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The human brain continuously processes streams of visual input. Yet, a single image typically triggers neural responses that
extend beyond 1s. To understand how the brain encodes and maintains successive images, we analyzed with electroencepha-
lography the brain activity of human subjects while they watched ;5000 visual stimuli presented in fast sequences. First, we
confirm that each stimulus can be decoded from brain activity for ;1s, and we demonstrate that the brain simultaneously
represents multiple images at each time instant. Second, we source localize the corresponding brain responses in the expected
visual hierarchy and show that distinct brain regions represent, at each time instant, different snapshots of past stimulations.
Third, we propose a simple framework to further characterize the dynamical system of these traveling waves. Our results
show that a chain of neural circuits, which each consist of (1) a hidden maintenance mechanism and (2) an observable
update mechanism, accounts for the dynamics of macroscopic brain representations elicited by visual sequences. Together,
these results detail a simple architecture explaining how successive visual events and their respective timings can be simulta-
neously represented in the brain.
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Significance Statement

Our retinas are continuously bombarded with a rich flux of visual input. Yet, how our brain continuously processes such vis-
ual streams is a major challenge to neuroscience. Here, we developed techniques to decode and track, from human brain activ-
ity, multiple images flashed in rapid succession. Our results show that the brain simultaneously represents multiple successive
images at each time instant by multiplexing them along a neural cascade. Dynamical modeling shows that these results can be
explained by a hierarchy of neural assemblies that continuously propagate multiple visual contents. Overall, this study sheds
new light on the biological basis of our visual experience.

Introduction
The human visual system is continuously bombarded with a flux
of visual input. To interact with its environment, our brain must,
continuously transform these visual events into abstract repre-
sentations (Tenenbaum et al., 2011), track their relative motions
(Goldstein and Brockmole, 2016; Born and Bradley, 2005), and
resolve countless ambiguities (Knill and Pouget, 2004). Yet, elec-
trophysiology and neuroimaging studies have primarily focused
on the brain responses to static images (although see Nishimoto
et al., 2011; VanRullen and Macdonald, 2012; Marti and
Dehaene, 2017; van Vugt et al., 2018). The resulting studies con-
sistently show that flashing an image onto the retina leads to
cortical responses that often last up to 1s (Carlson et al., 2013;
Cichy et al., 2014; King et al., 2016). The timing and location of
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these neural activations are consistent with a hierarchical infer-
ence network (Friston, 2010; Cichy et al., 2014; Yamins et al.,
2014; Poggio and Anselmi, 2016; Gwilliams and King, 2020) and
suggest that the primary visual cortex encodes low-level repre-
sentations (e.g., luminosity and orientations of visual edges),
whereas the inferotemporal and dorsoparietal cortices encode
abstract representations (e.g., the presence of a face in the visual
field).

The neural dynamics revealed in these studies thus highlight
a fundamental paradox: the duration of visual processing
(;1000ms) can largely exceed the duration of sensory stimula-
tion (e.g., 17ms in King et al., 2016). Consequently, it is unclear
how the brain copes with streams of sensory inputs: that is, how
can we simultaneously maintain successive visual representations
without mixing their ordering?

To address this question, we recorded the human brain activity
with source-localized electroencephalography (EEG) while subjects
watched ;5000 parametrically controlled Gabor patches flashed in
rapid succession and grouped into 8-stimulus trials (Fig. 1B,C).
Unlike natural movies, this paradigm allows us to fully decorrelate
successive images, which, in turn, allows us to identify which visual
event each brain region encodes at a given time instant. Our study
provides three main contributions. First, we confirm with whole-
brain decoding analyses that the human brain simultaneously repre-
sents multiple images that have been presented sequentially.
Second, we show with temporal generalization and source analyses
that each stimulus triggers a cascade of representations that propa-
gates across the expected visual hierarchy. Finally, we implement a
principled search of dynamical systems and identify the simplest
neural architectures that can account for these EEG findings.
Overall, our results show that a simple neural hierarchy can explain
how the brain dynamically processes and maintains successive vis-
ual inputs without confusing their ordering.

Materials and Methods
Subjects. Sixteen healthy adults (age, 18–25 years of either sex), all

with normal or corrected-to-normal vision and no reported history of
neurologic or psychiatric disorders, were recruited from the University
of Oxford. Subjects provided written consent before participating in the
experiment and received £30 in compensation for their participation.
Approximately £5 of bonuses could be additionally obtained depending
on subjects’ performance on the two-alternative forced-choice task. The
study followed local ethics guidelines. The data from one participant was
excluded because of eye artifacts. The investigation of subjects’ decisions
at the end of each sequence is reported inWyart et al. (2012).

Procedure. The stimuli were displayed on a CRT monitor (1024� 768
pixels, refreshed at 60Hz) placed ;80 cm away from subjects’ eyes, and
controlled with the MATLAB (MathWorks) Psychophysics Toolbox ver-
sion 3 (Brainard, 1997; Pelli, 1997). Each trial consisted of a sequence of 11
successive visual stimuli flashed every 250ms. The first two items and the
last item were task-irrelevant masks, generated from the average of four car-
dinal and diagonal Gabor patterns and were not considered in the present
analyses. The purpose of these masks was to increase the homogeneity
across the stimuli; for example, the first Gabor patch would already be pre-
sented in a stream. The remaining eight stimuli (hereafter referred to as the
8-item sequences) were Gabor patches with fixed contrast (50%), diameter
(4° of visual angle), spatial frequency (2 cycles per degree of visual angle),
and envelope (Gaussian with a SD of 1° of visual angle). Stimulus orienta-
tions, however, varied following a uniform distribution across all trials. One
blank frame (16.7ms) was introduced before the onset of each stimulus to
avoid visual tearing artifacts. The intertrial interval was 1250 s (6250ms).
The experiment consisted of 672 trials, divided into 7 sessions of 96 trials,
and thus consisted of a maximum of 5376 usable brain responses to ori-
ented stimuli over approximately one hour of recording.

Task. To ensure subjects paid attention to the visual stimuli, they were
asked to report after each 8-stimulus sequence whether the orientation of
the stimuli was, on average, closer to (1) the cardinal axes (horizontal or ver-
tical) to (2) the diagonal axes (45° or 135°). Responses were given by press-
ing their left or right index finger on either the right or left CTRL buttons
(e.g., diagonal = left finger, cardinal = right finger), with a response mapping
counterbalanced across subjects. This two-alternative forced-choice task
was adapted for each subject to homogenize attention and performance
across subjects. Specifically, the orientation of each Gabor patch was distrib-
uted uniformly across all trials but drawn, within each sequence, from a
probability density function adapted for each subject’s performance. To this
end, subjects performed a practice and a titration session before the main
experiment to estimate their 75% accuracy psychophysical threshold with
an adaptive staircase procedure (Kaernbach, 1991). This psychophysical
threshold served to determine three evenly-spaced difficulty levels. For
example, an easy sequence would consist of stimuli whose orientations tend
to fall close to the cardinal axes, whereas a hard sequence would consist of
stimuli whose orientations tended to fall in between the cardinal and diago-
nal axes. Easy and difficult trials (one-third of all trials each) had a categori-
zation sensitivity of 2.12 (SEM60.18) and 1.00 (SEM60.09), respectively.
Neutral trials (one-third of all trials) were associated with a pseudorandom
feedback, positive on 60% of neutral trials. Additional behavioral and brain
correlates of subjects’ decision are reported inWyart et al. (2012).

EEG acquisition and preprocessing. EEG signals were recorded with
a 32-channel Neuroscan system and a Synamps 2 digital amplifier
(Neuroscan Compumedics). In addition, the horizontal and vertical elec-
trooculograms were recorded with four bipolar-mounted electrodes.
Electrode impedances were kept below 50kV. EEG signals were
recorded at 1000Hz and high-pass filtered online at 0.1Hz and later
low-pass filtered at 40Hz, down-sampled to 250Hz, segmented from
500ms before the onset of the first stimulus (the premask) to 1s follow-
ing the offset of last stimulus (the postmask). These epochs were visually
inspected (1) to remove trials containing nonstereotypical artifacts and
(2) to identify artifacted electrodes. In total, three participants had a sin-
gle bad electrode, which was consequently interpolated to the weighted
average of neighboring electrodes.

Analyses. The stimulus orientation is here used to test whether brain
activity represents (i.e., linearly correlates with) the visual content pres-
ent on the retina at a given instant. Because stimulus orientation is circu-
lar, the encoding and decoding analyses of stimulus angles are based on
the linear regression of (1) the EEG and (2) the sine and cosine of the
stimulus angles (horizontal = 0 radian; vertical = 2p radian). By contrast,
the change of orientation (d = |anglen � anglen-1|) is here used as a way
to probe whether brain activity codes for visual flow (Fig. 1A). The first
Gabor patch of the sequence was ignored from d analyses.

Decoding. Multivariate linear decoding models were implemented
following a three-step procedure: fitting, predicting, scoring within sub-
jects. Specifically, for each subject separately we fitted an ordinary least
square regression across all EEG channels recorded at a given time sample
t relative to the onset of stimuli n to predict the features of stimulus n (i.e.,
angle and d ) following the methods of (King et al., 2016). Each decoder
thus consisted of a linear spatial filter (Wt 2 <m�3) optimized as follows:

Wt ¼ ðXt9XtÞ�1Xt9Yn;

where Xt 2 <q�m corresponds to the q trials of m electrodes recorded at
time t after the onset of the stimulus, Yn 2 <q�3 corresponds to the d
between stimuli n and stimuli n-1, the sine and the cosine of stimuli n,
and 9 represents the transpose operator. Each spatial filter Wt was then
used to predict the angles and the deltas of out-of-sample EEG data (see
cross-validation) as follows:

Ŷ t ¼ Xt �Wt;

where Ŷ t represents the estimated angle (sin and cosine) and the esti-
mated d of each out-of-sample EEG recording at time t.

Finally, d decoding scores were summarized with a Pearson’s
correlation coefficient r between the out-of-sample d predictions
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and the corresponding true d . Angle decoding scores were summar-
ized by computing the angular difference between the true angles (a)
and the out-of-sample angular predictions (â ¼ arctan2 Ŷ sin; Ŷ cos

� �
).

For clarity, this angular error is reported throughout the manuscript
as an angular score (score ¼ p=2� a � â; chance = 0). The decoders
were trained within each subject with a cross-validation scheme
across all stimuli independently of their position in a given
sequence.

To interpret the decoders, we transformed the spatial filtersW into spatial
patterns P following Haufe’s method (Haufe et al., 2014) estimated as follows:

P ¼ RXWRŶ
�1
;

where RX and RYª refer to the empirical covariances of X and Yª
respectively. Because we use linear regression, the expected value of

Figure 1. Successive images are simultaneously represented in brain activity. A, Visual contents refer to what is in the image at time (t). Visual flow refers to the amount
of change between t1 and t2. B, Subjects watched ;5000 randomly oriented Gabor patches, flashed every 250 ms and grouped into 8-item sequences separated by masks.
Each sequence ended in a two-alternative forced choice where subjects indicated whether stimuli fell, on average, closer to the cardinal or diagonal axes. C, Brain activity
was recorded with EEG. Each line shows the average response evoked by the stimuli. D, Top, Distribution of single-trial decoding error of Stimn as a function of time relative
to the onset of stimulus n. Bottom, Time course of the corresponding decoding score. The shaded regions (with an asterisk) indicate significant decoding across subjects
(cluster corrected). E, Decoding scores of visual flows (approximated as the absolute angular difference between successive stimuli) as a function of time relative to stimulus
onset. F, Cumulative decoding scores (black) and the contribution of each of the eight successive stimuli (color-coded by position in the 8-item sequence), as a function of
time relative to the sequence onset (chance = 0). G, Similar to F for cumulative d decoding scores. In panels C–G, the vertical lines mark the onsets of each stimulus. Error
bars indicate the SEM across subjects.
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Haufe’s patterns will be the following encoding coefficients:
RXWR�1

Y ¼ RXR
�1
X X9YR�1

Y ¼ X9YðY9YÞ�1. Consequently, the pres-
ent decoders are not black-boxes but directly relates to a standard
encoding analysis, while maximizing signal-to-noise ratio.

Temporal generalization. Temporal generalization (TG) analysis con-
sists in testing the ability of each temporal decoder to generalize over all
time samples (Stokes et al., 2013; King and Dehaene, 2014). Specifically,
each decoder trained at a given time t is scored on its ability to decode brain
activity from a time t9. A significant temporal generalization suggests that
the brain activity patterns observed at time t are partially similar to those
observed at time t9. Because our decoders are linear, and because the EEG
activity reflects a linear projection of the neuronal activity onto our sensors,
a significant generalization suggests that a similar population of neurons is
activated at time t and t9. Conversely, if two decoders trained at t and t9,
respectively, can both be used to decode the EEG activity at the respective
training time but fail to cross-generalize with one another, then this suggests
that the populations of neurons activated at t and t9 significantly differ.
Consequently, TG results in a training by testing time matrix, which can be
used as a method to characterize the spatiotemporal dynamics of the coding
response (Stokes et al., 2013; King and Dehaene, 2014).

Encoding. To assess the extent to which visual content and visual
flow comparatively predict subjects’ EEG, we applied encoding
analyses for each subject separately. Specifically, we fit, for each
electrode and each time-sample separately, an ordinary least-
square regression to predict the amplitude of each electrode at
each time sample from our experimental variable Y as follows:

Pc;t ¼ ðYn9YnÞ�1Yn9Xc;t

X̂ ¼ YP

We summarize the encoding results with Pearson’s correlation coef-
ficient r obtained for each electrode and each time sample relative to the

stimulus onset, between the true voltage and the voltage predicted by
our model. Using cross-validation, we assessed whether these predic-
tions correlated with the actual EEG voltage.

Cross-validation. Decoding and encoding analyses were imple-
mented within an ad hoc stratified K-fold cross-validation procedure
split across 8-item sequences. Specifically, cross-validation was designed
to ensure that two stimuli from the same 8-item sequences never
appeared both in the training and testing sets.

Source estimates. The locations of the neural sources corresponding
to effects observed at sensor levels were estimated following MNE source
reconstruction pipeline (Gramfort et al., 2014). The noise covariance
was estimated from the 200ms baseline activity preceding each 8-item
sequence. The forward model derived from FreeSurfer’s fsaverage 3-
layer mesh and manually coregistered with the 32 scalp electrodes. The
inverse model was fitted with a minimum norm estimate with MNE
default parameters (l 2 = 0.125, free dipole with normal component).
The peak amplitudes and latencies (Fig. 2B,C,E,F) were computed from
the relative amplitude and relative latency of the maximal amplitude
obtained for each source and each subject separately. The corresponding
figures show these effects averaged across subjects.

Statistics. Except if stated otherwise, all inferential statistical esti-
mates derive from two-tailed second-level nonparametric analyses across
subjects. Specifically, each decoding, encoding, and source analysis was
applied within each subject separately and led to a unique estimate of the
effect size obtained across time samples (e.g., an r correlation coefficient
for each subject). A second-level analysis was then applied across sub-
jects to assess whether the distribution of these effect sizes was different
from chance. This second-level analysis was either (1) a Wilcoxon test
applied across subjects (in the case of a nonrepeated analysis) or (2) a
spatiotemporal cluster test applied across subjects (in the case of
repeated measurements, such as decoding time courses or encoding spa-
tiotemporal effects). The p values of the decoding time-courses, TG

Figure 2. Visual representations propagate from sensory to associative cortices. A, Correlation scores resulting from encoding analyses, trained to predict the EEG activity from the sine and
cosine of the stimulus angles. B, Each dot corresponds to a source estimated from the EEG coding topographies with a minimum norm estimation. The x-axis corresponds to the source location
along the posteroanterior direction. Top, The y-axis either indicates the relative timing of the peak activity in each source or Bottom, The intensity of this peak. Asterisks indicate statistical sig-
nificance (ppp, 0.01, pppp, 0.001) C, Same data as B but plotted on the cortical surface. Colors indicate both the peak amplitude (e.g., black: amplitude = median amplitude across sour-
ces) and the peak latency (e.g., blue: peak within analogous to the 5% percentile of the earliest responses across sources; red: peak beyond 95% percentile). D, Correlation coefficients between
deltas and EEG amplitude. E, F, Analogous analyses tp B-C applied to the brain responses coding for the changes between successive stimuli (d ). G, Cross-validated encoding scores (Pearson’s
r) obtained with both angles (sin1 cos) and deltas. Colors indicate EEG channels. The results can be visualized interactively at https://kingjr.github.io/chronicles/.
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matrix, sources estimates, and EEG topographies all refer to the p value
of the significant spatiotemporal cluster (Maris and Oostenveld, 2007) as
implemented in MNE with default parameters (Gramfort et al., 2014).
The error bars plotted in the figures correspond to the SEM across
subjects.

Modeling neural dynamics. We used a discrete-time dynamical sys-
tem framework to simulate the spatiotemporal dynamics evoked by one
or several successive stimulations of fixed duration. Each model consists
of a set of units z, which each transforms the sum of their inputs u 2 <t

with a potentially nonlinear activation function (f):

z t11ð Þ ¼ fz
X

u
w z; uð Þ � u tð Þ

� �
;

where t refers to the time sample and w(z, u) refers to the connection
from unit u to unit z. Except if stated otherwise, f is the identity activa-
tion function (i.e., a linear function: f(z) = z). Each architecture consisted
of a repeated pattern of connections between layers, each consisting of
observable (x) and/or hidden (y) units connected through recurrent [w
(xi, xi), w(yi, yi), w(xi, yi), w(yi, xi)], feedforward [w(xi, xi11), w(yi, yi11),
w(xi, yi11), w(yi, xi11)], and feedback connections [w(xi, xi�1), w(yi, yi-1),
w(xi, yi-1), w(yi, xi�1), see Fig. 4C]. In other words, each unit can only be
connected to other units within the same layer (1), the layer above
(i1 1) or the layer below (i� 1) as follows:

z t11ð Þ ¼ fz
Xi11

j¼i�1
ðw z; xjð Þ � xj tð Þ1w z; yjð Þ � yj tð Þ

� �
Þ:

The simulated activity was analyzed with decoding and temporal
generalization analyses after a linear random projection (F 2 <dx�32,
normally distributed around 0, with SD = 1) of the x units onto 32 noisy
virtual sensors X as follows:

X tð Þ ¼ Fzx tð Þ1 « ,

where X(t) is the activity of EEG channels at time t, zx is the activity
of observable units, and « is a Gaussian noise (except if stated otherwise,
SD = 1).

This random projection and the subsequent decoding and TG analy-
ses were repeated 15 times to mimic the analyses of 15 subjects.

Except in Figure 2A, units do not intend to simulate individual neu-
rons but aim to approximate the dynamical characteristics of the macro-
scopic electric field. In this view, some recurrent connections may
be equally interpreted as an adaptation mechanism (i.e., activity reduc-
tion caused by a cellular mechanism) or as a lateral inhibition mecha-
nism (i.e., activity reduction caused by an intercellular mechanism). In
either case, the hidden units y are designed to account for the possibility
that some neural dynamics may be influenced by mechanisms that can-
not be directly observed with EEG (e.g., adaptation does not generate an
electric field, and the inconsistent orientations of the interneurons’ elec-
tric fields are not easily detected from distant EEG electrodes).

Architecture search. To identify the architectures that could account
for our empirical observations, we (1) implemented a grid-search analy-
sis over architectures, connection weights, and activation functions and
(2) tested whether the resulting dynamics consisted of a similar spatio-
temporal response.

1. The search considered hierarchical networks with one observable
unit (x) and one hidden unit (y) per level i. Consequently, there are four
possible recurrent recurrent, four possible feedforward, and four possible
feedback possible connections (see Fig. 4C). An architecture is the set of
models whose connections have identical signs. For example, two mod-
els A and B, which each consists of a unique feedforward connection
between unit xi and unit xi11 and whose weight is 0.75 and 1.00, respec-
tively, belong to the same architecture; that is, a positive feedforward
architecture. For each connection, we tested 21 possible values, linearly
distributed between �1 and 1. Finally, to extend our model search to
nonlinear dynamics, we also search across four monotonic activation
functions: Linear: f(z) = z; Relu: f(z) = max(z, 0); SatRelu: f(z) = min
(max(z, 0), 1) and SatLin: f(z) = min(max(z, �1), 1). The above activa-
tion functions were applied independently for x and y units. Overall, the
total search could thus span up to 42 activation functions by 2112

connection weights, that is, more than 1017 distinct models. To find the
simplest models that account for our EEG results, we searched for valid
models with an increasing complexity (i.e., first with only one connec-
tion, then two, then three). We stopped when at least one model was
found at a given complexity level, while making sure all models at that
level of complexity were evaluated. Given that the search found valid
models with four connections, we simulated, in total,;1.5B models. All
of the tested models were implemented with 10 hierarchical levels and
simulated over 120 time samples, with a constant input between time 30
and 60. The input was connected to the network following the feedfor-
ward weights.

2. Each model was assessed on its ability to account for the three
main findings identified in our EEG study: 2.1 Stimulus onset evokes a
transient traveling wave (onset), 2.2 Stimulus offset evokes a transient
traveling wave with opposite amplitude (offset), and 2.3 The phase (i.e.,
width) of these waves increases across levels (increasing maintenance).
We quantified these properties for the observable units x. With the y
units being hidden, they could thus have any dynamical response.

2.1. Onset. A unit was considered to be marked by an onset if its
maximum value M reached at time tM was positive, if tM was before
stimulus offset, and if all values between stimulus onset and tM increased
over time. A network was considered to generate an onset traveling wave
if all the x units were marked by an onset at each level.

2.2. Offset. A unit was considered to be marked by an offset if its
minimum value m reached at time tm was negative and if all values
betweenm and the end of the simulation increased toward 0. A network
was considered to generate an offset traveling wave if all the x units were
marked by an offset at each level.

2.3. Increasing maintenance. A maintenance half-life was estimated
for each level by estimating by the delay th it takes a unit to reach half of
its maximum value M: x thð Þ ¼ x tMð Þ=2. Half-lives were estimated if all
values between tM and tm decreased toward 0. The network was consid-
ered to have increasing maintenance if half-lives increased across levels

as follows:
dh
di

� 0.

Results
Successive visual stimuli can be simultaneously decoded at
each time instant
To track the brain representation of each individual stimulus
within a visual sequence, we decoded (1) the orientation of each
Gabor patch and (2) the angular difference between two succes-
sive Gabor patches, that is, a dominant and orthogonal signature
of (1) optical content and (2) optical flow, respectively (Stocker
and Simoncelli, 2006; Wang et al., 2016; Fig. 1A).

EEG signals linearly correlated with both the orientation of
each stimulus n (anglen) and the absolute change between suc-
cessive stimuli (deltan = |anglesn11–anglen|; deltas and angles are
orthogonal by design). Specifically, we fit multivariate linear
regressions (Wt) at each time sample t relative to the onset of
each stimulus to predict the sine and cosine of its angle given the
voltage of all EEG electrodes. We then assessed with cross-valida-
tion whether these predicted angles correlated with the true stim-
ulus angles. This angle decoding was significantly above chance
across subjects between ;50 and ;950ms after stimulus onset
(cluster-corrected effects across subjects illustrated in Fig. 1D).

We applied an analogous analysis to decode the change of ori-
entations between successive pairs of stimuli (d ) to assess
whether and when brain activity represented optical flows. The
corresponding d decoding time course was similar to the angle
decoding time course (Fig. 1E).

Decoding analyses, assessed for each successive stimulus
within a visual stream, revealed that multiple stimuli are simulta-
neously represented at each time sample (Fig. 1F,G). On average,
between two and five angles and between two and four deltas
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can be simultaneously decoded at each time point, although
decoding precision rapidly diminishes with time (linear regres-
sion between scores and stimulus distance: b Angles = 0.007,
p=0.001; b d = 0.028, p, 0.001).

The propagation of representations is localized along the
ventral and dorsal visual pathways
Do these sustained decoding performances relate to a sustained
activity pattern in the brain? To test this issue, we analyzed the
spatial patterns associated with angle and d representations
using encoding analyses. For both angle and d analyses, the spa-
tial patterns peaked around occipital electrodes and subsequently
propagated to anterior electrodes (Fig. 2A,D). The source esti-
mates of these EEG topographies suggest that the earliest neural
responses coding for both angles and deltas are generated in the
early visual cortex and are subsequently followed by responses in
the inferotemporal and dorsoparietal cortices (Fig. 2,B,C,E,F).
Furthermore, neural responses coding for deltas reached signifi-
cance in the superior frontal cortex ;600ms after stimulus
onset. Finally, a full decomposition of the brain responses into
their relative peak latencies and peak amplitudes confirmed the
overall occipitofrontal propagation of the representations of

stimulus angles (r = 0.15, p, 0.01) and stmulus deltas (r= 0.30,
p, 0.001, Fig. 2B,C,E,F). Overall, although EEG source recon-
struction should be interpreted with caution, our estimates con-
firm that visual stimuli trigger a traveling wave across the visual
pathway (Riesenhuber and Poggio, 1999; van Vugt et al., 2018)
and further suggest that this traveling wave encodes low-level
visual information (i.e., the orientation of Gabor patches and
their change).

A simple framework to formally characterize neural
architectures and their dynamics
The above results suggest that a series of distinct areas of the
visual hierarchy can represent distinct visual stimuli thanks to
their cascade organization. To further characterize such macro-
scopic dynamics, we introduce a modeling framework.
Specifically, we formalize the dynamical properties of the under-
lying cellular mechanisms together with their predictions in
terms of decoding and temporal generalization analyses (Fig. 3).
The aim of this framework is not to identify the exact cellular
mechanisms at play, which is out of reach of EEG analyses, but
to estimate the dynamical system underlying these traveling
waves.

Figure 3. Dynamical system framework. A, Left, The membrane potential (top) and the expected spike rate (bottom) of an AdexpIAF neuron in response to a sustained input (onset and off-
set indicated by the ticks); the dotted lines indicate the basal activity at rest. Middle, In an excitatory/inhibitory population of neurons stimulated with an input, the alignment of pyramidal
dendrites leads their PSP to be detectable from distant electrodes, whereas the interneurons of PSP are not detectable with EEG. Right, A linear dynamical system composed of two units (x =
observable; y = hidden) connected in a feedback loop can approximate adaptive neurons or Excitatory/Inhibitory (E/I) balance responses: x captures an observable variable (e.g., the electric
field associated with spiking activity or pyramidal PSP), whereas y captures a hidden variable (e.g., ion currents associated with adaptation or inhibitory PSP). B, Columns illustrate the predic-
tions of no, positive and negative, and feedback loop circuits, respectively. The top black line illustrates the activity of an observable unit (x) in response to a stimulus (onset and offset marked
by ticks). Decoding scores of stimulus angles (black) and deltas (red) from the simulated population x tuned to stimulus angles. The asterisks highlight whether Stimn can be decoded after its
offset. The TG matrices correspond to the decoding scores of each decoder trained at time t and tested at all time samples. C, More complex networks can be generated by hierarchically con-
necting feedback loops with one another. Arrows indicate connections within or between the levels of such hierarchy. D, Top, Examples of plausible hierarchies, together with the dynamics of
their observable units (x) at each hierarchical level (black lines) in response to a brief stimulus and Bottom, The corresponding temporal generalization matrices.
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For example, neuronal adaptation is a cellular mechanism
induced by the slow return of sodium and potassium currents
that follow a spike. Adaptation temporarily diminishes the
expected spiking activity (Fig. 3A), and can result in a reactiva-
tion of decoding performance after stimulus offset (Fig. 3B).
Other neuronal mechanisms may lead to macroscopic dynamics
indistinguishable from adaption: recurrent connections between
excitatory and inhibitory neurons can, for example, lead popula-
tions of neurons to decrease their firing after a stimulus onset
and to show an rebound effect after its offset. In both cases these
adaption and excitatory-inhibitory systems can be simplified as
(1) an observable unit x [e.g., membrane potential or mean-field
activity of postsynaptic potentials (PSP) to excitatory neurons]
and (2) a hidden unit y (e.g., adaptive ion currents or PSP to in-
hibitory neurons) connected in a negative feedback loop. More
generally, various types of feedback loops (Fig. 3B) and feedfor-
ward propagations (Fig. 3C,D) could in principle maintain sen-
sory representations in the EEG activity, even after the offset of
the stimulus.

TG analyses can distinguish a variety of such dynamical sys-
tems. TG consists in quantifying the extent to which a linear de-
coder trained at time t (across all EEG channels) can accurately
decode representations at time t9 (Stokes et al., 2013; King and
Dehaene, 2014). For example, a positive feedback loop input
with a brief stimulus leads to a square TG matrix that extends

beyond stimulus offset (Fig. 3C). By contrast, a negative feedback
loop input with the same stimulus leads to a rapid decrease of
decodable activity (potentially down to chance level), followed by
below-chance decoding after stimulus offset.

Figure 3D illustrates that TG can also differentiate more com-
plex dynamical systems. For example, a strictly feedforward
architecture leads all decoders trained at a given time sample to
generalize for a constant but temporally shifted time period. By
contrast, a chain of positive feedback loops (recurrence hierar-
chy) leads linear decoders to generalize over increasingly longer
time periods. Depending on the type of connection between
units, a neuronal chain may lead to oscillatory activity (e.g.,
adaptive hierarchy, Fig. 3D) or to positive and negative traveling
waves triggered by stimulus onsets and offsets respectively
(updating hierarchy, Fig. 3D).

Visual representations propagate across a long chain of
negative feedback loops
Do the hand-picked dynamical systems illustrated in Figure 3
match the spatiotemporal characteristics of the brain responses
to visual streams? To address this issue, we separately imple-
mented TG for each subject and verified with nonparametric
cluster-level testing across subjects whether each angle and d de-
coder trained at a given time sample was able to generalize over
all time samples (Fig. 4A,B). We then tested whether the

Figure 4. The spatiotemporal dynamics of representations reveal an updating hierarchy. A, Examples of TG for angle (top) and d (bottom) decoders trained at 100, 150, 200, and 250 ms af-
ter stimulus onset and tested across all time samples. The shaded areas indicate significant generalization, cluster corrected across subjects. Time annotations indicate the duration during which
each decoder significantly generalized. B, Full TG matrices for angle (top) and d (bottom) decoders. Blue areas indicate below-chance generalizations. C, TG scores for each of the eight succes-
sive stimuli. Colored areas indicate the above-chance generalizations, cluster corrected across subjects. D, Left, Grid-search analyses across architectures, connection weights (w) and activation
functions (f) led to search among.1.5 billion possible hierarchical models. Middle, Each of them was tested on its ability to generate dynamics qualitatively similar to those obtained empiri-
cally: that is, characterized by onset and offset responses whose durations increased across levels. Right, Two architectures captured these dynamics with no more than four connections. The
plain line illustrates a representative example of an observable unit (x). The dotted line illustrates a representative example of the hidden unit (y).
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significant TG clusters matched the predictions of the models
illustrated above.

The analyses revealed four main findings. First, both angle
and d TG matrices were characterized by a ;900 ms-long
(above chance) cluster around the TG diagonal (angle, p, 0.001;
d , p, 0.001). This diagonal pattern invalidates the predictions
of nonhierarchical circuits; that is, positive or negative feedback
alone do not lead to diagonal TG. Second, the angle and d
decoders successfully generalized, on average, .75ms (SD =
68ms) and 129ms (SD = 54ms), respectively. These durations
are shorter than both (1) the time period during which angles
and deltas are decodable (;900ms; Fig. 1D,E, shaded areas) and
(2) the stimulus duration (233ms). These brief generalizations,
therefore, invalidate the predictions of the feedforward and posi-
tive feedback loop chains as these architectures predict decoders
to generalize for a time period longer than the stimulus presenta-
tion. Third, these generalization periods consistently increased in
duration as a function of training time (angles, r= 0.44,
p, 0.001; deltas, r=0.47, p=0.003; Fig. 4A) as predicted by the
chains of feedback loops. Fourth, the central positive decoding
pattern was surrounded by two below-chance diagonals
(p, 0.01, for both angles and deltas) time-locked to the stimulus
offset (blue areas in Fig. 4A,B) as predicted by the chain of nega-
tive feedback loops. Supplementary analyses confirmed that the
reversal of neural responses after stimulus offset only partially
accounts for the long-lasting decoding angle and d scores: specif-
ically, diagonal decoders (i.e., trained and tested at the same time
samples) consistently outperformed their reversal counterparts
(i.e., trained at time t and tested at time t1 250 ms, after sign re-
versal) for both stimulus angle (all p , 0.01) and stimulus d (all
p, 0.05 but between 750 and 1000ms).

To test whether these TG patterns were consistently observed
for each stimulus, we independently decoded stimulus angles
and deltas as a function of their position within the visual
sequence. The corresponding TG analyses resulted in a series of
parallel and nonoverlapping diagonals (Fig. 4C). This result
shows that our EEG results can be accounted for by a visual hier-
archy multiplexing successive visual representations. Such a cas-
cade can represent multiple events (i.e., a vertical slice, Fig. 4C)
as well as their respective timing (i.e., a horizontal slice, Fig. 4C).

Systematically searching across dynamical systems confirms
this neural architecture
The dynamical systems presented in Figure 3 correspond to a
small set of possible neural architectures (Fig. 4D). To systemati-
cally investigate which architecture could account for subjects’
brain activity, we performed a grid search analysis by (1) varying
each connection (min = �1, max= 1, step= 0.05) of each archi-
tecture as well as by (2) testing four monotonic activation func-
tions (Linear, ReLu, SatLin, SatRelu) for each unit type (x,
observable; y, hidden). Each of the tested networks consisted of
a 10-layer hierarchy of x and y units interconnected with recur-
rent, feedforward and/or feedback connections (Fig. 4C). The
resulting models were evaluated on their ability to generate dy-
namics qualitatively similar to those obtained empirically (see
above, Architecture search) while keeping a minimal number of
connections (i.e., free parameters). In practice, we implemented
the model search efficiently so that simple architectures (i.e.,
architecture with less connections) are tested before their com-
plex counterparts. After having simulated .1.5 billion models,
spanning 531,441 distinct architectures, the search stopped at the
level of four connections—that is, the number of parameters that
is sufficient and necessary to account for our EEG results. The

results showed that only two architectures accounted for sub-
jects’ EEG with no more than four connections. The first archi-
tecture corresponds to the updating hierarchy (Fig. 4D). The
second architecture is also a hierarchy of negative feedback loops,
within which x units are epiphenomenal — i.e., they correspond
to leaf nodes and thus do not influence anything else in the net-
work. Importantly, both architectures predict that the hidden
units y maintain stimulus information over time, whereas the
observable units xmark the update of these representations.

Overall, these results suggest that, paradoxically, angles and
deltas representations are maintained by a biological mechanism
undetectable with macroscopic electric brain activity as decoded
by a single-sample spatial EEG filter (de Cheveigné and Simon,
2008). The long-lasting decoding scores of these two types of
representations does not appear to result from a sustained activ-
ity profile but from an observable update signal that propagates
across a neuronal chain recruited after the onset and the offset of
the stimuli.

Discussion
The present study makes three main contributions to under-
standing how the human brain continuously processes its visual
influx. First, we confirm that the representations of ;1 s long
typically observed in single-stimulus studies (VanRullen and
Macdonald, 2012; Carlson et al., 2013; Cichy et al., 2014; King et
al., 2016) can also be observed in the context of visual streams.
The discrepancy between the timing of sensation and the timing
of neural processing shows that the visual system continuously
buffers and updates multiple snapshots of its past stimulations.

Second, both visual content (stimulus angle) and visual flow
(stimulus delta) appear to simultaneously propagate across a
long chain of neuronal populations, localized along the expected
visual hierarchies. This result extends the findings of single-stim-
ulus studies (Lamme and Roelfsema, 2000; Hung et al., 2005;
Cichy et al., 2014) to visual streams and suggests that the travel-
ing waves elicited at the onset and offset of the stimulus reflect a
series of transient signals. This phenomenon is reminiscent of
predictive coding (Rao and Ballard, 1999; Friston, 2018), where
bottom-up signals only propagate when sensory information
unexpectedly changes. Our model search is consistent with this
architecture: the valid models consist of a simple feedforward
and locally recurrent hierarchy that propagates information
through its observable units x when the stimulus changes and
otherwise maintains it within its hidden units y. Within the lim-
ited scope of our model search (i.e., hierarchical modules) and
data (i.e., evoked EEG responses), these results are consistent
with dynamic coding (Stokes, 2015) activity-silent maintenance
theories (Wolff et al., 2017): they suggest that the visual represen-
tations of a stimulus are maintained by a mechanism y undetect-
able with single-sample EEG spatial decoders.

Third, our results suggest that low-level visual representations
(e.g., stimulus orientation) are redundantly coded in the visual
hierarchy. This phenomenon is consistent with recent findings
based on the electrophysiological recordings of the inferotempo-
ral cortex of macaques in response to static images (Hong et al.,
2016). We can speculate that this redundant coding provides two
computational advantages. First, it allows the prefrontal and pa-
rietal cortices, which receive inputs from the whole visual hierar-
chy (Dehaene and Changeux, 2011), to instantaneously bind
both (1) multiple levels of representations and (2) multiple succes-
sive images and their respective timings with a simple linear read-
out. Second, this redundant code automatically binds time to each
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representation: given that different levels of the hierarchy are associ-
ated with different synaptic delays and time constants, one can thus
linearly read out the relative timing of representation.

The present study faces several limitations. First, it is based
on artificial visual streams with a fixed presentation rate and
does not explore how natural images presented in movies are
processed and maintained. Whether the speed or frequency of
stimulus have an impact on cortical traveling waves thus remains
outside the scope of the present study. Second, EEG is noisy and
thus only provides a lower-bound estimate of the number of suc-
cessive images simultaneously encoded in brain activity. It is well
possible that the brain represents many more successive events at
each instant. Third, it is currently unclear whether the relevance
of the stimuli can modulate the duration of maintenance.
Fourth, the models implemented in the present study are
extremely simplistic and only explore hierarchical and modular
architecture. The cortex is known to be characterized by recur-
rent, skip, and top-down connections, whose effects vary with
subjects’ task and vigilance. Consequently, this study provides a
simple and intuitive backbone for further research rather than a
full-fledged model of the cortex.

Finally, the present investigation focuses on the neural repre-
sentations of unexpected stimuli. This approach thus omits the
likely critical role of top-down connections. In particular, recent
work by Alamia and VanRullen shows that the direction of EEG
traveling waves flips from a bottom-up direction to a top-down
direction between stimulation and rest, respectively (Alamia and
VanRullen, 2019). Although their results also point to a predic-
tive coding architecture, our dynamical modeling remains to be
investigated with resting EEG and with expected stimuli.

Overall, the present work contributes to a growing literature
on cortical traveling waves (Hughes, 1995; Nunez and Cutillo,
1995; Ermentrout and Kleinfeld, 2001; Nunez and Srinivasan,
2006; Klimesch et al., 2007). In particular, previous studies have
shown that cortical gamma activity was coordinated by traveling
in the alpha frequency range (Bahramisharif et al., 2013) and can
be evoked by eye movements (Giannini et al., 2018). In addition,
traveling waves have been shown previously to carry specific rep-
resentations. For example, Benucci et al. (2007) showed with cat
electrophysiology that within V–1, the orientation of a stimulus
elicited specific standing waves, whereas the spatial position
of a stimulus elicited local traveling waves propagating at
0.2–0.5 m/s–1 within V1. In addition, Sauseng et al. (2002)
have shown that evoked theta oscillations spread from front to
back during retrieval attempt and then reverses direction once
the information is retrieved. Here, we complement these find-
ings by showing that multiple macroscopic waves, each carrying
different visual representations, simultaneously travel across
the visual hierarchy to continuously transform the avalanche of
sensory input into a coherent stream of mental representations.
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