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A B S T R A C T   

Humans often simultaneously pursue multiple plans at different time scales, a capacity known as prospective memory (PM). The successful realization of non- 
immediate plans (e.g., post package after work) requires keeping track of a future plan while accomplishing other intermediate tasks (e.g., write a paper). Pro
spective memory capacity requires the integration of noisy evidence from perceptual input with evidence from both short-term working memory (WM) and long-term 
or episodic memory (LTM/EM). Here we formulate a set of empirical studies of prospective memory, all dual-task problems, as problems of computational rationality. 
We ask how a rational model should integrate noisy perceptual evidence and memory to maximize payoffs in these PM studies. 

The model combines reinforcement learning (optimal action selection) with evidence accumulation (optimal inference) in order to derive good decision pa
rameters for optimal task performance (i.e., performing an ongoing task while monitoring for a cue that triggers executing a second prospective task). We compare 
model behavior to human behavioral evidence of key accuracy and reaction time phenomena in PM. Notably, our normative approach to theorizing and modeling 
these phenomena makes no assumptions about mechanisms of attention or retrieval. This approach can be extended to study the learning and use of meta-parameters 
governing the boundedly rational use of memory in planned action in health and disease. A computational psychiatry extension of the model can capture 
compensatory mnemonic strategies in neuropsychiatric disorders that may be rational responses to disturbances of inference, memory, and action selection.   

1. Introduction 

The execution of cognitive control in the service of goal-directed 
behavior is intimately bound to the use of memory. 

The immediate pursuit of a goal is presumed to rely on control rep
resentations actively maintained in working memory (Anderson, 1983; 
Miller and Cohen, 2001). In contrast, pursuit of a future goal requires 
that it be encoded in longer-term storage, and retrieved at the appro
priate time (Cohen et al., 1996; Gollwitzer and Brandstätter, 1997). This 
capacity is often referred to as prospective memory (PM). Prospective 
memory experiments are typically designed to study the interaction 
between performing an ongoing task (e.g., a day’s work) and the flexible 
encoding, retrieval, and realization of a prospective task (e.g., post a 
package). In event-based prospective memory, the prospective task must 
be executed as soon as the relevant target is perceived (e.g., the post 
office) (Einstein and McDaniel, 2005; Einstein et al., 2005). In 
time-based prospective memory (e.g., take out the cookies from the oven 

in 30 min), internal or external time keeping determines ‘when’ to 
execute the future plan (Momennejad and Haynes, 2012). 

PM success relies on rational use of memory and attentional pro
cesses. For instance, if you plan to post a package after a workday, you 
cannot rely on actively maintaining and rehearsing this plan in working 
memory all day, as this would interfere with your performance at work. 
At the same time, you must ensure that it is remembered in the face of 
the day’s workload, and reliably retrieved at the end of the day. The 
multiprocess view of PM (Einstein and McDaniel, 2005; Einstein et al., 
2005) suggests that the successful realization of prospective memory 
tasks relies on a dynamic interaction between two categories of pro
cesses: effortful and controlled attentional processes to monitor for 
targets in the environment (e.g., active monitoring of the environment 
and mental rehearsal of the planned action), and spontaneous retrieval 
processes (i.e., spontaneously remembering to execute the plan once the 
target, say post office, is detected). 

Here, we adopt the multiprocess framework and propose that the 

* Corresponding author. Department of Biomedical Engineering, Columbia University, USA. 
E-mail addresses: ida.m@columbia.edu (I. Momennejad), jalewpea@utexas.edu (J. Lewis-Peacock), knorman@princeton.edu (K.A. Norman), baveja@umich.edu 

(J.D. Cohen), jdc@princeton.edu (S. Singh), rickl@umich.edu (R.L. Lewis).  

Contents lists available at ScienceDirect 

Neuropsychologia 

journal homepage: http://www.elsevier.com/locate/neuropsychologia 

https://doi.org/10.1016/j.neuropsychologia.2020.107657 
Received 7 October 2019; Received in revised form 23 July 2020; Accepted 27 September 2020   

mailto:ida.m@columbia.edu
mailto:jalewpea@utexas.edu
mailto:knorman@princeton.edu
mailto:baveja@umich.edu
mailto:jdc@princeton.edu
mailto:rickl@umich.edu
www.sciencedirect.com/science/journal/00283932
https://http://www.elsevier.com/locate/neuropsychologia
https://doi.org/10.1016/j.neuropsychologia.2020.107657
https://doi.org/10.1016/j.neuropsychologia.2020.107657
https://doi.org/10.1016/j.neuropsychologia.2020.107657
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuropsychologia.2020.107657&domain=pdf


Neuropsychologia 158 (2021) 107657

2

functioning of prospective memory relies on the adaptive use of working 
memory (WM), long-term/episodic memory (EM), and perception. In 
this model, top-down or monitoring processes of the multiprocess 
framework are operationalized as strategies that rely on working 
memory, while bottom-up or spontaneous retrieval processes are stra
tegies that rely on long-term or episodic memory. In our account the 
weighing of the two sources of memory in the service of action selection 
is not hand-tuned, but derived by a normative model seeking to simul
taneously maximize reward in both the ongoing and prospective tasks. 
This is accomplished by selecting actions according to an optimal policy 
(reinforcement learning) conditioned on a Bayesian integration of per
ceptions and memory (inference). 

It is important to highlight that our model is not purely a mechanistic 
process model of PM; rather, it combines abstract assumptions about 
mechanism with (bounded) optimality analyses. Our contribution is to 
show that key findings in the prospective memory literature, and more 
broadly multi-tasking, can be explained by considering how to norma
tively reconcile multiple sources of memory and perceptual evidence. 
Indeed, the novel and perhaps surprising implication of our model is that 
a fairly detailed account of human behavioral performance (accuracy 
and reaction times) is possible using quite abstract assumptions about 
memory and perception, and an assumption of rationality (Lewis et al., 
2014). 

The model makes minimal, abstract assumptions about the proper
ties of three noisy component subsystems: WM, LTM/EM, and percep
tion. We explore the implications of these assumptions for prospective 
memory by asking how a rational model would use these components to 
adaptively respond to the demands of a variety of specific experimental 
task settings. At the heart of the model is the optimal integration of noisy 
information from the three components over time, and the optimal se
lection of external task response actions and internal memory actions to 
maximize rewards. 

Many of the interesting empirical signatures of prospective memory 
concern effects on both accuracy and speed of dual-task performance, so 
the model must incorporate processing dynamics. We model processing 
dynamics (in discrete time) as the sequential accumulation and optimal 
integration of evidence from perception and memory, and the optimal 
selection of actions that either wait and sample more evidence, respond 
to the ongoing task, or respond to a possible prospective memory target. 
As we will see below, the formal statement of what the model should do 
is mathematically simple. But the multiple sources of evidence (two 
memory stores plus perceptual sampling) and multiple possible actions 
in the dual-task setting (four) give rise to the following significant 
technical challenges for computing the optimal policy. 

First, even the relatively simple assumptions about memory and 
perception noise that we adopt here preclude an analytic solution to the 
optimal Bayesian integration of perception and memory. Second, the 
dual task structure requires a selection among three task actions (plus a 
wait-and-continue-sampling action). This precludes the use of classic 
sampling models such as drift-diffusion or the Sequential Probability 
Ratio Test, which are formulated for the selection among two choices 
conditioned on one decision variable. These challenges make the present 
model different from simpler cases of evidence accumulation, where 
typically two decisions compete for execution (Lee and Cummins, 2004). 

We address these technical challenges by using a Monte Carlo tech
nique to provide good approximations of the Bayesian integration, and 
by using reinforcement learning (RL) algorithms to compute a good 
approximation of the optimal action selection policy. As such, we do not 
hand-tune control parameters, wait times, or thresholds to fit empirical 
data; rather, they emerge from the RL policy optimization, and without 
any explicit thresholds on decision variables. Our approach to solve this 
problem makes the present model different from recent models of PM 
with an elegant use of evidence accumulation (Heathcote et al., 2015; 
Strickland et al., 2017, 2019). The optimality assumptions provide a 
powerful analytic basis for reducing the space of considered strategies 
and methods of noisy information integration. Although the mechanistic 

assumptions about component subsystems are very simple, the model 
generates a rich set of predictions for error rates and reaction times that 
provide good accounts of key empirical phenomena in the prospective 
memory literature. 

The paper has the following structure. In §2 we review key aspects of 
the experimental literature, and identify experimental paradigms that 
express a canonical set of phenomena, summarized in §2.2. In §3 we 
formally specify the normative model. We then report in § 4 the results 
of simulations that test the model’s account of the key behavioral phe
nomena. We discuss the nature of the explanations that the model pro
vides, novel predictions by the model that remain to be empirically 
tested, as well as aspects of the empirical data which are not well-fit by 
the model. We conclude with a summary of the model’s strengths and 
caveats, and a discussion of the prospects for applying the modeling 
method to other domains that involve the adaptive integration of 
perception with multiple memory systems. 

2. An empirical paradigm for prospective memory and key 
findings 

Many prospective memory experiments are variations of an event- 
based experimental paradigm originally proposed by Einstein and col
leagues (Brewer et al., 2011; Einstein et al., 2005; Scullin et al., 2012). In 
this section we first describe the experimental design, then summarize 
key phenomena of interest emerging in human performance on these 
tasks. 

2.1. Event-based prospective memory: A dual-tasking paradigm 

In event-based prospective memory, the occurrence of an event (e.g., 
spotting the post office) triggers a switch from an ongoing task (e.g., 
talking on the phone) to a planned action (e.g., posting a package). 
There are two components to event-based experimental paradigms: an 
ongoing task (OG) that demands the majority of responses, and a pro
spective memory task (PM) that demands a response only when a rela
tively infrequent target probe or event occurs, referred to as the PM 
target. 

Fig. 1 illustrates an example of this canonical experimental paradigm 
for testing prospective memory. As the original paradigm, the ongoing 
task is to judge whether the word on the right matches the category 
presented on the left (e.g., on trial 1, cat is an ANIMAL, a match, hence 
the correct response is yes). Participants performed this task on its own 
to set the baseline performance on the ongoing task alone (baseline OG, 
or No-PM trials). In the prospective memory condition, participants 
were required to give a prospective memory response by pressing 
another button whenever the PM target (e.g., the syllable ‘tor’ in this 
case) appeared on screen (e.g., on the 4th trial, ‘tortoise’ is a PM target). 
The instructions indicated the level of priority or emphasis of the PM 
task relative to the ongoing task. For instance, high PM emphasis was 
instructed as follows: “It is very important that you consider your main 
goal in this section to find absolutely every occurrence of the target 
item”. In the high PM emphasis condition participants were to prioritize 
their attentional and memory resources to increase PM performance, 
even at the cost of ongoing task performance. Moderate emphasis in
structions indicated a more relaxed prioritization. 

Next we review key findings from experiments that use variations of 
this experimental paradigm. 

2.2. Key phenomena in event-based prospective memory 

Prospective memory effects are generally measured and reported in 
terms of the influence of experimental conditions on two behavioral 
measures: accuracy of task performance and response times. Many PM 
studies have used variations of the experimental PM paradigm described 
above, so we refer to this paradigm in the reported phenomena below. 
As a reminder, the paradigm consists of an ongoing task (OG), a 
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prospective memory task (PM), and a target stimulus or time which cues 
a switch between them. Studies commonly report an OG cost measure 
(ongoing task cost), which is the extent to which responses to the 
ongoing task are slowed as a function of PM-related experimental ma
nipulations. Prospective memory performance itself is often reported in 
terms of PM hit rate, which measures the proportion of times a partici
pant successfully detects and responds to a PM target. Below, we review 
four key classes of PM phenomena consistently reported in the literature. 
These key phenomena serve as the target for the behavior of the model 
described in the next section. 

Effects of target focality. PM targets cue when to switch from the 
ongoing task to the PM task. It can be focal or non-focal, as follows. A PM 
target is focal when the OG and PM tasks both require attention to 
similar features of stimuli. For instance, a PM target is focal if the 
ongoing task is a word match judgment and the prospective task is a 
particular word (e.g., ‘tortoise’). A PM target is non-focal when the OG 
and PM tasks require paying attention to different features in the stimuli. 
An example of a non-focal target is when the OG task is to judge word 
match but the PM target is a specific font color or a particular syllable (e. 
g., red font color or any word with the syllable ‘tor’). 

The main effect of target focality is that participants are more suc
cessful at detecting focal PM targets, and focal PM responses incur lower 
costs on the OG task (lead to less increase in ongoing task response 
times). For instance, in the experiment described in Fig. 1, it is easier to 
detect a PM target if it were the word tortoise as opposed to the syllable 
tor, since the full word tortoise is already being processed by the OG task. 
However, noticing whether a specific syllable is present in a word re
quires paying attention to the letters and not the word as a semantic 
whole. Notably, the focality effect on ongoing task costs and PM hit rates 
interacts with the effect of task emphasis or the priority of the PM task, 
which we describe next (see Fig. 2). 

Effects of relative task emphasis and interaction with focality. 
Emphasis refers to the relative priority that the participant is instructed 
to place on their responses to the PM vs. OG task. A high emphasis in
struction indicates that the highest priority is to increase PM hit rate. For 
example, in the Einstein et al. (2005) (Einstein and McDaniel, 2005) 
study, on half the trials the instruction placed high importance on PM hit 
rate: it is very important that you consider your main goal in this section to 

find absolutely every occurrence of the target item. On the other half, PM hit 
rate was given moderate importance: we have a secondary interest in your 
ability to remember to perform an action in the future. 

The main effect of emphasis is, sensibly, improved performance on 
the PM task as measured by PM hit rate. However, the instructional 
emphasis manipulation interacts with the focality effect (see Fig. 2, 
lower panel): Emphasis has the largest effect on OG costs when the 
targets are non-focal (i.e., when PM targets are more difficult to detect 
because they involve detecting different features than those processed 
by the OG task). PM performance is at ceiling in the focal PM condition, 
when the two tasks share features. 

In §4.2, we model emphasis by simply changing the ratio of reward 
associated with PM vs. OG task performance. 

Effects of prospective memory load. The load refers to the diffi
culty of detecting the PM target or the difficulty of the PM task. In 
general, increasing PM load incurs greater costs on the OG task, 
measured by longer reaction times to ongoing task stimuli. It can be 
empirically manipulated in a number of ways. For example, Einstein and 
colleagues showed that increasing the number of PM targets from 1 to 6 
is associated with an increase in OG reaction times (Einstein et al., 2005) 
(Fig. 4, left). Similarly, using a more difficult PM task (e.g., by increasing 
its working memory demand) also increases costs to OG reaction times 
(Meier and Zimmermann, 2015). Moreover, increasing the load of the 
OG task makes PM target detection more difficult and is shown to 
involve more anterior prefrontal cortex recruitment in fMRI activity for 
the representation of the PM task (Momennejad and Haynes, 2013). 

In §4.1 we model PM load in two ways: (a) by increasing the number 
of PM targets, and (b) by increasing the number of past, but no longer 
active, PM targets. 

Individual differences and WM capacity. A number of studies 
have revealed systematic individual differences in prospective memory 
tasks. These differences are thought to be related to individual differ
ences in working memory or executive function, as well as the use of 
episodic memory strategies. Brewer and colleagues Brewer and Marsh 
(2010) showed that individuals with lower measured WM capacity ex
press a higher cost of PM on OG task response times in non-focal con
ditions. Furthermore, populations associated with lower WM or 
executive function capacities such as adolescents and older adults are 
more likely to benefit from strategies involving episodic memory, such 
as episodic future simulation, in PM performance (Altgassen et al, 2015, 
2017). Individuals have also been shown to benefit from episodic 
encoding strategies such as imagery or implementation intentions 
(Brewer et al., 2011; Gollwitzer and Brandstätter, 1997). 

In §4.3 we model individual difference effects by varying the process 
noise in the model, but retaining the assumptions of optimal control and 
evidence integration. 

Strategy selection effects. As discussed in the Introduction, the 
multiprocess framework (Einstein et al., 2005; Einstein and McDaniel, 
2005) suggests that there are two primary strategies participants use to 
perform the PM task. The first strategy involves active attentional 
monitoring for PM targets (presumably by maintaining this information 
in WM). The second strategy involves encoding the PM target in 
long-term memory, and relying on spontaneous associative recall of the 
PM task when the PM target appears. Several studies have sought to 
explicitly manipulate the choice between these strategies. 

A series of studies controlled for strategy by encouraging participants 
to use episodic future simulation, imagery (Brewer and Marsh, 2010; 
Brewer et al., 2011), or an implementation intention strategy (Chen et al., 
2015; Gollwitzer, 1990; McDaniel et al., 2008; McFarland and Glisky, 
2012), in which they wrote down multiple times that upon seeing a PM 
target they will switch to the PM task. Varieties of episodic future 
simulation improved PM performance for non-focal PM. Crucially, the 
effects were eliminated if the subjects were not given a specific context 
for the associations. Furthermore, a recent study (Lewis-Peacock et al., 
2016) directly manipulated the use of WM or episodic strategies in PM 
by either increasing proactive interference in episodic memory (hence 

Fig. 1. An example of an event-based prospective memory (PM) experimental 
paradigm (Einstein et al., 2005). The paradigm consists of a sequence of trials 
which have an ongoing task and a prospective memory target (PM target). A 
given trial begins with an instruction, indicating the prospective memory 
target, which was a different word or syllable on different trials. Each trial 
consists of a sequence of ongoing task (OG) stimuli requiring a category match 
judgment between two words on the screen. The PM target in the example 
instruction is the syllable tor, which here appears in the word tortoise in the 
fourth stimulus of the trial. The fourth stimulus thus requires a PM response. 
Here we have indicated correct responses to each stimulus below it for clari
fication. On half the trials the instruction emphasized the high importance of 
prospective memory accuracy (e.g., It is very important that you consider your 
main goal in this section to find absolutely every occurrence of the target item.). On 
the other half, the PM instruction was of moderate importance: we have a sec
ondary interest in your ability to remember to perform an action in the future. On 
no-PM trials participants are instructed to perform only the ongoing task, 
setting a behavioral baseline for comparing reaction times to the ongoing task 
across conditions. 
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increasing the benefits of a WM strategy) or increasing WM load by 
changing the ongoing task from 1-back to n-back (hence increasing the 
benefits of an EM strategy). Taken together, these studies help reveal the 
importance of the trade-off between WM and EM encoding strategies in 
PM performance. 

The model’s strategy, explained later on, depends on the weight it 
gives to samples from WM and EM, and the optimal strategy is learned 
by the model given the task circumstances (e.g., high or load WM load) 
and the noise in the memory and perceptual samples. 

3. A rational model of episodic and working memory use in 
prospective memory 

We propose a simple rational model of the integrated use of noisy 
perception, working memory (WM) and longterm/episodic memory 
(LTM/EM) in service of prospective and ongoing tasks – as captured by 
the canonical dual-task paradigm described in Section 2.1. Our approach 
formalizes one aspect of the multiprocess framework of PM proposed by 
Einstein and colleagues (Einstein et al., 2005): the possible use of either 
(or both) of WM and LTM in service of PM tasks. But it also provides an 
alternative conception of the relationship between PM and OG tasks that 
focuses on strategic adaption, a principle shared with the recent model of 
Strickland et al. (2018). 

The model specifies abstract computational properties of LTM/EM, 
WM, and perceptual components, and asks how a computationally 
rational agent should use these components in the PM dual-task setting. 
The model is rational (or normative) because the integration of evidence 
from the three components conforms to correct Bayesian inference, and 
because the policy (or strategy) parameters governing task performance 
are selected to maximize the joint reward on the OG and PM tasks. We 
also refer to it as computationally rational to emphasize that the model 
derives the best possible use of posited bounded computational re
sources (Howes et al. (2009)). It is thus an application of bounded 
optimality (Russell and Subramanian (1995); Lewis et al. (2014)). Our 
conclusions and analyses are limited to the specific processing bounds 
we explore here—noisy evidence accumulation and noisy memo
ries—and alternative bounds may yield different predictions. 

Once the (approximately) optimal policy parameters are computed 
and fixed (through a reinforcement learning method described below), 
the model provides detailed behavioral predictions, including response 
times and accuracies for both tasks. We explore these behavioral im
plications of the model in Section 4, compare them to human behavior, 
and discuss how the model explains the key phenomena summarized 
above. 

3.1. Overview of the model’s processing in a single trial of the canonical 
dual-task paradigm 

Before considering the mathematical details, it is useful to have a 
qualitative overview of how the three model components interact to 
perform one stimulus response in one trial of the event-based PM dual- 
task. We assume here that the ongoing (OG) task is a binary categori
zation task, such as lexical decision, and the prospective (PM) task re
quires monitoring for a specific feature of the stimulus (e.g., a syllabus). 
(Below we consider other variants such as monitoring for a set of words). 
We refer to each presented item or stimulus on the screen as the probe 
item.  

1. The incentive reward structure of the task is represented as a payoff 
matrix. This payoff matrix indicates gains and losses for making 
correct (or incorrect) responses to the OG task, for failing to make a 
response before a response deadline, and for correctly detecting (or 
missing) the PM target. These gains and losses can be used to 
establish some experimental conditions. For instance, PM emphasis 
can be determined by, or indicated in the payoff table as, the ratio of 
payoffs or gains for correct PM vs. correct OG performance. 

Thus, we can increase PM task emphasis by assigning a higher gain, or 
reward in the payoff table, for PM performance relative to OG 
performance.  

2. Each stimulus item is represented as a feature pair: one feature is 
relevant for the OG task and one feature is relevant for the PM task. 
Feature values are drawn from a fixed set of discrete values. The OG 
task binary classification partitions the values into two subsets, one 
subset requiring a “Yes” response and one requiring a “No” response. 
The PM task requires matching the PM relevant feature to a previ
ously presented PM target feature. We use the correlation between 
the two feature as a way to model differing degrees of focality, as 
described in §4.2.  

3. The model has a noisy encoding of the PM target(s) stored in episodic 
memory (EM). Each target encoding is represented as a discrete 
feature value which may be noisy, errorful with some small proba
bility, and a discrete context code (indicating the PM trial) which 
may also be noisy and errorful with some small probability. In some 
model variants there may also be a corresponding encoding in 
working memory (WM). We increase PM load by increasing the 
number of PM targets that are monitored for simultaneously.  

4. The contents of EM (and possibly WM) and the task structure imputes 
a prior distribution, on possible stimulus probe items, in advance of 
any perception of the probe. 

Fig. 2. The interacting effects of focality and emphasis 
on ongoing task RTs and prospective memory hit-rate 
reported in Einstein et al. (2005). Performing an OG 
task takes longer when more emphasis is placed on 
the PM task. Left: A non-focal PM condition, where it 
is more difficult to detect the PM target, exerts a 
higher RT cost on the OG task. In contrast, in a focal 
PM condition, where PM target is more similar to OG 
task stimuli and easier to detect, exerts less of an OG 
task cost. OG task response times increase in both 
focal and non-focal conditions when high emphasis is 
placed on the PM task. Right: Participants exhibit high 
accuracy on focal prospective memory regardless of 
the emphasis condition. However, in non-focal con
ditions, emphasis has a large effect on the accuracy of 
PM responses.   
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5. In this state, the model perceives the probe over discrete time steps. 
On each step, a noisy sample is drawn of the true pair of feature 
values representing the probe. Each sample step has a duration 
sampled from a gamma distribution. In our simulations the deadline 
and sample time distributions were set so that the number of samples 
taken per probe ranged typically from 2 to 9.  

6. On each noisy sample, the model updates a posterior distribution of 
possible target probes, and uses this distribution to compute a pos
terior over the three response hypotheses: the probability that the 
PM target-yes response is correct, the probability that the OG-yes 
response is correct, and the probability that the OG-no response is 
correct. This posterior and the time remaining until the deadline 
captures all the information the model needs to decide what to do 
next.  

7. The noise in the sequential sampling process is an abstraction of 
multiple possible sources of process noise. This includes perceptual 
noise and noise in the integration of perceptual evidence with 
memory. We model individual WM capacity by changing this process 
noise level (Note that changing individual WM capacity is different 
from increasing WM load, e.g., via increasing the number of PM 
targets, described above.).  

8. Given the posterior over correct responses and the time remaining 
until the deadline, the model chooses one of four possible actions: (1) 
obtain another noisy sample of probe features, (2) respond yes to the 
PM task (indicating that the model has detected the PM target), (3) 
respond yes to the OG task, or (4) respond no to the OG task. The 
model makes this choice by choosing the action that maximizes expected 
payoff. In an alternative task variant, the model must respond to OG 
task even when a PM target is present, and so the PM-yes action is 
replaced with two distinct actions, corresponding to PM-yes-OG-yes 
and PM-yes-OG-no.  

9. The sum of the duration of probe sample steps before the choice is 
made constitutes a response time. The response type may be classi
fied as a correct or incorrect OG response, a correct PM target 
detection, a PM target miss, a PM target false alarm, or a missed 
deadline. 

In short, the model combines optimal evidence integration with 
optimal stopping and optimal response selection. Once memory and 
process noise parameters are fixed, we may obtain predictions of 
response times and accuracies on both PM and OG tasks. We do so under 
different task and architecture manipulations (e.g., PM emphasis, 
focality, PM difficulty, PM load, WM differences) by simulating the 
model many times. The primary technical challenges concern computing 
the prior distribution for probe items given the noisy memory encodings, 
and computing the policy for optimal stopping given the posterior and 
time remaining. We next present the formal model and describe how 
these two challenges are met. 

3.2. Task environment and reward 

Types of PM and OG tasks. There are two simultaneous tasks: the 
prospective memory (PM) task and the ongoing task (OG). Probe items 
are pairs of PM and OG features 〈PPM, POG〉 (PPM ∈ I

PM,POG ∈ IOG) 
presented to the model for response before a deadline has passed There 
are p possible PM features IPM

1 , . . . IPM
p comprising the set IPM, and o 

possible OG features IOG
1 , . . . IOG

o comprising the set IOG. In our simula
tions, p = o = 10. 

There are two kinds of PM tasks: detecting that a presented probe is 
the most recently presented target (where there may be a history of 
previous targets); or detecting that a presented probe is in a set of targets 
(there is no history of previous sets). Let T PM ⊂ I PM be the current set 
of PM targets. 

There are two kinds of OG tasks: a binary discrimination (yes/no) of 
a presented probe (requiring no short-term memory); or detecting that a 

presented probe is the same as the probe presented 1 or 2 probes back (a 
working memory “N-back” task). 

For the OG discrimination task, let I OG
yes ⊂ I OG be the items that 

should elicit a yes response, and let I OG
no ⊂ I OG be the items that should 

elicit a no. I OG
yes and I OG

no form a partition of I OG. 
There is a prior distribution of probe pairs that allows for a corre

lation ρFoc between OG and PM items/features. We discuss this below as 
a way to model focality. 

Probe responses and task payoff. Consider first the case where the 
OG task is the discrimination task. Events of interest concerning the 
presented probes are:  

1. PMyes: PPM ∈ T PM (probe is a/the PM target).  
2. PMno: PPM 6∈ T PM (probe is not a PM target).  
3. OGyes: POG ∈ I OG

yes .  
4. OGno: POG ∈ I

OG
no . 

So for given T PM, a probe 〈PPM,POG〉 determines one of the three 
types of correct responses: 

The fourth response is “no response”, which happens when the 
deadline is missed. There is a 4(i) × 3(j) task payoff matrix that indicates 
the payoff for making the ith response when response j is correct. 

3.3. Noisy encodings in perception, EM, and WM 

There are three cognitive components in the model: an episodic 
memory (LTM/EM) store, a strategically deployable WM, and noisy 
perception (Fig. 3). 

The LTM/EM encodings. EM is a set of elements that are noisy 
encodings of current PM targets in long term or episodic memory. Each 
encoding consists of a PM feature value and a context feature value. The 
PM feature value may be noisy and erroneous: with some small proba
bility, the feature is drawn from other distractor feature values rather 
than the correct feature value. Context codes represent the trial number 
of past PM targets. Context codes may also be erroneous: with some 
small probability, a context code is drawn from context codes for other 
trials; we assume a similarity confusion matrix for trial codes such that 
nearby trials are more confusable. 

WM encodings. WM is a set of elements that are noisy encodings of 
OG task stimuli and/or the current PM target. When the OG task is N- 
back, as in (Lewis-Peacock et al., 2016), WM contains the past N-back (1 
or 2) stimuli and the current PM target (depending on task demands and 
strategic choices, as described below). While we do not model experi
ments with N-back in the present manuscript, the model is theoretically 
reach enough to be applied to these studies as well. 

Context codes in WM can, for instance, represent the N-back position 
of an item (e.g., 1 back or 2 back). In the N-back = 1 condition, the most 
recent N-back probe is kept in WM. In the N-back = 2 condition, the two 
most recent probes are kept in WM. If a WM encoding strategy is used for 
PM, the PM target encoding is also present in WM. The item and context 
codes are not confusable across PM targets and N-back stimuli, but 
increasing the number of items held in WM is assumed to increase the 
item and context noise. 

Perceptual samples and processing noise. The true probe identity is a 
pair of feature values hPPM, POGi. When the model perceives the probe, 
with some probability Proc the PM feature of the perceptual sample is 
picked uniformly from non-true values of PM feature, otherwise it is the 
true feature. The same is done independently for the OG feature of the 
stimulus. We refer to this noise as processing noise (rather than perceptual 
noise) to emphasize that it an abstraction over multiple sources of noise, 
including perceptual or attentional noise and noise in the evidence 
integration process. 
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3.4. Bayesian integration of noisy evidence in memory with noisy 
perceptual samples 

Before any perceptual samples of the stimuli have been obtained, the 
noisy WM and EM memory encodings along with information about the 
base rate of PM target occurrences are used to compute expectations: a 
prior distribution over possible PM targets and OG stimuli. This prior 
distribution is updated as noisy perceptual samples are obtained. 

From this distribution a posterior over three response hypotheses is 
computed: the posterior probability that the PM target-yes response is 
correct, the posterior probability that the OG-yes response is correct, and 
the posterior probability that the OG-no response is correct. More 
formally: 

Desired response posteriors given samples. When the model ar
rives at a probe 〈PPM,POG〉 with some combined. 

WM and EM memory m, it sequentially draws perceptual samples of 
the presented probe, integrates the evidence, and makes a response after 

some number of samples are drawn (or fails to respond if a deadline has 
passed) as follows. 

We denote a sequence of k perceptual samples of the true PM feature 
PPM as sPM

k = sPM
1 , sPM

2 , . . . sPM
k and the sequence of perceptual samples of 

the true OG feature POG as sOG
k = sOG

1 , sOG
2 . . . sOG

k . 
After k samples, the model computes the posteriors for each of the 

three responses being the correct response: 

p
(

Respond_PMyes

⃒
⃒
⃒
⃒m, sPM

k , sOG
k

)

(1)  

p
(

Respond_OGyes

⃒
⃒
⃒
⃒m, sPM

k , sOG
k

)

(2)  

p
(

Respond_OGno

⃒
⃒
⃒
⃒m, sPM

k , sOG
k

)

(3) 

Given these posteriors, the expected payoff of the three responses 

Fig. 3. Model of rational WM-EM recruitment in a dual-task event-based prospective memory paradigm. The model components consist of a long-term episodic 
memory (EM/LTM) which stores a noisy encoding of current and past PM targets, and a working memory (WM) in which the ongoing stimulus and PM target are 
encoded with some noise. Parallel accumulators with no bounds draw noisy perceptual samples of the OG and PM features of the probe stimulus, incrementally 
updating posteriors that track the status of the probe for the PM task and the status of the probe for the OG task. For every state, the set of all possible actions includes 
obtaining another sample (waiting longer), giving a PM yes response, an OG yes response (e.g., category match or 1-back match), or an OG no response. The optimal 
policy is computed using Q-learning (Watkins and Dayan, 1992), which selects the action with the highest expected value. At each time point the optimal policy 
determines whether to draw another sample and risk going past deadline, or to make a response. Bayesian integration weighs information in WM and LTM/EM as a 
function of the uncertainty of the memory encodings.  

1. Respond-PMyesshould be made when PMyes, regardless of OG.  
2. Respond-OGyesshould be made when PMno and OGyes.  
3. Respond-OGnoshould be made when PMno and OGno. 
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may be computed from the payoff matrix, and compared to the expected 
value of obtaining another sample (how this value is estimated is 
described below). Note that the choice rule is not to choose the response 
with the highest probability of being correct; rather the choice rule is to 
maximize expected value. 

The posteriors over the three responses may be computed as a 
function of the four probe matching cases of (PMyes, PMno, OGyes, 
OGno): 

p
(
Respond_PMyes|m, sPM , sOG)= p

(
PMyes

⃒
⃒m, sPM , sOG) (4)  

p
(
Respond_OGyes|m, sPM , sOG)= p(PMno|m, sPM , sOG)p

(
OGyes

)
(5)  

p(Respond_OGno|m, sPM , sOG)= p(PMno|m, sPM , sOG)p(OGno|m|sPM , sOG)

(6) 

These three equations capture the task instructions concerning re
sponses. Next we describe how the probe-match posterior probabilities 
are sequentially computed as each sample arrives. 

Posterior update given perceptual samples. The perceptual sam
ples are not conditionally independent given the abstract event types 
(PMyes, PMno, OGyes, OGno) because they depend on the specific pre
sented probe pair. The samples are conditionally independent given a 
specific probe pair, because the noise associated with perceptual sam
ples is uncorrelated across time. We exploit this conditional indepen
dence to allow for an incremental update of the posterior given each 
perceptual sample. Note that we allow the true OG and PM features to be 
correlated as a way to model focality, but the OG and PM perceptual 
samples remain conditionally independent given the true features. The 
focality correlation is captured in a prior as described below. 

The specific probe pair is unknown to the model (hence the need for 
the perception). We handle the dependence of the posterior quantities in 
Equations (1)–(3) on the previous samples and on the memory m by 
updating a probability distribution over probe pairs PPM,POG. Intuitively, 
the task context (probability of a target match and probability of the OG 

yes/no responses) along with the noisy memory of the target induces a 
prior over possible true probe pairs, and as each perceptual sample ar
rives, this prior over pairs is updated, and combined with the memory 
yields a prior over correct responses. 

We now describe the computation for PMyes given a perceptual 
sample of PM and OG features sPM,sOG. We then describe how the core 
Bayesian calculation may be iterated for multiple samples. 

We adopt the following notational abbreviation: IPM
j denotes the 

event PPM = IPM
j (i.e., the true PM probe is the jth PM feature from the set 

I
PM) and IOG

i denotes the event POG = IOG
i (i.e., the true OG probe is the 

ith OG feature from the set I OG). Then: 
Equation (7) decomposes the conditional probability of PMyes (a PM 

target match) into a product of probabilities of PMyes given each of the 
combinations of the o possible true OG features and p possible true PM 
features, and the probability of each combination given the sample and 
memory. 

We now compute the two terms in the product on the righthand side. 

p(PMyes

⃒
⃒
⃒IPM

j , IOG
i , sPM, sOG, m)) is the probability of a PM target match, 

given that the true presented probe is IPM
j ,IOG

i , the sample is sPM,sOG and 
the model has memory m. The probability of PM target match given a 
true presented PM probe IPM

j is independent of IOG
i and the samples; this 

is what it means to say that the PM probe feature determines the PM 
match. Thus: 

p
(

PMyes

⃒
⃒
⃒IPM

j , IOG
i , sPM, sOG,m

)
= p

(
PMyes

⃒
⃒IPM

j ,m
)

(8) 

But what of the remaining dependence on m? Intuitively, each 
different state of the memory determines a different probability that a 
true presented probe is in fact a PM target match. For example, if the 

memory were perfect and m encoded the target IPM
7 then p(PMyes

⃒
⃒
⃒IPM

j ,m)

= 1 and 0 for all other possible PM probes. But given the noisy memory 
the probability mass is spread over all the possible PM probes. This 
quantity is computed from a joint probability table estimated by large 

Fig. 4. Effect of PM load on ongoing task RTs. We 
manipulated PM load by changing the number of 
targets and observed its effect on OG reaction times 
(as Einstein and colleagues did) and simulated its 
interaction with PM emphasis. Human behavior (left) 
and model simulation (right) are shown here. The 
presence of a PM task slows down performance on the 
OG task. This slowing effect is exacerbated by an in
crease in the number of PM targets. The increased 
number of samples before giving a response corre
sponds to an increase in OG reaction times. The 
behavioral experiment (left) compares the RT costs of 
1 vs. 6 PM targets (in the presence of either of these 
targets the participant must perform the PM task) for 
the OG task. The model (right) qualitatively simulates 
the effect by comparing 1, 2 and 3 PM targets. Model 
predictions (right, Y axis unit: #samples taken before 
response) qualitatively reproduce the human behav
ioral findings from Einstein et al., (2005) (left, Y axis 
unit: seconds). proportion of reward obtained from 
moderate level (about 1/4 of the total reward due to 
the PM task) to relatively high (about 2/3 of the total 
reward obtained due to the PM task).   

p
(
PMyes

⃒
⃒sPM, sOG,m

)
=

∑O

i=1

∑P

j=1
p
(

PMyes

⃒
⃒
⃒IPM

j , IOG
i , sPM, sOG,m

)
p
(

IPM
j , IOG

i

⃒
⃒
⃒sPM, sOG,m

)

(7)   
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scale Monte Carlo simulation. 

The other term in Equation (9), p(IPM
j , IOG

i
⃒
⃒sPM, sOG,m), is computed 

with Bayes rule (suppressing the normalization term as a notational 
convenience and so using “proportional to” ∝ rather than equivalence): 

p
(
IPM, IOG

⃒
⃒sPM, sOG,m

)
∞p

(
sPM, sOG

⃒
⃒IPM, IOG,m

)
p
(
IPM, IOG

⃒
⃒m

)
(9)  

where 

p
(

sPM, sOG
⃒
⃒IPM

j , IOG
i ,m

)
= p

(
sPm, sOG

⃒
⃒IPM

j , IOG
i

)
(10)  

= p
(

sPM
⃒
⃒IPM

j

)
p
(
sOG

⃒
⃒IOG

i

)
(11)  

is the just perceptual noise model (independent samples of the PM and 
OG probe features which do not depend on m). 

The term p(IPM
j , IOG

i
⃒
⃒m) captures the prior probability of true probes 

given the agent’s noisy memory m which may include multiple (noisy) 
PM targets and WM encodings. Because only the PM probe is encoded in 
memory, this quantity may be rewritten as: 

p
(

IPM
j , IOG

i

⃒
⃒m

)
= p

(
IOG

i

⃒
⃒IPM

j ,m
)

p
(

IPM
j

⃒
⃒m

)
(12)  

= p
(

IOG
j

⃒
⃒IPM

i

)
p
(

IPM
j

⃒
⃒m

)
(13) 

We were unable to derive the quantity p(IPM
j

⃒
⃒m) analytically but 

precise estimates may be computed from empirical frequencies obtained 
via large scale Monte Carlo simulation. This quantity also captures the 
prior information about the frequency of PM targets in the task. 

Finally, the quantity p(IOG
j

⃒
⃒IPM

i ) captures the prior knowledge about 

how OG and PM probes are correlated, which we use to model focality. 
Equation (9) is used to sequentially update the posterior given 

additional perceptual samples, by using the previous posterior as the 
prior. Let sk

OG and sk
PM be the previous k samples of the PM and OG probe 

features and S− OG
k and SPM

k+1 be the new samples. Then (again suppressing 
the normalization term): 

p
(

IPM
j , IOG

i

⃒
⃒SOG

k+1, S− PM
k+1 , S− OG

k ,m
)

(14)  

∞p
(

SPM
k+1, S

OG
k+1

⃒
⃒IOG

i , S− PM
k , S− OG

k ,m
)(

IPM
j , IOG

i

⃒
⃒
⃒S− PM

k , S− OG
k ,m

)
(15)  

∞p
(

SPM
k+1

⃒
⃒
⃒IPM

j

)
p
(
SOG

k+1

⃒
⃒IOG

i

)
p
(

IPM
j , IOG

i

⃒
⃒
⃒S− PM

k , S− OG
k ,m

)
(16)  

where the first two terms in Equation (16) are simply the perceptual 
noise model and the third term is the posterior from the previous update. 

The computation of OGyes follows the form given above for PMyes but 
is simpler because all dependence on m drops out, and so all that matters 
is the perceptual noise model and the prior over OG and PM probes. 

3.5. Computing the optimal policy via reinforcement learning 

At each time step, the model chooses among four possible actions: 
Respond_PMyes, Respond_OGyes, Respond_OGno, and obtainSample. 

After obtaining k samples, the model calculates the expected value of 
Respond_PMyes, Respond_OGyes and Respond_OGno (via the posteriors (1)– 
(3) and the payoff matrix). The model must compare these expected 
values to the value of the obtain another sample action (obtainSample). 
This value depends on the time remaining trem before the deadline and 
the current belief (uncertainty) concerning which experiment state 
(PMyes, etc) holds. The belief is fully captured by the posteriors p(PMyes| 
m,sPM) and p(OGyes|m,sOG). The state s for conditioning control is 
therefore the triple 

s =
(
trem, p

(
PMyes

)
, p
(
OGyes

))
(17) 

Thus, by computing the optimal value function Q*(s,obtainSample) 
for all model states, we can simulate the rational model behavior for any 
set of experimental trials. We estimate this value function by using 
tabular Q-learning with a discrete binned approximation to the value 
function: each of the three continuous state variables is mapped to one of 
b bins, where b is a hyper-parameter of the learning. Computational 
experiments show best performance around b = 50 (dependent of course 
on other hyper-parameters). The Q-learner need only learn the value of 
the action obtainSample, because the values of the other three actions 
(the three task responses) can be computed directly from the posteriors 
at each time step. No temporal discounting is used to define expected 
value. 

4. The Model’s account of the key phenomena 

We used the model described in Section 3 to simulate a number of 
behavioral phenomena in the human PM literature outlined in Section 3. 
Most of these phenomena involve two behavioral measures of interest: 
reaction times to the OG task and the accuracy (detection rate) of re
sponses to the PM target. 

All simulations use a single consistent setting of memory noise pa
rameters. We set task parameters, including payoff, to plausible values 
that approximate a canonical PM paradigm (Einstein et al., 2005). We 
set the agent process and memory noise parameters to values that yield 
human-level accuracies on the PM and OG tasks. Note that these pa
rameters are not adjusted per condition to match the empirical 
phenomena. 

Table 1 summarizes these parameters. The payoffs for the PM target 
detection are relative to a fixed value of 1 (− 1) for a correct/incorrect 
OG task response. The range of PM payoffs are higher (10–30) because 
PM target probes appear much less often that OG probes, and thus higher 
PM payoffs are needed to create overall payoff balance between the two 
tasks. 

4.1. Effect of PM load on prospective and ongoing task performance 

As noted in §2.2, one of the most stable and widely reported effects 
related to PM is the cost of a PM task on the reaction times to the OG task 
(Einstein and McDaniel, 2005; Meier and Zimmermann, 2015; Pink and 
Dodson, 2013). 

That is, performance of an OG task is slower in the presence of a 
prospective memory intention, and this cost increases with PM load—for 
example, the number of PM targets (Einstein and McDaniel, 2005) or the 
demands that these place on WM (Momennejad and Haynes, 2013; 
Meier and Zimmermann, 2015; Lewis-Peacock et al., 2016). 

Table 1 
Task and agent parameters used in the simulations.   

Parameter Description Value(s) 

TASK 

ROG Reward/payoff (penalty) for 
successful OG response 

1 (− 1) 

RPM Reward/payoff (penalty) of 
successful PM target detection 

10 (− 10); 15–30 for 
higher PM emphasis 

RFA Penalty for PM target false 
alarm 

− 10 

ptarget Probability of PM target 
occurrence 

0.05 

ρFoc Focality: correlation of PM and 
OG features 

0–0.2 (non-focal); 
0.8–1.0 (focal) 

D Deadline 100 

AGENT 

∈Proc Process/sample noise (error 
rate) 

0.4 (0.2 for high-WM 
capacity) 

TMean  Mean sample duration 25 
TCV  Sample duration coef. of var. 0.3 
∈EM EM/LTM noise (error rate) 0.002  
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Furthermore, the cost of PM is exacerbated when higher emphasis is 
placed on the PM task, which we have here operationalized as higher 
priority or reward for correct PM responses, e.g., priority or importance 
manipulation (Einstein and McDaniel, 2005). Finally, manipulations 
that favor the use of WM to perform the PM task increase PM costs as 
well (Einstein and McDaniel, 2005). 

Fig. 4, right, shows the model’s simulated reaction times to the 
ongoing task as a function of the presence of the PM task, PM load as 
manipulated by changing the number of PM targets, and emphasis on 
the PM task. The model shows a clear effect of PM task presence and 
load: responses to the ongoing task are slowed, and this slowing in
creases when higher emphasis is placed on the PM task (which is here 
operationalized as increased PM task payoff relative to OG task payoff). 

The model derives this slowing on the OG task as the computationally 
rational response to the changes in the task parameters. What has 
changed is the optimal stopping criterion (derived via Q-learning). In 
the presence of the PM task, the agent faces a different response 
discrimination demand: not only is the agent discriminating among the 
OG features but it is, in parallel, discriminating among the PM features, 
and additional samples are required (in expectation) to reduce uncer
tainty about the status of the probe. This dependence of the OG response 
on PM certainty is captured in Equations (2) and (3). In followup sim
ulations we discovered that the PM-load slowing is not due only to the 
lower probability of occurrence of each possible target. More specif
ically, we manipulated load while keeping constant probability of each 
possible target— e.g., comparing a load of 3 where a target appears 1 in 
10 probes to a load of 1 where a target appears in 1 of 30 probes—and 
found that higher load is associated with longer RTs (though this kind of 
control was not used in the human empirical work). 

4.2. Effect of focality and emphasis 

In non-focal PM, the PM targets demand attention to other features 
than those probed by the OG task. For instance, the OG task might 
require a category match or 1-back word match judgment, whereas the 
PM task may depend on specific syllables or the font color. A robust 
finding in the literature is that human participants display higher re
action times to the OG task in the non-focal PM condition, see Fig. 6, left 
(Einstein and McDaniel, 2005). 

We model focality by manipulating the correlation between the OG 
and PM features. The intuition is that focal PM features are highly 
correlated with OG features, while non-focal PM features are not 
correlated with OG features. Put differently, in focal conditions, OG task 
features also provide useful information about PM target status. The 
correlation parameter ρFoc thus provides a way to continuously vary 
focality, from extremes of 0 (non-focal) to 1 (focal with complete 
overlap of features). Many tasks in the literature are sufficiently complex 
that is not possible to quantitatively estimate what this parameter 
should be in order to simulate specific experiments (e.g., the features of 
the word ‘tortoise’ and syllable ‘tor’ may be more correlated than the 
features of a word to the font color). Thus, here we explore a range of 
low and high values to assess the qualitative predictions. 

Emphasis manipulations have been realized experimentally through 
changes in instructions; as described above. We model emphasis changes 
by increasing the payoff and penalties (relative to the OG task) for 
successful detection and misses for the prospective memory task. 
Because the experimental manipulations are instructional, it is not 
possible to precisely estimate what the PM payoff should be. We explore 
here a range of PM payoffs that change the total. 

As shown in Fig. 5, the model qualitatively reproduces the effects of 
both focality and emphasis and their interaction. Thus, the computa
tionally rational response—in the precise sense of maximizing expected 

Fig. 5. The model produces focality and PM 
emphasis effects. Human results (see Fig. 2) and 
corresponding model simulation results (bottom). 
Both humans and model simulations show higher 
costs in the non-focal compared to the focal condi
tion. This effect is modulated by emphasis on the 
prospective memory task. While human experiments 
only included high and low emphasis instruction ef
fects (two conditions), the model simulates the effect 
of both emphasis and focality along continuous 
dimensions.   
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task payoff given the computational constraints—to both non-focality 
and higher PM emphasis is to slow down. 

Under conditions of high focality, the information obtained from 
both OG and PM features is yoked. Therefore, when information has 
accumulated quickly for the OG task, it has also accumulated quickly for 
the PM task; thus rapid OG responses need not be delayed to wait for the 
PM target discrimination. However, as PM emphasis (relative PM 
payoff) increases, the gains in the expected value associated with greater 
PM discrimination certainty outweigh the risks of missing the deadline. 
Thus, given high PM emphasis, OG responses are slowed down until PM 
lbdiscrimination reaches higher certainty. 

There is a complex tradeoff and interplay among all these fac
tors—deadline risk, OG payoff, PM payoff, correlation of PM and OG 
features—but optimally navigating this tradeoff and complexity is pre
cisely what the rational evidence integration and optimal control policy 
does. 

4.3. Effect of individual differences in working memory capacity 

Brewer et al. (2010) Brewer and Marsh (2010) explored the role of 
individual cognitive differences by administering two standard span 
measures of working memory capacity to participants, and separately 
examining the performance of those who scored high and low on the 
composite WM capacity measure. They showed that participants with 
lower measured WM capacity displayed a large effect of focality on both 
PM target detection accuracies and PM target detection reaction times, 
while high working memory capacity participants showed little effect of 
focality (Fig. 6, top row, left and middle). Both groups showed increased 
reaction times to the OG task in non-focal conditions and there were no 
overall difference in reaction times between the two groups. 

We modeled WM capacity differences by manipulating the process 
noise (sampling error); in this model lower process noise corresponds to 

higher working memory capacity. 
This manipulation accounts for both the PM target detection accu

racy and PM target response time interactions between focality and 
working memory capacity (Fig. 6, bottom row, left and middle). The 
overall effect of focality on OG task reaction time, and the lack of an 
interaction with working memory capacity, is also accounted for. Effect 
of Focality and PM Task Emphasis on Ongoing Task RT (Einstein et al. 
(2005) Exp. 2)-Effect of Focality and PM Task Emphasis on PM Target 
Detection Rate (Einstein et al. (2005) Exp. 2). 

Effect of Focality and PM Task Emphasis on Ongoing Task RT 
(MODEL)-Effect of Focality and PM Task Emphasis on PM Target 
Detection Rate (MODEL). 

However, the model incorrectly predicts a main effect of working 
memory capacity on RT (predicting faster responses for higher WM), an 
effect not observed by Brewer et al. It is possible that the two participant 
groups also differ in subjective payoffs for speed and accuracy, or rela
tive emphasis on the PM task, all of which could diminish the predicted 
difference on OG RTs between the two groups, but our intent here was to 
understand what could be accounted for by varying only a single 
parameter. 

5. Comparison to prominent alternative theories and 
clarification of key distinctive properties of the computationally 
rational model 

We now draw comparisons to two prominent theories, identifying 
shared principles and predictions, as well as sharp differences, and then 
summarize the aspects of our model that make it most distinctive. 

Fig. 6. Effect of individual differences on OG and PM performance. Brewer et al. (2010) found robust differences in performance on PM detection and response time 
between participants with low vs. high measured working memory capacity (top row). By changing the process (sampling) noise parameter, the model accounts for 
these differences in both PM detection rate and RT, and their interaction with focality (bottom row). The model correctly predicts no interaction between focality and 
WM capacity in OG reaction times (right), but incorrectly predicts an overall difference in OG RT not observed in the Brewer et al. (2010) task process assumed to rely 
on a long term episodic memory (LTM). The other strategy, active monitoring, relies on maintaining in working memory (WM) some representation of the PM target. 
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5.1. Comparison to multiprocess theory and prospective memory Decision 
Control (PMDC) 

Mulitiprocess Theory. At a high level the model shares with the 
Einstein & McDaniel Multi-process Theory (Einstein et al., 2005) the 
assumption that there are two qualitatively distinct kinds of strategies 
for performing prospective memory tasks. One strategy relies on what 
Einstein & McDaniel (E&M) refer to as spontaneous retrieval—an 
automatic. 

The model presented here also assumes that either LTM or WM may 
support PM target identification, but allows for flexibly combining the 
strategies (it does so via the Bayes-optimal integration of information 
from both memories). The model’s use of LTM and WM may be seen as 
one specific realization of the E&M strategies, but there are several 
important differences. (1) The model is a formal computational theory 
that can be used to make quantitative predictions (though we do not 
focus on detailed empirical fits here). (20 The new model does not 
explicitly incorporate retrieval mechanisms—there is never a stage or 
time point at which some item from LTM is retrieved, either spontane
ously or deliberately. Rather, the entire state of the LTM is used to 
condition the optimal policy. (3) The new model derives key quantita
tive predictions from a rational response to the problems posed by 
specific combinations of task and cognitive and perceptual parameters. 
Importantly, the OG task slowing is derived as a task adaptation and 
need not follow from capacity or resource sharing; indeed the slowing 
arises even when WM is not used to encode the PM target. The nature of 
theoretical derivation and explanation is thus quite different from E&M. 

But because the model does allow for the use of WM to increase 
performance on the PM task, and because we assume that WM is ca
pacity constrained, any use of WM for other tasks reduces the oppor
tunity for WM-mediated increased PM task performance. The model 
therefore does share with the E&M model the prediction that increasing 
WM load may reduce PM performance, and conversely that the use of a 
WM-strategy for the PM task may reduce performance for a WM- 
dependent OG task. 

PM Decision Control (PMDC). The most closely related existing 
theory is the PM Decision Control (PMDC) model of Strickland et al. 
(2018), which is a successor to the decay theory presented in Heathcote 
et al. (2015). These models departed from previous theories by showing 
that slowing in the OG task may arise from strategic adjustment of 
thresholds for evidence accumulators associated with the PM and OG 
tasks. Under this account the OG task takes longer because it is strate
gically slowed to give the PM target recognition a chance to complete. 

Our computationally rational model shares with PMDC a focus on 
strategic task response, and in particular also provides an explanation of 
OG task cost in terms of strategic slowing. But there are several key 
differences. (1) There are no explicit thresholds in our model. (2) The 
decision variables are posteriors and evidence accumulation happens 
through a correct Bayesian update. (3) The effects of task structure, PM 
emphasis and focality are expressed through their effects on the optimal 
decision policy rather than fit to empirical data. (4) The precise nature of 
the strategic slowing is derived as a property of the optimal response to 
the task and cognitive architecture, while in PMDC the slowing is 
recovered by fitting thresholds to maximize empirical fit to the data. (5) 
The model presented here provides an explicit account of the integration 
of information in LTM and WM in service of the PM task. 

Similar to the modeling presented in this paper, the PMDC model 
analyses assumed that there are one of three possible responses to each 
probe or stimulus: a PM-target recognition, and the two OG task re
sponses. An interesting question1thus arises for both PMDC and our 
model. Would OG task slowing be predicted in cases where the OG task 
response is allowed in addition to PM target responses, so that the re
sponses are not in direct competition? In the classic prospective memory 

empirical paradigms (e.g., Einstein et al., 2005), such response freedom 
is allowed. But these paradigms are self-paced: as soon as an OG task 
response is made, the next probe trial appears. In our model, as well as 
PMDC, this would interrupt the evidence accumulation for the previous 
trial, and thus implicitly impose the same fundamental tradeoff of PM 
accuracy and OG speed as modeled in this paper, leading to a similar 
prediction of strategic slowing; see Strickland et al., (2018) for similar 
arguments. And indeed, as Strickland et al. (2018) note, late PM re
sponses are rare even when participants are instructed that they are 
allowed. A direct prediction is that effects of the PM task on OG per
formance should be diminished if additional time is explicitly allowed 
for the OG response. Loft and Remington (2013) confirmed that even 
very brief delays of a few hundred milliseconds reduce PM-focality 
effects. 

5.2. Key distinctive features of the computationally rational model 

We now summarize some of the key properties of the model that 
distinguish it from other approaches.  

1. Value maximization and evidence accumulation without response 
thresholds. There are no thresholds or bounds for the evidence 
accumulation. Rather, for every given state, defined in terms of htrem, 
p(PMyes),p(OGyes)i, a response is selected once the expected value of 
giving one of the responses is higher than the expected value 
obtaining another sample. In other words, the stopping policy space 
here is the full policy space conditioned on the two posteriors and 
time remaining. Any policy space with thresholds is a strict subset of 
this space.  

2. Optimal weighting of information in EM, WM and perception via 
Bayesian integration. The Bayesian integration naturally weights in
formation in WM and LTM/EM as a function of the uncertainty of the 
memory encodings. When LTM/EM noise or interference is high, e. 
g., due to the presence of lures, relatively lower weight is given to 
LTM/EM. When information in WM is noisier (e.g., due to high load), 
relatively lower weight is given to WM. There are no explicit weight 
parameters; rather weighting is a natural consequence of the likeli
hood function that captures the dependence of the prior on noisy 
memory.  

3. Use of noisy information in memory without a separate retrieval process. 
The model contains no explicit retrieval processes; rather, the model 
conditions its responses on all the information in the noisy memory 
store. This global-parallel property is consistent with most mathe
matical models of memory retrieval that assume parallel contact 
with all memory elements (e.g., Shiffrin, 2003). But the model pro
vides accounts of reaction times and error rates without assuming a 
retrieval process that yields an item or subset of items from memory 
that must then be further processed.  

4. Sensitivity to differential task emphasis and focality manipulations 
without explicit resource or attention allocation mechanisms. The model 
provides accounts of task emphasis and focality effects through 
purely taskenvironment manipulations (changing payoff structure 
and probe-feature correlations) and without recourse to any atten
tion or resource allocation mechanism. Because these effects are 
robust consequences of the task environment manipulations, the 
rational model provides a useful baseline against which predictions 
of resource allocation mechanism theories may be compared. Under 
the present account, focality and emphasis effects are not signatures 
of adaptive resource allocation, but signatures of a rational stopping 
criterion given noisy memory stores. 

6. Summary and future directions 

Here we combine Bayesian inference and reinforcement learning to 
offer a normative solution to the prospective memory problem. The 
prospective memory problem is that of the simultaneous and timely 1 We are grateful to a reviewer for raising this issue. 
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execution of immediate (ongoing) and delayed (prospective) tasks. We 
have proposed a tripartite model of prospective memory function with 
noisy perception and processing, episodic memory, and working mem
ory components (Section 3). The model is rational and normative 
because the integration of evidence from the three components con
forms to correct Bayesian inference, and because the policy parameters 
governing task performance are selected to maximize payoff on both the 
ongoing and prospective tasks (using RL). 

The model is computationally rational because it derives the best 
possible use of posited bounded computational resources Howes et al. 
(2009); Lewis et al. (2014). Once the (approximately) optimal policy 
parameters are computed (here through reinforcement learning), the 
model provides detailed behavioral predictions, including response 
times and accuracies for both ongoing and prospective tasks. The model 
thus provides a formally rigorous account for understanding interactions 
between long term and working memory in the service of prospective 
memory. 

A promising future direction is the application of the model to 
existing neuroimaging data on prospective memory. Over the past 
decade, a number of fMRI studies have shown that univariate as well as 
multivariate patterns of activations in the prefrontal cortex, the parietal 
cortex, and the hippocampus mediate event-based and time-based pro
spective memory (Gilbert, 2011; Momennejad and Haynes, 2012, 2013), 
as well as the interaction of LTM/EM and WM processes in successful PM 
(Lewis-Peacock et al., 2016). Future research could study the distinct 
and joint computational processes governing the prefrontal components 
(often involved in WM and controlled processing) and the hippocampal 
components (involved in associative memory, LTM/EM) of these find
ings. Of particular interest would be to compare the function of these 
regions in healthy and abnormal PM behavior in order to identify pre
dictors of the optimality of action selection in the model. 

A critical contribution of the model, in all of these contexts, is a 
normative account of the strategic gradient in the deployment of LTM/ 
EM and WM in the performance of memory-dependent tasks. Our 
normative model addresses the following question: how should episodic 
and working memory be used to realize planned action? As such, the 
model provides a valuable foundation for understanding interactions 
between LTM/EM, WM, and perception in other multitasking settings. 
This may be useful in understanding the meta-parameters underlying 
the performance of healthy individuals, and accordingly designing 
models that solve real-world multi-tasking problems. 

Such meta-parameters may also allow us to understand the bounded 
rationality of parameters that may compromise function due to brain 
injury or psychiatric conditions. Many psychiatric disorders are marked 
by impairments in the adaptive integration of perception with multiple 
memory systems. By providing insights into underlying mechanisms of 
normal and suboptimal adaptive behavior, our model could be used to 
design compensating interventions in participants whose behavior 
suggest sub-optimal integration of WM and EM sources of memory. Such 
computational interventions could help improve real-world perfor
mance in both healthy individuals and those in sub-optimal conditions. 
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