighted sum of responses from a 247 

number of hypothetical tuning channels. We will use nine tuning channels for location 248 

reconstruction and six channels for orientation reconstructions. The idealized tuning curve of 249 

each channel was defined as a half-wave-rectified sinusoid raised to the eighth power for 250 

location: 𝑅 = sin!(𝑥), and to the sixth power for orientation: 𝑅 = sin"(𝑥), where x is the 251 

centered on the orientation or location this channel is mostly selective to and R is the channel 252 

response. 253 

For the IEM, we first estimate an encoding model with a training dataset B1 (v voxels × n 254 

trials) to characterize each voxel’s selectivity 𝑾* (v voxels × k channels) for the feature 255 

dimension. Then we input a new dataset B2 (v voxels × n trials) with all the voxels’ responses on 256 

a single trial to the model to reconstruct a model-based representation of memorized orientation 257 

or location C2.  We can first describe the data with the following equation:  258 

𝑩# = 𝑾𝑪# 259 
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Here B1 represents the data matrix of BOLD responses with a size of v × n for each run where v 260 

is the number of voxels in the ROI and n is the number of trials. C1 is the idealized responses of 261 

each tuning channel for each trial (k channels × n trials). W (v voxels × k channels) is the weight 262 

matrix that captures the selectivity of each voxel for orientations or locations.  263 

The first step of the IEM is to train the IEM on the training dataset B1 and compute the 264 

weight matrix 𝑾* that contains each voxel’s selectivity at each orientation or location channel 265 

with least-squares linear regression:  266 

𝑾* = 𝑩#𝑪#$(𝑪#𝑪#$)%# 267 

The next step is to invert the model with the estimated weight matrix and a new test dataset B2 (v 268 

voxels × n trials) to derive the reconstructed channel responses C2 (k channels × n trials) for each 269 

trial with the following equation: 270 

𝑪&* = (𝑾*$𝑾*)%#𝑾*$𝑩& 271 

With this procedure, we can compute a trial-by-trial reconstruction of the maintained orientation 272 

and location for PMIs and UMIs. 273 

The IEMs will be trained and tested separately for orientation and location, and 274 

separately for the early visual ROI and IPS ROI. We will use a leave-one-out procedure that will 275 

train the model with data from all but one run and test the model on the one run that is left out. 276 

We will repeat this process until we compute the channel responses for all the runs. The IEMs 277 

will be trained and tested on the same TR. Although we will examine the time courses of IEM 278 

reconstructions from task onset until the beginning of Probe 1 (0 to 22 s), our hypotheses about 279 

priority-based changes in the neural representations of the UMI will focus on one TR: TR 10, the 280 

final TR of Delay 1.2 (based on the findings in Yu et al., in press). For the PMI-trained IEMs, the 281 

training labels will be based on orientation or location of the PMI. After generating the 282 
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reconstruction for each trial, the estimated channel responses will be shifted to a common center, 283 

with 0° as the test orientation channel. Overall, we will generate reconstruction of PMIs and 284 

UMIs in the two ROIs based on the PMI-trained model.  285 

 286 

fMRI Statistical analysis 287 

We will quantify the strength of the neural reconstructions by collapsing over channel 288 

responses on both sides of the target channel (0° center), averaging them, and then use linear 289 

regression to calculate the slope for the reconstruction for each subject. A positive slope will be 290 

interpreted as evidence that the dimension of sample-related information in question (location or 291 

orientation) is encoded in the same format as was the data the model was trained on. A negative 292 

slope will be interpreted as evidence that the dimension of sample-related information in 293 

question (location or orientation) is encoded in a format that is remapped relative to the data the 294 

model was trained on. The magnitude of the slope will be interpreted as the precision of the 295 

reconstructed neural representation. For statistical testing, we will use a bootstrapping method 296 

(Ester et al., 2016, 2015) in which we will randomly sample with replacement 24 reconstructions 297 

(corresponding to N = 24 subjects) and take the average of the resulting channel responses, 298 

repeating this process 10000 times. This will result in 10000 average orientation/location 299 

reconstructions with 10000 slopes computed for the reconstructions. For the statistical testing, 300 

we will compute two-tailed p-values as the smaller of two resultant values – the proportion of 301 

positive slopes or the proportion of negative slopes – multiplied by 2. To compare the difference 302 

between the slopes of PMI and UMI, we will randomly sample with replacement to create a 303 

sample of 24 subjects and compute the difference in slope between PMI and UMI, repeating this 304 
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process 10000 times, and will then assess significance with the same procedure as described 305 

above. 306 

 307 

Timeline 308 

Data collection will begin in Fall 2020 and is expected to conclude by March 2021. Data 309 

processing and analysis will be carried out in parallel to data collection for each single subject. 310 

The project is expected to fully complete by May 2021.  311 



 16 

References 312 

Brainard DH (1997) The Psychophysics Toolbox. Spat Vis 10:433–436. 313 

Brouwer GJ, Heeger DJ (2011) Cross-orientation suppression in human visual cortex. J 314 

Neurophysiol 106:2108–2119. 315 

Brouwer GJ, Heeger DJ (2009) Decoding and reconstructing color from responses in human 316 

visual cortex. J Neurosci 29:13992–14003. 317 

Emrich SM, Riggall AC, Larocque JJ, Postle BR (2013) Distributed Patterns of Activity in 318 

Sensory Cortex Reflect the Memory. J Neurosci 33:6516–6523. 319 

Ester EF, Sprague TC, Serences JT (2015) Parietal and Frontal Cortex Encode Stimulus-Specific 320 

Mnemonic Representations during Visual Working Memory. Neuron 87:893–905. 321 

Ester EF, Sutterer DW, Serences JT, Awh E (2016) Feature-selective attentional modulations in 322 

human frontoparietal cortex. J Neurosci 36:8188–8199. 323 

Foster JJ, Bsales EM, Jaffe RJ, Awh E (2017) Alpha-Band Activity Reveals Spontaneous 324 

Representations of Spatial Position in Visual Working Memory. Curr Biol 27:3216–3223. 325 

Gosseries O, Yu Q, Larocque JJ, Starrett MJ, Rose NS, Cowan N, Postle BR (2018) Parietal-326 

occipital interactions underlying control-and representation-related processes in working 327 

memory for nonspatial visual features. J Neurosci 38:4357–4366. 328 

Harrison SA, Tong F (2009) Decoding reveals the contents of visual working memory in early 329 

visual areas. Nature 458:632–635. 330 

Oberauer K, Lin HY (2017) An interference model of visual working memory. Psychol Rev 331 

124:21–59. 332 

Pelli DG (1997) The VideoToolbox software for visual psychophysics: Transforming numbers 333 

into movies. Spat Vis 10:437–442. 334 



 17 

Riggall AC, Postle BR (2012) The Relationship between Working Memory Storage and Elevated 335 

Activity as Measured with Functional Magnetic Resonance Imaging. J Neurosci 32:12990–336 

12998. 337 

Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic 338 

coordinates by a parietal cortical area in humans. Science (80- ) 294:1350–1354. 339 

Silver MA, Ress D, Heeger DJ (2005) Topographic maps of visual spatial attention in human 340 

parietal cortex. J Neurophysiol 94:1358–1371. 341 

Sprague TC, Serences JT (2013) Attention modulates spatial priority maps in the human 342 

occipital, parietal and frontal cortices. Nat Neurosci 16:1879–1887. 343 

Wang L, Mruczek REB, Arcaro MJ, Kastner S (2015) Probabilistic maps of visual topography in 344 

human cortex. Cereb Cortex 25:3911–3931. 345 

Wan Q, Cai Y, Samaha J, Postle BR (accepted in principle). Tracking stimulus representation 346 

across a 2-back visual working memory task. Royal society Open Science. 347 

Wan Q, Cai Y, Samaha J, Rogers TT, and Postle BR (2019). Rotational remapping as a 348 

candidate mechanism for priority-based recoding in visual working memory: Empirical 349 

and computational evidence. Society for Neuroscience, November 2019, Chicago, IL. 350 

Yu Q, Shim WM (2017) Occipital, parietal, and frontal cortices selectively maintain task-351 

relevant features of multi-feature objects in visual working memory. Neuroimage 157:97–352 

107. 353 

Yu Q, Teng C, & Postle BR (in press). Different states of priority recruit different neural codes 354 

in visual working memory. 355 

 356 

  357 



 18 

 358 

Figure 1. Procedures of the experiment. Subjects will perform a dual serial-retrocueing task on 359 
location. Two sample stimuli will be presented at nine possible locations with six possible 360 
orientations and the task will be to memorize the spatial locations of both. The white dotted 361 
circles are for illustrative purposes and will not be present during the actual experiment. The 362 
distances in orientations and locations between the two stimuli will be fully counterbalanced, 363 
such that they will match on 1/9th and 1/6th of trials, respectively. After Delay 1.1, an orientation 364 
cue (superimposed red and blue oriented bars inside a central disk) will appear with the red bar 365 
(or blue bar, counterbalanced between subjects) indicating the sample whose location is to be 366 
reported during Probe 1. Probe 1 consists of a filled white disk that will appear in a location 367 
either completely matching or slightly mismatching the location that the cued sample had 368 
occupied, and subjects will make a same/different judgement on its location. Subsequently, a 369 
second orientation cue will appear after an interval of 1 s, and subjects will respond during Probe 370 
2 based on the red oriented bar. Each trial will be separated by an ITI jittered between 6, 8, and 371 
10 seconds.  372 

Sample Cue 1Delay 1.1 Delay 1.2 Probe 1 Cue 2 Delay 2 Probe 2
2 s 2 s8 s 8 s 2.5 s 2 s 2 s 2.5 s

Interval
1 s

Time
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 373 

Figure 2. Predictions of location and orientation reconstructions according to the three different 374 
models. We consider the opposite patterns between PMI and UMI as evidence for priority-based 375 
remapping. A). Domain-dependent model predicts priority-based remapping for orientation in 376 
early visual cortex and location in IPS. B). Functional model predicts priority-based remapping 377 
for content in early visual cortex and context in IPS. C). Hybrid model predicts domain-378 
dependent priority-based remapping for orientation in early visual cortex and location in IPS, as 379 
well as context (orientation) being encoded in IPS. 380 
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