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Working memory is typically conceptualized as a fixed 
capacity system with a discrete number of items, each of 
which is represented with a certain degree of precision1,2. 

It is thought to be a core cognitive system3,4, with individual capac-
ity differences strongly correlating with measures of broad cognitive 
function such as fluid intelligence and academic performance5,6. As 
a result, many researchers are deeply interested in understanding 
and quantifying working memory capacity and understanding the 
connections between working memory and long-term memory.

Continuous feature spaces are often used to investigate memory, 
as they allow the precise quantification of information stored in 
memory2,7,8. One prominent method involves researchers present-
ing a set of stimuli to remember and then probing one item after  
a delay, asking participants to report the target by clicking on a  
circular stimulus report wheel (Fig. 1a). The data are typically  
analysed using the circular difference between the true stimulus and 
reported stimulus, which is then modelled to quantify memory per-
formance7,8. Because errors that arise in this task have a ‘fat tail’ (that 
is, there are more far away errors than you might expect; Fig. 1b), 
the dominant models of working memory draw critical distinctions 
between fundamentally different kinds of memory errors: those 
caused by limits in how many items are represented versus how  
precisely they are represented7 or those caused by items encoded 
with high precision versus extremely low precision8.

Here, we present evidence that these small versus large errors are 
not distinct kinds of errors and do not represent multiple psycho-
logical constructs being measured (for example, precision versus 
guessing). Instead, we demonstrate that these responses arise funda-
mentally from a single process. To describe this new conceptualiza-
tion of memory, we begin with working memory for colour as our 
main case study and then expand the model to encompass working 
memory for faces (a multi-feature stimulus space) and long-term 
memory for real-world objects.

The model we propose is a straightforward extension of standard 
signal detection-based accounts of memory, with the fundamental 
insight of our framework being the nature of the psychophysical 
similarity function that explains how familiarity spreads. Consider 
the simplest case of memory: being asked to remember just a single 

colour. When you encode this colour (for example, red), it will now 
have notably enhanced familiarity. Thus, if you are later asked to 
distinguish the colour you saw from a foil colour (for example, red 
versus green), the colour you saw will probably be more familiar. 
However, due to noise that corrupts the familiarity signals, this will 
not always be the case, and on some trials, green might feel more 
familiar than red.

The critical insight of our model is that when you see red, it does 
not boost only familiarity associated with red. Instead, a gradient 
of familiarity will spread to other colours according to a fixed psy-
chophysical similarity function, with considerable activity spread-
ing to similar colours (for example, pink will also feel familiar), but 
with much less spreading to dissimilar colours (for example, yellow, 
blue and green will lead to virtually no boost in familiarity). If asked 
to hold this colour in mind, these initial familiarity signals will be 
corrupted by noise, and when memory is probed (for example, if 
people are asked to report what colour they saw on a colour wheel), 
people will report the colour of the response option that currently 
has maximum familiarity. Although the encoded colour is most 
likely to generate the maximum familiarity signal, competition from 
other colours (especially from similar colours) ensures that this will 
not always be the case, and the more noise that accumulates, the 
more likely a very dissimilar colour will be reported. Notably, in 
this model, memory is not simply a point representation (“I think  
this item is red”) but instead an entire population of familiarity 
signals (similar to neural models9–11). (We have built an interactive 
demonstration of this model at https://bradylab.ucsd.edu/tcc/ to 
explain it dynamically.)

According to the model, the way familiarity spreads is a fixed 
perceptual property—one that can be independently measured 
using a conventional psychophysical similarity function. Once the 
nature of the familiarity gradient for a given stimulus space is mea-
sured, memory is simply modelled by taking this fixed property of 
the stimuli and adding noise, with d′ being the only memory-based 
parameter of the model. This model thus uniquely explains the 
complex shape of error data with only a single free parameter 
(memory strength, d′) and permits parameter-free generalization 
across different tasks (that is, without any free parameters, using 
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only measured memory strength and similarity values from differ-
ent participants). Because this model operates in a signal detection 
framework, as most models of long-term memory do, it also sug-
gests that a unified framework can be used to understand the nature 
of mnemonic representations and decision-making across working 
memory and long-term memory.

Results
Psychophysical similarity. The most critical component of our 
proposed model is the psychophysical similarity function that 
explains how familiarity spreads within a stimulus space (for exam-
ple, across the colour wheel). While previous work has documented 
local inhomogeneities in the structure of stimulus spaces12–14, we 
were primarily interested in the global structure of similarity: for a 

stimulus 10° away on the colour wheel from a target colour (regard-
less of what the target colour is), how similar is this colour to the 
target on average? Thus, we measured how similarity scales with 
distance measured in terms of degrees along the colour wheel (see 
Methods section ‘Fixed-distance triad experiment’). To do so, we 
tested how accurately participants could determine which of two 
test colours was closer in colour space to a target colour using a triad 
task15,16. This is a perceptual task, but it is analogous to the working 
memory situation where participants have a target colour in mind 
and are asked to compare other colours to that target. We found 
that with a fixed 30° distance between two colour choices, partici-
pants are significantly more accurate at determining which colour 
is closer to the target when the two colours are close to the target 
in colour space compared with when they are far from the target 
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Fig. 1 | Measuring visual memory and measuring psychophysical similarity. a, An example of a continuous response memory task. A widely used 
method in working memory is to select a colour circle from a slice of colour space (right; black circle), show memory items drawn from this circle and 
then, during the test, probe the contents of a memory item by presenting the entire continuous circle to participants and asking them to give a response 
(left). Similar response wheels are used for other features, such as face identity. b, A histogram of results generally observed for such tasks, traditionally 
plotted as a function of distance in degrees of error along the response wheel. There are long, fat tails of errors far from 0 that are often interpreted as 
evidence for distinct memory states (for example, guesses or items encoded with very low precision). c, Top: in a triad psychophysical scaling task, n=40 
participants had to say which of two colours in the bottom row was more similar to the top (target) colour. Bottom: despite the difference between the 
two choice colours always being 30° on the colour wheel, sensitivity (d′) dramatically decreased as the choices became more distant from the target 
(ANOVA, F(12,384)=71.8; P<0.00001; η2=0.69). Error bars show within-participant s.e.m. and dots represent individual participants. See Extended Data 
Fig. 1 for the full data. d, We can use the data from another similarity task (that is, a simple pairwise Likert rating of similarity (n=50)) to infer the global 
psychophysical distance of colours at different physical distances along the colour wheel. Here we plot these data for sets of target colours, demonstrating 
previously observed local non-uniformities in colour space as the small differences across rows12. Critically, all of these rows demonstrate a much larger 
global structure that is separate from this local structure: overall similarity falls in an approximately exponential manner. e, Some aspects of this similarity 
must derive from perceptual discrimination failures (for example, there are not really 360 independent colours on the colour wheel). To estimate this 
underlying perceptual noise, we use a continuous report task where participants must match a visible colour using the same colour wheel (n=40). f, We 
can plot the global psychophysical function (averaged over all target colours) using the triad task or the Likert task. Both are very similar and show the 
same underlying shape. Consistent with previous work, we find that this similarity function is exponential once perceptual noise is taken into account (for 
example, an exponential convolved with the measured perceptual noise function provides an excellent fit to these data).
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(Fig. 1c and Extended Data Fig. 1; analysis of variance (ANOVA), 
F(12,384) = 71.8; P < 0.00001; η2 = 0.69). In other words, in a purely 
perceptual task, participants largely could not tell whether a colour 
120° or 150° from the target was closer to the target, whereas this 
task was trivial if the colours were 5° and 35° from the target. This 
demonstrates a strong nonlinearity in perceptual similarity.

To compute a full psychophysical similarity function, we  
utilized the just-described triad task with additional distance pairs 
(see Methods section ‘Psychophysical scaling triad experiment’). We 
then applied the maximum likelihood difference scaling (MLDS) 
technique16 that is commonly used for perceptual scaling to estimate 
how differences between colour stimuli are actually perceived. The 
estimated psychophysical similarity function fell off in a nonlinear, 
exponential-like fashion with respect to distance (Fig. 1f). In colour 
space, it was also well matched by a smoother measure that required 
substantially less data; namely, the pairwise subjective similarity rat-
ings of colours at different distances along the colour wheel using a 
Likert scale (see Methods section ‘Likert colour similarity experi-
ment’; Fig. 1f).

While there were also small local inhomogeneities (Fig. 1d), 
we were primarily interested in the fact that the global structure of 
similarity space was strongly nonlinear, in agreement with decades 
of work suggesting that psychological similarity is globally expo-
nential (for example, the universal law of generalization17,18), with 
confusions for very similar colours also caused by perceptual noise19 
(measured here using a perceptual matching task; see Methods  
section ‘Perceptual matching experiment’ and Fig. 1e,f).

A key implication of these similarity scaling results is that the 
linear axis of error along the response wheel (for example, −180° to 
180°) that was previously used to analyse working memory capac-
ity does not capture the psychological representation of the stimuli. 
This poses a serious challenge to existing memory models, as their 
parameters are derived assuming linear similarity (that is, treating 
the axis of error in degrees as a linear scale). However, this axis is 
not linear, even in a perceptual task: since participants are essen-
tially incapable of discerning whether an item 120° or 180° from  
the target in colour space is more similar to the target, it is not  
surprising that they confuse these colours equally often with the 
target in memory.

Incorporating psychophysical similarity into a signal detection 
model. Psychophysical scaling formalizes how similar two stimuli 
are perceived to be and is the first aspect of our proposed model. 
The next aspect is that signals are corrupted by noise, which we  
formalize using signal detection theory.

In particular, the model we propose here is fundamentally the 
same longstanding signal detection model used across decades of 
research on long-term memory and perception20–22, modified to 
take into account psychophysical similarity. The basis of signal 
detection theory is that when deciding among each of the colours 
at test, participants rely on a noisy, cue-dependent familiarity signal 
for each colour, and the colour that generates the maximum famil-
iarity signal is selected (Fig. 2). The stronger the maximum signal, 
the higher the confidence in the selected colour.

Our model differs from a standard model of the n-alternative 
forced choice (n-AFC) only in the usage of the psychophysical simi-
larity measure. In a standard signal detection model of an n-AFC 
task, it is generally assumed that exactly one item has been previ-
ously seen, so its familiarity is centred on d′, whereas the other n − 1 
items are equally unfamiliar and therefore centred on zero familiar-
ity21. However, when memory is tested using a continuous stimulus 
space, it would be implausible to assume that a colour 1° away in 
colour space from the target would have no added familiarity and 
would have noise that is totally uncorrelated with the target.

Thus, in our model, the mean memory signal for a given colour x 
on the colour wheel, denoted dx, is based on that colour’s separately 

measured similarity to the target (that is, dx = d′f(x)), where d′ is 
the model’s only free parameter (memory strength) and f(x) is the 
empirically determined psychophysical similarity function (that is, 
a measurement, taken from different participants, of the similarity 
structure of the colour space). The noise added to each colour is 
also correlated between nearby colours according to the empirically 
measured proportion of how often colours at that distance are con-
fused in a perceptual matching task (Fig. 1e), although this is not 
critical for fitting continuous report error distributions (Extended 
Data Fig. 2).

Because of the nonlinear similarity function, colours in the 
physical distance range around >90° all cluster near f(x) ≈ f(x)min 
such that dx ≈ 0 for x = 90° to 180°. Thus, when participants encode 
a colour (for example, purple), it increases the average familiarity 
signal in the purple channel and also in nearby (similar-to-purple) 
channels while having almost no effect in dissimilar colour channels 
(Fig. 2b). The familiarity signals in each channel are then corrupted 
by noise, and the resulting reports are based on this noisy signal. 
In the case of continuous reports, people theoretically report the 
colour with maximum familiarity.

Importantly, this target confusability competition (TCC) model 
can explain all of the key features of visual working memory. In 
particular, it accurately characterizes memory performance across 
a variety of domains, including different set sizes, encoding times 
and delays (Fig. 3 and Supplementary Fig. 1). Previous cognitive 
models of visual working memory allow for many ways in which 
memory for an individual item can vary (for example, guess rate, 
precision and variation in precision7,8,23). In contrast, TCC holds 
that these experimental manipulations affect only a single funda-
mental underlying parameter (the memory strength parameter, d′), 
and that the complex changes in the shape of the error distribution 
arise not from multiple parameters, but simply from the similar-
ity function combined with the nonlinearity inherent in selecting 
only your strongest familiarity value for report. Thus, the fact that 
manipulations of set size, delay and encoding time (22 different 
manipulations in total) result in distributions that can be accu-
rately characterized with only a single varying parameter is strong 
evidence in favour of TCC, as is the fact that it describes the data 
extremely well despite being markedly simpler than alternative the-
ories. It is markedly simpler because it proposes a unified genera-
tive process for all responses instead of requiring different states to 
generate different subsets of responses (as in the encoding variabil-
ity or lack of represented items proposed by previous models7,8,23), 
and because it replaces free parameters (such as precision) with 
independently measured values (such as similarity, which is inde-
pendently measured and fixed for all participants and conditions; 
Extended Data Fig. 4).

The measured nonlinear similarity function is critical to the 
ability of TCC to fit the data. While reporting the colour that is 
maximally familiar does, on its own, introduce a nonlinearity that 
favours the strongest signals, this alone is not sufficient to explain 
the data (Extended Data Fig. 3). Instead, the explanatory value of 
TCC comes from the combination of the nonlinear similarity func-
tion and signal detection theory.

While the main evidence in favour of TCC is its ability to parsi-
moniously characterize the effects of qualitatively different experi-
mental manipulations (Fig. 3 and Supplementary Table 1) and 
to make precise predictions across tasks and stimuli (see below), 
we also compared the fit provided by TCC with the fit provided 
by mixture models of visual working memory, including the stan-
dard two-parameter mixture model that interprets performance 
as arising from distinct concepts of capacity and precision7 and 
a three-parameter version of the mixture model that allows for 
variable precision23. Despite being simpler and having fewer 
parameters, TCC was just as good at predicting held-out data in a 
cross-validation test and was reliably preferred in every participant  
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across set sizes when using metrics preferring simpler models 
(Supplementary Table 2). This was true even though TCC fits are 
based on aggregated similarity functions from a different group 
of participants, suggesting that the global structure of the psycho
physical similarity function is largely a fixed aspect of a given 
stimulus space. Taking into account colour-specific similarity func-
tions (for example, Fig. 1d) or individual differences in similarity  
scaling should further improve the fit of the model (Extended Data  
Fig. 5), and would be necessary for comparing the model with  
others that do take into account such information, but here we focus 
on the general case of treating all colours and participants as sharing 
a similarity function.

While memory strength varies according to a variety of dif-
ferent factors (Fig. 3), many researchers have been particularly 
interested in the influence of set size. TCC shows that at a given 
encoding time and delay, d′ (theoretically an interval-scale measure 
of memory strength21,24) decreases according to a power law as the 
set size changes (Extended Data Fig. 6), broadly consistent with 
fixed resource theories of memory25,26. Critically, memory strength 
decreases most at low set sizes (for example, one to three), suggest-
ing that limits of working memory may be best studied across lower 
set sizes, in contrast with the majority of the field, which seeks to 
pressure capacity via high set sizes to understand the nature of 
working memory.

TCC accurately predicts connections between qualitatively dif-
ferent tests of working memory that mixture models claim are 
impossible. Ultimately, evaluating theories based on model com-
parisons of fit—when all models fit the data well, as is the case 
here—is not as useful as investigating what they accurately predict27. 
TCC makes a precise and unique prediction that since all responses 
are generated from the same underlying process, measuring d′ in 
any way that avoids floor and ceiling performance—even using only 
two maximally dissimilar 180° away colours in a two-alternative 
forced-choice (2-AFC) task—is sufficient to accurately predict 
(with no free parameters) memory performance involving more 
similar colours and/or more response options (including continu-
ous report). This is in direct contrast with the inability of mixture 
models and variable precision models to make such predictions. 
Such models claim that memory varies in multiple fundamentally 
distinct ways (that is, precision and guessing can both vary, or the 
distribution of precisions can vary), and clearly, a single measure 
of accuracy cannot possibly measure more than one fundamental 
distinct property of memory.

Specifically, existing models insist that such predictions should 
not be possible because they claim that heterogeneity between items 
is crucial to explaining large versus small errors. That is, existing 
models claim that fundamentally distinct items and memory states 
explain close-to-target responses on the colour wheel (for example, 
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Fig. 2 | The target confusability competition (TCC) model of visual memory. a, Our TCC model applied to a hypothetical 10-AFC memory test. In 
standard two-alternative long-term recognition memory experiments, unseen items vary in familiarity, which is modelled as a normal distribution. 
Previously encoded items elicit higher familiarity on average, modelled (in the simplest case) as a normal distribution with a mean of d′, where d′ indicates 
how many standard deviations of memory strength are added to seen items. When asked what they remember, people pick whichever colour elicits 
higher familiarity on that trial. To generalize to a 10-AFC, we thus only need to specify the average familiarity strength of every lure. Usually, all nine lures 
are assumed to have a mean of zero, with no added familiarity, when modelling such tasks21. However, in a continuous space, this is not plausible. Thus, 
in TCC, we propose that familiarity spreads according to similarity: the mean of each lure’s familiarity distribution is simply its similarity to the target. For 
example, if the target is purple, other purples will have boosted familiarity as well, and thus people will choose a slightly different purple lure much more 
often than an entirely unrelated lure such as green. Examples of d′=3 and d′=1 illustrate the idea that when memory for the target colour is weaker, more 
of the lure distributions cluster near the target, and at d′=1, all of the distant colours are in a position to sometimes ‘win the competition’ by having the 
highest familiarity, but will do so on average equally often, creating a long fat tail. The 10-AFC logic provided here can then simply be adapted to 360-AFC 
to model continuous report, but with the added knowledge that very similar colours also have correlated noise (measured using the perceptual matching 
function); that is, there are not 360 independent colours on the colour wheel. b, An alternative way of plotting the same model is to consider a single trial, 
rather than the distribution of memory strengths across trials. When we encode a purple colour, with memory strength d′=3, the familiarity of purple as 
well as similar colours is increased (according to the measured psychophysical similarity function). Then, we add s.d.=1 noise to each colour channel. The 
resulting familiarity values, after being corrupted by noise, guide participants’ decisions. In a continuous report task, people simply report the colour that 
generates the maximum familiarity value. For an interactive explanation of the model, see https://bradylab.ucsd.edu/tcc/.
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precision errors for remembered items or high-precision items) 
versus responses far away from the target (for example, guesses 
or low-precision items). Thus, existing models inherently assume 
that a singular measure of how well participants can discriminate 
180° changes (for example, was it red or green?), which measures 
only information about items that cause large errors, cannot, even 
in principle, measure the properties of the items that cause small 
errors. In contrast, TCC says that all responses to more similar 
colours are directly predictable using the fixed similarity function, 
and that memory varies in only one way (memory strength); thus, 
such a 2-AFC task is sufficient to measure memory performance.

In two experiments, we tested TCC’s prediction that a single mea-
sured d′ is sufficient to characterize memory performance across a 
variety of tasks that are currently thought to tap different memory 
processes. In both experiments, we asked participants to perform 
a memory task involving a 2-AFC test with maximally dissimilar 
colours (two options: 0° away from the target colour versus 180° 
away from the target colour). We used the data from this 2-AFC task 
to compute d′ in the standard way (denoted d′180°) and then used 

TCC—with this exact d′—to compute parameter-free predictions 
for a variety of other conditions. We intermixed all of the condi-
tions, including conditions that required participants to remember 
the precise colour they saw, so that participants could not rely on a 
categorical memory strategy in the maximally distinct 2-AFC task.

In one experiment involving a 2-AFC task (Fig. 4), we used TCC 
with fixed d′180°, to predict how well participants could discrimi-
nate the target from more similar foils (for example, to predict d′12° 
from a 2-AFC task involving the colour they saw versus a colour 
only 12° away). With no free parameters, memory performance was 
accurately predicted over the entire range of intermediate foil simi-
larities (Fig. 4c). TCC accomplished this with no free parameters 
because it specifies how the perceptual similarity of the two colours 
on a 2-AFC task (measured in a separate psychophysical proce-
dure) should impact memory performance (see also Kahana and 
Sekuler28 and Nosofsky19). In contrast, mixture models, based on the 
distinct concepts of guessing and precision, anticipate no particular 
relationship between performance on a 2-AFC task involving maxi-
mally dissimilar foils and performance on a 2-AFC task involving 
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Fig. 3 | TCC accurately fits a variety of working memory data. a, TCC fits to group data at set sizes of one, three, six and eight (n=20). Despite no concept 
of unrepresented items or guessing or poorly encoded items, and adopting for the sake of simplicity the assumption that all items are encoded equally 
(that is, with the same d’), TCC fits even the larger set size data accurately because of the noisy nature of the signal detection process combined with the 
nonlinear psychophysical similarity function. b, TCC fits to n=20 group data with varying delay (only a set size of six is shown; the remainder of the data 
are shown in Supplementary Fig. 1). c, TCC fits to n=20 group data across different encoding times (only two set sizes are shown; see Supplementary Fig. 
1). Across several key manipulations of visual working memory (set size, delay and encoding time), which drastically alter the response distributions, TCC 
accurately captures (with only a single free parameter d′) the response distribution typically attributed to multiple parameters or psychological states 
by existing frameworks and models of working memory. Only a subset of the delay and encoding time fits are plotted here, but all fits are accurate, as 
demonstrated by the Pearson correlation between the binned data and model fits as a function of set size (Supplementary Table 1). Note that d′ of the fit to 
the group data, as plotted, is not the same as the average of individual participant d′ values, as used in the model comparisons.
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more similar foils. Two-parameter mixture models can use 180° 
2-AFC performance only to measure the guess rate, leaving preci-
sion unspecified. Thus, with only 180° 2-AFC performance in hand, 
these models are able to predict a wide range of possible outcomes 
on 2-AFC tasks with more similar foils, depending on the unknown 
factor of memory precision (Supplementary Fig. 2). Note that preci-
sion, unlike similarity, is thought to be changed by memory strength 
and to differ across participants; thus, precision measures are not 
constrained by fixed perceptual similarity data that TCC can uti-
lize so effectively. Because the mixture model predictions are largely 
unconstrained, TCC is strongly preferred to mixture models by a 
Bayes factor model comparison (group Bayes factor preference 
for TCC > 200:1; individual participants: t(54) = 11.19; P < 0.001; 
dz = 1.51; confidence interval (CI) = 2.9:1 to 4.2:1).

In a second experiment, we went further, showing that TCC—
again using only measured d′180° from a 2-AFC task and separately 
measured perceptual similarity between the response option colours 
in different participants—can accurately predict performance when 
there are more than two response options, up to and including 
continuous report, again with no free parameters (Fig. 5). In this 
experiment, we once again found a strong preference for TCC’s pre-
diction over the mixture model models in generalizing from 2-AFC 
to continuous report, which is the only condition the mixture model 

can be fit to (group Bayesian information criterion (BIC) preference 
for TCC > 650:1; individual participants: t(51) = 7.64; P < 0.001; 
dz = 1.06; CI = 9.5:1 to 16.2:1). We also found that 2-AFC d′ mea-
sured in the standard way (that is, d′180°) maps directly to TCC’s d′, 
which explains the full continuous report distribution (Fig. 5b). 
The lopsided Bayes factors arise because TCC precisely predicts the 
outcomes (outcomes that, when tested, are empirically observed), 
whereas competing models necessarily claim that the 2-AFC data 
are insufficient to completely measure memory since they do not 
measure the precision of memory.

Thus, with TCC, measuring only how well participants can dis-
tinguish between far apart test items (0° versus 180°) using a 2-AFC 
task is sufficient to predict the distribution of responses from a con-
tinuous report task and to predict 2-AFC performance for distin-
guishing targets and foils of varying similarity (so long as the 2-AFC 
task is not at the ceiling or floor). Together, these experiments pro-
vide compelling evidence against previous models of visual working 
memory in which the tails of the continuous report distribution (the 
only aspect of performance that is theoretically measured with 180° 
foils in 2-AFC) are fundamentally distinct from the centre of the 
distribution.

In other words, in the competing models, responses in the tails 
of the distribution result from guesses or low precision, whereas 
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other theory of working memory can make. In particular, it predicts that a d′ measured with a 180°, maximally dissimilar foil (that is, d′180°) should be 
completely sufficient to predict all of memory performance, unlike models in which errors to maximally dissimilar foils arise from different processes 
from errors to similar foils (for example, where errors to maximally dissimilar foils arise solely from guessing (in some models) or from extremely poorly 
encoded items (in other models)). For example, after measuring d′180°, TCC predicts that since a 24° foil is ~35% similar to the target, discriminability on a 
2-AFC task in which the foil is 24° away from the target should be ~35% of d′180° (but note that correlated noise makes this more complex for very similar 
foils). b, On a single trial, this prediction can be visualized in a straightforward way. If we know the target was encoded with d′180°=1.7, then TCC makes a 
strong prediction about how this familiarity spreads to other colours and how it is corrupted by noise. In continuous report, the decision rule is to report 
the maximum of the resulting colour channel familiarity responses. In 2-AFC, the decision rule—based on the exact same underlying colour channel 
responses—is to choose the highest-familiarity signal of the response options. Thus, in this example trial, the participant in a 2-AFC task would choose the 
0° target over a 180° foil, but would choose a 24° foil over the 0° target. Because TCC specifies this entire generative process, it makes precise predictions 
about how often people will make errors to different distance foils. c, Predicted percentage of correct responses for different distances of colours from the 
target (blue)—a prediction based only on performance from the 180° condition (black) with no free parameters. Blue shading indicates TCC prediction 
(based on 180° condition only). When comparing participants’ performance at different foil distances (grey; n=60), we demonstrate that TCC accurately 
predicts performance across different foil distances.
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the central responses result from high-precision memories. If these 
models were correct, it should not be possible for TCC to make 
such accurate predictions across tasks using a single d′ and no free 
parameters. The fact that TCC can make such accurate predictions 
allows the reintegration of a huge literature on change detection with 
very distinct foils, with important theoretical and clinical implica-
tions29, as it shows that measuring d′ with maximally distinct foils 
is sufficient to understand memory response distributions—there is 
no separate concept of ‘precision’ that is being missed in such tasks.

Generalization across different stimulus spaces. So far, we have 
focused largely on colour space, which is the dominant way visual 
working memory is studied7. However, TCC is not limited to colour 
and can be applied to any stimulus space. To demonstrate its gen-
erality, we applied TCC to the case of face identity, since it is a 
complex stimulus space that contains multiple low- and high-level 
features. Using a previously created face identity continuous report 
procedure30, we collected memory data for set sizes one and three. 
We also measured the psychophysical similarity function and the 
accuracy of perceptual matching on this face space (Fig. 6). Again, 

we found that the TCC fit observed memory data extremely well 
across both set sizes one and three (see Fig. 6) and fit reliably better 
than existing mixture models (Supplementary Table 3).

Thus, TCC accounts for data across multiple stimulus spaces. 
As long as the perceptual similarity space of the stimuli is accu-
rately measured using psychophysical scaling (see Supplementary 
Discussion), TCC’s straightforward signal detection account, with 
only a single d′ parameter, accurately captures the data.

Generalization across different memory systems. To demonstrate 
TCC’s applicability to multiple memory systems, not just visual 
working memory, we fit data from a visual long-term memory con-
tinuous report task with colours. Unlike the previous datasets, these 
data had been previously reported in the literature31. Participants 
performed blocks where they sequentially saw 40 real-world objects 
that were randomly coloured. Then, after a delay, they reported 
the colour of the object using a colour wheel (as in Brady et al.32). 
Some items were seen only once and some were repeated twice  
in the same colour within a block (Fig. 6d). Again, we found that 
TCC fit the observed memory data extremely well across both the 
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participants encoded items into memory and were then tested using 2-AFC, 8-AFC, 60-AFC or continuous report (360-AFC). During 2-AFC trials, the 
foil was always 180° away, which we used to calculate d′180°. We then used TCC, with this measured d′, but with no free parameters, to accurately predict 
8-, 60- and 360-AFC performance. The accuracy of these predictions provides further evidence that there is no need for forgotten or low-precision items 
to account for the tail of continuous report distributions. Instead, for a given stimulus space, the continuous report distribution is modulated by memory 
strength but is otherwise always the same shape, determined by the shape of the similarity function for that stimulus space. b, We can also independently 
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expected simply from the noise ceiling of these measurements. Each point is a participant mean.
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unrepeated and repeated items (Fig. 6e). Thus, unlike working 
memory modelling frameworks, which propose system-specific 
mechanisms (for example, population coding combined with divi-
sive normalization10), TCC naturally fits data from both visual 
working memory and long-term memory with the same underlying 
similarity function and signal detection process applicable across 
both memory systems.

Implications of TCC. No objective guessing. One particularly 
important implication of TCC’s fit to the data with just a single 
parameter is that it implies that there is little-to-no objective guess-
ing in working memory. This provides evidence against a fixed 

capacity limit where participants only remember around three or 
four items1,2, and is consistent with more continuous conceptions 
of working memory4. In particular, while colours far from the tar-
get in colour space sometimes win the competition (for example, 
have maximal familiarity after noise is added), this is not because 
the target was fundamentally unrepresented or varied hugely in 
encoded memory strength trial to trial. In a stochastic competition, 
the strongest representation does not always win. Moreover, the tar-
get will be more likely to lose the competition the weaker its repre-
sentation is. Critically, in TCC, at least as proposed so far, the target 
is always represented (that is, people’s familiarity signals are never 
unaffected by what they just saw 1 s ago (as in d′ = 0)).
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Fig. 6 | TCC generalizes to face identity and visual long-term memory. a, Examples from a previously used continuous face space30. b, Using a quad 
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distance function for face identity (n=102). c, TCC fits to working memory data (n=50) using face identity at set sizes of one and three (one: r=0.997; 
P<0.001; CI=0.993 to 0.998; three: r=0.985; P<0.001; CI=0.971 to 0.992). TCC accurately captures face identity data, demonstrating its generalizability 
across diverse stimulus spaces. d, To show generalization to other memory systems, we fit data on a visual long-term memory continuous report task 
with colours31. Thirty participants performed blocks of memorizing 40 items. Then, after a delay, they reported the colours of the items using a colour 
wheel. Some items were seen only once and some were repeated twice in the same colour within a block. e, TCC fits to visual long-term memory data 
for items seen only once and for items repeated twice (once: r=0.978; P<0.001; CI=0.958 to 0.988; twice: r=0.991; P<0.001; CI=0.983 to 0.995). TCC 
accurately captures visual long-term memory data, suggesting that the psychological similarity function is a constraint on both working and long-term 
memory systems. Note that long-term memory performance in this task probably depends on a two-part decision: item memory and source memory (for 
example, the object itself and then its colour). This two-part decision is related to the processes of recollection and familiarity and probably introduces 
heterogeneity in memory strength into the colour memory reports. Here, where item memory was consistently strong and colour memory was the main 
factor, this did not affect the fits of TCC, but in other data where heterogeneity in the strength of item memory was greater, variability in d′ between items 
would probably need to be accounted for.
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While these conclusions follow from the excellent fits of the 
straightforward one-parameter TCC model to a wide variety of 
data (data widely thought to provide prima facie evidence for the 
existence of unrepresented items) and from the generalization of 
maximally dissimilar 2-AFC performance to other conditions, to 
evaluate this claim further, we assessed a two-parameter hybrid 
model based on TCC but mixed with objective guessing. This 
hybrid model assumes that only a subset of items are represented 
and that the remainder have d′ = 0. Focusing on the highest set 
sizes (six and eight), we found that such a model was dispreferred 
in model comparisons in 100% of participants compared with TCC 
(BIC: set size of six: t(19) = −41.99; P < 0.001; dz = 9.39; CI = 6.2:1 to 
6.9:1; set size of eight: t(19) = −16.09; P < 0.001; dz = 3.60; CI = 5.3:1 
to 6.9:1), and BIC was well calibrated for these model comparisons 
(Supplementary Fig. 3). Furthermore, while this hybrid model accu
rately recovered its own parameters from simulated hybrid data,  
showing that it detects objective guessing if it is present (Fig. 7c), 
when fit to empirical data, it estimated guessing rates near 0 in every 
set size in group data (Fig. 7b) and a guess rate <5% in the major-
ity of individual participants at every set size. Thus, although some 
items may occasionally have a d′ of 0 (perhaps because they were 
completely unattended during encoding), it appears to happen too 
infrequently to appreciably affect the fit, and it happens far less often 
than required for slot models of working memory that suppose that 

four to five of the eight items are always entirely unrepresented2. 
The simulation results show that it is possible to detect random 
guesses if they are present in the data, but TCC finds no evidence 
for such objective guessing in real data. Critically, however, as with 
any standard signal detection model, TCC naturally accounts for 
the subjective feeling of guessing/low confidence21 that arises when 
memories tend to be weak, such as at high set sizes (Extended Data 
Figs. 7 and 8).

Mixture models are not measuring distinct psychological states. The 
dominant quantitative model of visual memory is the mixture 
model, which claims to measure two distinct psychological con-
cepts from continuous report error data: (1) how precisely people 
remember items that they have in mind (for example, precision 
or variability in precision); and (2) how often people have an item 
in mind (likelihood of retrieval, or its opposite, guess rate). The 
fundamental claim that there are two distinct ways memory can 
fail (that is, loss of precision or loss of discrete items) permeates 
a huge variety of the literature in working memory, attention33, 
iconic memory34 and long-term memory35. TCC makes a coun-
terclaim: the fact that manipulations of set size, delay and encod-
ing time that hold the stimulus space constant (for example, use of 
a particular colour wheel) can be fit by varying a single memory 
strength parameter, and the fact that measuring how well people 
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Fig. 7 | TCC measures of ‘objective guessing’ in visual working memory. a, To validate whether TCC could detect objective guessing (that is, a separate 
psychological state with no information) if present in the data, we considered a mixture of responses from TCC plus objective guessing, creating a 
mixture model of TCC and a uniform distribution. b, Although model comparison strongly preferred TCC with no guessing, we nevertheless fit a hybrid 
TCC+guessing model (two parameters) to real participant data. We found that the guessing parameter in real data is estimated at ~0 across all set sizes. 
c, However, when fitting the hybrid TCC+guessing model to simulated data, we observed accurate recovery of guessing if present in the data. Even for 
20% of guesses added to a set size of eight, d′ levels were accurately recovered and never estimated as 0. Violin plots show the entire distribution of 
recovered parameters. Furthermore, model comparison metrics—even those, such as BIC, designed to prefer simpler models—preferred the hybrid model 
with the guessing parameter in every simulation with guessing added (all BIC>30:1 in favour of the hybrid model). This provides strong evidence that 
there is little objective guessing in visual working memory data and that our modelling with TCC would be able to detect any substantial number of added 
no-information responses if they were present.
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can distinguish only maximally distinct comparisons (such as red 
versus green) is sufficient to characterize memory, appears to falsify 
the idea that memory changes in two or three psychologically dis-
tinct ways (for example, precision versus guess rate). Another way 
to test this is to fit the mixture model, which purports to measure 
two distinct parameters, to data from a single stimulus space (for 
example, from a single colour wheel) and to ask whether the state–
trace plot shows evidence of a single way memory changes or mul-
tiple ways36. Figure 8 shows this plot for all data from the current 
paper (for example, the 22 conditions shown above, plus the other 
experiments) and from all of the conditions in Miner et al.31, which 
provided the long-term memory data fit above. As can be clearly 
seen in this plot, the two parameters always change together: while 
not linear in their relationship, they are nearly perfectly related, 
and their relationship is well predicted by the zero-free-parameter 
prediction of TCC (for example, TCC’s prediction across a range 
of d′ values). The nonlinear relationship accounts for most cases 
in which people have found evidence to dissociate the two param-
eters (see Supplementary Discussion). This is further evidence that 
TCC’s single parameter conception of performance is correct and 
that mixture models are not measuring distinct psychological con-
structs (see also Supplementary Figs. 4 and 5 and Supplementary 
Table 4, which use data from the literature, although without hold-
ing the stimulus space constant as here).

Discussion
Most previous theories and models of visual working memory have 
not considered the relationship between stimuli and the psycho-
logical similarity of those stimuli. In the absence of psychophysical 
scaling and without regard for its theoretical implications, the use 
of these models has led to what we show are illusory independent 
estimates of guessing/capacity and precision, and to arguments for 
limited capacity characterized by so-called discrete failures of work-
ing memory, attention33, iconic memory34 and long-term memory35. 
Indeed, claims about selective deficits in clinical populations37–39, 
and even about the nature of consciousness33, have been made based 
on dissociations between model-based estimates of precision and 
guessing. Here, we have shown that these apparent dissociations 
are an illusion of modelling the data without taking into account 

the nonlinear way that familiarity spreads in stimulus space. When 
this fixed perceptual similarity structure is taken into account, TCC 
provides a unifying theory of visual memory strength—one that 
is capable of bridging distinct tasks and stimulus conditions that 
would not be possible using previous models and that undermines 
the interpretation of apparent discrete failures of attention and 
memory33–35,37–39.

While TCC rejects the idea that the distribution of responses col-
lected from continuous report is explained primarily by items that 
are remembered or not (or items that are encoded with extremely dif-
ferent precisions8), this does not mean that some variability between 
items is not present in working memory tasks. Psychophysical scal-
ing can naturally account for many stimulus-specific variability 
effects (for example, some colours being more distinct than oth-
ers; Extended Data Fig. 5) by using separate similarity functions 
for each target colour. Furthermore, in light of the signal detection 
framework of TCC, much of the existing evidence for variable pre-
cision does not actually provide direct evidence of variability in the 
d′ parameter of the TCC model. Many aspects of variability between 
items arise in TCC naturally from the independent noise added to 
different items that is at the heart of signal detection theory, such as 
the effect of varying confidence on continuous report data or allow-
ing participants to choose their best item for report (Extended Data 
Figs. 7 and 8). Thus, it remains an open question to what extent 
d′ varies between items and trials. In TCC, if such variation needs 
to be accounted for, this would be done by moving to an unequal 
variance signal detection model, whereas the current modelling has 
used a purely equal variance model. Critically, however, we show 
that mixing in items that are unrepresented (d′ = 0) is inconsistent 
with the data. Thus, any variability in d′ that does exist across items 
probably does not include an appreciable role for items with d′ = 0.

Many models of working memory focus almost exclusively 
on how memory strength changes with set size, taking this as the  
central factor in how much understanding of working memory  
they have achieved. We take a fundamentally different view, see-
ing our measure of memory strength (d′) as a measure of discrim-
inability that is probably modulated by many factors, and which has  
a shared structure not only in working memory, where set size  
matters so much, but also in long-term memory, which appears to 
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Fig. 8 | State-trace plot of mixture model parameters is in line with TCC prediction. The currently dominant conception of memory arises from mixture 
models claiming that memory varies in at least two psychologically distinct ways: the precision of memory and the number of represented items 
(modelled as the guess rate). TCC makes a strong counter prediction: that if the stimulus space, and thus psychophysical similarity function, is held 
constant, memory report distributions vary in only one way (that is, memory strength). Thus, TCC claims that the particular manipulation (encoding, set 
size or delay) used to change memory strength should not selectively change one mixture model parameter or another (for example, encoding changing 
the precision or high set sizes affecting only the guess rate, and so on), but that both should always change together. To visualize this, we show a state–
trace plot of mixture model parameters across a wide range of manipulations of working memory (from the current paper) and long-term memory (from 
Miner et al.31), with one point per condition. We find that despite the huge number of different ways we vary memory strength, all of the points lie on a 
single line, consistent with only a single parameter being varied, and that this line is extremely well predicted by the zero-free-parameter prediction of TCC. 
TCC can only predict an extremely small part of the possible space that the mixture model can predict, and only a very particular relationship between the 
two mixture model parameters, and the data from all of these conditions land on this line. This provides strong evidence against mixture models measuring 
two distinct parameters and in favour of the TCC conception of memory.
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follow fundamentally the same rules of memory confusability and a 
similar decision process (Fig. 8; Miner et al.31). Notably, we find that 
while set size modulates memory strength in the current work, there 
are many other factors that affect memory strength nearly as much. 
For example, increased delay decreases d′ (more noise accumulates 
even with the same signal) and increased encoding time improves 
d′ (more signal relative to the same noise). Similarly, in some situa-
tions, other factors such as location noise (for example, swaps; Bays 
et al.26) and ensemble coding40,41 seem to play a major role in mem-
ory errors. Thus, while we find an approximately power law-like 
relationship between set size and d′ (Supplementary Fig. 4), we are 
hesitant to assume that there will be a fixed law for how set size 
relates to memory errors, and note that previous work that claims 
to find such rules7–9 has almost never examined whether those rules 
hold when manipulating other factors that will also independently 
impact memory strength, such as encoding time and delay.

In addition, in the current work, we present a straightforward 
version of the TCC model that does not account for all possible fac-
tors. For example, it is possible to make different predictions for 
different target colours, taking into account category effects (for 
example, Extended Data Fig. 5). In addition, while in the current 
data we see almost no swaps or location-based confusions (because 
we use long encoding times and placeholders), it is of course pos-
sible to implement a swap parameter in TCC (as in Williams et al.42) 
or to explicitly model the psychophysical similarity structure of 
location and therefore make parameter-free location confusion 
predictions. Similarly, hierarchical models of ensemble coding and 
grouping, or other forms of integration across items, could poten-
tially be implemented using TCC as the basis of memory responses. 
If there is substantial integration across items or across time in a 
particular paradigm, more complex models such as these would be 
needed because TCC’s item-based prediction about error distribu-
tions would no longer be a valid assumption.

While TCC is a theory about the fundamental nature of the 
underlying memory signal in visual working and long-term mem-
ory tasks, and about how this signal is used to make decisions, 
there are many potential cognitive and neural explanations (shared 
or independent across systems) that may instantiate the model. 
Indeed, in long-term memory, signal detection models have often 
been conceptualized in relation to neural measures, including both 
neuroimaging43 and single-unit recording44.

The central feature of TCC is the psychophysical similarity  
measurement, which provides the basis for the straightforward 
signal detection model. This similarity function is naturally under-
stood using models of efficient coding18 or population coding10.  
For example, the idea that far away items in feature space are all 
approximately equally similar arises naturally from population 
codes—if individual neurons’ tuning functions only represent a 
small part of colour space (for example, 15° on the colour wheel), 
there would be extremely limited overlap in the population of  
neurons that code for any two colours even a medium distance apart 
on the wheel. There would also be correlated noise between nearby 
colours, as we assume in TCC.

Thus, the current model is in many ways related to existing  
models of working memory based on population codes9,10. Indeed, 
the similarities between the framework of population coding and the 
cognitive model proposed here offer important promise for bridg-
ing across levels of understanding in neuroscience, with population 
coding implementations of TCC possible45,46. However, compared 
with existing population-based models10, the cognitive basis of  
the current model—with the measured scaling function following 
the well-known cognitive laws of similarity17,19—allows us to fit  
data with an extremely simple one-parameter model that allows 
generalization across tasks and draws strong connections to signal 
detection theory and long-term memory that are not apparent when 
thinking about population coding alone without this cognitive basis. 

In addition, framing our model in terms of signal detection theory 
allows a very general model of the decision process, compared with 
population coding models for which the decision process is based 
on variability in spikes in a fixed neural population10, which are dif-
ficult to reconcile with data from high-level stimuli such as faces 
(which are probably encoded in many distinct populations) and 
data from long-term memory (which are not stored online in a fixed 
neural population).

Previous work has shown that psychophysical similarity metrics 
are probably distinct for different stimuli in the same stimulus space 
(for example, memory varies across colours12,13; Extended Data 
Fig. 5). The underlying space on which the exponential similarity 
function is imposed may be designed to take advantage of efficient 
coding of environmental regularities47 such that the more frequent 
the stimuli the more neural resources we devote, giving improved 
discriminability and predictable memory biases48. Taking this into 
account may allow a simple parameterization of not only the aver-
age similarity function but the particular functions for individual 
stimuli (as in Fig. 1d). In addition, psychophysical similarity may 
not be a fixed property but may be dependent on how the current 
environment affects discriminability49,50. For example, memory 
biases are altered when discriminability is affected by adaptation or 
contextual effects48.

Some previous models of visual working memory have, like 
TCC, rejected the idea that the fat tails in the error distribution  
(Fig. 1) arise from unrepresented items8,9. For example, models such 
as the variable precision model8 hold that items vary in the preci-
sion with which they are encoded, and this heterogeneity between  
items is critical to explaining the shape of the error distribution 
(that is, extremely poorly represented items, rather than completely 
unrepresented items, explain the tail of the error distribution).  
As in TCC, this model holds that there is not in fact a completely 
uniform, flat tail in the distribution, and assumes that items vary 
in representational fidelity (like the independent noise for different 
items in TCC).

However, in other ways, the two models differ substantially. The 
variable precision models, like other previous memory models, rely 
on the assumption that the response axis can usefully be thought of 
as linear. In contrast, we have shown that similarity and memory 
confusability are deeply nonlinear along this axis, in agreement with 
decades of work suggesting that psychological similarity is globally 
exponential (for example, the universal law of generalization17,18). 
This results in critical differences between the variable precision 
model and TCC. In particular, in the variable precision model, 
the latent distribution of precisions is an unknown that is taken to  
vary between situations, whereas TCC uses the insight that  
similarity is nonlinear and relatively fixed to greatly simplify the 
model of the error distribution (allowing, for example, the generali
zations from 180° 2-AFC that are not possible in the variable  
precision model).

Finally, TCC provides a compelling connection between work-
ing memory and long-term recognition memory, which is often 
conceptualized in a signal detection framework. In particular, it 
can be naturally adapted to explain a number of findings that are 
in common between the working memory and long-term memory 
literatures but have been difficult to explain with previous work-
ing memory models, such as the relationship between confidence 
and accuracy51,52 (Extended Data Figs. 7 and 8) and the ability of 
participants to respond correctly when given a second chance, even 
if their first response was a guess or low-precision response53. Thus, 
despite research on working and long-term memory operating 
largely independent of one another, TCC provides a unified frame-
work for investigating the distinctions and similarities in memory 
across both domains by emphasizing that competition and percep-
tual confusability between items is a major limiting factor across 
both working memory and long-term memory.
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Methods
All of the conducted studies were approved by the Institutional Review Board at 
the University of California, San Diego, and all participants gave informed consent 
before beginning the experiment. All colour experiments used a circle in CIE 
L*a*b* colour space, centred in the colour space at L = 54, a = 21.5 and b = 11.5, 
with a radius of 49. For online experiments, this was converted to RGB using an 
assumed equal energy (“E”) whitepoint. All sample sizes were decided a priori, and 
were similar to those in previous publications7–9,32. Approximately half of the data 
were generated by experiments run in the laboratory, with the others conducted 
using Amazon Mechanical Turk. Mechanical Turk users form a representative 
subset of adults in the United States54, and data from Mechanical Turk are known 
to closely match data from the laboratory on visual cognition tasks40,55, including 
providing extremely reliable and high agreement on colour report data41. Any 
systematic differences between the laboratory studies (in which we collected most 
of the memory data) and the Mechanical Turk studies (in which we collected most 
of the similarity data) would decrease the appropriateness of the similarity function 
for fitting the memory data, hurting the fit of TCC. Data collection and analysis 
were performed with knowledge of the conditions of the experiments. All statistical 
tests were two tailed.

Fixed-distance triad experiment. A total of 40 participants on Mechanical Turk 
judged which of two colours presented was more similar to a target colour. The 
target colour was chosen randomly from 360 colour values that were evenly 
distributed along a circle in the CIE L*a*b* colour space, as described above.  
The pairs of colours were chosen to be 30° apart from one another, with the  
offset of the closest colour to the target being chosen with an offset of either  
0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 120 or 150° (for example, in the 150° offset 
condition, the two choice colours were 150 and 180° away from the target colour; 
in the 0° offset condition, one choice exactly matched the target and the other  
was 30° away).

Participants were asked to make their judgements solely based on intuitive 
visual similarity and to repeat the word ‘the’ for the duration of the trial to 
minimize the use of verbal strategies. Each participant completed 130 trials, 
including ten repeats of each of the 13 offset conditions, each with a different 
distance to the closest choice colour to the target, and trials were conducted in 
a random order. The trials were not speeded, and the colours remained visible 
until participants chose an option. To be conservative about the inclusion of 
participants, we excluded any participant who made an incorrect response in 
any of the ten trials where the target colour exactly matched one of the choice 
colours, leading to exclusion of seven of the 40 participants, and based on our 
a priori exclusion rule, we excluded any participants whose overall accuracy was 
two standard deviations below the mean, leading to no additional exclusions. In 
addition, based on an a priori exclusion rule, we excluded trials with reaction times 
of <200 or >5,000 ms, which accounted for 1.75% (s.e.m. = 0.5%) of the trials. The 
data from a subset of offset conditions are plotted in Fig. 1c, and the full dataset is 
plot in Extended Data Fig. 1.

Psychophysical scaling triad experiment. A total of 100 participants on 
Mechanical Turk judged which of two presented colours was more similar to a 
target colour, as in the fixed-distance triad experiment. However, the pairs of 
colours now varied in offset from each other and from the target, to allow us to 
accurately estimate the entire psychophysical distance function. In particular, the 
closest choice item to the target colour could be one of 21 distances away from the 
target colour: 0, 3, 5, 8, 10, 13, 15, 20, 25, 30, 35, 45, 55, 65, 75, 85, 100, 120, 140, 
160 or 180°. If we refer to these offsets as oi, such that o1 is 0° offset and o21 is 180° 
offset, then given a first-choice item of oi, the second-choice item was equally often 
oi+1, oi+2, oi+3, oi+4 or oi+8 degrees from the target colour (excluding cases for which 
such options were >21).

Participants were asked to make their judgements solely based on intuitive 
visual similarity, and to repeat the word ‘the’ for the duration of the trial to prevent 
the usage of words or other verbal information. Each participant completed 261 
trials, including three repeats of each of the possible pairs of offset conditions, 
and the trials were conducted in a random order. The trials were not speeded, and 
the colours remained visible until participants chose an option. Following our 
a priori exclusion rule, we excluded any participant whose overall accuracy was 
two standard deviations below the mean (M = 77.5%), leading to the exclusion of 
eight of the 100 participants. In addition, based on an a priori exclusion rule, we 
excluded trials with reaction times <200 or >5,000 ms, which accounted for 1.7% 
(s.e.m. = 0.26%) of trials.

To compute psychophysical similarity from these data, we used a modified 
version of the model proposed by Maloney and Yang16: the MLDS method. Rather 
than using this model to measure the distance between, for example, red and green, 
we adapted it to measure the appropriate psychophysical scaling of similarity 
between colours as a function of their distance between colours along the wheel 
rather than their absolute colour. In particular, any given trial had a target colour, 
Si, plus two options in answer to which is more similar, Sj and Sk. Let lij = Sj – Si 
(the distance between Si and Sj on the colour wheel, which is always in the set 
[0,3,5,…180]), and let ψij represent the psychophysical similarity to which this 
distance corresponds. If people made decisions without noise, they should pick 

item j if and only if ψij > ψik. We added noise by assuming participants’ decisions 
were affected by Gaussian error, such that they picked item j if ψij + ε > ψik. We 
set the standard deviation of the Gaussian ε noise to 1, consistent with a signal 
detection model. Thus, the model had 20 free parameters, corresponding to 
the similarity scaling values for each possible distance length (for example, how 
similar a distance of 5 or 10° on the colour wheel really was to participants), and 
then we fit the model using maximum likelihood search (fmincon in MATLAB). 
Thus, these scaled values for each interval length most accurately predicted 
observers’ similarity judgements, in that equal intervals in the scaled space were 
discriminated with equal performance. Once the scaling was estimated, we 
normalized the psychophysical scaling parameters so that psychophysical similarity 
ranged from 0 to 1.

We did not test all of the possible pairings, but simply a subset (five different 
offsets), because collecting more pairs would not have improved the estimate of the 
psychophysical scaling function much, if at all, since the pairs we used overlapped 
enough without using all of them. Each possible pairing provided an estimate of a 
slope on the psychophysical similarity graph. For each pair, the relevant part of the 
x axis was known, and people’s d′ at discriminating each pair (that is, determining 
which was closer between the target + 10° and the target + 45°) was an estimate of 
the y axis difference/slope in that range (that is, the difference in psychophysical 
similarity between those two points). Having 21 (distances) × 5 (offsets from those 
distances) = 105 such slope estimates, with some covering wide ranges of the 
x axis and some covering small ranges, and each well estimated, was sufficient to 
constrain the global shape of the function when using the MLDS method.

Likert colour similarity experiment. A total of 50 participants on Mechanical 
Turk judged the similarity of two colours presented simultaneously on a Likert 
scale, ranging from 1 (least similar) to 7 (most similar). The colours were  
chosen from a wheel consisting of 360 colour values that were evenly distributed 
along the response circle in the CIE L*a*b* colour space. The pairs of colours  
were chosen by first generating a random start colour from the wheel and then 
choosing an offset to the second colour from the set 0, 5, 10, 20, 30, 40, 50, 60,  
70, 80, 90, 120, 150 or 180°. Participants were given instructions by showing  
them two examples. In example 1, the two colours were identical (0° apart on  
the colour wheel) and participants were told that they should give trials such  
as this a 7. In example 2, the two colours were maximally dissimilar (180° apart  
on the colour wheel) and participants were told that they should give this trial a  
1. No information was given about how to treat intermediate trials. Participants 
were asked to make their judgements solely based on intuitive visual similarity,  
and to repeat the word ‘the’ for the duration of the trial to prevent the usage 
of words or other verbal information. Each participant took part in 140 trials, 
including ten repeats of each of the 14 offset conditions, each with a different 
starting colour, and trials were conducted in a random order. The trials were not 
speeded, and the colours remained visible until participants chose an option.  
Two participants were excluded for failing a manipulation check (requiring a 
similarity of >6 for trials in which the colours were identical). Based on an a priori 
exclusion rule, we excluded trials with reaction times <200 or >5,000 ms, which 
accounted for 3.0% (s.e.m. = 0.4%) of trials. The similarity between two colours 
separated by x° was measured using a seven-point Likert scale, where Smin = 1 and 
Smax = 7. To generate the psychophysical similarity function, we simply normalized 
these data to range from 0 to 1, giving a psychophysical similarity metric, such  
that f(x) = ((Sx − Smin)/(Smax − Smin)).

Perceptual matching experiment. A total of 40 participants on Mechanical Turk 
were shown a colour and had to match this colour, either using a continuous 
report colour wheel (100 trials) or choosing among 60 options (100 trials; spaced 
6° apart on the colour wheel, always including the target colour). The 60-AFC 
version was designed to limit the contribution of motor noise, since the colours 
in this condition were spaced apart and presented as discrete boxes that could not 
easily be misclicked. Colours were generated using the same colour wheel as the 
other experiments, and participants were given unlimited time in which to choose 
the matching colour. The colour and colour wheel/response options remained 
continuously visible until participants clicked to lock in their answer. The colour 
was presented at one of four locations centred around fixation (randomly), 
approximately matching the distance to the colour wheel and variation in the 
position used in the continuous report memory experiments. One participant’s 
data were lost due to experimenter error and two participants were excluded for an 
average error rate greater than two standard deviations away from the mean.

To convert these data into a perceptual correlation matrix, which asked 
how likely participants were to confuse a colour x degrees away in a perception 
experiment, we relied on the 60-AFC data alone, since these data received no 
contribution from motor noise and so were solely a measure of perceptual noise. 
However, using the continuous report data instead resulted in no difference in any 
subsequent conclusions, as the contribution of motor noise in that task appeared to 
be minimal. To create the perceptual correlation matrix, we created a normalized 
histogram across all participants of how often they made errors of each size up 
to 60° errors (−60, −54… 0, … 54, 60), and then linearly interpolated between 
these to obtain a value of the confusability for each degree of distance. We then 
normalized this to range from 0 to 1.
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Modelling data using the TCC model. The TCC model is explained interactively 
at https://bradylab.ucsd.edu/tcc/. In general, the model is typical of a signal 
detection model of long-term memory, but adapted to the case of continuous 
report, which we treat as a 360-AFC for the purposes of the model. The analysis of 
such data focuses on the distribution of errors people make, measured in degrees 
along the response wheel, x, where correct responses have x = 0° error and errors 
range up to x = ±180°, reflecting the incorrect choice of the most distant item from 
the target on the response wheel (Fig. 1b). In the TCC model, when probed on a 
single item and asked to report its colour: (1) each of the colours on the colour 
wheel generates a memory-match signal mx, with the strength of this signal drawn 
from a Gaussian distribution, mx ~ N(dx, 1); (2) participants report whichever 
colour x has the maximum mx; (3) the mean of the memory-match signal for each 
colour, dx, is determined by its psychophysical similarity to the target according 
to the measured function (f(x)), such that dx = d′f(x) (Fig. 2); and (4) the noise 
is correlated across nearby colours according to confusability in a perceptual 
matching task. To obtain the psychophysical similarity function, f(x), we use the 
smooth function estimated from the Likert similarity experiment, although the 
triad task-modelled similarity function predicts fundamentally the same results 
(Extended Data Fig. 4).

According to the model, the mean memory-match signal for a given colour x 
on the working memory task is given by dx = d′f(x), where d′ is the model’s only free 
parameter. When x = 0, f(x) = 1, so d0 = d′. By contrast, when x = 180, f(x) = 0, so 
d180 = 0. Then, as noted above, at test, each colour on the response wheel generates 
a memory-match signal, mx, conceptualized as a random draw from that colour’s 
distribution centred on dx. That is, if the noise is uncorrelated between nearby 
colours, mx ~ N(dx, 1). The response (r) on a given trial is made to the colour on the 
wheel that generates the maximum memory-match signal, r = argmax(m).

Thus, the full code for sampling an absolute value of error from such a 
TCC-like (uncorrelated noise) model is only two lines of MATLAB:

memoryMatchStrengths ¼ randn 1; 180ð Þ þ similarityFunction * dprime;
;memoryError½ ¼ max memoryMatchStrengthsð Þ;

This model fits the data well as it is (see Extended Data Fig. 2), but as specified 
so far, this model assumes that 360 independent colour probes elicit independent 
noisy memory-match signals. The shapes of the distributions the model predicts 
are effectively independent of how many colour channels we assume, so this 
number is not important to TCC’s ability to fit working memory data, but the d′ 
value in the model does change depending on the number of colour channels used. 
Thus, to make the d′ value in TCC comparable to real signal detection d′ values, it 
is important to consider how many colour channels people are accessing.

Rather than make this a discrete decision (for example, there are 30 
independent colours on the colour wheel, so people consider 30 channels), we 
instead estimated the covariance between nearby channels in a continuous manner. 
The familiarity value of colour 181 and 182 on the wheel cannot possibly be fully 
independent, since these two colours are perceptually indistinguishable. Following 
this intuition, we made a simple assumption: the amount of shared variance in the 
noise between any two colour channels is simply how often colours at that distance 
are confused in a perceptual matching task. Thus, p(x), the correlation in the noise 
between any two colours x apart on the colour wheel, is given by Cx/C0, where Cx 
is how often colours x degrees away from the target are chosen in the perceptual 
matching task (with these values interpolated from the histogram of errors; see 
Methods section ‘Perceptual matching experiment’). On average, colours 1° away 
were chosen about 96% as often as the correct colour in the matching task, so the 
noise between any two channels 1° apart was assumed to share 96% of its variance; 
with 82% at 5°, and so on. Thus, having measured both the similarity function 
and the perceptual matching matrix, to sample from the full (correlated noise) 
TCC model, we used MATLAB code that was nearly as straightforward as in the 
uncorrelated model:

memoryMatchStrengths ¼ mvnrnd similarityFunction *ð
dprime; percepCorrMatrixÞ;
;memoryError½  ¼ max memoryMatchStrengthsð Þ;

Thus, in the full version of TCC, the mean of the memory-match signal 
for each colour, dx, is determined by its psychophysical similarity to the target 
according to the measured function f(x), which is taken to be symmetrical 
for the fitting based on the averaged similarity data, such that dx = d′f(|x|), 
for x values [−179,180]. The covariance between colours (R) is given by the 
perceptual confusability of colours at that distance, p(x), which is also taken to be 
symmetrical:

R ¼

p 0ð Þ p 1ð Þ p 2ð Þ ¼ p 180ð Þ p 179ð Þ ¼ p 2ð Þ p 1ð Þ
p 1ð Þ p 0ð Þ p 1ð Þ ¼ p 179ð Þ p 180ð Þ ¼ p 3ð Þ p 2ð Þ
p 2ð Þ p 1ð Þ p 0ð Þ ¼ p 178ð Þ p 179ð Þ ¼ p 4ð Þ p 3ð Þ
¼ ¼
p 180ð Þ p 179ð Þ p 178ð Þ ¼ p 0ð Þ p 1ð Þ ¼ p 178ð Þ p 179ð Þ
p 179ð Þ p 180ð Þ p 179ð Þ    p 1ð Þ p 0ð Þ ¼ p 177ð Þ p 178ð Þ
¼ ¼
p 1ð Þ p 2ð Þ p 3ð Þ ¼ p 179ð Þ p 178ð Þ ¼ p 1ð Þ p 0ð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

To use the perceptual correlation data as the covariance in the correlated 
model, because there might not always be a perfect correlation matrix (for 
example, it might not be perfectly symmetrical, as it was based on real data), we 
first computed R and then iteratively removed negative eigenvalues from this 
matrix and forced it to be symmetrical until it was a valid correlation matrix. This 
resulted in only minimal changes compared with the raw perceptual correlations 
inferred from the perceptual confusability data.

Then, let (X−179,…, X180) be a multivariate normal random vector with mean d, 
unit variance and correlation matrix R. The winning memory strength (m; that is, 
subjective confidence) and reported colour value, r, are then the max and argmax, 
respectively, of this vector:

m ¼ maxðX�179; ¼ ;X180Þ
r ¼ argmaxðX�179; ¼ ;X180Þ

and the error, e, is the circular distance from r to 0. The distribution of m is in 
theory directly computable56, but we rely on sampling from this distribution for the 
fits in the current paper (see below).

Although also not important to the fit of the current data, the model can also 
be adapted to include a motor error component. Whereas existing mixture models 
predict the shape of the response distribution directly and thus confound motor 
error with the standard deviation of memory (see Fougnie et al.57 for an attempt 
to de-confound these), our model makes predictions about the actual item that 
participants wish to report. Thus, if participants do not perfectly pick the exact 
location of their intended response on a continuous wheel during every trial, a 
small degree of Gaussian motor error can be assumed to be included in responses; 
for example, the response on a given trial, rather than being argmax(X−179,…, X180), 
probably includes motor noise of some small amount (for example, 2°):

r  NðargmaxðX�179; ¼ ;X180Þ; 2Þ

Thus, for accuracy to the real generative model of responses, in the model 
fitting reported in the present paper, we included a fixed normally distributed 
motor error with s.d. = 2°, although we found that the results were not importantly 
different if we did not include this in the model.

For fits using the uncorrelated noise model, fits of the d′ parameter of the 
model to datasets were performed using the MemToolbox58, making use of 
maximum likelihood (see code on OSF). For fits of the correlated model, which 
it is difficult to compute a likelihood function for but straightforward to sample 
from, we relied on sampling 500,000 samples from the model’s error at each of a 
range of d′ values (0 to 4.5 in steps of 0.02) and slightly smoothing the result to 
obtain a PDF for the model at each d′ value. The uncorrelated noise version of 
TCC, which can be directly maximized, results in the same fits as the correlated 
version, with d′ linearly scaled by ~0.65 (see Extended Data Fig. 2). Thus, it is 
also possible to fit the correlated noise version by fitting the uncorrelated version 
through maximum likelihood with the appropriate adjustment to d′, and doing so 
results in the same fits.

Continuous colour report data as a function of set size. The continuous colour 
report data used for fitting the model were collected in the laboratory, to allow a 
larger number of trials per participant. A total of 20 participants performed 400 
trials of a memory experiment, with 100 trials at set sizes of one, three, six and 
eight (plus four practice trials). The display consisted of eight placeholder circles. 
Colours were then presented for 1,000 ms, followed by an 800-ms inter-stimulus 
interval (ISI). For set sizes below eight, the colours appeared at random locations 
with placeholders in place for any remaining locations (for example, at set size 
three, the colours appeared at three random locations with placeholders remaining 
in the other five locations). Colours were constrained to be at least 15° apart in 
colour space along the response wheel. After the ISI, a target item was probed by 
marking a placeholder circle with a thicker outline, and participants were asked to 
respond on a continuous colour wheel to indicate what colour had been presented 
at that location. The response wheel was held constant from trial to trial. Error was 
calculated as the number of degrees on the colour wheel between the probed item 
and the response. No participants were excluded.

Continuous report memory as a function of delay. A total of 20 participants in 
the laboratory completed a colour working memory task similar to the previous 
set-size experiment, but with the following exceptions. Participants performed 
12 blocks of 75 trials (900 trials in total). Each block contained an equal number 
of trials at set sizes of one, three and six. The display consisted of six placeholder 
circles. Colours were presented for 500 ms and followed by a delay of either 1,000, 
3,000 or 5,000 ms. The delay time was blocked, and participants were informed 
of the delay time for that block at the beginning of each block. Each combination 
of the three set sizes and three delays was used in 100 trials. One participant was 
excluded for having performance greater than two standard deviations worse than 
average (across all conditions), leaving a final sample of 19.

Continuous report memory as a function of encoding time. A total of 20 
participants in the laboratory completed a colour working memory task identical 
to the delay experiment, but with the following exceptions. Participants performed 
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12 blocks of 75 trials. Each block contained an equal number of trials at set sizes 
of one, three and six. Colours were presented for either 100, 500 or 1,500 ms. The 
encoding time was blocked, and participants were informed of the encoding time 
for that block at the beginning of each block. Following encoding, there was a 
1,000-ms delay before a target item was probed. Each combination of the three 
set sizes and three encoding times was used in 100 trials. No participants were 
excluded.

Model comparisons with mixture models. For all model comparisons, we created 
new versions of mixture models designed to be directly comparable with TCC. 
In particular, to make predictions derived from mixture models comparable with 
those derived from TCC (which specifies a probability of response discretely for 
each 1° of the wheel, not over a continuous distribution), we used discrete versions 
of the two- and three-parameter mixture models in which the probabilities of the 
data were normalized over each of 360 possible integer error values (not over the 
continuous space of errors).

We performed two types of model comparison: one to simply assess the fit 
of the model to the data; and one designed to penalize more complex models. In 
particular, we first performed a cross-validation procedure to assess the fit of each 
model59. Specifically, we fit the TCC and the two-parameter and variable precision 
mixture models to data from each set of n − 1 trials separately for each participant 
and set size, and then evaluated the log-likelihood of this model using data from 
the single held-out trial. We then assessed the reliability of this likelihood difference 
across participants separately for each set size. TCC and mixture models provided 
relatively comparable fits (see Supplementary Table 2), which was to be expected 
given that the mixture model can almost perfectly accurately mimic TCC (see 
Supplementary Fig. 3), and given that the amount of data used to fit the models was 
much greater than the number of parameters in either model (which ranged from 
one to three), so cross-validation provided effectively no penalty for complexity.

We then compared how well the competing models (TCC, the two-parameter 
mixture model and the three-parameter variable precision mixture model) 
fit data from individual participants for the colour report data when using an 
explicit penalty for the greater complexity of the mixture models. In particular, 
we assessed BIC separately for each set size and each participant. We found a 
strong preference for TCC over both mixture models when penalizing complexity 
(see Supplementary Table 2). Note that this was true even though TCC fits were 
based on aggregated similarity functions from a different group of participants, 
collected in a different way (online versus in the laboratory), suggesting that the 
global structure of the psychophysical similarity function is largely a fixed aspect 
of a given stimulus space. Ideally, for model comparison purposes TCC would 
be fit with a similarity function specific to each individual target colour (which 
can be done and predicts the appropriate deviations; see Extended Data Fig. 5), 
which would almost certainly improve the fit of TCC even further with no added 
parameters (because the added complexity would simply be more measured 
perceptual data). However, in the current fits, we relied solely on averaged 
similarity to demonstrate how it is the global, not local, structure of the similarity 
space that is critical to the fit of TCC.

2-AFC at different foil similarities. A total of 60 participants on Mechanical Turk 
completed 200 trials of a four-item working memory task. On each trial, they saw 
four colours randomly chosen from the colour wheel (subject to the constraint 
that no two colours were within 15° of each other). The colours were presented 
for 1,000 ms; then, after an 800-ms delay, each participant had to answer a 2-AFC 
memory probe about one of the colours. The foil colour in the 2-AFC could be 
offset from the target 180, 72, 24 or 12° (50 trials per condition). These conditions 
were interleaved so that participants needed to maintain detailed memories of the 
colour on every trial, since conceivably if only 180° foils were present for a block 
or in an entire experiment, participants would be likely to encode only categorical, 
not perceptual, information. The response options were presented at appropriate 
locations along a full colour wheel; for example, the 180° foils were presented 
180° apart on the screen and the 12° foils were presented 12° apart on the screen, 
to visually indicate the distance between the target and foil in colour space. The 
response wheel was rotated from trial to trial.

Performance was scored as the number correct out of 50 at each offset of the 
memory foil. Five participants were excluded for below-chance performance in the 
maximally easy 180° offset condition, leaving n = 55 participants.

To assess the predictions of TCC for these data in a way amenable to the use of 
Bayes factors, we took the number correct out of 50 in the 180° foil condition and 
used this to calculate a probability distribution over d′ values (for example, any 
given d′ predicts, according to the binomial function, a likelihood over all numbers 
of correct responses). In TCC, a given d′ value for 180° foils predicts d′ for all other 
offsets straightforwardly, although for the correlated noise TCC, performance is 
not simply d′ modulated by similarity (for similar foils, the correlated noise plays 
a role). Thus, to predict performance, we sampled from the model repeatedly; for 
example, for 24° foils, in MATLAB notation:

memoryMatchStrengths ¼ mvnrnd similarityFunction * dprime180;
�

percepCorrMatrix; 50Þ;
isCorrect ¼ memoryMatchStrengths0deg>memoryMatchStrengths24deg

In other words, to assess performance in the 24° offset condition, we assumed 
that responses were generated according to the argmax of only these two values:

r ¼ argmax X0;X24ð Þ

To preserve all uncertainty, we marginalized over the distribution of d′ values 
implied by the number of correct trials in the 180° foil case and used this to make a 
prediction about the distributions of correct answers expected for each of the other 
offset conditions. This allows us to understand the likelihood of each participant’s 
performance in the other conditions given their 180° foil performance in TCC.

To assess the likelihood of performance at different offsets in the mixture 
model framework of Zhang and Luck7, we used performance at the 180° foil 
conditions to assess the guess rate of participants (guess rate = 1 − (2 × percent 
correct180 − 1)) in the standard way (for example, Brady et al.60). However, in this 
framework, 180° foils leave an unknown free parameter: memory precision cannot 
be assessed using such foils, and thus is free to vary. Thus, to predict the likelihood 
of each performance level at each other foil offset, we needed to marginalize over 
the unknown precision parameter. To minimize assumptions about this, we used 
the same prior on precisions that van den Berg et al.8 used when fitting both the 
standard mixture model and their own variable precision model—a uniform prior 
over the concentration parameter of the von Mises from 0–200. For any given 
guess rate and precision, we then calculated the percentage of the PDF that was 
closest to each 2-AFC response option at each offset to generate a likelihood for the 
data (as in MemToolbox58). To calculate Bayes factors, we used a grid of values for 
both the d′ in TCC and for the precision in the mixture model, using steps of 1 in 
the precision and steps of 0.01 in d′, and we assessed the summed log-likelihood 
of each of the three other offsets (for example, not including the 180° condition) as 
our final data likelihood.

2-AFC generalization to n-AFC and continuous report. A total of 60 participants 
on Mechanical Turk completed 200 trials of a four-item working memory task. 
On each trial, they saw four colours randomly chosen from the colour wheel 
(subject to the constraint that no two colours were within 15° of each other). The 
colours were presented for 1,000 ms; then, after an 800-ms delay, each participant 
had to answer a probe about one of the colours. This probe could be a 2-AFC 
(with 180° different foil), an 8-AFC (with the choices equally spaced around 
the colour wheel, and always including the target), a 60-AFC (similarly equally 
spaced) or continuous report (360-AFC). These conditions were interleaved so 
that participants needed to maintain detailed memories of the colour on every 
trial, since conceivably if only 180° foils were present for a block or in an entire 
experiment, participants would be likely to encode only categorical, not perceptual, 
information. The response options were presented at appropriate locations along 
a full colour wheel; for example, the 2-AFC foils were presented 180° apart on 
the screen and the 60-AFC foils were presented 6° apart on the screen, to visually 
indicate the distance between the target and foils in colour space. The response 
wheel was rotated from trial to trial.

Performance was scored as the number correct out of 50 at each offset of the 
memory foil. One participant’s data were lost, and seven participants were excluded 
for below-chance performance in the maximally easy 2-AFC 180° offset condition, 
leaving n = 52 participants.

The simplest metric is simply to compare the d′ computed from 2-AFC 
performance (where p is percent correct, ðd0 ¼ ϕ�1ðpÞ�ϕ�1ð1�pÞffiffi

2
p Þ

I

 with the d′ from 
fitting TCC to the continuous report data. These are extremely strongly related 
(Fig. 5b).

To assess the predictions of TCC for these data in a way amenable to the use of 
Bayes factors, we again took the number correct out of 50 in the 2-AFC 180° foil 
condition and used this to calculate a distribution over d′ values (for example, any 
given d′ predicts, according to the binomial function, a likelihood over all numbers 
of correct responses). In TCC, a given d′ value for 180° foils predicts d′ for all 
other n-AFCs (including 360-AFC) straightforwardly, by simply first choosing the 
maximum out of the relevant foil options that are present; for example, at 8-AFC:

r ¼ argmax ¼ ;X�45;X0;X45; ¼ð Þ

To preserve all uncertainty, we marginalized over the distribution of d′ values 
implied by the number correct in the 180° foil case and used this to make a 
prediction about the distributions of responses to each foil expected for each of 
the other n-AFC conditions. This allowed us to understand the likelihood of each 
participant’s performance in the other conditions given their 180° foil performance 
in TCC.

To assess the likelihood of performance in continuous report given 
performance in the 2-AFC task, in the mixture model framework of Zhang and 
Luck7, we used performance at the 180° foil conditions to assess the guess rate 
of participants (guess rate = 1 − (2 × percent correct180 − 1)) in the standard way 
(for example, Brady et al.60). However, in this framework, 180° foils again left 
an unknown free parameter: memory precision cannot be assessed using such 
foils, and thus is free to vary. Thus, to predict the likelihood of each performance 
level at each other foil offset, we needed to marginalize over the unknown 
precision parameter. To minimize assumptions about this, we used the same 
prior on precisions that van den Berg et al.8 used when fitting both the standard 
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mixture model and their own variable precision model—a uniform prior over the 
concentration parameter of the von Mises from 0–200. For any given guess rate 
and precision, we then calculated the likelihood of participants’ continuous report 
performance under these parameters. To calculate Bayes factors, we used a grid 
of values for both the d′ in TCC and the precision in the mixture model, using 
steps of 1 for precision and steps of 0.01 for d’. We assessed the log-likelihood of 
TCC and the mixture model only in the continuous report case, having fit the 
parameter(s) using only the data from the 2-AFC 180° condition.

Face identity continuous report data. We utilized the same continuous report 
task, but adapted the stimulus space to face identity using the continuous face 
identity space and continuous response wheel created by Haberman et al.30. In 
particular, as described in that work, the faces were 360 linearly interpolated 
identity morphs, taken from the Harvard Face Database, of three distinct male 
faces (A–B–C–A; see Fig. 6), generated using MorphAge software (version 4.1.3; 
Creaceed). Face morphs were nominally separated from one another in identity 
units, which corresponded to steps in the morph space. Before morphing, face 
images were luminance normalized. In our memory task, we used set sizes of one 
and three, showing either one or three faces at once, and the encoding display 
was shown for 1.5 s due to the increased complexity of the face stimuli and task 
difficulty. Participants on Mechanical Turk (n = 50) completed 180 trials. The 
first 20 trials were practice trials and not included in the analysis. A total of 14 
participants were excluded for having near-chance performance levels (d′ < 0.50) at 
a set size of three, although including all participants with d′ ≥ 0 did not affect our 
conclusions or the fit of TCC.

Face identity similarity quad task. A total of 102 participants on Mechanical 
Turk judged which of two pairs of faces presented were more distinct (which pair 
had constituent items that were more different from each other). On each trial, we 
chose two pairs of faces, with the first item in each pair being randomly chosen and 
the second item in each pair always having an offset of 0, 5, 10, 20, 40, 60, 80, 100, 
140 or 180° away. Altogether, they completed 18 trials of each kind, giving a total of 
180 trials each.

Participants were asked to make their judgements solely based on intuitive 
visual similarity, rather than the use of knowledge of faces or using verbal labels. 
We excluded participants whose overall performance level was more than two 
standard deviations below the mean, resulting in a final sample of n = 85.

To compute psychophysical distance from these data, we used a similar model 
as for colours, based on the model proposed by Maloney and Yang16 (that is, the 
MLDS method). In particular, any given trial had two pairs of faces, where their 
face wheel values were Si, Sj and Sk, Sl. Let lij = Sj – Si (the length of the physical 
interval between Si and Sj, which is always in the set [0,5,10…180]) and let ψij 
represent the psychophysical similarity to which this distance corresponds. If 
people made decisions without noise, they should have picked pair i,j if, and only 
if, ψij > ψkl. We added noise by assuming that participants’ decisions were affected 
by Gaussian error, such that they picked pair i,j if ψij + ε > ψkl. We set the standard 
deviation of the Gaussian ε noise to 1, so that the model had nine free parameters, 
corresponding to the psychophysical scaling values for each possible interval 
length (for example, how similar a distance of 5 or 10° really was to participants), 
and then we fit the model using the maximum likelihood search (fmincon in 
MATLAB). Thus, these scaled values for each interval length most accurately 
predicted observers’ judgements in that equal intervals in the scaled space were 
discriminated with equal performance. Once the scaling was estimated, we 
normalized the psychophysical scaling parameters so that psychophysical similarity 
ranged from 0 to 1.

Face identity perceptual matching. A total of 40 participants on Mechanical Turk 
were shown a face and were asked to match this face using a continuous report 
wheel (100 trials). Because the contribution of motor noise appeared to be minimal 
in the colour matching task (relative to perceptual error) and because showing 60 
faces simultaneously would be challenging, we used only a continuous report wheel 
(no 60-AFC). Faces were generated from the same continuous face space used in 
the other experiments and participants had unlimited time to choose the matching 
face. The face and face wheel/response options remained continuously visible until 
participants clicked to lock in their answer. The face was presented at one of four 
locations centred around fixation (randomly), approximately matching the distance 
to the face wheel and variation in position used in the continuous report memory 
experiments. Seven participants were excluded for below-chance error rates.

To convert these data into a perceptual correlation matrix (asking how likely 
participants were to confuse a face x degrees away in a perception experiment), 
we created a normalized histogram across all participants of how often they made 
errors of each size (in bins of 5°: −180, −175, … 180) and then linearly interpolated 
between these to obtain a value of the confusability for each degree of distance. We 
then normalized this to range from 0 to 1.

Visual long-term memory colour report task. Long-term memory data from 
Fig. 6 were taken from Miner et al.31 (experiment 2a). A total of 30 participants 
in the laboratory at the University of California, San Diego performed five blocks 
of a long-term memory experiment. In each block, they memorized real-world 

objects’ colours; then, after a brief delay, they were shown a sequence of memory 
tests. Each block’s study session consisted of 20 items of distinct categories seen 
only once and ten items also of distinct categories seen twice, for a total of 40 
presentations of coloured objects. Each presentation lasted 3 s, followed by a 1-s 
inter-stimulus interval. During the test, 20 old objects were presented (ten seen 
once and ten seen twice) and 20 new objects of distinct categories were presented. 
Participants saw each object in grayscale and made an old/new judgement; then, 
if they reported that the item was old, they reported its colour using a continuous 
colour wheel. As described by Miner et al.31, six participants were excluded per the 
criterion used in that paper.

Note that long-term memory performance in this task probably depends on 
a two-part decision–item memory and source memory (for example, the object 
itself and then its colour). This two-part decision is related to the processes 
of recollection and familiarity that can be modelled in various ways61, and 
probably introduces notable heterogeneity into the colour memory strength, 
since some items will have weak item memories, preventing the retrieval of 
colour information. TCC provides a strong fit here, and to the other long-term 
memory data plotted in Fig. 8, without addressing this, probably due to the fact 
that item memory in all of these studies was very strong (only a small number of 
categorically distinct items needed to be remembered). Future research should 
clarify how TCC connects to distinctions between recollection and familiarity and 
the extent to which heterogeneity in d′ between items in long-term memory must 
be assumed for fitting a wider variety of tasks.

Literature analysis. To assess our model’s prediction that previously observed 
trade-offs between different psychological states are measuring the same 
underlying parameter (d′), we conducted a literature analysis of data from colour 
working memory research. In particular, we examined the two parameters most 
commonly reported by those fitting mixture models to their data: precision (in 
terms of s.d.) and guessing.

We searched for papers in mid-2018 that used these mixture model techniques 
by finding papers that cited the most prominent mixture modelling toolboxes: 
Suchow et al.58 and Bays et al.26. We used liberal inclusion criteria to obtain as 
many data points as possible. Our inclusion criteria were papers that cited either 
of these toolboxes and reported data where: (1) there was some delay between the 
working memory study array and test; (2) the instructions were to remember all of 
the items; (3) s.d. or guess values were reported or graph axes were clearly labelled; 
(4) participants were healthy and between the ages of 18 and 35 years; and (5) 
the colours used were widely spaced, discriminable colours from the CIE L*a*b* 
colour space. Note that even slight changes in the colour wheel used between 
papers (or the addition of noise to stimuli7) change the perceptual confusability 
of the stimuli and therefore ideally call for a different similarity function to be 
measured and therefore a different prediction from TCC about the relationship 
between guess rate and s.d. However, in the current literature analysis, we simply 
assumed that these were the same for all papers. For papers that did not report s.d. 
or guess values in the text or tables, these values were obtained by digitizing figures 
with clear axis labels62.

These inclusion criteria resulted in a diverse set of data points, including 
studies using sequential or simultaneous presentation, feedback versus no 
feedback, cues versus no-cues, varying encoding times (100–2,000 ms) and 
variable delays (1–10 s). A total of 14 papers and 56 data points were included 
(Supplementary Table 4). In general, TCC provides a strong fit to these existing 
data given the heterogeneity in methods (Supplementary Fig. 4) and these data 
are also consistent with the idea that there is no added guessing at high set sizes 
(Supplementary Fig. 5).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Extended Data Fig. 1 | Similarity as a function of distance in color space. a, Data from all distances in the fixed distance triad task (Fig. 1c). On each trial, 
there was a target color, here always at 0°, and participants’ task was to choose which of two other colors was closer to the target color in color space. 
The two choice colors always differed by 30°. The x-axis shows the closer color of the two choice colors. That is, the 150° label on the x-axis reflects 
performance on a condition where the two choices were 150° and 180° away from the target color. As shown with a subset of this data in Fig. 1c, increasing 
distance from the target results in a decreased ability to tell which of two colors is closer to the target in color space. This shows the non-linearity of 
color space with respect to judgments of color similarity. Note that this function does not depict the actual psychophysical similarity function: Roughly 
speaking, the d’ estimate in this graph is the estimate of instantaneous slope (over a 30 deg. range) in the similarity function in Fig. 1f. b, Despite being 
conceived of as a color wheel in many memory experiments, in reality, participants internal representation of color–and thus the confusability between 
colors–ought to be a function of their linear distance in an approximately 3D color space, not their angular distance along the circumference of an 
artificially imposed wheel. Since the colors are equal luminance, we can conceive of this on a 2D plane. Thus, on this plane the confusability of a color “180 
degrees away” on the wheel is only slightly lower than one “150 degrees away” on the wheel, since in 2D color space it is only slightly further away. This 
simple non-linearity from ignoring the global structure of the color ‘wheel’ partially explains the long tails observed in typical color report experiments, 
although it does not explain the full degree of this non-linearity, which is additionally attributable to psychophysical similarity being a non-linear function 
even of distance across 2D color space. c, The similarity function remains non-linear even in 2D color space. Distances here are scaled relative to the 
color wheel rather than in absolute CIELa*b* values., for example, an item 180 degrees opposite on the color wheel is “120” in real distance since if the 
distance along the circumference is 180, 120 is the distance across the color wheel. d, Plotted on a log axis, the similarity falls off approximately linearly, 
indicating that similarity falls of roughly exponentially with the exception of colors nearby the target. The non-exponential fall-off near the 0 point reflects 
perceptual noise/lack of perceptual discriminability between nearby colors. As shown in Fig. 1, when you convolve measured perceptual noise with an 
exponential function, this provides a very good fit to the similarity function, consistent with a wide-variety of evidence about the structure of similarity and 
generalization19.
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Extended Data Fig. 2 | Simulations of uncorrelated vs. correlated noise versions of TCC. In the main text, we report d’ from a version of TCC where noise 
in similar color channels is correlated, based on measured perceptual confusions. However, this decision to correlate the noise of nearby colors is not 
critical, as shown in this simulation of uncorrelated vs. correlated noise versions of TCC. Only the correlated-noise TCC produces true d’ values–those that 
are interchangeable with d’ you’d estimate from a same/diff task with the same stimuli. However, the simpler uncorrelated noise TCC predicts the exact 
same distributions of errors in continuous report, and the d’ values between the correlated and uncorrelated noise models are linearly related by a factor 
of ~0.65. Thus, in many cases it may be useful to fit the uncorrelated TCC to data and then adjust the d’ rather than fitting correlated noise TCC. This also 
means that for color, similarity alone without perceptual confusion data can be used to make linear (but not exact) predictions about confusability in 
n-AFC tasks outside the range of perceptual confusion (approx. 15 deg).
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Extended Data Fig. 3 | Simulations comparing the measured psychological similarity function to a linear similarity function. Simulations show data 
sampled from TCC, using either the measured psychological similarity function or a linear similarity function. Given a linear similarity function, it is 
clear TCC does not predict response distributions similar to human performance – accurate memory fits are critically dependent on the well-known 
exponential-like shape of similarity functions. Notice also how the max rule from the signal detection decision process plays a major role in the shape of 
the distributions. Since people pick the strongest signal, the distribution of max signals is peakier than the underlying signals themselves (which always 
follows the similarity function).
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Extended Data Fig. 4 | Comparisons of fit to memory data for different measured similarity functions. Comparison of fit to memory data for similarity 
functions reported in main text. In the current data for color, both the model-based triad psychophysical scaling data and the Likert similarity rating 
produce extremely similar data (see Fig. 1). Thus, they all produce similar fits to the memory data (shown here are the set size data). It is important to note 
that depending on the number of trials, a large number of data points (that is subjects) may be necessary in order to obtain reliable estimates of a given 
stimulus space in the triad and quad scaling tasks (we use the quad task for face similarity). The Likert task requires considerably less data to estimate, 
and it was in agreement with the results of the triad task for colors, so we rely on it as our primary measure of similarity in the current fits. However, 
depending on the stimulus space, observers may utilize different strategies in such subjective similarity tasks (particularly for spaces, like orientation, 
where it is obviously a linear physical manipulation), and ultimately an objective task like the quad task may be best to understand the psychophysical 
similarity function. This is why for the face space task we used the quad similarity task. The task used to estimate similarity is important in that it is 
important that participants provide judgments of the absolute interval between stimuli and not rely on categories or verbal labels, or, in the triad task, that 
participants not rely on a relational or relative encoding of the two choice items rather than their absolute distance to the target item. How best to ensure 
that participants rely on absolute intervals is represented in a large literature dating to Thurstone63 and Torgerson15.
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Extended Data Fig. 5 | Non-uniformities across color space in memory and similarity. Non-uniformities in memory and similarity for set size data 
reported in the main text. Many stimulus spaces contain non-uniformities, which may affect subsequent working memory performance. Indeed, Bae 
et al.12 discovered non-uniformities in working memory for color, where responses for targets tend to be more precise for some colors than others and can 
be biased towards nearby categorical anchors (that is red, blue, yellow, etc). While many assume randomizing target colors in working memory should 
account for potential biases arising from a non-uniform feature space, others have suggested these differences may have broader consequences than 
previously considered13,14. A key advantage of TCC is that by taking into account the psychophysical similarity function, non-uniformities within whatever 
feature space being probed can be automatically captured if psychophysical similarity data is measured separately from each relevant starting point in the 
feature space (for example, Fig. 1d). In the current work, we mostly use only a single psychophysical similarity estimate averaged across possible starting 
points and fit memory data averaged across starting points. However, this is not necessary to the TCC framework, and is only a simplification–if we wish 
to fit memory data averaged across all targets, we should use similarity averaged across all targets (or use the particular similarity function relevant to 
each item on each trial). Here we show that rather than using a psychophysical similarity function that averages over all targets, one can also use similarity 
specific to each possible target, which differ and have predictable consequences for memory in our set size experiment. For example, the propensity of 
errors (at set size 1, 3, 6 and 8) in the clockwise vs. counterclockwise direction for a given target color is directly predicted by the similarity function–
even when very similar colors have more similar colors in opposite directions (top row), and this is true across all color bins (bottom right). Thus, using 
target-specific similarity functions naturally captures potential non-uniformities or biases within a feature space with no change in the TCC framework.
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Extended Data Fig. 6 | d’ as a function of set size. Data from the set size experiment reported in the main text. While memory strength varies according 
to a variety of different factors, many researchers have been particularly interested in the influence of set size. TCC shows that at a fixed encoding time 
and with a fixed delay, memory strength (d’) decreases according to a power law as set size changes, broadly consistent with fixed resource theories of 
memory25,26. However, capacity cannot be fixed globally, as the total “capacity” appears to smoothly change with encoding time and delay and differs for 
different stimuli.
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Extended Data Fig. 7 | Variation in representational fidelity with the same d’ by separating on strength of strongest memory signal. Simulation from 
TCC illustrating how signal detection can predict variance in representational fidelity as a function of confidence even with a fixed d’ (see also42). Some 
studies used to support variability of information across individual items or trials have done so by using a confidence metric51. While variability and 
confidence are distinct from one another, in a large amount of research they are inextricably linked. An interesting advantage and implication of signal 
detection-based models is that they naturally predict confidence data64. In particular, the strength of the winning memory match signal is used as the 
measure of memory strength–and confidence–in signal detection models of memory. Thus, even with a fixed d’ value for all items, TCC naturally predicts 
varying distributions relative to confidence. This likely explains some of the evidence previously observed in the literature that when distinguishing 
responses according to confidence, researchers found support for variability in precision among items / trials. Note that this occurs in TCC even though d’ 
is fixed in this simulation–that is, all trials are generated from a process with the same signal-to-noise ratio. Thus, variability in responses as a function of 
confidence (or related effects, like improved performance when participants choose their own favorite item to report23) are not evidence for variability in d’ 
in TCC, but simply a natural prediction of the underlying signal detection process. Of course, it is possible d’ may also vary between items, which remains 
an open question.
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Extended Data Fig. 8 | Simulation of expected confidence as a function of set size in TCC. Participants in a set size 8 working memory experiment often 
feel like they do not remember an item and are “guessing”, leading to a wide variety of models that predict people know nothing about many items at high 
set sizes and truly are objectively guessing. However, as noted in Extended Data Fig. 7, signal detection naturally accounts for varying confidence, and so 
can easily account for this subjective feeling of guessing even though in fact, models like TCC predict that people are almost never responding based on no 
information at all about the item they just saw. In particular, confidence in signal detection is based on the strength of the winning memory signal. Imagine 
that the subjective feeling of guessing occurs whenever your memory match signal is below some threshold (here, arbitrarily set to 2.75). This would lead 
to people never feeling like they are guessing at set size 1, and nearly always feeling like they are guessing if they objectively closed their eyes and saw 
nothing. However, this would also make people feel like they are guessing a large part of the time at set size 6 and 8, even though this data is simulated 
from TCC–and the generative process always contains information about all items. This is the key distinction in signal detection models between the 
subjective feeling of guessing and the claim that people are objectively guessing.
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All studies must disclose on these points even when the disclosure is negative.

Study description Experiment 1 (Fixed Distance Triad): Quantitative experimental study. Participants judged which of two colors presented were more 
similar to a target color. 
Experiment 2 (Psychological Scaling Triad): Quantitative experimental study. Participants judged which of two colors presented were 
more similar to a target color, as in the fixed distance triad experiment. 
Experiment 3 (Color Similarity): Quantitative experimental study. Participants judged the similarity of two colors presented 
simultaneously on a Likert scale, ranging from 1 (least similar) to 7 (most similar). 
Experiment 4 (Perceptual matching): Quantitative experimental study. Participants were shown a color and had to match this color using 
a continuous report wheel. 
Experiment 5 (Continuous Color Report Set Size): Quantitative experimental study. Participants completed a visual working memory task, 
where they were  presented either 1, 3, 6, or 8 colors to remember and after a  delay, an item was probed and participants reported the 
color using a continuous color report wheel.  
Experiment 6 (Continuous Color Report Delay): Quantitative experimental study. Participants completed a visual working memory task, 
where they were  presented either 1, 3, or 6 colors to remember and after a varying delay (1s, 3s, 5s), an item was probed and 
participants reported the color using a continuous color report wheel.  
Experiment 7 (Continuous Color Report Encoding Time): Quantitative experimental study. Participants completed a visual working 
memory task, where they were presented either 1, 3, or 6 colors (presented for either 100, 500, or 1500ms) to remember and after a 
delay, an item was probed and participants reported the color using a continuous color report wheel.  
Experiment 8 (2AFC Different Foil Similarities): Quantitative experimental study. Participants completed a visual working memory task, 
where they were presented 4 colors to remember and after a delay, had to answer a 2AFC memory probe about one of the colors. The 
foil of the 2AFC varied from the target 180, 72, 24, or 12 degrees. 
Experiment 9 (2AFC generalization to n-AFC): Quantitative experimental study. Participants completed a visual working memory task, 
where they were presented 4 colors to remember and after a delay, an item was probed and participants reported the color either with a 
2-AFC, 8-AFC, 60-AFC or full continuous report (360-AFC).  
Experiment 10 (Face Identity Continuous Report): Quantitative experimental study. Participants completed a visual working memory task, 
where they were  presented either 1 or 3 face identities to remember and after a  delay, an item was probed and participants reported 
the face identity of the target using a continuous face identity report wheel.  
Experiment 11 (Face Identity Quad Task): Quantitative experimental study. Participants judged which of two pairs of faces presented 
were more similar. 
Experiment 12 (Face Identity Perceptual Matching): Quantitative experimental study. Participants were shown a face and had to match 
this color using a continuous report wheel. 
Experiment 13 (Visual Long-Term Memory Color Report): Quantitative experimental study. Participants encoded images of real-world 
objects embedded in specific colors during an encoding block. At test, old and new objects were presented, and participants judged the 
object as old or new. If they reported the item was old, they reported its color using a continuous color wheel. 

Research sample Experiment 1 (Fixed Distance Triad):  N=40 participants on Amazon Mechanical Turk participated. Mechanical Turk users form a 
representative subset of adults in the United States (Berinsky, Huber, & Lenz, 2012; Buhrmester, Kwang, & Gosling, 2011), and data from 
Turk are known to closely match data from the lab on visual cognition tasks (Brady & Alvarez, 2011; Brady & Tenenbaum, 2013). 
including providing extremely reliable and high-agreement on color report data (Brady & Alvarez, 2015).  
Experiment 2 (Psychological Scaling Triad): N=100 participants on Mechanical Turk participated. 
Experiment 3 (Color Similarity): N=50 participants on Mechanical Turk participated.  
Experiment 4 (Perceptual Matching):  N=40 participants on Amazon Mechanical Turk participated. 
Experiment 5 (Continuous Color Report Set Size): N=20 participants in the lab at UC San Diego participated.  
Experiment 6 (Continuous Color Report Delay): N=20 participants in the lab at UC San Diego participated.  
Experiment 7 (Continuous Color Report Encoding Time): N=20 participants in the lab at UC San Diego participated.  
Experiment 8 (2AFC Different Foil Similarities): N=60 participants on Mechanical Turk participated. 
Experiment 9 (2AFC generalization to n-AFC): N=60 participants on Mechanical Turk participated.  
Experiment 10 (Face Identity Continuous Report): N=50 participants on Mechanical Turk participated. 
Experiment 11 (Face Identity Quad Task): N=102 participants on Mechanical Turk participated. 
Experiment 12 (Face Identity Perceptual Matching): N=40 participants on Mechanical Turk participated. 
Experiment 13 (Visual Long-Term Memory Color Report): N=30 participants in the lab at UC San Diego participated. 

Sampling strategy All sample sizes were decided a priori. All studies used convenience sampling of either users from Amazon Mechanical Turk or 
undergraduates from the University of California, San Diego.

Data collection Experiments 1-4, 8-9, 11-12: Experiments were deployed online via Mechanical Turk. Participants computer screens showed stimuli, and 
responses were collected via keyboard or mouse.  
Experiment 5-7, 13: The study took place in a dimly lit sound-attenuated room. Stimuli were presented on a Macintosh iMac computer, 
and responses were collected via keyboard or mouse. 

Timing All of the included studies (except for the LTM data reported in a previous paper) were collected between September 2017 - July 2019

Data exclusions In studies with continuous report memory tasks, we excluded participants <2 std below the mean in overall d' across conditions. This did 
not result in the exclusion of any participants with the exception of one participant in the delay experiment who had chance level 
performance at all delays/set sizes. 
In all studies with objective perceptual tasks, we used the same exclusion rules: excluding trials with reaction times <200ms or >5000ms 
or any participants whose overall accuracy was 2 standard deviations below the mean. 
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In our subjective similarity experiment, we included manipulation check trials where the two items they were judging the similarity for 
were identical, and excluded any participant whose mean rating on these trials was not >6 (on a 1-7 scale). 
 
In particular: 
 
Experiment 1: . To be conservative about the inclusion of participants, we excluded any participant who made an incorrect response in 
any of the 10 trials where the target color exactly matched one of the choice colors, leading to the exclusion of 7 of the 40 participants, 
and based on our a priori exclusion rule, excluded any participants whose overall accuracy was 2 standard deviations below the mean, 
leading to the exclusion of 0 additional participants. In addition, based on an a priori exclusion rule, we excluded trials with reaction times 
<200ms or >5000ms, which accounted for 1.75% (SEM:0.5%) of trials. 
Experiment 2: Using our a priori exclusion rule, we excluded any participant whose overall accuracy was 2 standard deviations below the 
mean (M=77.5%) leading to the exclusion of 8 of the 100 participants. In addition, based on an a priori exclusion rule, we excluded trials 
with reaction times <200ms or >5000ms, which accounted for 1.7% (SEM:0.26%) of trials. 
Experiment 3: Following our a priori exclusion rule, we excluded trials with reaction times <200ms or >5000ms, which accounted for 3.0% 
(SEM:0.4%) of trials. 2 participants were excluded for failing the manipulation check. 
Experiment 4: 1 participant’s data was lost due to experimenter error and following our priori exclusion rule 2 participants were excluded 
for an average error rate greater than 2 standard deviations away from the mean. 
Experiment 5: No participants were excluded. 
Experiment 6: One participant was excluded for being <2 std below the mean in overall d'. 
Experiment 7: No participants were excluded. 
Experiment 8: Following our a priori exclusion rule, 5 participants were excluded for below chance performance in the maximally easy 
180 deg. offset condition, leaving N=55 participants. 
Experiment 9: One participant’s data was lost, and following our priori exclusion rule 7 participants were excluded for below chance 
performance in the maximally easy 2-AFC, 180 deg. offset condition, leaving N=52 participants. 
Experiment 10: No participants were excluded.  
Experiment 11: Following our a priori exclusion rule, we excluded participants whose overall performance level was more than 2 
standard deviations below the mean, resulting in a final sample of N=85. 
Experiment 12: 7 participants were excluded for below chance error rates.  
Experiment 13: As described in Miner et al. (in press) 6 participants were excluded.

Non-participation No participants dropped out or declined participation. 

Randomization Every study is within-subject so no randomization of participants to groups was required

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics For studies conducted in-lab, participants were undergraduates from University of California, San Diego. All participants at UCSD 
reported normal color vision and were between the ages of 18-35 years old.  
 
For studies conducted online, Mechanical Turk users form a representative subset of adults in the United States (Berinsky, 
Huber, & Lenz, 2012; Buhrmester, Kwang, & Gosling, 2011), and data from Turk are known to closely match data from the lab on 
visual cognition tasks (Brady & Alvarez, 2011; Brady & Tenenbaum, 2013).

Recruitment For studies conducted in-lab, participants were recruited via the Sona Systems online portal, where psychology undergraduate 
students can participate in studies for extra credit. Studies conducted on Mechanical Turk performed recruitment only by 
posting HITs, as is standard.

Ethics oversight The studies were approved by the UC San Diego IRB. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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