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Abstract

■ What mechanisms underlie the prioritization of neural repre-
sentations of visually perceived information to guide behavior? We
assessed the dynamics whereby attention biases competition for
representation of visual stimuli by enhancing representations of
relevant information and suppressing the irrelevant. Multivariate
pattern analysis (MVPA) classifiers were trained to discriminate
patterns of fMRI activity associated with each of three stimuli,
within several predefined ROIs. Participants performed a change-
detection task wherein two of three presented items flashed at
1 Hz, one to each side of central fixation. Both flashing stimuli
wouldunpredictably change state, but participants covertly counted
the number of changes only for the cued item. In the ventral
occipito-temporal ROI, MVPA evidence (a proxy for representa-
tional fidelity) was dynamically enhanced for attended stimuli

and suppressed for unattended stimuli, consistent with a mecha-
nism of biased competition between stimulus representations.
Frontal and parietal ROIs displayed a qualitatively distinct, more
“source-like” profile, whereinMVPA evidence for only the attended
stimulus could be observed above baseline levels. To assess how
attentional modulation of ventral occipito-temporal representa-
tionsmight relate to signals originating in the frontal and/or parietal
ROIs, we analyzed informational connectivity (IC), which indexes
time-varying covariation between regional levels of MVPA evi-
dence. Parietal-posterior IC was elevated during the task, but did
not differ for cued versus uncued items. Frontal-posterior IC, in
contrast, was sensitive to an item’s priority status. Thus, although
regions of frontal and parietal cortex act as sources of top–down
attentional control, their precise functions likely differ. ■

INTRODUCTION

In human neuroimaging, information-based multivariate
approaches to data analysis have revealed a wealth of in-
sights into the mechanistic implementation of population-
level neural representation (Huth et al., 2016; Sprague,
Saproo, & Serences, 2015; van Bergen, Ma, Pratte, &
Jehee, 2015;Haxby et al., 2001). In studies of selective atten-
tion, for example, multivariate analyses applied to fMRI data
have demonstrated that, in occipito-temporal regions
responsible for visual object recognition, attention has the
effect of biasing high-dimensional patterns of activity
toward the pattern observed when the cued stimulus is
presented alone, and away from the pattern observedwhen
the uncued pattern is presented alone (Cohen & Tong,
2015; Reddy, Kanwisher, & VanRullen, 2009). This is consis-
tent with the idea that the mechanism of biased competi-
tion governs competition for representation in the human
visual system in a manner similar to how it has been char-
acterized in the monkey (Desimone & Duncan, 1995).

As with many models of attention, biased competition
models distinguish between the site where attention has
its effects and the source of the top–down signals that
implement the task-dependent prioritization of a subset
of the information currently being processed in the visual
system. In some theoretical accounts, this source of atten-
tional control is isomorphic with the search template, held
in working memory, that corresponds to the trial-by-trial
focus of behavioral priority (Van der Stigchel & Olivers,
2019; Reinhart & Woodman, 2014; Hamker, 2005).
Empirically, the source of the endogenous control of
attention has been associated with frontoparietal circuits
whose activity varies with demands for attentional con-
trol (Corbetta & Shulman, 2002), for which trial-by-trial
fluctuation in (univariate) signal intensity covaries with
multivariate pattern analysis (MVPA) decoding of stimulus
information in ventral occipito-temporal (VOT) cortex
(Nelissen, Stokes, Nobre, & Rushworth, 2013), and which
acts as a driver of attention-related shifts in oscillatory
synchrony with domain-selective regions of VOT (Baldauf
& Desimone, 2014).

Recently, the idea of a functional distinction between
VOT regions as sites of the effects of endogenous atten-
tional control, versus frontoparietal circuits as sources of
this control, has been called into question based on

1University of Wisconsin–Madison, 2Harvard Medical School,
3Ghent University, 4University of California, Davis, 5New York
University, 6University of Notre Dame
*These authors contributed equally to this work.

© 2021 Massachusetts Institute of Technology Journal of Cognitive Neuroscience 33:4, pp. 739–755
https://doi.org/10.1162/jocn_a_01672

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/33/4/739/1888778/jocn_a_01672.pdf by guest on 26 July 2021

http://crossmark.crossref.org/dialog/?doi=10.1162/jocn_a_01672&domain=pdf&date_stamp=2021-3-3


multivariate evidence for stimulus-specific information in
putatively control-related frontoparietal systems. Ester,
Sutterer, Serences, and Awh (2016) acquired fMRI data
while participants attended to either the luminance or
the orientation of a grating stimulus, and determined with
multivariate inverted encoding modeling that stimulus
orientation was represented in many areas of cortex, not
only in VOT regions but also in intraparietal sulcus (IPS)
and in frontal cortex, including in superior and inferior
precentral sulcus (iPCS). Furthermore, and importantly
for the current study, in some of these regions, including
IPS and iPCS, these representations of stimulus informa-
tion were modulated by attention, with inverted encoding
modeling indicating higher-amplitude representations
during attend-orientation blocks of trials.

These findings from Ester et al. (2016) are emblematic of
a broader trend in neuroimaging studies of visual cogni-
tion, which is that powerful multivariate analyses applied
to these data sets are finding evidence for stimulus-specific
information in regions classically associated with more
abstract and/or categorical representation of information,
as well as with the representation and implementation of
rules that determine how behavior will be guided by visual
representations. Many recent studies of visual working
memory, for example, have reported the delay-period
representation of trial-specific analog features of sample
stimuli in IPS and in frontal cortex, as well as in VOT
cortex (e.g., Cai, Sheldon, Yu, & Postle, 2019; Christophel,
Iamshchinina, Yan, Allefeld, & Haynes, 2018; Gosseries
et al., 2018; Bettencourt & Xu, 2016; Ester et al., 2016;
Christophel & Haynes, 2014; Christophel, Hebart, &
Haynes, 2012). Determining, in such instances, whether
multiple regions are supporting the same function(s), or
whether they are supporting distinct functions that are
nonetheless all being carried out on the same information,
is an important goal for cognitive neuroscience research (cf.
Christophel, Klink, Spitzer, Roelfsema, & Haynes, 2017).

Returning tomodels of feature-based selective attention,
the focus of this paper, Ester et al. (2016) suggest that their
findings “challenge models that posit a strict segregation
between sources and sites of attentional control on the
basis of representational properties by demonstrating that
simple feature values are encoded by cortical regions
throughout the visual processing hierarchy, and that
representations in many of these areas are modulated by
attention” (p. 8188). This interpretation merits careful
scrutiny, because its adoption would require the rejection
of a decades-old core assumption about the control of
attention. Indeed, we do not believe that the results from
the Ester et al. (2016) study, alone, represent a strong
challenge to the source-versus-site distinction, because of
two limitations of its experimental design: first, participants
in the study were presented with only one item per trial;
second, the to-be-attended feature was blocked. The first
factor is important because a cardinal property of attention
is its role in resolving the competition for representation
between two or more objects or features in the visual

scene. This is reflected, of course, in the very name of
the biased competition model that is of central interest
for this study and is also seen empirically from several per-
spectives. Behaviorally, displays that trigger an exogenous
capture of attention (i.e., pop-out) do not place demands
on endogenously controlled selection and, therefore, on
the mechanisms that correspond to the idea of a source
of attentional control. Mechanistically, in experiments
where subthreshold microstimulation of neurons in the
FEF is believed to act like an experimenter-controlled
source of top–down attentional signals, attention-like en-
hancements of the visually driven response of V4 neurons
are only seen when a distractor is also present in the dis-
play, elsewhere in the visual field (Moore & Armstrong,
2003). Although one could argue that the stimuli used by
Ester et al. (2016) required selection of one from among
two features (i.e., they were compound stimuli), competi-
tion between these two features would be expected to be
minimized by the second limiting factor in this study’s
design, the fact that the to-be-attended feature was the
same on every trial within a block. This is because blocking
of search targets quickly minimizes the need for an active
representation of the search template and, therefore,
quickly minimizes the need for top–down control (Reinhart
& Woodman, 2014; Carlisle, Arita, Pardo, & Woodman,
2011). Finally, the data from Ester et al. (2016) do not rule
out the alternative interpretation that the attention-related
modulation of stimulus representations in frontal and
parietal regions may have reflected changes in the state
of circuits acting as a source of top–down control. By anal-
ogy, when the focus of spatial attention is shifted from
one area of the visual field to another, activity decreases
both in FEF neurons with motor fields in the first area and
V4 neurons with receptive fields in the first area (Moore &
Zirnsak, 2017), but it does not follow from this that these
two groups of neurons are supporting the same function.
Relatedly, one might also expect representations imple-
menting the control of feature-based attention to change
as a function of priority (cf. Bichot, Heard, DeGennaro, &
Desimone, 2015).
The present experiment was designed to implement a

direct assessment of biased competition in human visual
attention by presenting two flashing, complex stimuli,
one in each visual field, and instructing participants to
attend to one or the other with two sequential cues. The
category of stimuli in this two-item “search array” varied
on a trial-by-trial basis, and cuing was unpredictable. We
used MVPA of fMRI activity as a proxy for the strength of
the representation of task-related information. Our results
replicated previous findings from the monkey that the
multivariate decoding of object information in the ventral
visual stream is sensitive to the current state of priority
(Zhang et al., 2011), consistent with an effect of attention
of biasing the strength of population-level stimulus repre-
sentations in visual cortex. Furthermore, although stimulus
information could also be decoded in PFC and parietal
regions, the patterns of sensitivity to attention in these
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regions were markedly different than those in VOT cortex,
consistent with the idea that stimulus information in PFC
and parietal cortex may support different functions than
those in VOT cortex. Finally, using a multivariate metric of
“informational connectivity” (IC; Coutanche & Thompson-
Schill, 2014), we find evidence for a specific role for PFC
in the suppression of unprioritized information.

METHODS

Participants

Ten healthy participants (6 women,Mage = 22.4 years old;
SD=5.08 years) with normal or corrected-to-normal vision
received monetary compensation for participating in the
study. All participants were screened to rule out any neuro-
logical and psychiatric disorders, as well as incompatibility
with MRI, and all provided written informed consent. The
study was approved by the UW–Madison institutional
review board.

Behavioral Tasks

Two tasks were performed during fMRI scanning, a one-
item change-detection task (used to train MVPA classifiers)
and a two-item cued change-detection task (the principal
experimental task). Both tasks used three pairs of stimuli
taken from the image set of Brady, Konkle, Alvarez, and
Oliva (2008): a woman’s face, the two tokens portraying

subtly different expressions; a doughnut, each token with
a different sized bight taken out of it; and an abacus, the
two tokenswith the beads arranged differently. Each image
was cropped into a square aperture subtending approxi-
mately 3° of visual angle along all edges. Screen back-
ground was gray, and fixation cross was white (Figure 1A).

Each run of the one-item task consisted of sixteen 18-sec
mini-blocks, during 12 of which images from one of the
stimulus categories were presented centrally, flickering
with a cycle of 750 msec on/250 msec off (four mini-blocks
for each of the image categories, the remaining four mini-
blocks presenting a fixation cross that did not flicker.) Each
of the 12 stimulus-presentingmini-blocks began with 1 sec
of fixation, followed by 15 sec of flicker. The first image to
appear was randomly selected from the pair, and on the
remaining 14 cycles, the identity of the image could change
to the other from that category, unpredictably, on zero,
one, or two occasions. Participants were instructed to
count the number of “state changes” that the target under-
went during the mini-block, and to report that number
with a button press during the final 2 sec of themini-block.
There were no intervals separating mini-blocks. Each par-
ticipant performed six runs of the one-item task, the order
of mini-blocks randomized for each run.

The two-item task was administered in multistep trials,
each consisting of an initial stimulus presentation and
delay, followed by two change-detection epochs. Each trial
beganwith the 500-msec display of that trial’s two potential
search targets, each from a different one of the three

Figure 1. Stimuli and tasks. (A) The three stimulus categories, each shown as four cycles from a mini-block of the one-item task. The face is shown
changing state between the first and second image and between the third and fourth; the abacus is shown changing state between the first and
second and between the second and third; the doughnut between the first and second and between the second and third. (B) Timeline of the
two-item task (the principal experimental task), illustrating a switch trial.
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possible categories, each centered 5° of visual angle along
the horizontal meridian to the left or right of fixation. The
offset of these images was followed by a 7-sec blank delay,
after which the two images reappeared, each in the same
location, this time one of them cued by being outlined by
a red box (500-msec duration) indicating that it was the
item whose changes were to be tracked across the ensuing
7.5-sec change-detection epoch (the “search array”).
During this change-detection epoch, the two images each
flickered at 1-Hz (750 msec on, 250 msec off ), each chang-
ing state unpredictably, independently, 0, 1, and 2 times. At
the end of the epoch, the flickering display was replaced
by a prompt to report the number of changes in the cued
image (2 sec), followed by a second search array featuring
the same elements and timing as the first, the second cue
having cued, unpredictably, the previously cued item on
half the trials (“Stay” cues), and the previously uncued item
on half the trials (“Switch” cues). The intertrial interval was
10 sec. Each block of the two-item task included 12 trials.
(Figure 1B).

Each participant performed six blocks of the one-item
task and four blocks of the two-item task, half of the partic-
ipants performing the one-item task first, the other half
performing the two-item task first.

fMRI Scanning Session

Data Acquisition

Whole-brain images were acquired with the 3 T MRI scanner
(DiscoveryMR750;GEHealthcare) at the LaneNeuroimaging
Laboratory at the University of Wisconsin–Madison. High-
resolution T1-weighted images were acquired for all
participants with a fast spoiled gradient echo sequence
(repetition time [TR] = 8.132msec, echo time= 3.18 msec,
12° flip angle, 156 axial slices, 256 × 256 in. plane, 1.0 mm
isotropic). BOLD-sensitive data were acquired using a
gradient-echo, echoplanar sequence (TR = 2 s, echo time =
25 msec) within a 64 × 64 matrix (39 sagittal slices, 3.5 mm
isotropic).

Eye-Tracking

To ensure that participants maintained fixation during task
performance, we recorded eye position in the scanner using
EOG monitored with Brain Vision software and recording
equipment (BrainVision recording suite, Brain Products,
www.brainproducts.com/index.php). Participants were
excluded if saccades were determined to have been made
during the search array portions of > 10% of trials (as deter-
mined by an observed deflection on EOGof> 25 μV, consis-
tent with a saccade of 1°–2° of visual angle). No participants
met this threshold, and so all were included, including
trials where saccades were made, as they constituted a
small (< 10%) portion of trials overall, and to avoid poten-
tially disrupting the relative balance of stimulus types in
the data set.

fMRI Data Analysis

Preprocessing, univariate general linear modeling, and ROI
definition were performed using the Analysis of Functional
NeuroImages software package (afni.nimh.nih.gov).

Preprocessing

We excluded the first three volumes of each run to account
for EPI-onset field inhomogeneity. All volumes were spa-
tially realigned to the final volume of the final functional
run using rigid-body realignment. The processing pipeline
included slice time correction, detrending, conversion to
percent signal change, and spatial smoothing with a 4-mm
FWHM Gaussian kernel.

Univariate Analyses

To generate functionally defined ROIs, we modeled the
fMRI data from the one-item task with a general linear
model, including regressors-of-interest that were 18-sec
boxcars spanning each mini-block, labeled by stimulus
category, and convolved with a canonical hemodynamic
response function, as well as nuisance regressors to re-
move effects of head motion and low-frequency drift.

Generation of ROIs

To generate ROIs for theMVPA, we first generated anatom-
ical masks using the Talraich anatomical atlas (sscc.nimh
.nih.gov/afni/doc/misc/afni_ttatlas/), selecting from the
atlas the gyri wanted for each brain region, then warping
these into each participant’s native space. A VOT anatom-
ical ROI comprised lingual gyrus, fusiform gyrus, inferior
occipital gyrus, inferior temporal gyrus, middle occipital
gyrus, and superior occipital gyrus; a parietal ROI comprised
posterior cingulate, orbital gyrus, precuneus, inferior pari-
etal lobule, and superior parietal lobule, and a frontal ROI
comprised the inferior frontal, middle frontal, superior
gyrus, medial frontal, and precentral gyri. Next, functional
ROIs were created for each of these regions bymasking the
results from the contrast [(face + doughnut + abacus) −
fixation] with each of the three ROIs. For bilateral ROIs, we
selected within each anatomical ROI the 400 voxels with
the highest F statistic. For unilateral ROIs, we first divided
each the three regional ROIs by hemisphere and then
selected within each hemisphere-specific anatomical ROI
the 200 voxels with the highest F statistic. We have used this
approach to ROI generation in several prior studies in our
laboratory (LaRocque, Riggall, Emrich, & Postle, 2017; Rose
et al., 2016; Emrich, Riggall, Larocque, & Postle, 2013), and
it has the advantage of accounting for individual differences
in anatomical patterns of task-relevant neural activity.

Pattern Classification Analyses

MVPA was implemented using L2-regularized logistic re-
gression with a lambda penalty term of 25, performed
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using the Princeton Multi-Voxel Pattern Analysis toolbox
(www.pni.princeton.edu/mvpa/) and custom scripts in
MATLAB (The MathWorks). Before MVPA, all neural data
were z-scored across trials, within runs.
Classifiers were trained on data from the middle-to-late

portions of eachmini-block (TRs 4–8) of the one-item task,
to learn to discriminate neural patterns associated with the
three stimulus categories. To assess classifier sensitivity, we
used k-fold cross-validation (k = 6), training a classifier
6 times, leaving out a different run each time, and then
averaging across folds. Statistical significance of classifier
accuracy was computed by performing a one-sample, one-
tailed t test comparing accuracy to chance performance
(33%). Once validated, we applied classifiers trained on
data from Experiment 1 to all time points in Experiment 2,
sorting the evidence outputs by attentional state.
The classifiers were trained ondata from the one-item task

and were then applied to the data from each time point of
the two-item task. First, a measure of pattern similarity was
computed between the voxel patterns of each time point in
the testing set and the learned pattern for each category
derived from training on the one-item data. Using logistic
regression, each category’s pattern similarity score was then
converted into a value ranging between 0 and 1, analogous to
an estimate of probability that the observed testing pattern
was generated by that category. This measure of classifier
evidence for each of the three stimulus categories at each
time point in the trial was sorted according to whether that
categorywas initially cued, initially uncued, or absent oneach
trial and then averaged together, generating a trial-averaged
time course. Critically, classifier evidence for the absent
category would serve as an empirical estimate of baseline.
Because the category that was cued on the second half of
the trial was different after switch cues versus stay cues, these
trial types were averaged, and are presented, separately.

Ipsilateral versus Contralateral Region Analyses

We were also interested in assessing the effects of prioritiza-
tion as a function of whether the cued stimulus appeared
contra- or ipsilateral to a given brain region. To do this, clas-
sifiers were trained as above to distinguish stimulus category
using theunilateral ROI data (seeGenerationof ROIs section)
generated during the one-item task, in which all stimuli were
presented foveally, and then tested this classifier on data from
the same ROI with data from the two-item task, in which
stimuli were presented peripherally (one in each visual
hemifield). Data from trials were then concatenated for
each region according to whether that region was initially
contralateral to the initially cued stimulus or ipsilateral to
it to generate the “contralateral” and “ipsilateral” plots,
respectively.

Bayesian Statistics

Because several studies from our group have found that
MVPA evidence for stimulus representation often drops

to baseline levels when one of two items held in working
memory is not prioritized by a priority cue (LaRocque et al.,
2017; Rose et al., 2016; Emrich et al., 2013), we applied
Bayesian statistics to quantify the probability that evidence
for stimulus representations was different between catego-
ries, including whether uncued information differed from
baseline. In this experiment, MVPA evidence for an absent
stimulus can be understood as the empirical baseline of
our method. Therefore, epochs during which MVPA
evidence for a trial-relevant stimulus exceeds MVPA evi-
dence for the absent stimulus are interpreted as evidence
of an active neural representation of that stimulus, and the
magnitude of that difference a proxy for the strength of
the neural representation (Emrich et al., 2013). The
Bayes factor is the ratio of the likelihood of the alternative
hypothesis compared with the null hypothesis, each of
which incorporates an estimate of the prior probability of
that hypothesis. Therefore, to calculate the Bayes factor, it
is necessary to provide a prior probability distribution for
the alternative hypothesis, for which we used a previously
published and validated calculator (Dienes, 2014). In
defining this prior distribution, a minimumplausible value
was set at a small difference above 0 (0.01), and a maxi-
mum plausible value at the maximum evidence achieved
in the one-item task (0.7, the difference in evidence
between the correct and the two incorrect stimulus types
on each mini-block). In addition, to avoid potentially
biasing the resulting calculations, the simplest possible
prior was chosen for the alternative hypothesis, a uniform
distribution extending from zero difference to the maxi-
mum plausible difference. Alternatives such as a half-
Gaussian distribution centered at the maximum plausible
value or a Gaussian centered at the midpoint were also
considered, but these were ultimately rejected given a lack
of sufficient evidence to presuppose any one distribution
over the other. Regardless, Bayes factors calculated using
those prior distributions agreed substantively with those
of the uniform distribution.

In addition, because the trial sections of greatest interest
were the 7-sec delay period after the presentation of that
trial’s potential search targets and the two 7.5-sec search-
array epochs, evidences from the final three TRs of each
of those segments were averaged together (after account-
ing for hemodynamic lag) and used for the Bayes factor
(BF) calculations. Finally, because Bayes factors can be
thought of as the ratio of evidence for the alternative hy-
pothesis compared to the null hypothesis, multiple Bayes
factors calculated for the same ratio of hypotheses can be
combined to express a total probability through simple
multiplication (Dienes, 2014).

Comparison of Region, Search Array Period, and
Stay/Switch Condition Differences

To compare across ROIs, stay versus switch trials, and the
different search array epochs, we conducted two repeated-
measures ANOVAs that included each of these variables as
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factors, along with a variable of cue status (initially cued,
initially uncued, absent). One of these ANOVAs was carried
out on data from the bilateral ROIs and one on data from
the unilateral ROIs. All variables were within participant.
Because of the very clear pattern in the results (and to
more directly and explicitly operationalize the idea of a
general “anterior versus posterior” distinction between
“source-like” versus “site-like” functions, respectively), both
ANOVAs were carried out by simply labeling the MVPA data
for frontal and parietal sources as the same ROI in the re-
gression. For both ANOVAs, MVPA evidences from all par-
ticipants were regressed onto these variables using the
fitrm function in MATLAB, and statistics were computed
with the ranova function.

IC

The estimates of classifier evidence from the Search
Array 1 epoch were also used to compute a measure of
IC (Coutanche & Thompson-Schill, 2014) between ROIs.
IC is analogous to functional connectivity, but rather than
assessing patterns of covariation in raw neuroimaging
signal, it correlates the time course of the classifier evi-
dence. Importantly, IC assesses whether two areas are
sharing information of interest, whereas functional connec-
tivity would be unable to discriminate this scenario from
one in which activity between two areas is correlated, but
for reasons that are unrelated to the information of interest.
In other words, IC enables correlated signals to be distin-
guished from correlated noise. An additional advantage of
IC for our design is that, because it is specific to a category
of information, it can be computed separately for attended
information and for unattended information measured
during the same trials.

IC analyses were carried out using a modified version of
the freely available online toolbox for MATLAB (lrdc.pitt
.edu/coutanche/informationalconnectivity). Classifier evi-
dences for each stimulus category (Face, Doughnut, Abacus;
relabeled to Attended, Unattended, Absent) were obtained
using the procedure outlined previously (training on
Experiment 1 and testing on Experiment 2) for each area.
This was done separately for each time point for each trial,
giving rise to an evidence time course in each area for each
stimulus category (attended, unattended, and absent) that
was 144 time points long (48 trials × 3 time points from
the Search Array 1 epoch). Because evidence for the absent
category represents an empirical baseline by which to
gauge classifier noise, as a normalization step, the absent
evidence time course was then subtracted from both the
attended and unattended time courses to yield an attended
discriminability time course and unattended discrimina-
bility time course, respectively. Attended discriminability
time courses in one ROI were then correlated (using a non-
parametric Spearman’s rank method) with attended dis-
criminability time courses in a different ROI to generate
a measure of IC between those ROIs. The same was then
done for unattended discriminability time courses.

To calculate significance, IC values across participants
were bootstrapped to generate a distribution of possible
means given the hypothesis that our sample distribution
represented an accurate sampling of the underlying popu-
lation. More specifically, 10,000 separate bootstrapped
sampleswere created, drawingwith replacement and equal
probability 10 IC values from our pool of 10 participants to
generate a new “sample” of 10 participants, some of which
were likely to be repeats. For each of these bootstrapped
samples, an average ICwas calculated, generating a distribu-
tion of 10,000 different IC averages. The p values reported
here are the percentage of bootstrapped sample averages
that crossed 0, effectively generating the confidence inter-
val. For example, if > 95% of the bootstrapped averages
were positive and < 5% of the distribution was negative,
then it could be said that a 95% confidence interval did not
include 0, or the null. A similar analysis was performed for
the direct comparison between attended and unattended
IC for each ROI pair. First, the unattended IC value was
subtracted from the attended IC value to generate an IC
difference score for each ROI pair. To calculate the signif-
icance of this score, these IC difference scores were then
bootstrapped as above. The average value and p value of
the bootstrapped samples are reported here. For com-
pleteness, BFs were also computed for each comparison
and are reported along with the p values generated via
the bootstrap analysis. However, unlike for the MVPA evi-
dences listed above, a more refined expected range of
values for the alternative hypothesis was unable to be deter-
mined, and so a uniform prior extending from −1 to 1
was used.

RESULTS

Behavior

Participants attained a high degree of accuracy on both the
one-item task (86.7%; SD=4.24, BF= 1.36×1045) and the
two-item task (84.8%; SD=4.20; BF= 1.47× 1043). Across
the tasks, accuracies were similar for the three categories
(doughnut 83.4%; SD = 5.71; BF = 9.89 × 1021), face
(83.44%; SD = 5.62; BF = 5.68 × 1022), and abacus
(87.5%; SD = 7.48; BF = 3.61 × 1014). Bayes factors here
represent the comparisons between the value observed
and chance (25%, because participants could select from
the attended object changing 0, 1, 2, or 3 times in their
response).

fMRI Classifier Training

Across all participants, leave-one-run-out cross-validation
analyses of data from the one-item task demonstrated ro-
bust levels of classification in all ROIs, with classifier perfor-
mance highest for VOT, followed by parietal, followed by
frontal cortex (Figure 2).
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Attentional Prioritization during Change Detection

Effects within Bilateral ROIs

During the initial delay period of each trial, in all three
ROIs, classifier evidence for both presented stimuli
(Figure 3, red and blue traces) was elevated above evi-
dence for the third, which was absent from that trial and
thus served as an empirical baseline evidence (Figure 3,
black trace; BFs, collapsed across stay and switch trials:
VOT cued > absent = 225, VOT uncued > absent =
2.25 × 1010; parietal cued > absent = 11.6, parietal

uncued > absent = 2.99 × 107; and frontal uncued >
absent = 153). The only exception was the red trace for
the initial delay in frontal cortex, which appears elevated
above baseline but whose BF favors no difference (frontal
uncued > absent BF = .15).

In VOT cortex (Figure 3A), the onset of Cue 1 and Search
Array 1 had three effects on indices of neural representa-
tion. First, MVPA evidence for the absent (baseline) cate-
gory dropped dramatically over the next 4-6 sec, relative
to the preceding delay period (precue absent > post-cue1
absent Stay BF = 6.67 × 104; Switch BF = 275). Second,

Figure 2. ROIs and decoding
from the one-item task. (A)
Several views of inflated brains
showing the 400-voxel bilateral
ROIs in each of three brain
regions, for a representative
participant. (B) Group-level
decoding accuracies, by ROI.

Figure 3. Time course of
classifier evidence in the
two-item task, in the bilateral
ROIs. Ribbons display classifier
evidence, interpolated across
the 19 time points in each trial,
with the center representing
the mean value and the edges
denoting ± 1 SEM. Colored
symbols at bottom of plots
indicate onsets of search
targets, of cues, and of report
epochs (see Figure 1).
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MVPA evidence for the uncued stimulus also dropped,
although it remained elevated above baseline (i.e., above
the absent category: uncued > absent Stay BF = 2.98 ×
1011; Switch BF = 2.52 × 104). Third, MVPA evidence for
the cued stimulus diverged from that of the uncued stimulus
and remained elevated over uncued for the remainder of
Search Array 1 (cued > uncued Stay BF = 2.8 × 104;
Switch BF = 1.24 × 108). After Stay cues, the pattern from
Search Array 1 persisted across Search Array 2 (cued >
absent BF = 2.33 × 1011; uncued > absent BF = 3.49;
cued > uncued BF = 8.79 × 107). After Switch cues, MVPA
evidence for the two stimuli crossed over, with MVPA
evidence for the initially uncued/unprioritized (but now
cued/prioritized) stimulus now becoming elevated above
baseline to a degree comparable that of the initially cued
item during Search Array 1 (now-cued > absent BF =
5.65 × 1017; Initially Cued Array 1 > Now-Cued Array 2
BF = 0.0432) and MVPA evidence for the initially cued/
prioritized (but now uncued) stimulus dropping to base-
line levels for much of Search Array 2 (now-uncued >
absent BF = 0.04). To summarize in terms of the cognitive
and neural constructs that our experiment was designed
to examine, the effect of Cue 1 on the processing of the
search array was to 1) “tune” the visual system in a trial-
specific manner (inferred from the drop in MVPA evidence
for the absent stimulus), 2) prioritize the neural representa-
tion of the cued stimulus over that of the uncued stimulus,
and 3) sustain a weakened representation of the uncued
item during Search Array 1. (The status of the neural repre-
sentation of the uncued item during Search Array 2 was less
clear and will be taken up again in the Discussion.)

Unlike VOT cortex, the effects of attentional selection on
stimulus representation in the parietal and frontal ROIs
were more absolute, in that the neural representation of
the uncued stimulus dropped to, and subsequently re-
mained at, baseline throughout the duration of each search
array. In parietal cortex (Figure 3B), the onset of Cue 1 and

Search Array 1 triggered a drop in MVPA evidence for both
the absent category and the uncued stimulus, with MVPA
evidence for the uncued not differing from baseline during
Search Array 1 (uncued > absent Stay BF = 0.1; Switch
BF = 0.09). Also during Search Array 1, MVPA evidence
for the cued stimulus diverged from that of the uncued
stimulus and remained elevated over both the uncued
stimulus and the absent category for the remainder of
Search Array 1 (cued > uncued Stay BF = 517; cued >
uncued Switch BF = 1.12 × 103; cued > absent Stay BF =
8.3 × 104; cued > absent Switch BF = 2.13 × 106). After
Stay cues, the pattern from Search Array 1 persisted across
Search Array 2 (cued > uncued BF = 889; cued > absent
BF= 6.08× 107; uncued> absent BF= 0.16). After Switch
cues, MVPA evidence for the two stimuli crossed over, with
MVPA evidence for the initially unprioritized (but now
prioritized) stimulus taking on a value comparable that of
the initially cued item during Search Array 1 (now-cued >
absent BF = 7.72 × 1013; initially cued Search Array 1 >
now-cued search array 2 BF= 0.0809), andMVPA evidence
for the initially prioritized (but now unprioritized) stimulus
dropping to baseline levels for much of Search Array 2
(now-uncued > absent BF = 0.03).
In frontal cortex (Figure 3C), the patterns were qualita-

tively the same as for parietal cortex. Onset of Cue 1 and
Search Array 1 triggered a drop in MVPA evidence for both
the absent category and the uncued stimulus, with MVPA
evidence for the uncued not differing from baseline
(absent category) during Search Array 1 (uncued> absent
Stay BF = 0.1; Switch BF = 0.09). Also during Search
Array 1, MVPA evidence for the cued stimulus diverged
from that of the uncued stimulus and remained elevated
over uncued stimulus and the absent category for the
remainder of Search Array 1 (cued > uncued Stay BF =
0.48; cued > uncued Switch BF = 0.34; cued > absent
Stay BF = 2.74 × 105; cued > absent Switch BF = 1.68 ×
105). After Stay cues, a qualitatively similar pattern from

Figure 4. Time course of
classifier evidence in the
two-item task, in unilateral VOT
ROIs. (A) The hemisphere
contralateral to the initially
attended item. (B) The
hemisphere ipsilateral to the
initially attended item. All
graphical conventions are the
same as Figure 3.
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Table 1. Bayes Factors

ROIs

Initially Cued > Absent Initially Uncued > Absent Initially Cued > Initially Uncued

Precue Delay Cue 1 Delay Cue 2 Delay Precue Delay Cue 1 Delay Cue 2 Delay Precue Delay Cue 1 Delay Cue 2 Delay

Switch Trials Contralateral VOT 1.4×103 1.1×108 1.3×10−1 2.6×10−1 3.7×10−2 1.9×1011 5.5×100 2.1×1010 1.5×10−3

Parietal 1.4×100 5.0×102 2.2×10−2 2.4×10−1 5.2×10−2 2.4×106 1.3×10−1 8.8×103 2.2×10−4

Frontal 4.1×101 5.1×101 5.8×10−2 1.1×101 2.8×10−2 1.3×101 5.3×10−2 8.0×101 4.2×10−3

Ipsilateral VOT 2.0×10−1 6.4×1010 1.4×10−2 1.4×1018 2.0×108 1.7×1023 1.5×10−4 4.0×10−1 6.6×10−5

Parietal 1.5×10−1 1.9×102 1.8×10−2 6.7×101 5.9×10−2 8.4×105 4.5×10−3 1.2×101 5.1×10−3

Frontal 4.3×10−1 1.3×102 3.8×10−2 1.2×100 5.5×10−2 1.0×101 1.6×10−2 6.6×103 1.1×10−3

Bilateral VOT 1.0×103 8.4×1019 4.2×10−2 2.0×102 2.5×104 5.6×1017 3.4×10−2 1.2×108 5.2×10−5

Parietal 2.7×100 2.1×106 3.0×10−2 2.6×101 9.1×10−2 7.7×1013 9.5×10−3 1.1×103 1.4×10−3

Frontal 2.9×10−1 1.6×105 2.3×10−2 6.0×102 9.0×10−2 9.1×102 7.2×10−3 3.3×101 1.5×10−3

Stay Trials Contralateral VOT 5.2×100 3.2×109 2.0×109 1.6×101 2.0×10−1 2.5×10−2 2.4×10−2 1.8×106 8.7×1011

Parietal 2.3×10−1 1.3×105 9.8×1032 1.5×10−2 4.7×10−2 7.9×10−2 3.3×10−1 4.7×103 3.4×104

Frontal 9.5×10−3 4.2×103 3.8×100 7.8×10−2 1.2×10−1 7.4×10−2 1.3×10−2 6.96×101 8.4×10−1

Ipsilateral VOT 1.3×10−1 3.1×108 8.3×105 6.4×1021 8.2×109 1.6×102 5.6×10−4 1.4×10−1 1.0×100

Parietal 1.3×10−1 2.0×101 9.3×103 6.9×10−1 2.5×10−1 2.6×10−1 1.1×10−2 7.6×10−1 3.8×100

Frontal 4.3×10−2 1.8×100 3.2×100 7.4×10−1 1.2×10−1 3.8×10−2 1.2×10−2 1.2×10−1 3.1×100

Bilateral VOT 8.6×10−1 7.4×1010 2.3×1011 2.9×108 2.9×1011 3.4×100 1.9×10−4 2.8×104 8.7×107

Parietal 9.4×10−1 8.3×104 6.0×107 1.2×101 1.1×10−1 1.5×10−1 5.9×10−2 5.1×102 8.8×102

Frontal 5.8×10−2 2.7×105 8.7×102 1.9×100 1.0×10−1 1.7×10−1 3.9×10−3 4.8×101 1.3×101

For comparisons associated with Figures 3–6. All values denoted with scientific notation.
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Search Array 1 persisted across Search Array 2 (cued >
uncued BF = 14; cued > absent BF = 877; uncued >
absent BF = 0.18). After Switch cues, MVPA evidence for
the two stimuli crossed over, with MVPA evidence for the
initially unprioritized (but now prioritized) stimulus taking

on a value comparable that of the initially cued item during
Search Array 1 (now-cued> absent BF=915; initially cued
in Search Array 1 > now-cued in search array 2 BF =
0.0310), and MVPA evidence for the initially prioritized
(but now unprioritized) stimulus dropping to baseline

Table 2. Repeated-measures RANOVA for MVPA Evidences

DF, errorDF F p Value

Intercept 1, 9 6197.784689 4.36 × 10−14

ROI 1, 9 4001.467168 3.11 × 10−13

Task 1, 9 2.176770995 0.174212921

SearchArray 2, 18 65.00113086 5.82 × 10−09

Cue 2, 18 56.96416349 1.64 × 10−08

Hemisphere 1, 9 5.238856899 0.047864226

ROI:Task 1, 9 0.157209716 0.700975424

ROI:SearchArray 2, 18 5.020507377 0.018505849

Task:SearchArray 2, 18 1.360941559 0.281572067

ROI:Cue 2, 18 2.240447544 0.135247783

Task:Cue 2, 18 20.91164072 2.02 × 10−5

SearchArray:Cue 4, 36 19.26070931 1.51 × 10−08

ROI:Hemisphere 1, 9 1.669684336 0.228491381

Task:Hemisphere 1, 9 21.23022322 0.0012766

SearchArray:Hemisphere 2, 18 7.400476712 0.004513094

Cue:Hemisphere 2, 18 38.09507894 3.4 × 10−07

ROI:Task:SearchArray 2, 18 0.808264561 0.461161496

ROI:Task:Cue 2, 18 0.580374727 0.569823187

ROI:SearchArray:Cue 4, 36 0.182197409 0.946146413

Task:SearchArray:Cue 4, 36 27.32355873 1.80 × 10−10

ROI:Task:Hemisphere 1, 9 21.49003617 0.001226657

ROI:SearchArray:Hemisphere 2, 18 8.177996188 0.00297461

Task:SearchArray:Hemisphere 2, 18 8.703949508 0.00226752

ROI:Cue:Hemisphere 2, 18 13.17584571 0.000298718

Task:Cue:Hemisphere 2, 18 0.131699021 0.877441731

SearchArray:Cue:Hemisphere 4, 36 3.335164334 0.020144599

ROI:Task:SearchArray:Cue 4, 36 1.090391212 0.375945056

ROI:Task:SearchArray:Hemisphere 2, 18 6.195490136 0.008969127

ROI:Task:Cue:Hemisphere 2, 18 0.110860231 0.895670204

ROI:SearchArray:Cue:Hemisphere 4, 36 1.316064038 0.282581781

Task:SearchArray:Cue:Hemisphere 4, 36 1.701875362 0.17098258

ROI:Task:SearchArray:Cue:Hemisphere 4, 36 0.908520765 0.469378907

Here, “ROI” indicates the comparison between frontal–parietal areas (both coded as the same to effectively average across) versus VOT cortex (see
Methods). “Task” indicates stay versus switch trials; “Cue” indicates whether a donut, abacus, or face was cued; “Search Array” indicates which period
the data were extracted from (after the first search array or second); and “Hemisphere” indicates whether the data are taken from the hemisphere
ipsilateral or contralateral to the cue.
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levels for much of Search Array 2 (now uncued > baseline
BF = 0.02).

Effects within Unilateral ROIs

Whereas Figure 3 illustrates the effects of attention on
stimulus representations expected to be equated in terms
of their bottom–up properties, our design also allowed us
to examine the effects of attention in regions in which
stimulus representation was expected to be inherently
weak, because of the fact that each item in the search
array appeared in a separate visual hemifield. Thus, we
next assessed the effects of prioritization as a function of
whether the cued stimulus appeared contra- or ipsilateral
to a given brain region.
In VOT cortex, the effects of selection on the unilateral

representation of an item can be summarized as being com-
parable to the effect of moving it from one hemisphere to
the other: In the hemisphere ipsilateral to the cued item, the
representation of that item was strengthened to a level
comparable to that of the contralateral item. In the hemi-
sphere ipsilateral to the uncued item, in contrast, the repre-
sentation of that item dropped to baseline levels (Figure 4).
When VOT ROIs were broken out by hemisphere, delay-
period stimulus representation before Cue 1 was stronger
for the contralateral than the ipsilateral item in three of
the four analysis cells, the effect combined across all four
strongly favoring greater contra-than-ipsilateral stimulus
representation (multiplied BF= 1.58× 106). With the onset
of Cue 1, the effect in the ROI contralateral to the cued item
was to trigger precipitous drops in MVPA evidence for both
the absent category and the uncued stimulus, the two not
differing during Search Array 1 (uncued > absent Stay
BF= 0.2; Switch BF= 0.04), and the cued stimulus differing
from both during Search Array 1 (cued > uncued Stay
BF = 1.83 × 106; cued > absent Stay BF = 3.20 × 109;

cued > uncued Switch BF = 2.16 × 1010; cued > absent
Switch BF = 1.14 × 108). The effect in the ROI ipsilateral
to the cue was to trigger a drop in MVPA evidence for the
absent category, with MVPA evidence for both the cued
item and the uncued item maintained at a level above
baseline and comparable to each other (cued > uncued
Stay BF = 0.15; cued > absent Stay BF = 3.18 × 108;
cued > uncued Switch BF = 0.4; cued > absent Switch
BF = 6.45 × 1010).

Now turning to the second search array of the trial, after
Stay cues, the pattern from Search Array 1 persisted across
Search Array 2 in both hemispheres (for the contralateral
hemisphere: cued > uncued BF = 8.73 × 1011; cued >
absent BF = 2.06 × 109; uncued > absent BF = 0.025,
and for the ipsilateral hemisphere: cued > uncued BF =
1.08; cued > absent BF = 8.35 × 105; uncued > absent
BF = 166). After Switch cues, in the ROI initially contralat-
eral to the item cued by Cue 1, MVPA evidence for the two
stimuli crossed over, with MVPA evidence for the initially
uncued stimulus taking on a value comparable to that of
the initially cued item (Figure 4A; top right, blue trace;
now-cued > uncued BF = 637; now-cued > absent BF =
1.91 × 1011; SA1 cued > SA2 cued BF = 7.082), and the
initially cued item now at the level of baseline (Figure 4,
top right, red trace; now-uncued > absent BF = .14). A
crossover was also seen in the ROI initially ipsilateral to
the item cued by Cue 1, with the initially uncued stimulus
taking on a value comparable to that of the initially cued
item (Figure 4B, bottom right, blue trace; now-cued >
now-uncued BF = 1.51 × 104; now-cued > absent BF =
1.72 × 1023; SA1 cued > SA2 cued BF = 1.222), and the
initially cued item now at the level of baseline (Figure 4B
bottom left, red trace; now-uncued > absent BF = 0.015).

In parietal and in frontal cortex, the effects of attention
within unilateral ROIs were not qualitatively different from
what they had been in bilateral ROIs (see Table 1 for BFs).

Figure 5. Time course of
classifier evidence in the
two-item task, in unilateral
parietal ROIs. All graphical
conventions are the same as
Figure 3.
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Comparison between VOT Cortex and
Frontoparietal Cortex

To quantitatively compare the effects of attentional cuing
on stimulus information in the VOT versus frontoparietal
ROIs, we ran linear mixed effects models and computed
two repeated-measures ANOVAs, one on search array data
from bilateral ROIs and one on search array data broken
out by unilateral ROIs (see Methods). The complete sets
of effects are reported in Table 2, and here, we restrict
the reporting to the most theoretically consequential

contrasts. Although visual inspection of Figure 3 suggests
that these two regionsmay differ in that only in the bilateral
VOT ROI was the uncued stimulus represented at above-
baseline levels, the ANOVA on data from the bilateral
ROIs revealed no Cue × ROI interaction, F(2, 36) = 2.24;
p = .135. The difference between the two ROIs was
confirmed, however, when the data were broken out by
hemisphere (Figures 4–6), in the form of a significant
three-way interaction of Cue×Hemisphere (contralateral,
ipsilateral) × ROI, F(2, 36) = 13.176; p = .000299, aver-
aging across trial type (i.e., stay vs. switch) and search array

Figure 7. IC. IC between ROIs for the item that was cued (A) and, therefore, presumed to have been attended or uncued (B), and, therefore,
presumed to have not been attended. *p corrected < .05; +p< .05 uncorrected. The difference between the attended and unattended ICs is plotted
in C. For full list of values, see Table 3.

Figure 6. Time course of
classifier evidence in the
two-item task, in unilateral
frontal ROIs. All graphical
conventions are the same as
Figure 3.
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period. This confirms the statistical reliability of the differ-
ence evident from comparing Figure 4with Figures 5 and 6:
Only in VOT cortex, in the hemisphere ipsilateral to the
cued visual field, did attention have the effect of boosting
the representation of the cued item and weakening the
representation of the uncued item. Importantly, evidence
for a difference between the ROIs disappears when cue
information is not taken into account (two-way interaction
of ROI × Hemisphere: F(1, 36) = 1.67; p = 0.228), indi-
cating that the critical three-way interaction is not merely
driven by a baseline shift in all evidences between regions
as a function of laterality (Figure 6).

Effects of Attentional Prioritization on IC between
Brain Regions

Because the preceding analyses indicated that parietal and
frontal regions maintained an active representation of only
the attended stimulus, despite the highly salient presence

on the screen of two stimuli, we speculated that these rep-
resentations might have a functional role in implementing
top–down attentional control. Importantly, previous work
has established that fluctuations in signal intensity in fron-
tal and parietal regions during a selective attention task cor-
relates with MVPA decoding performance in VOT cortex
(Nelissen et al., 2013). Here, we extended this approach
by asking the more specific question of whether the parie-
tal and/or frontal representations of category information
that we observed in this study might, themselves, have
had a role in the control of attentional selection. We did
so by assessing the strength of correlation, over time, of
MVPA decoding performance between regions, a measure
known as IC (Coutanche & Thompson-Schill, 2014). The re-
sults indicated that, although IC between several regions
was elevated during the task, relative to baseline
(Figure 7; see Table 3 for values), the specific patterns of
IC with VOT differed between the frontal and the parietal
ROIs, in that only for the frontal-to-contralateral VOT

Table 3. IC Values and p Values

ROI Pair IC Value p Value (Uncorrected) Bayes Factor

Attended

Frontal<->Contralateral VOT 0.0146 1.7515 (0.3503) 0.0517

Frontal<->Ipsilateral VOT −0.0028 2.156 (0.539) 0.0495

Frontal<->Parietal 0.3616 0 (0) 2.6892 × 109

Parietal<->Contralateral VOT 0.1883 0 (0) 6.5636

Parietal<->Ipsilateral VOT 0.156 0 (0) 15.5251

Ipsilateral VOT<->Contralateral VOT 0.3152 0 (0) 1216.5216

Unattended

Frontal<->Contralateral VOT −0.0757 0.2688 (0.0336) 0.2805

Frontal<->Ipsilateral VOT −0.0473 0.4025 (0.0575) 0.1257

Frontal<->Parietal 0.315 0 (0) 2.6181 × 104

Parietal<->Contralateral VOT 0.2088 0.01 (0.0001) 8.4791

Parietal<->Ipsilateral VOT 0.18097 0.01 (0.0001) 4.2689

Ipsilateral VOT<->Contralateral VOT 0.3317 0 (0) 7.4521 × 107

Attended–Unattended Difference

Frontal<->Contralateral VOT 0.0904 0 (0) 5.74

Frontal<->Ipsilateral VOT 0.0444 0.0864 (0.0096) 0.3525

Frontal<->Parietal 0.0464 0.6138 (0.1023) 0.0993

Parietal<->Contralateral VOT −0.0206 1.3858 (0.6929) 0.0595

Parietal<->Ipsilateral VOT −0.0249 0.774 (0.774) 0.0568

Ipsilateral VOT<->Contralateral VOT −0.0165 2.0127 (0.6709) 0.0521

All values denotedwith scientific notation. p Valueswere computed by bootstrapping procedure (seeMethods). Bayes factors calculated via samemethod
as in Figures 3–6 (see also Methods).
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connection did it vary as a function of the attentional status
of a stimulus within a trial. More specifically, whereas IC for
the cued item between the (bilateral) frontal ROI and the
unilateral VOT ROI contralateral to the attended item was
near 0 (IC = 0.0146; p= 0.364; BF = 0.0517), IC between
these regions for the uncued item was numerically nega-
tive (uncorrected IC = −0.076, p = .037, p corrected =
0.279; BF = 0.2805), such that these IC differed signifi-
cantly from each other (IC diff = 0.09; p(corrected) <
0.0001; BF = 5.74). This pattern is consistent with the
possibility that the frontal cortex may actively control, via
an inhibitory influence, the strength of the representation
of the uncued item.

DISCUSSION

Biased competition and, more recently, divisive normaliza-
tion (Carandini & Heeger, 2011), are principles that have
been enormously influential on our understanding of the
neural bases of attention. At the level of single neurons in
visual cortex, attention to one of two simultaneously pre-
sented stimuli has the effect of resolving the competition
that is inferred by comparing the response to this pair of
stimuli to the response to the attended stimulus alone
(Desimone, 1998). More generally, attention is hypothe-
sized to bias the competition for representation of whole
objects and, therefore, to operate at multiple levels of dis-
tributed population-level representations (Valdés-Sosa,
Iglesias-Fuster, & Torres, 2014). We used multivariate anal-
ysis methods to quantify the temporally dynamic effects of
selective attention on population-level neural representa-
tions of visually presented stimuli in a change-detection
task. We observed that attention selectively enhanced the
representational fidelity of the attended stimulus in both
hemispheres of visual cortex, whether contra- or ipsilateral
to the cued item, and that it did so at the expense of the
unattended stimulus. This effect was most pronounced in
the hemisphere contralateral to the attended stimulus,
where the unattended representation became indistin-
guishable from baseline, and unfolded slowly over 4–6 sec,
mirroring the time course observed in tasks of working
memory requiring analogous attentional shifts between
memoranda (Lewis-Peacock, Drysdale, Oberauer, & Postle,
2012). In contrast, parietal and frontal cortex showed above-
baseline evidence of stimulus representation only for the
attended item, regardless of hemifield in which it was pre-
sented (with shifts of attention manifesting over a similar
time course). To some extent, this difference in laterality
might be viewed as simply a consequence of the general
trend that stimulus representations become more abstract
and more spatially invariant as one moves rostrally in the
brain. On the other hand, this difference might also reflect
a fundamental difference in the functional role of these
different regions in visual-selective attention.

For decades, a widely held view has been that one can
construe the visual attentional functions of frontoparietal
cortex as acting as a source of top–down attentional

control, and of VOT cortex as a site of its actions. This func-
tional distinction has recently been called into question af-
ter amultivariate analysis of fMRI data showed that stimulus
representations in VOT, parietal, and frontal cortex all dem-
onstrated sensitivity to manipulations of attention (Ester
et al., 2016). An important limitation of that study, howev-
er, was that the authors only tracked the neural represen-
tation of one item per trial, and were thus unable to
examine the effects within a region when attention was
withdrawn from one stimulus and allocated to another. If
one were to consider, for example, the frontal representa-
tion of only the initially cued item during switch trials of
our change detection task (Figure 3C), one would observe
that this representation transitioned from intermediate
strength during the initial delay (before selection), to ele-
vated strength after being cued, to drastically lower
strength after attention was reallocated to a different
stimulus. What one would not see, however, is that the
mirror-opposite time course of the initially unattended
item suggests an all-or-none pattern of attentionally sensi-
tive representations in frontal cortex, and that this differs
qualitatively from themoremodulatory effects of attention
observed in VOT cortex.
Although many previous studies have shown a correla-

tion of activity between putatively control-related and
stimulus-representing regions during selective attention
tasks (Baldauf & Desimone, 2014; Gazzaley, Cooney,
McEvoy, Knight, & D’Esposito, 2005), including the covari-
ation of frontoparietal signal intensity with VOT MVPA
performance (Nelissen et al., 2013), a novel aspect of this
experiment is the evaluation of IC between these regions.
This approach, unlike functional connectivity, can identify
situations in which two areas are sharing information of
interest, as opposed to cases in which the pattern of corre-
lated activity is because of a more general factor, such as
fluctuations in motivation or arousal. Indeed, in our study,
the IC analysis generated two novel insights. The first is
that parietal and frontal functions may differ in that the
IC of the former, but not the latter, is invariant to within-
trial changes of attentional priority. This invariance of
parietal-VOT IC might be expected of the operation of a
priority map that tracks all potentially relevant stimuli in
the environment regardless of immediate priority status.
The second is the manner in which frontal cortex exerts
attentional control. The negative-trending IC between
frontal cortex and VOT in the hemisphere contralateral to
the uncued stimuluswould be consistentwith a role for the
PFC in the active suppression of the neural representation
of that item. This raises the tantalizing possibility that one
mechanism for biasing the competition for representation
among items in a visual scene is to weaken the representa-
tion of unprioritized information.
Interpretation of the difference in frontal-VOT IC for the

uncued versus for the cued item is complicated by the fact
that the statistical significance of the negative-trending IC
for the uncued item did not survive correction for multiple
comparisons, and the Bayes factor for this comparison
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favored the likelihood that it did not differ from 0. Thus,
the possibility that top–down inhibition from frontal cortex
may contribute to the attentional biasing of competition
for visual representation is only speculative at this point.
(We do note that one possible explanation for the diver-
gence between the inference supported by bootstrapping
versus the Bayesian analysis is that, unlike the case for the
Bayesian analyses of MVPA evidences, the prior distribu-
tion for the IC contrasts was relatively undefined for the
theoretical distribution. We therefore selected a prior that
made the least number of assumptions, and extended uni-
formly from −1 to 1. This increased the likelihood of a
Bayes factor that would favor the [more readily defined]
null hypothesis in a domain where noise was high and
effect size small, as is the case for the IC data.)
Although the general observation that frontal and parie-

tal cortex support at least partly dissociable functions in the
control of attention is not surprising, the empirical patterns
of IC between frontal, parietal, and VOT ROIs that we
observed here are not so straightforward. Why should it
be that frontal-VOT IC is near 0 for the attended item,
whereas frontal–parietal IC for the attended item and
parietal-VOT IC for the attended item are both strongly
positive? Quantitatively, this pattern suggests that different
components of variance in MVPA evidence in the frontal
ROI dominate this region’s IC with the VOT versus its IC
with the parietal ROI. Mechanistically, this might come
about if a principal function for frontal circuits is to repre-
sent the current rule, whereas a principle function of pari-
etal cortex is to maintain a priority map. If the rule during a
search array is “attend the abacus and ignore the face,” the
frontal representation of this rule could be expected to be
constant and stable across the duration of the trial epoch,
and the independence of this rule to moment-to-moment
fluctuations of sensory information about the abacus
would account for the statistical independence from
MVPA evidence in VOT. Because parietal circuits also
encode this rule, parietal–frontal IC should be high. In
addition, however, because parietal circuits are also main-
taining a priority map, they must track the stimuli that are
currently flashing on the screen, and will thus be sensitive
to fluctuations in the sensory strength of both, resulting in
strong and positive parietal-VOT IC for both the cued
(attended) and the uncued (unattended) item. Another
factor that may influence this pattern in the IC results is
the possibility that decoding performance may be inher-
ently different in frontal cortex relative to other brain areas
(Bhandari, Gagne, & Badre, 2018).
The present data provide a benchmark for the effects

of selective attention on multivariate estimates of the
population-level representation of each of two stimuli—
one prioritized and one unprioritized—when both remain
visible and highly salient. An important goal for future
research will be to assess the extent to which similar mech-
anisms may account for the effects of prioritization within
the contents of working memory (e.g., LaRocque et al.,
2017; Rose et al., 2016; Emrich et al., 2013; Lewis-Peacock

et al., 2012). In so doing, it will be important to keep inmind
fundamental differences in task demands. For example, one
recent study has reported evidence that multivariate evi-
dence for unprioritized information in working memory
can be found in IPS and frontal cortex (Christophel et al.,
2018). Although this might appear to be at odds with the
results reported here, an important difference between
the two tasks is that, in this study, the initially uncued item
did not need to be retained in memory for the simple
reason that it would also be visible as part of Search Array 2.
An important question for future research is whether
frontal and parietal representations of unprioritized stim-
ulus information are better construed as supporting
representation- or control-related functions.
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