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Abstract

Neural oscillations are ubiquitous across recording methodologies and species,

broadly associated with cognitive tasks, and amenable to computational

modelling that investigates neural circuit generating mechanisms and neural

population dynamics. Because of this, neural oscillations offer an exciting

potential opportunity for linking theory, physiology and mechanisms of cogni-

tion. However, despite their prevalence, there are many concerns—new and

old—about how our analysis assumptions are violated by known properties of

field potential data. For investigations of neural oscillations to be properly

interpreted, and ultimately developed into mechanistic theories, it is necessary

to carefully consider the underlying assumptions of the methods we employ.

Here, we discuss seven methodological considerations for analysing neural

oscillations. The considerations are to (1) verify the presence of oscillations, as

they may be absent; (2) validate oscillation band definitions, to address vari-

able peak frequencies; (3) account for concurrent non-oscillatory aperiodic

activity, which might otherwise confound measures; measure and account for

(4) temporal variability and (5) waveform shape of neural oscillations, which

are often bursty and/or nonsinusoidal, potentially leading to spurious results;

(6) separate spatially overlapping rhythms, which may interfere with each

other; and (7) consider the required signal-to-noise ratio for obtaining reliable

estimates. For each topic, we provide relevant examples, demonstrate potential

errors of interpretation, and offer suggestions to address these issues. We pri-

marily focus on univariate measures, such as power and phase estimates,

though we discuss how these issues can propagate to multivariate measures.

These considerations and recommendations offer a helpful guide for measur-

ing and interpreting neural oscillations.
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1 | INTRODUCTION

Recordings of electrical or magnetic fields in the brain,
collectively referred to as neural field recordings, are
commonly used for investigating links between physiol-
ogy and behaviour, cognition, and disease. A striking
feature of such recordings is the prominent rhythmic
activity, termed neural oscillations (Buzs�aki &
Draguhn, 2004), that stands out in the otherwise seem-
ingly chaotic activity of the brain. Neural oscillations
have been a feature of interest since the early days of
electrical brain recordings (Brazier, 1958) and are
widely observed, being ubiquitously present across spe-
cies (Buzs�aki et al., 2013). Physiologically, field poten-
tial recordings largely reflect the aggregate postsynaptic
and transmembrane currents of thousands to millions
of neurons (Buzs�aki et al., 2012), with neural oscilla-
tions thought to relate to population synchrony
(Wang, 2010). As such, neural oscillations potentially
offer insight into the coordination of neural activity at
the population level. Theories of the functions of oscil-
lations argue that they facilitate dynamic temporal and
spatial organisation of neural activity (Fries, 2005;
VanRullen, 2016; Varela et al., 2001; Voytek &
Knight, 2015). Disruptions of oscillations have also been
widely linked to neurological and psychiatric disease,
and have been explored as potential biomarkers of dis-
ease status, drug efficacy, and other clinical indicators
(Başar, 2013; Buzs�aki & Watson, 2012; Newson &
Thiagarajan, 2019).

Reflecting this broad interest, thousands of investiga-
tions conducted across many decades have reported asso-
ciations between oscillations and just about every aspect
of behaviour and cognition that can be operationalised
(Başar et al., 2001; Lopes da Silva, 2013; Mazaheri
et al., 2018). As neural oscillations appear at many differ-
ent temporal scales (Buzs�aki et al., 2013), investigations
often focus on predefined canonical frequency band
ranges that are thought to capture distinct oscillations.
For example, sleep researchers often study delta
(1–4 Hz), memory researchers theta (4–8 Hz), visual
researchers alpha (8–12 Hz), and cognitive and motor
researchers beta (13–30 Hz) frequency bands. In doing
so, research in neural oscillations spans across different
recording modalities (Buzs�aki et al., 2012)—including
both non-invasive and invasive methods—and across dif-
ferent brain regions (Frauscher et al., 2018; Mahjoory
et al., 2020).

While oscillations provide an exciting possibility to
link cognition and disease to theory and physiology, there
are often inconsistent reports regarding which oscilla-
tions are modulated by which conditions and how. In
part, this likely reflects the variety of approaches taken,

with limited consistency in terms of experimental design,
analysis methods, parameter choices, and theoretical
frameworks used across studies. Open challenges include
developing more consistent terminology and interpreta-
tions (Cohen & Gulbinaite, 2014), and the need for
explicitly considering replicability in electrophysiological
investigations (Cohen, 2017a). Accordingly, best practice
guidelines for research (Gross et al., 2013; Keil
et al., 2014; Pernet et al., 2020; Pesaran et al., 2018) and
clinical investigations (Babiloni et al., 2020) have been
proposed to improve standards of reporting, and there-
fore reproducibility, for research using neural field
recordings.

As an extension of these general guidelines, here we
examine common interpretational considerations in ana-
lysing neural field recordings. Given the advances in both
methods development and our understanding of the
empirical properties of the data under study, it is criti-
cally important to ensure that common analysis methods
are appropriately applied, as this is a core requisite for
accurate interpretation. There is a large toolkit of analysis
methods for studying neural oscillations, across both the
spectral and temporal domains, borrowed and adapted
from the field of digital signal processing. These methods
are described and compared in other work focused on
methodological properties of particular estimation tech-
niques (Bruns, 2004; Gross, 2014; van Vugt et al., 2007;
Wacker & Witte, 2013).

Here, we focus more explicitly on properties of neural
oscillations, and how these properties relate to commonly
applied methods, rather than focus on the methods them-
selves. We address how common analysis approaches can
give rise to results that are easy for researchers to misin-
terpret, due to the misalignment between methodological
or experimental assumptions, and properties of the data.
As such, these considerations are not restricted to indi-
vidual estimators (such as using particular filters, or a
particular estimate of power), as they reflect more gen-
eral properties of signal processing methods and neural
data. Importantly, these are not failures of the algorithms
per se, which do, mathematically, exactly what they
should; the potential pitfalls lay in how we interpret their
outputs. If and when there is a misalignment between
methodological assumptions and data properties, com-
puted measures can lack validity which can lead to
inconsistent results. This in turn impedes us from prop-
erly grounding oscillation research in physiology and
theory.

To address these issues, we examine common inter-
pretational considerations in studying neural oscilla-
tions, in order to identify and address possible
methodological concerns that may lead to interpreta-
tion errors. We consider recurring themes based on
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our developing understanding of neural field data, and
how this understanding relates to the application of
analysis methods. For example, a common assumption
is that neural field data can be quantified as a series
of oscillatory signals, often assumed to be stationary.
However, in empirical neurophysiological data, oscilla-
tions show large variability in their presence and
extent across time, as well as across participants and
cortical regions (Donoghue, Haller, et al., 2020;
Frauscher et al., 2018; Groppe et al., 2013). Even when
oscillations are present, they are highly variable
(Jones, 2016; Neymotin, Barczak, et al., 2020), waxing
and waning in short bursts and including longer, more
tonic rhythms, with rapidly changing amplitude, fre-
quency, and phase dynamics that are not easily cap-
tured by common analyses and predefined canonical
frequency ranges. This potentially meaningful variation
of cycle features across time can be blurred by narrow-
band filtering (de Cheveigné & Nelken, 2019) and lead
to misinterpretations of which features of the oscilla-
tion have truly changed (Cole & Voytek, 2019). All of
these properties, and more, need to be explicitly con-
sidered in order to accurately and reliably measure
oscillatory neural activity.

We organise methodological considerations for ana-
lysing neural oscillations into seven areas, each with
example demonstrations (see Box 1). The primary
focus is on univariate measures of oscillatory power,
frequency, and phase, including potential pitfalls and
considerations for ensuring accurate measurement and
interpretation of these aspects, as well as discussions
of how these issues can propagate to multivariate ana-
lyses, such as cross-frequency coupling. These demon-
strations make use of simulated data, which is created
to match known properties of neural field recordings
whereby key features of the simulated neural field
activity were chosen and manipulated to reflect experi-
mentally observed variations in empirical data. We
analyse the simulated data using common spectral and
time-domain analysis methods in order to evaluate
their performance in relation to the interplay of data
properties and method assumptions. Each consider-
ation is then contextualized within the broader litera-
ture, and specific practical recommendations are made
to help guide the analysis of neural oscillations. The
simulated data and analysis methods were created and
used from the NeuroDSP module (Cole et al., 2019),
with all associated code for recreating and further
exploring the illustrations openly available in the pro-
ject repository (https://github.com/OscillationMethods/
oscillationmethods).

2 | NEURAL OSCILLATIONS ARE
NOT ALWAYS PRESENT

2.1 | Why this matters

Neural field recordings are characterised not only by
oscillatory activity, but also aperiodic ‘1/f’ or ‘1/f-like’
activity, in which signal power decreases exponentially as
a function of frequency (Freeman et al., 2003; He, 2014).
This is usually formalised as 1/fχ where χ represents the
decay of power across frequencies. In neural data, χ often
ranges between 0 and 4, where a signal with χ = 0 is
white noise, with equal power across all frequencies, and
higher values of χ indicate increasingly ‘steeper’ spectra.
Aperiodic neural activity has been linked to the underly-
ing activity of postsynaptic potentials and is a ubiquitous
and sometimes dominant feature of neural field data
(Gao et al., 2017; Miller et al., 2009).

The fact that aperiodic activity is omnipresent
together with the large observable variability of neural
oscillations (Donoghue, Haller, et al., 2020; Frauscher
et al., 2018; Groppe et al., 2013) requires care in how
band-limited power obtained by spectral analysis is mea-
sured and interpreted. Due to the presence of aperiodic
activity, there is always non-zero power at all frequency
bands. This means that any spectral measure—including
computing a power spectrum, narrowband filtering, and
average band-power measures—will always return a
numerical value for power for a given frequency band,
even if there is no oscillatory activity present. That is, just
because there is power in a frequency band does not
imply that there is an oscillation in that same frequency
band (Bullock et al., 2003). It is a fallacy to presume that
an analysis of a predefined narrowband frequency range
necessarily reflects physiological oscillatory activity.

To introduce how transient and aperiodic signals are
represented in the spectral domain, the Dirac delta can
be used, whereby a single non-zero value in the time
domain is represented by constant power across all fre-
quencies in the frequency domain (Figure 1a). This illus-
trates that power in a specific frequency band does not
generally correspond to a present oscillation in the time
domain. Similarly, 1/f-like aperiodic activity, which is
common in neural data, shows power across all frequen-
cies, with decreasing power for higher frequencies
(Figure 1b). Despite the lack of periodic activity in aperi-
odic time series, narrowband filtering, which imposes a
sinusoidal basis, extracts components that appear to be
oscillatory, when filtered into canonical band ranges
(Figure 1c). By comparison, rhythmic signals, such as a
pure sinusoid, exhibit as a frequency specific peak in the
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power spectrum (Figure 1d). Neural field recordings can
be simulated as a summation of oscillatory and aperiodic
components, resulting in a power spectrum that exhibits
a spectral peak exceeding the aperiodic component,
reflecting a high amount of band-specific power
(Figure 1e). In this case, the presence of the spectral peak
is indicative of oscillatory power. In general, since differ-
ent signal components can contribute to spectral power
across different frequency ranges, power in a frequency
band may not reflect oscillatory activity.

2.2 | Recommendations

Investigations of oscillations should start with a detection
step, verifying the presence of oscillations of interest. This
verification step can be done in both the frequency and
time domains. In the time domain, visualising the data
allows for examining if there are clear rhythmic segments

in the data. In the frequency domain, oscillations mani-
fest as peaks of power over and above the aperiodic signal
(Buzs�aki et al., 2013). As an initial check, visually
inspecting power spectra can help to verify the presence
of prominent oscillations. Including figures of power
spectra in manuscripts is recommended, as it provides
supporting evidence to the reader that there is oscillatory
activity in the data under study.

Numerous quantitative methods also exist to detect
oscillatory activity in neural field data, such as automated
methods that detect narrowband spectral peaks (Pascual-
Marqui et al., 1988). This can be systematically done by
parameterizing the power spectrum, in which a mathe-
matical model that quantifies periodic and aperiodic
activity is applied to detect any putative oscillatory peaks
above the measured aperiodic component (Donoghue,
Haller, et al., 2020) (see Figure 1f). Similarly, both the
‘multiple oscillation detection algorithm’ (MODAL)
method (Watrous et al., 2018) and the ‘extended better

BOX 1 Overview of methodological considerations for measuring neural oscillations

Topic Data properties Methodological issues Recommendation

#1
Oscillation

presence

Neural oscillations are variably
present, and may not be present
in the recording

If there are no oscillations, applied
measures will not reflect
oscillatory activity, but will
return a value reflecting
aperiodic activity

Verify the presence of an
oscillation, such as with spectral
peak detection or with burst
detection in the time domain

#2
Frequency

variation

Neural oscillations have variable
peak frequencies

Measures applied using canonically
defined frequency bands may
fail to accurately capture
oscillatory activity

Verify frequency ranges and
individualize as needed

#3
Aperiodic

activity

Neural oscillations co-exist with
dynamic aperiodic activity

Measured variation may arise due
to changes in aperiodic activity,
rather than changes in
oscillations

Measure and control for changes in
aperiodic neural activity,
evaluating whether it explains
measured changes

#4
Temporal

variability

Neural oscillations are variable
across time, exhibiting burst-like
properties

Burst properties may be conflated
when analysing spectral power,
and trial averages may suggest
illusory sustained activity

Examine single trial data for
temporal variation, and use
burst detection to evaluate burst
properties

#5
Waveform shape

Neural oscillations have non-
sinusoidal waveform shape

Analysis methods often assume
sinusoidal structure, and may
return spurious results in the
case of non-sinusoidal
oscillations

Examine waveform shape measures
to evaluate if waveform shape
may underlie the results

#6
Overlapping

oscillations

Multiple neural oscillations co-exist
across the brain, and may
overlap across space

Multiple distinct sources may create
destructive interference, in
which case measures will not
accurately reflect underlying
activity

Apply source separation techniques
in order to reduce overlap of
different types of oscillations

#7:
Signal-to- noise

ratio

Neural oscillations have variable
signal-to-noise ratio

Without adequate signal to noise
ratio, measures may be
unreliable or inaccurate

Evaluate the required signal-to-
noise ratio, and potential ways
to optimise it for all applied
measures
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oscillation detection’ (eBOSC) method (Kosciessa
et al., 2020), which is itself an extension of prior methods
(Caplan et al., 2015; Whitten et al., 2011), use a fit of the
aperiodic activity to detect frequency specific activity.

It may also be useful to examine rhythmic properties
of the data, to search for putative oscillatory activity in
situations in which a spectral peak may be difficult to
observe (Pesaran et al., 2018). For example, oscillations
may be present in the form of rare or infrequent bursts,
which will not appear as clear spectral peaks when the
spectrum is calculated across the whole time interval. In
such situations, examining shorter time ranges, and
selecting time windows with higher band power and/or
around events of interest may be required to resolve
peaks in the frequency domain. Alternatively, time

domain and burst detection methods, further described
in Sections 4 and 5, may be more applicable. Another
potential approach for addressing this is lagged coher-
ence (Fransen et al., 2015), which explicitly quantifies the
rhythmicity in time series, in contrast to measuring solely
spectral power and can also be used to differentiate
between oscillatory signals and transients (see Figure 1a).

Because oscillations can vary in their presence within
and between participants, and across different frequency
bands (Donoghue, Haller, et al., 2020; Frauscher
et al., 2018) oscillation detection should be performed for
each frequency band of interest, participant and analysed
region. If oscillations are not detected, this may preclude
further analyses. Group-level analyses may obscure varia-
tion in oscillatory presence in individual participants. For

F I GURE 1 Without verified oscillatory activity, applied measures may reflect aperiodic activity. (a) Non-oscillatory signals such as the

dirac delta function exhibit power across all frequencies. (b) Similarly, a non-oscillatory 1/f signal also has power across all frequencies,

including canonical narrowband regions: Delta (yellow), theta (green), alpha (blue), and beta (purple). This power spectrum illustrates the

fact that just because there is power at a frequency, that does not imply there is a dominant oscillation at that frequency. (c) Narrowband

filtered traces of the signal shown in (b) that appear to be rhythmic. Note that this reflects band-power from the aperiodic activity, rather

than any narrowband oscillation. (d) Rhythmic signals, such as a pure sinusoid, exhibit as a dominant peak in the power spectrum. (e) A

combined signal that contains aperiodic activity and a narrowband alpha oscillation. In this case, the oscillation is visible as a peak in the

power spectrum above the spectral contribution from the aperiodic 1/f-like signal. (f) Spectral peaks can be detected in order to identify

putative oscillations in the data, as shown by the identified peak, in green. Spectral peak detection can be used to select frequency bands for

further analysis, for example selecting the alpha range to be filtered for subsequent analysis (bottom)
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example, if not all participants display a clear rhythm,
effect size estimates of oscillatory changes at the group
level may be confounded by including the subset of par-
ticipants without any clear oscillatory activity. Alterna-
tively, a comparison of oscillatory power between regions
without doing oscillation detection may conflate a
change in oscillatory power with a difference in oscilla-
tory presence. Analyses that include filtering or band-
specific measures without first examining if an oscillation
is present can provide ambiguous results that may reflect
aperiodic activity, in which case it is a misinterpretation
to describe physiological oscillatory activity. Applying
analyses to detect oscillatory presence can assure that
measures reflect oscillatory activity.

3 | NEURAL OSCILLATIONS VARY
IN THEIR PEAK FREQUENCIES

3.1 | Why this matters

Neural oscillations display significant variations in their
peak frequencies, including variation across age
(Lindsley, 1939), within and between participants
(Haegens et al., 2014), and across cortical locations
(Mahjoory et al., 2020). Alpha peak frequency, for exam-
ple, is considered a stable trait marker (Grandy
et al., 2013), and is also associated with some clinical dis-
orders, displaying, for example, a slower frequency in
attention-deficit hyperactivity disorder (ADHD)
(Lansbergen et al., 2011). The frequency of neural oscilla-
tions can also vary within participants within a task
(Benwell et al., 2019), including in task relevant ways
(Wutz et al., 2018).

Due to frequency variation, even if the presence of
oscillations is verified, the use of canonically defined fre-
quency ranges may still fail to accurately reflect the data,
as this may misestimate power of an oscillation if the
spectral peak is not well captured in the canonical range.
For example, in Figure 2, a canonically defined alpha
range of 8–12 Hz captures the peak of a 10-Hz oscillation
(Figure 2a), but fails to accurately capture an 8-Hz peak
(Figure 2b). Despite the signals being simulated with the
same amount of oscillatory power, estimated alpha power
using a canonical frequency range differs between the
signals (Figure 2c), due to an underestimate of the power
in the signal with an idiosyncratic peak frequency. This
issue also impacts the result of band-pass filtering, as a
canonical filter range underestimates the amount of
alpha power present, as compared to an individualized
band in which the filter range is made to reflect the oscil-
lation in the data (Figure 2d). Using individualized fre-
quency band ranges to control for frequency differences

accurately captures the alpha power in each signal
(Figure 2e). Overall, predefined frequency band defini-
tions may fail to address variation in peak frequencies,
and lead to misestimations.

Potential differences in peak frequency are important
for analyses that compute an estimate within a specific
frequency range, such as calculating band power, or nar-
rowband filtering to a frequency range of interest. Apply-
ing a fixed frequency range may lead to information loss
when the individual peak frequency lies near the border
or outside of the defined range; it can also be non-specific
if the range captures an adjacent oscillation or aperiodic
activity. These issues apply both to analyses of individual
frequency bands, as well as to composite measures such
as ratios computed between the power of different fre-
quency bands, since variation in the peak frequency or
bandwidth of peaks can impact measured results
(Donoghue, Dominguez, & Voytek, 2020). For example,
what had previously been reported as a difference in the
theta/beta ratio of participants with ADHD was found to
be partially driven by a slowed alpha peak in the ADHD
group, changing the interpretation of the data
(Lansbergen et al., 2011).

3.2 | Recommendations

In order to address the variability of peak frequencies,
any analyses that employ narrowband frequency ranges
should assess how well the chosen ranges match the data.
Visual inspection can help determine how well the
defined frequency boundaries reflect actual peaks in
the power spectra. This should be done for all analysed
frequency bands at the level of individual participants,
because individual participants may have idiosyncratic
peak frequencies that could influence group level results
if they are misestimated. For within-subject analyses,
changes in peak frequency over time or between tasks
should also be considered in order to address whether a
measured change in power could reflect a change in peak
frequency, in which frequencies may ‘drift’ outside
defined ranges of interest. Including power spectra in
manuscripts also enables readers to observe that applied
band ranges match the peaks observed in the data.

If canonically defined frequency ranges do appropri-
ately match the data, then they can safely be used for
subsequent analyses. However, if chosen band ranges of
interest do not appropriately reflect the data, then indi-
vidualized frequency bands may be applied
(Klimesch, 1999). Methods for computing individualized
frequency bands often do so by measuring spectral peaks
(Haegens et al., 2014; Pascual-Marqui et al., 1988). Auto-
mated approaches have also been developed, that include
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spectral smoothing to improve performance (Corcoran
et al., 2018). Such approaches do not always generalise to
multiple peaks or bands, though some approaches use
‘anchor frequencies’ (Klimesch, 1999), defining, for
example, theta as a range below the identified range of
alpha. This approach has the limitation of not consider-
ing the oscillation detection step. Peak detection for mul-
tiple putative peaks, without predefining frequency
ranges, can also be done with spectral parameterization
(Donoghue, Haller, et al., 2020), after which peaks can be
grouped into observed bands of interest.

Beyond spectral peak detection, methods for detecting
oscillations can be used to detect frequencies with peak
rhythmicity, for example, by applying lagged coherence
across frequencies (Fransen et al., 2015). Some methods
also allow for jointly learning multiple band definitions.
For example, the Oscillation ReConstruction Algorithm
(ORCA) evaluates multiple band definitions in terms of
how well each definition is able to reconstruct the data
(Watrous & Buchanan, 2020), and the gedBounds
method identifies frequency boundaries by clustering

similarities across frequencies (Cohen, 2021). These
methods, which examine all analysed frequencies
together, may help to obtain more consistent groups of
frequency ranges within and across participants. Collec-
tively, some form of evaluation needs to be done to verify
frequency bands, in order to ensure that applied mea-
sures accurately capture the intended oscillatory activity.

4 | NEURAL OSCILLATIONS
COEXIST WITH APERIODIC
ACTIVITY

4.1 | Why this matters

As previously introduced, neural field recordings contain
aperiodic activity (B. J. He, 2014). This activity is not only
ubiquitously present, but is also variable and dynamic
within and between subjects (Freeman & Zhai, 2009;
Podvalny et al., 2015). Between subject variability of ape-
riodic activity can relate to age (He et al., 2019; Voytek

F I GURE 2 Canonical frequency band ranges may fail to capture narrowband peaks. (a) A simulated signal, and corresponding power

spectrum, with a prominent 10-Hz alpha oscillation. Shaded in blue is the canonical alpha range (8–12 Hz). (b) Another signal with a

prominent alpha oscillation, with a peak frequency of 8 Hz. (c) Using canonical band ranges, the amount of alpha power is found to be

significantly different between the signals from (a) and (b). When examining adjacent frequency bands, (right), there is also a measured

difference in theta power, due to the alpha peak drifting into the canonical theta range. These results suggest differences in oscillatory power

between signals; however, this is actually driven by a difference in alpha peak frequency. (d) The time series from (b), filtered into the alpha

frequency range, using both the canonical range (blue) and an individualized range (green). The individualized range is tuned to the peak

frequency of the time series (see inset power spectra). Note that the individualized filter captures more narrowband activity. (e) Using

individualized frequency bands, a difference in measured alpha power is no longer seen, consistent with the measured difference in (c) being

due to a mismatch in peak frequency
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et al., 2015), and clinical diagnoses (Robertson
et al., 2019), whereas within subjects, aperiodic activity
varies with state, such as sleep (Lendner et al., 2020),
relates to behavioural tasks (Podvalny et al., 2015) and
can be influenced by exogenous stimuli and cognitive
demands (Waschke et al., 2021). This dynamic aperiodic
activity has different putative generators, physiological
interpretations, and task related dynamics (Gao
et al., 2017, 2020; Miller et al., 2009, 2014), as compared
to oscillations, making it an interesting feature of interest
in itself. Altogether, aperiodic neural activity is dynamic
in many contexts in which neural oscillations are usually
the focus of inquiry.

This dynamic quality of aperiodic activity is an impor-
tant consideration for detecting neural oscillations, as
previously discussed (see Section 2), as well as for inter-
preting measured changes in the data. With multiple
dynamic components, analyses must adjudicate which
aspects of the data are changing, and how, in order to
allow for appropriate interpretations. Since aperiodic
activity has power at all frequencies, changes or differ-
ences in aperiodic activity can induce patterns of
differential activity across all frequencies. This can be
seen by comparing white (χ = 0) and pink (χ = 1) noise
1/fχ signals, which have different amounts of power in a
canonically defined alpha-band (Figure 3a). Even with a
validated spectral peak and frequency range, a difference
in band-power between two conditions within a given
frequency range may not be specific to oscillatory
changes, as it may reflect a global change in aperiodic
activity. For example, in Figure 3b, a measured difference
in alpha-band power between two conditions reflects a
change in the aperiodic exponent, not changes relating to
a spectral peak in the alpha-band, since the periodic
activity is the same in the two signals.

Considering aperiodic activity is particularly impor-
tant for analyses that investigate band-power across a
series of frequency bands, since systematic patterns of
measured changes across bands may not reflect any
changes in oscillatory activity. For example, in Figure 3c,
the band-power of two conditions is compared across five
different frequency bands. Despite this analysis
suggesting a pattern of changes in band power across a
series of canonically defined frequency bands (Figure 3d),
the changes are actually driven by a change in aperiodic
activity. Patterns of correlated changes across frequency
bands can therefore sometimes be more parsimoniously
explained by a change in aperiodic activity, rather than
as multiple distinct oscillatory changes, as has been
shown to be the case in development (He et al., 2019).

Changes in global power, due to aperiodic changes,
can also impact relative or normalised measures of oscil-
latory activity. In the spectra in Figure 3c, there is a

visible spectral peak in the alpha-band. Even though
there is no change in peak power, a relative power mea-
sure suggests a change in alpha power, due to a change
in the power across all frequencies, that is driven by a
change in aperiodic activity (Figure 3e). This issue also
impacts other compound measures, such as ratios of
band-power, including the theta/beta-ratio, often investi-
gated as a potential biomarker for ADHD (Lansbergen
et al., 2011; Robertson et al., 2019), as it has been shown
that band ratio measures often reflect a change of the
aperiodic activity (Donoghue, Dominguez, &
Voytek, 2020), and that the putative relationship between
ADHD and theta/beta-ratio appears to be driven by ape-
riodic activity (Robertson et al., 2019).

4.2 | Recommendations

As both oscillatory and aperiodic components are
dynamic, it is important for analyses to validate which
elements of the data are specifically changing, in order to
appropriately interpret results. This is relevant for any
analysis investigating putative narrowband power,
including investigations that examine multiple oscillation
bands. Aperiodic activity should be explicitly measured
to evaluate whether it explains the band-specific changes,
including whether correlated patterns of changes across
frequency bands may be more parsimoniously explained
as a change in the broadband aperiodic activity.
Approaches that assume oscillations exist upon a station-
ary ‘background’, such as relative power measures that
divide by power across all frequencies, or band ratio mea-
sures, should be avoided, as they conflate changes in
oscillatory and aperiodic components (Donoghue,
Dominguez, & Voytek, 2020). For example, a change in a
relative power measure could arise from a change in
band-specific power of interest, or be due to a change in
aperiodic component that changes the measured power
across all frequencies that is used as the denominator.

Explicitly measuring aperiodic activity requires
methods that explicitly conceptualise both aperiodic and
periodic activity, to avoid erroneously attributing aperi-
odic activity as oscillatory changes. Methods that define
and measure oscillatory activity relative to aperiodic
activity, including previously introduced methods such as
spectral parameterization (Donoghue, Haller, et al., 2020)
and eBOSC (Kosciessa et al., 2020), are designed to mea-
sure and control for aperiodic activity, and so address this
issue. There are also dedicated methods for measuring
aperiodic activity. For example, the irregular-resampling
auto-spectral analysis (IRASA) method leverages the
scale-free nature of aperiodic activity by proposing a
resampling procedure to isolate aperiodic activity
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(Wen & Liu, 2016). IRASA can be used to separate and
measure aperiodic neural activity, after which analyses
can evaluate each component to examine whether mea-
sures of interest specifically reflect the intended compo-
nent. Overall, controlling for aperiodic activity requires
employing an oscillation detection step and evaluating
oscillatory power relative to the aperiodic component in
order to assess whether measured changes are capturing
oscillatory or aperiodic activity.

5 | NEURAL OSCILLATIONS ARE
VARIABLE ACROSS TIME

5.1 | Why this matters

Neural oscillations often display burst-like temporal
dynamics (Lundqvist et al., 2016; Sherman et al., 2016)
and are rarely, if ever, completely consistent and continu-
ous. These temporal dynamics of neural oscillations are a

F I GURE 3 Variations in aperiodic activity influence band-power measures. (a) Examples of aperiodic white (black) and pink (red)

noise signals that display different patterns of power across frequencies, as seen in their power spectra. Shaded in blue is the canonical alpha

range, with time-series filtered in the alpha-range shown in the inset. Note that the pink noise signal appears to have increased ‘alpha’
power. (b) Simulated combined signals containing both aperiodic and oscillatory power (black), and a transformed version of the signal with

the same periodic component with a change in the aperiodic component (red), after being rotated in the spectral domain. Note that in

(a) and (b), what appear to be band-specific changes actually reflect differences in aperiodic activity. (c) A comparison between power

spectra for combined signals simulated with the same oscillatory component with different aperiodic activity. Shading reflects different

frequency bands, including delta (yellow), theta (green), alpha (blue), beta (purple) and gamma (red). (d) Absolute differences in power,

calculated separately for each frequency band, for the spectra in (c). Note that despite the difference in the data being simulated as a change

in the aperiodic component, a band-by-band analysis suggests a pattern of changes across distinct frequency bands. (e) Relative alpha power

(bottom) is calculated as absolute band power (top left), divided by the power across all frequencies (top right). Note that despite no

difference in the amount of alpha power, there is measured change in relative power, due to systematically different aperiodic activity

between the signals
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potentially important feature; for example, the rate of
burst events has been found to be predictive of behaviour
across tasks and species (Shin et al., 2017), including in
investigations of working memory (Lundqvist
et al., 2016) and motor activity (Wessel, 2020). Some gen-
erative models of oscillations predict non-continuous
events in a way that is consistent with what is seen in
empirical data (Sherman et al., 2016).

Despite this, many methods implicitly assume
stationarity of the signal under study, when analysing,
for example, average band power across time or trials. In
such cases, variability of oscillation presence or temporal
dynamics can be misinterpreted as differences in power.
For example, in simulations with stochastic onset and
offset of oscillatory activity, signals can display different
proportions of the data with oscillatory activity present,
with the oscillatory power when present being equivalent

(Figure 4a). Measured power in such cases reports a dif-
ferent amount of band specific power, typically inter-
preted as reflecting a change in the overall amplitude of
the oscillation, however, measured differences can be
due to temporal variability (Figure 4b). These kinds of
averaging effects are also important in scenarios such as
time-frequency analyses that average across trials, which
may create an illusion of sustained activity in averaged
data (Feingold et al., 2015; Jones, 2016). This can happen
if individual trials have burst-like temporal dynamics that
occur at different times across different trials, which can
average together in a way as to suggest a sustained
response in average data, despite such continuity not
occurring in any individual trial (Figure 4c). The tempo-
ral variability of neural oscillations motivates the impor-
tance of considering single trial dynamics (Kosciessa
et al., 2020; Rey et al., 2015; Stokes & Spaak, 2016).

F I GURE 4 Temporal dynamics of neural oscillations influence spectral measures. (a) Two simulated signals with lower (top; blue) and

higher (bottom; green) levels of bursting activity in the alpha band, simulated with probabilistic burst onset and offset. Segments identified

as bursts are shaded in red. Note that oscillation power, when present, is the same in both signals. (b) Power spectra for the signals in (a).

Note the difference in size of the alpha peak, suggesting a difference in alpha power between the signals. However, when quantifying the

power within the bursts (inset bar plot), the power is found to be approximately the same. The apparent difference in power is due to

differences in temporal variability. (c) Temporal variability can lead to spurious sustained power in averaged results. Spectrograms for

individual trials (top) show short bursts of oscillatory power, which average to create what appears to be a sustained response (bottom). (d–f)
Measured differences in power can arise due to multiple features of bursting oscillations, including changes in the duration (d), occurrence

(e), and/or amplitude (f) of the bursts. In these simulations, one feature differed between the two time series, while all others were held

constant. Each feature creates a similar difference in the resultant alpha peaks, demonstrating that measured power can reflect multiple

facets of temporal variability of analysed time series
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Oscillatory bursts can vary in multiple ways that can
lead to similar measured changes in band power, which
may be misinterpreted as reflecting changes in tonic band
power. This includes changes in burst duration
(Figure 4d), burst occurrence (Figure 4e), or burst ampli-
tude (Figure 4f), each of which can vary within or
between analysed time periods (Quinn et al., 2019; Zich
et al., 2020). Understanding the different sources of vari-
ability has implications on how these signals should be
interpreted, as a change in the length, number, or size of
bursts each likely reflect different circuit mechanisms
and putative relationships to neural function. However,
this cannot be appropriately evaluated unless methods
acknowledge oscillations as potentially transient, with
potential variability in rate, timing, and duration as well
as amplitude (van Ede et al., 2018).

5.2 | Recommendations

Analyses of neural oscillations must therefore evaluate
whether temporal variability, rather than overall power,
may be driving measured changes. In order to address
temporal variability, both the spectral and temporal
domain have to be considered together (Zich et al., 2020).
Time-frequency analyses, such as spectrograms, can be
used to examine spectral properties across time in order
to adjudicate between changes in the average power of
oscillations and changes in their temporal dynamics. In
doing so, it is important to analyse single-trials (Rey
et al., 2015; Stokes & Spaak, 2016), to avoid mis-
interpreting averaged power. If reporting spectrograms,
single-trial examples should be included in order to eval-
uate whether apparent sustained activity is truly
sustained, or arises as a result of averaging many short
bursts.

Burst detection methods can also be applied to iden-
tify segments of the signal in which oscillations are pre-
sent, which can then be characterised in terms of the
durations of the bursts, the number of bursts, and/or
the amplitude of the bursts. A common approach for
burst detection is to use an amplitude threshold,
detecting segments of power in which frequency specific
power is greater than a chosen threshold level (Feingold
et al., 2015). The previously described eBOSC algorithm
(Kosciessa et al., 2020) can be considered to be a thresh-
old based burst detection, in which the threshold is based
on the aperiodic component, and can be used for burst
detection.

Other algorithms for burst detection include
matching pursuit, in which a dictionary of atoms, which
can include oscillatory bursts, is fit to the data, providing
potentially more accurate estimates of burst onset and

duration (Chandran KS et al., 2018). Alternatively,
methods such as hidden Markov modelling can be used,
which seek to characterise state transitions, and can be
used to model transitions into and out of oscillatory states
in a probabilistic way (Quinn et al., 2019; Vidaurre
et al., 2016). Time-domain measures that identify oscilla-
tions by characterising individual cycles, further
described in Section 6, can also be used to detect and ana-
lyse the number and duration of bursts, and their cycle-
by-cycle properties (Cole & Voytek, 2019;
Schaworonkow & Nikulin, 2019). After detection, ana-
lyses of burst-like neural activity typically involve subse-
quent analysis of the identified bursts, in order to
evaluate whether they are changing in their duration,
occurrence, and/or amplitude.

6 | NEURAL OSCILLATIONS ARE
NON-SINUSOIDAL

6.1 | Why this matters

The waveform shape of neural oscillations is often non-
sinusoidal (Cole & Voytek, 2017; Jones, 2016), as seen,
for example, in the arc-shaped sensorimotor mu-rhythm,
visual alpha, which can be triangular, and the sawtooth-
shaped hippocampal theta-rhythm. These waveform
properties of neural oscillations may reflect physiological
properties, for example the synchronisation of neural
activity (Schaworonkow & Nikulin, 2019), spiking pat-
terns of underlying neurons (Cole & Voytek, 2018), or
behavioural correlates such as running speed (Ghosh
et al., 2020). Waveform shape can therefore be an impor-
tant feature of interest, with potential to impose con-
straints on generative circuit models of oscillations
(Sherman et al., 2016) as well as time constants of
involved synaptic currents.

The variable waveform shape of oscillations also cre-
ates substantial methodological and interpretation hur-
dles, due to the assumed sinusoidal basis underlying
most methods. For instance, estimating instantaneous
phase typically involves narrowband filtering the signal
before applying a Hilbert transform. Applying a narrow-
band filter on data with variations in waveform shape
can be problematic, as the phases of sinusoidal outputs of
narrowband filtering will not correspond to phases of a
non-sinusoidal signal (Figure 5a). This occurs because in
the spectral domain, nonsinusoidal shapes are represen-
ted by power across multiple frequencies, and if the sig-
nal content in the harmonic frequencies is removed, the
resulting filtered signal will have shifted peaks and tro-
ughs compared to the original non-sinusoidal signal
(Figure 5a). This is an important consideration for any
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analyses that examine cycle properties, such as the loca-
tion of signal peaks and troughs, as putatively
corresponding to specific physiological states. For ana-
lyses that rely on exact temporal characteristics
(e.g., investigating the effects of pre-stimulus phase on
behavioural measures), controlling for waveform shape
may be beneficial.

In spectral analysis, non-sinusoidal waveforms are
reflected in the power spectrum as harmonics occurring
at multiples of the dominant frequency, as illustrated in
Figure 5b. This can result in interpreting these separate
peaks as independent physiological rhythms. In the case
of an arc-shaped mu-rhythm, for example, the waveform
shape of the oscillation will create peaks in both the
alpha- and beta-frequency ranges. This may be inter-
preted as separate alpha- and beta-rhythms with an
assumed phase- and amplitude-coupled relationship,
when in reality only one non-sinusoidal rhythm is

present. Differentiating between those situations is com-
plicated by the fact that several types of rhythms can be
found across the cortex (see Section 7). Figure 5c shows
how the degree of non-sinusoidality is reflected in the
power of harmonic frequencies, with higher power in
the harmonic frequency range for increasing non-sin-
usoidality. This should be considered when evaluating
differences in spectral power between conditions, to con-
trol for potential changes in waveform shape.

The spurious coupling that waveform shape can
induce between frequencies (Kramer et al., 2008) is espe-
cially important when considering measures such as
phase-amplitude coupling that are greatly influenced by
waveform shape (Cole et al., 2017; Lozano-Soldevilla
et al., 2016). Waveform shape can result in systematic
changes in the amplitude at harmonic frequencies, as
seen in Figure 5d, which can depend on the phase of the
base oscillation, as quantified in Figure 5e. This results in

F I GURE 5 Waveform shape of neural oscillations influences power and coupling measures. (a) Four different time domain signals

with varying rise-decay asymmetry (coloured traces) and their narrowband filtered versions (black traces). Narrowband filtering of

asymmetric oscillations shifts the peak times of the signals as indicated by the shaded regions marking the distance between the peaks of

original signal and the filtered version. (b) In the corresponding power spectra, there are emerging spectral peaks at harmonic frequencies

(exactly two and three times the oscillation frequency) as a result of the asymmetry. (c) The scale of these harmonic peaks relates to the

asymmetry, such that increasing waveform asymmetry can exhibit as increased power in the beta-frequency range. (d) Non-sinusoidal

rhythms can also create spurious phase amplitude coupling. A 10-Hz non-sinusoidal alpha signal is band-pass filtered around the beta peak

frequency (15–25 Hz). The beta signal shows deviations in amplitude depending on alpha phase driven by the non-sinusoidal waveform

shape (inset shows power spectra for each signal). (e) Phase amplitude coupling is quantified by calculating beta envelope as a function of

alpha phase. In contrast to a pure beta-sinusoid (red), the beta envelope from the non-sinusoidal signal (blue) shows a minimum for a

specific alpha phase, indicating phase-amplitude coupling, which is driven by the waveform shape of the alpha rhythm
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significant measures of cross-frequency phase-amplitude
coupling. Numerically, these values are not objection-
able, as they reflect a relationship between frequencies in
the spectral domain. However, there is possible fallacy
in the interpretation, if this relationship is taken to reflect
significant coupling between independent rhythms, when
in fact no such interaction between multiple rhythms
need exist. Because of these methodological limitations,
careful work needs to be done to adjudicate between
phase amplitude coupling measures that reflect wave-
form shape versus those that truly reflect nested oscilla-
tions (Giehl et al., 2021; Vaz et al., 2017).

6.2 | Recommendations

In order to evaluate and control for waveform shape,
explicit measurement of waveform and cycle properties
should be done. Time domain measures of individual
cycles can be used to characterise waveform shape by, for
example, calculating measures such as the rise/decay
symmetry or peak sharpness (Cole & Voytek, 2019;
Schaworonkow & Nikulin, 2019). Other methods aim at
learning and grouping waveforms into observed catego-
ries, for example through attempting to learn recurring
patterns in the data by sliding-window matching (Gips
et al., 2017) or by attempting to learn a dictionary of
observed shapes in the data and finding occurrences
of particular waveforms in the data based on templates
(Barthélemy et al., 2013; Brockmeier & Principe, 2016;
Jas & Dupré, 2017).

In the frequency domain, specific waveforms can cre-
ate stereotypical patterns in power spectra and time-
frequency representations, which can complicate the
detection of oscillations (see Section 2). If spectral peaks
are present at exact multiples of slower frequencies,
quantifying waveform shape may help to distinguish
between an independent oscillation at that particular fre-
quency or harmonic spectral peaks induced by waveform
shape. Since different waveform shapes may exhibit simi-
lar time-frequency representations (Jones, 2016), time-
domain analyses may be required to evaluate if and how
waveform shape is contributing to spectral
representations.

For cross-frequency coupling analysis, the frequency
extent of local coupling within a region (e.g., for phase
amplitude coupling, the range of higher frequencies that
are coupled to the low frequency phase) can suggest
whether it is likely to be genuine oscillatory coupling or a
shape effect (Cole et al., 2017; Vaz et al., 2017), with nar-
row ranges at exactly multiples of the base frequencies
indicative of possible coupling caused by waveform
shape. Applying and comparing multiple measures of

cross-frequency coupling can dissociate harmonic and
non-harmonic phase-amplitude coupling (Giehl
et al., 2021). More generally, frequency domain methods
such as bicoherence, a measure of non-linear interactions
between frequencies, can also be used to investigate
waveform shape in the frequency domain (Bartz
et al., 2019).

7 | MULTIPLE OSCILLATIONS
COEXIST ACROSS THE BRAIN

7.1 | Why this matters

Non-invasive recordings of neural oscillations reflect
aggregate activity across relatively large cortical areas.
Through volume conduction, a term used to describe the
propagation of electrical fields from their original source
across tissues to recording sensors, recording electrodes
can reflect activity from multiple local sources, as well
contributions from more distant sources that overlap
both spatially as well as temporally (Buzs�aki et al., 2012;
Nunez & Srinivasan, 2006). For instance, in the context
of MEG/EEG, there are several alpha-rhythm sources,
with locations in somatosensory, occipital, parietal and
temporal cortex (Hindriks et al., 2017), which can be co-
active at the same time. In many studies, recordings are
analysed in sensor space, by directly analysing activity
from recording sensors. In such cases, the aggregate sig-
nal may appear markedly different from the underlying
sources of interest due to the spatial and temporal over-
lap of multiple distinct sources. Measures applied to these
combined signals may therefore not accurately reflect the
underlying sources, with distortions in measures of tem-
poral dynamics or waveform shape (Schaworonkow &
Nikulin, 2019).

Examining how spectral and time domain measures
can be affected by overlapping sources is shown in an
example in which sensor space activity from a single elec-
trode is composed of activity from two underlying sources
in the parietal and visual cortices (Figure 6a). In the spec-
tral domain, this configuration can result in two peaks in
the alpha-frequency range (Figure 6b), when the two
sources have slightly different peak frequencies. This has
been observed in empirical data as ‘double alpha’ or
‘split alpha’ peaks (Chiang et al., 2008). Analyses in sen-
sor space may lead to the interpretation that a specific
circuit generates signals with two simultaneously present
peak frequencies, which in turn will influence theories of
generating mechanisms. Spatial summation of multiple
underlying rhythms of similar peak frequencies can also
mask temporal features of interest of the underlying
rhythms, as seen in Figure 6c, due to constructive and
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destructive interference effects (Schaworonkow &
Nikulin, 2019). Phase differences between sources of sim-
ilar frequencies can attenuate the oscillation in sensor
space, due to interference, even though oscillatory power
has not changed in the underlying sources. This may lead
to erroneous interpretations regarding changing oscilla-
tory power of the sources, when it may be that only their
relative temporal relationship has changed.

Inter-regional connectivity measures are also
impacted by the simultaneous presence of multiple
sources. Computing connectivity measures using sensor
space signals can lead to spurious findings, because vol-
ume conduction influences these measures (Haufe
et al., 2013; Palva et al., 2018; Palva & Palva, 2012;
Schoffelen & Gross, 2009). Because individual sources
propagate to multiple sensors, regularities in amplitude
and phase will be present across multiple sensors. This

can yield highly significant statistical relationships
between electrodes, reflecting signal content that is pre-
sent due to a common source rather than genuine inter-
regional coupling, which may lead to erroneous
interpretation of connectivity between oscillatory
sources.

7.2 | Recommendations

Due to overlapping sources, analysing sensor level time
series or power spectra can be misleading regarding
which aspects of the oscillation are present and/or are
changing. Whenever possible, sensor space analysis
should be complemented by source-level analysis. Source
separation methods can be applied to attempt to separate
different narrowband periodic components in the signal,

F I GURE 6 Multiple simultaneous rhythms can interfere and impact sensor level data. (a) A realistic head model with two oscillatory

sources (red and blue) placed in the posterior cortex which project on the highlighted electrode (green). Underneath are the topographies of

the two sources that contribute to the recording electrode. The leadfield coefficients for the two sources have approximately equal values,

indicating equal contribution to the activity recorded at the green electrode. (b) In this simulation, the electrode signal (green; bottom)

reflects multiple underlying sources, including two distinct rhythmic components, with slightly different peak frequencies. These sources

can be seen as two spectral peaks in the power spectrum. (c) A separate simulation of two oscillatory sources with the same peak frequency,

with a phase difference. Due to a phase difference of pi, the two sources sum together destructively. In this scenario, interference of the

sources cancel each other out at the electrode level, even though the oscillatory power of the individual sources is stable and consistent. Note

that in these simulations, the oscillations are non-sinusoidal, which also creates the harmonic peaks seen in the power spectra
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which can help to reveal features that are not visible in
sensor space data, as well as helping to localise sources.
There are many possible approaches for source separa-
tion. Because inferring the activity of many more sources
than channels is not possible, constraints are needed to
arrive at a specific decomposition. The choice of the
appropriate method also depends on the specific goals of
source separation, including, for example, localising
activity to specific regions and/or decomposing time
series into components based on statistical properties.

Based on these goals, two main approaches with dif-
ferent optimisation criteria can be used for estimating
source activity from sensor space activity. The first main
type of methods use anatomical information to constrain
the inverse solution based on individual or template
structural MRI, in combination with methods such as
beamformer or minimum norm estimation techniques
(Hauk et al., 2019). The second main type of methods are
agnostic to anatomical information and rely solely on the
statistical structure of signals across channels. In this
approach, channel activity is assumed to be a linear mix-
ture of multiple underlying sources, defined by a leadfield
matrix, which describes how individual sources map onto
sensors (Parra et al., 2005). By assuming specific statisti-
cal properties of the source time series as well as mixing
properties, demixing can be attempted. Methods in this
realm include joint decorrelation (de Cheveigné &
Parra, 2014) or independent component analysis
(Hyvärinen & Oja, 2000). In the context of investigating
neural oscillations, there are variants that specifically
maximise signal-to-noise ratio (SNR) of narrowband
oscillatory components, while minimising SNR in
flanking bands or in comparison to broadband activity.
For enhancing oscillatory SNR, spatial-spectral decompo-
sition (Nikulin et al., 2011) or generalised
eigendecomposition (Cohen, 2017b) can be used. The
Common Spatial Patterns algorithm (Koles, 1991) and its
variants (Lotte & Guan, 2011) can be used for maximising
differences in narrowband activity between task condi-
tions. For investigating relationships between narrow-
band activity and a continuous variable, Source Power
Correlation analysis (Dähne et al., 2014) may be of inter-
est. Spatial filtering methods can also be used as a
preprocessing step for dimensionality reduction (Haufe,
Dähne, & Nikulin, 2014), easing statistical comparisons
and computational needs.

Components that result from source separation need
validation, since different methods or parameter settings
can yield highly different results, and solutions are not
guaranteed to reflect physiologically meaningful activity.
As such, source separation can be non-trivial and has its
own set of methodological considerations as well as
reporting guidelines (Cohen & Gulbinaite, 2014; Haufe,

Meinecke, et al., 2014; Mahjoory et al., 2017). These
guidelines can be used to evaluate robustness of the solu-
tion, such as with goodness of fit and/or localisation error
metrics, and to adequately convey reconstruction quality
and method details to the reader.

8 | MEASURES OF NEURAL
OSCILLATIONS REQUIRE
SUFFICIENT SIGNAL-TO-
NOISE RATIO

8.1 | Why this matters

Neural oscillations are embedded in complex recordings
containing multiple rhythmic signals, aperiodic activity,
and transient events. Analysing oscillatory signals of
interest requires defining features of interest (signal), and
extracting this signal from the rest of the data (noise). As
with all measures, methods for analysing oscillations
require an adequate signal to noise ratio (SNR). Indeed,
ubiquitous processing steps such as filtering are used
largely in order to increase the SNR (Widmann
et al., 2015). Many of the considerations thus far
(detecting oscillations, adjusting frequency ranges, con-
trolling for aperiodic activity, burst detection, and source
separation) can all be conceptualised as aiming to
increase SNR by tuning analyses to specific properties of
the data. Beyond these specific properties, applied mea-
sures can still be inaccurately estimated if SNR is low or
variable.

The SNR of oscillatory activity relates to the ratio of
oscillatory power to noise, typically the aperiodic back-
ground. Oscillatory power is a dynamic property, which
can be seen by the variable height of oscillatory peaks
over and above the aperiodic component (Figure 7a).
Many experimental paradigms will change oscillatory
power, as presentation of stimuli may result in event-
related attenuation of oscillations (Pfurtscheller & Lopes
da Silva, 1999). This change in oscillatory power changes
SNR, which in turn may influence accuracy and stability
of other oscillatory measures such as instantaneous phase
and frequency. When SNR is high, estimations of
phase and frequency can be reliably estimated
(Figure 7b). However, when SNR is low, estimation can
be very noisy (Sameni & Seraj, 2017) as can be seen in
Figure 7c, leading to artefactual large variations, often
referred to as phase slips.

Changes in oscillatory power which change SNR and
corrupt phase estimations can lead to inaccurate esti-
mates of derived measures, such as the phase-locking
value (Muthukumaraswamy & Singh, 2011) or inter-trial
coherence (van Diepen & Mazaheri, 2018). Low SNR
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makes it difficult to reliably extract oscillations of
interest (Figure 7d), leading to variable phase estimates
(Figure 7e). When computing coupling measures on such
estimates, differences in SNR, absent any true changes
in phase alignment, can erode the detection of
phase-locking between two signals (Figure 7f). Unstable
estimation of oscillatory measures can also propagate to
multivariate analysis, such as cross-frequency coupling,
whereby oscillatory power changes that influence SNR
can lead to a change in measured cross-frequency
coupling (Aru et al., 2015). Time domain analyses, such
as those designed for analysing waveform shape, are also
strongly dependent on their being adequate SNR to
meaningfully measure the properties of interest.

In cases of low SNR, unreliable estimates could, for
example, lead to false-negatives due to noisy estimations

that are not able to adequately capture measures of inter-
est. Conversely, certain analyses may return false positive
results, if the measured variability of the signal is mis-
interpreted as a feature of interest, and/or leads to an
artefactual measured change between conditions due to
variable SNR. This may be an issue when comparing
between groups who are known to have differences in
relative power of oscillations, and/or when comparing
within participants across conditions that may have
different SNR.

8.2 | Recommendations

Considering the SNR required for stable estimation of
measures of oscillations starts by choosing appropriate

F I GURE 7 Low oscillatory signal-to-noise ratio (SNR) impacts measures. (a) Power spectra for simulated signals with variable SNR for

an alpha oscillation, as seen in the different peak heights. (b) One of the simulated signals, with a high SNR, with the alpha filtered signal

(top; blue), from which the instantaneous phase (middle; red) and frequency (bottom; green) are computed. Note that the simulated signal

has consistent phase and frequency. (c) The same as (b), for a signal with low SNR. Note that in this case, the estimates of phase and

frequency are variable, due to misestimations because of the low SNR. This leads to phase slips, indicated by the arrows, in instantaneous

phase, which also leads to erratic estimates of instantaneous frequency. (d) Filtered versions of high and low SNR signals. In the simulated

signals, the underlying signals (grey) are the same, other than a power difference, and have uniform phase. The filtered traces (blue) diverge

from the underlying signal, especially in the low SNR signal. (e) Phase estimates of the signals in (d), in which the solid red is the true phase

of the simulated oscillation, and the shading reflects the standard deviation of estimated phase across multiple iterations of phase estimation

within each SNR regime. This shows that there is higher variance of phase estimates with lower SNR. These unstable phase estimates will

impact subsequent measures, such as phase coupling. (f) The phase locking value computed between a high powered oscillation, and

simulated signals with decreasing power, as shown in (a). Note that the simulated oscillations all have the same simulated phase time

course, such that there is an expected phase locking value of 1, and any estimates below this are misestimations due to low power
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experimental designs. When designing the protocol and
tasks, experimenters should consider what is known
about the reliability and effect size of effects of interest,
and consider doing a power analysis to design well
powered studies. This includes considering recording
modalities, as different modalities have different sensitiv-
ities to different source locations (Piastra et al., 2020), as
well as the different temporal, spatial, and frequency res-
olutions they offer. When recording the data, best prac-
tices should be employed to minimise non-neuronal
noise, and use appropriate preprocessing in order to
increase the quality of the data with the respect to desired
analyses (Keil et al., 2014; Pernet et al., 2020).

Once recordings have been collected, or if considering
existing datasets for potential re-analysis, SNR has to be
considered to validate if the dataset is appropriate for the
desired analyses. This requires explicitly measuring SNR
to verify that applied measures are robust in the
SNR regime of the data. If the SNR is too low to provide
accurate measurements, the analyses may be non-viable,
as any measurements will be uninterpretable. If the anal-
ysis can be run, then SNR should still be continuously
verified, to evaluate whether potential changes of SNR
across time or between conditions may explain measured
changes in results (van Diepen & Mazaheri, 2018).

General approaches for optimising SNR include good
filter design (de Cheveigné & Nelken, 2019; Widmann
et al., 2015), and using information about spectral estima-
tors and signals of interest to select the most appropriate
methods to improve the accuracy and stability of esti-
mates (Chavez et al., 2006; Lepage et al., 2013). There are
also specific methods for more robust estimations of
phase in low power situations, including Monte Carlo
estimation (Sameni & Seraj, 2017) and applying a
Kalman smoother (Mortezapouraghdam et al., 2018).
Many of the previously described methods such as
detecting oscillatory peaks, using individualized fre-
quency ranges, and using burst detection can all improve
SNR. Source separation techniques, including those that
explicitly optimise SNR (de Cheveigné & Arzounian,
2015; Nikulin et al., 2011) can be used to extract oscilla-
tory components with higher SNR.

9 | DISCUSSION

How, and to what extent, neural oscillations are mecha-
nistically involved in cognition remains undetermined.
This lack of clarity likely arises in part from imprecisions
in our methodological approaches for analysing oscilla-
tions that, in turn, give rise to inconsistent results. Here,
we highlight specific methodological considerations for
analysing and interpreting neural oscillations, providing

explicit recommendations regarding each topic. These
considerations acknowledge the heterogeneity of neural
oscillations and embrace this complexity as an opportu-
nity to consider ideas and interpretations that may help
us to further understand our data. Oscillations vary in
their presence and frequency, co-exist with dynamic ape-
riodic activity, have idiosyncratic temporal and waveform
shape properties, overlap with one another, and require
sufficient SNR to appropriately analyse. These topics also
demonstrate that there is an increasing set of features
that can be defined for neural oscillations, with an
increasing toolkit of estimation methods. Hopefully,
these recommendations can serve as guidelines for poten-
tially reducing misinterpretations and conflicting results,
and can increase clarity in our understanding of neural
oscillations.

These considerations relate broadly to studies investi-
gating neural oscillations, including investigations of
endogenous activity, and/or of rhythmic neural activity
that may be induced by stimulus presentation (Doelling
et al., 2019; Lakatos et al., 2008). The potential impact of
the considerations may vary across different studies. In
many cases, these considerations may not change the
analyses or interpretations, but may still offer potential
avenues for further analyses, and deeper understanding
of the data. In some situations, these considerations may
greatly impact results and interpretations, potentially
reflecting fundamental confounds that do need to be
addressed, or even reflect issues that cannot be addressed
by current methods, such that it precludes particular ana-
lyses from being appropriately applied. Overall, with a
range of possible impacts, the general recommendation is
to check for all of these possible issues, to identify which
topics may matter in each scenario, and proceed
accordingly.

Though we present the considerations as seven dis-
tinct points, it is important to note that these consider-
ations do not manifest in isolation from one another and
can interact. For example, variable aperiodic activity
(Section 4) can interfere with spectral peak (Section 2)
and/or burst (Section 3) detection, as it complicates
approaches that use a threshold criterion to define bursts
or spectral peaks. Oscillations may also be difficult to
detect (Section 2) and/or to individualize frequencies for
(Section 3) if they are temporally rare (Section 5), and/or
have low SNR (Section 8). Further, waveform shape
(Section 6) may systematically vary in relation to under-
lying sources (Section 7) (Schaworonkow &
Nikulin, 2019) and/or detected peaks (Section 2) may be
volume conducted from remote sources (Section 7),
resulting, for example, in ‘double alpha’ peaks due to the
overlap of occipital and sensorimotor rhythms in
the alpha-band (Chiang et al., 2008). Multiple oscillatory
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features, such as power, waveform shape, burst rate, etc.,
can covary. These potential multicollinearities need to be
explicitly considered and tested by robust analyses that
control for multiple potentially confounding features by,
for example, addressing overlapping periodic and aperi-
odic activity (Donoghue, Haller, et al., 2020; Kosciessa
et al., 2020), controlling for waveform shape, which may
result in spurious power- and/or phase-coupling (Cole &
Voytek, 2019; Schaworonkow & Nikulin, 2019), and
examining trial-by-trial dynamics that may be masked or
conflated in average measures (Jones, 2016; Stokes &
Spaak, 2016; Zich et al., 2020).

This investigation used a simulation approach that
attempts to mimic the properties seen in empirical data,
including dynamic aperiodic activity, and oscillatory
components that can vary across multiple features (Cole
et al., 2019). Because ground-truth properties of physio-
logical data are not known in a way that can be used to
evaluate the accuracy of applied measures, simulated
data are an important tool for diagnosing available
methods. In using simulated data, we must endeavour to
reflect on our empirical data—simulating heterogeneous
oscillatory features embedded within dynamic aperiodic
activity—in order to be representative of empirical data
and realistic use cases. As well as the tool used here,
there are other approaches for simulating data, including
for specific modalities such as EEG (Krol et al., 2018), or
that emulate neural circuits (Neymotin, Daniels,
et al., 2020), or whole brain recordings (Sanz Leon
et al., 2013). Simulation analyses should be employed
when developing new analysis approaches, as novel
methods require validation and comparison to existing
methods, such that best practice guidelines can be contin-
uously developed and updated. All time-frequency
methods include settings that should also be validated
and explored. Sensitivity analyses, in which one repeats
the analyses across mild perturbations of method settings
to evaluate the robustness of the measured results, should
be used to ensure that results are not overly dependent
on specific parameter regimes.

Estimates of oscillatory features of interest are typi-
cally further analysed and compared using statistical
methods. Notably, many neuroscientific parameters
exhibit skewed distributions (Buzs�aki & Mizuseki, 2014),
including oscillatory power (Kiebel et al., 2005). There-
fore, distributional properties of data should be carefully
considered such that appropriate statistical tests can be
chosen (Maris, 2012; Maris & Oostenveld, 2007). This is
especially important when considering that power-law
distributed variables can result in spurious correlations
when using methods that assume normality
(Schaworonkow et al., 2015). Statistical analyses, in par-
ticular in the context of new methods and measures,

should also evaluate consistency across participants
(Grice et al., 2020), reliability within participants, and
effect size measures, which can be computed using esti-
mation statistics (Calin-Jageman & Cumming, 2019).
Considering effect sizes can also aid in designing studies
that are sufficiently powered (Button et al., 2013).
Adopting the best practices proposed here may also help
to increase statistical power, insofar as they help to better
and more specifically characterise features of interest,
improving SNR.

In our examples, we focused primarily on univariate
measures, such as estimating oscillatory power or phase.
Issues that affect these estimates also propagate to
derived measures, such as correlations between ampli-
tude or phase, as is done in functional connectivity
(Haufe et al., 2013) and cross-frequency coupling ana-
lyses (Aru et al., 2015). If phase estimates are unreliable
due to low oscillatory SNR (Sameni & Seraj, 2017), or if
amplitude estimates are biassed by changes in aperiodic
activity (Donoghue, Haller, et al., 2020), or if burst prop-
erties vary between analysed signals (Jones, 2016), then
derived measures may fail to reflect the intended oscilla-
tory properties. Methodological limitations are likely to
propagate and compound in multivariate or mass univar-
iate analyses, and must therefore be considered for any
analyses including, or built on top of, the univariate
methods demonstrated here.

Though beyond the scope of this article, investiga-
tions of neural oscillations also require employing best-
practices for designing, collecting, and preprocessing data
in order to ensure sound research design, high quality
data, and methodological validity. These considerations
are covered in available textbooks (Cohen, 2014; Hari &
Puce, 2017), as well as individual reports that discuss
topics such as including best practices for reporting and
conducting MEG/EEG research (Gross et al., 2013; Keil
et al., 2014; Pernet et al., 2020), pre-processing
(de Cheveigné & Arzounian, 2018), artefact rejection and
data cleaning (Jas et al., 2017; Urigüen & Garcia-
Zapirain, 2015), and guides to using common software
tools such as MNE (Gramfort, 2013; Jas et al., 2018) and
FieldTrip (Oostenveld et al., 2011; Popov et al., 2018).
Other work also features dedicated discussion for specific
methods such as filtering (de Cheveigné & Nelken, 2019;
Widmann et al., 2015), phase estimations (Chavez
et al., 2006; Lepage et al., 2013), functional connectivity
(O’Neill et al., 2018), and cross-frequency coupling ana-
lyses (Aru et al., 2015).

Broader strategies are also required for addressing
reproducibility in the field of neural oscillations, includ-
ing pursuing replication studies, providing clear descrip-
tions of methods and results, and publishing null results
(Cohen, 2017a). Open-science practices, including
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making data and analysis code available, can help foster
reproducibility and develop transparency (Gleeson
et al., 2017; Kathawalla et al., 2021; Voytek, 2016). Due to
their computational nature, investigations of neural oscil-
lations also benefit from good code practice (Wilson
et al., 2017). Standardised procedures for organising
datasets also increase shareability, organisation, and can
assist in standardised pipelines, making it easier to apply
novel methods (Holdgraf et al., 2019; Niso et al., 2018;
Pernet et al., 2019). Adopting open science practices pro-
vides opportunities for using open tools and datasets that
can foster transparency and efficiently allow for revisiting
the evidence for how neural oscillations relate to cogni-
tion and disease.

Importantly, these considerations also reflect oppor-
tunities for developing new theory and understanding of
neural field data, which is still in many ways a mystery
(Cohen, 2017c). Aperiodic activity is itself a physiologi-
cally informative feature (Gao et al., 2017, 2020),
reflecting processes distinct from neural oscillations
(Donoghue, Haller, et al., 2020; He, 2014). New methods
provide new opportunities, for example, the ability to
jointly analyse multiple components of the data, such as
how oscillations and aperiodic activity jointly contribute
to cognitive processing (Cross et al., 2020). New features
of interest offer the potential for better understanding
underlying physiology and putative computational roles
of neural oscillations. For example, modelling that explic-
itly considers waveform shape and/or burst properties
has contributed to physiological models of neocortical
beta generation (Sherman et al., 2016), and models pro-
posing mechanisms of beta and gamma activity in work-
ing memory (E. K. Miller et al., 2018).

Our emerging understanding of the data under study
and how to measure it provides new vistas of opportunity
for continuing to understand neural field data, and how
it relates to cognition and disease. These methods and
topics reflect the current status of methodological consid-
erations for research related to neural oscillations. As our
understanding of the many complexities of neural data
continues to evolve, future investigations of neural oscil-
lations must continue a consistent process of interrogat-
ing the assumptions of our methods and how they relate
to current knowledge of the data to validate measures of
the data, and develop evolving best practices.

10 | CONCLUSION

Productively investigating neural oscillations requires
dedicated and carefully applied methods that reflect our
current understanding of the data. As methodological
validity is a prerequisite for appropriate interpretation,

analysis methods must reflect that neural field data con-
sists of a complex combination of multiple oscillatory
components, variable aperiodic activity, and transient
events, within which oscillations vary across multiple
dimensions. Here, we have proposed a checklist of meth-
odological considerations for neural oscillations, with
recommendations to (1) validate that oscillations are pre-
sent; (2) verify that used frequency ranges are appropri-
ate; (3) control for potential confounds due to aperiodic
activity; consider the (4) temporal variation and (5) wave-
form shape of neural oscillations; (6) apply source separa-
tion, as needed, to separate multiple oscillatory processes;
and (7) evaluate that the SNR is adequate for the analyses
at hand. These considerations, and new methods that
have been developed to address them, reflect our emerg-
ing understanding of neural field data and offer new pos-
sibilities for investigating, and ultimately, understanding,
neural oscillations.

11 | MATERIALS AND METHODS

A simulation-based approach was used to create the dem-
onstrations in this manuscript. Simulated time series
were created with the NeuroDSP toolbox (Cole
et al., 2019), version 2.2.0. In most cases, the time series
were created as a combination of oscillatory and aperi-
odic activity, sampled at 1000 Hz. Oscillatory activity was
simulated as sine waves unless otherwise noted. Each
oscillation was simulated at a specific frequency, typically
in the alpha band, unless otherwise specified. Aperiodic
activity was simulated by spectrally rotating white noise
to the desired 1/f exponent (Timmer & Konig, 1995).
Aperiodic and oscillatory signal components were
weighted according to a specified variance and combined
together in an additive manner. Across all analyses,
power spectra were estimated using Welch’s method
(Welch, 1967), using Hanning windowed 1 second seg-
ments with 12.5% overlap. Filtering was done with finite
impulse response bandpass filters, with linear phase and
filter lengths set to a default of 3 cycles of the highpass
frequency, and enforced to be odd (Type I). Canonical
band ranges were defined as delta (2–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz), unless
otherwise specified. Analysis methods were also used as
available in the NeuroDSP toolbox, or with custom code
included in the project repository (https://github.com/
OscillationMethods/oscillationmethods).

Several of the figure demonstrations used additional
processing. For the peak detection in Figure 1, the spec-
tral peak was detected and quantified using spectral
parameterization, which models the power spectrum as a
combination of aperiodic and oscillatory components,
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and can be used to detects peaks of putative oscillatory
power over and above the measured aperiodic compo-
nent (Donoghue, Haller, et al., 2020). For the individual
frequency example in Figure 2, canonical alpha was
defined as �2 Hz around 10 Hz, and individualized alpha
bands were defined as �2 Hz around the individual peak
frequency. For the demonstrations of varying aperiodic
activity in Figure 3, generated time series were spectrally
rotated, in the same manner as done to simulate the ape-
riodic activity (Timmer & Konig, 1995). Relative power
was computed as the sum of power in a frequency band
of interest, divided by the sum of power across all fre-
quencies in the frequency range of 2–50 Hz.

For the temporal variation demonstrations in
Figure 4, bursty oscillations were simulated by specifying
time segments that should include an oscillation, option-
ally controlling the duration, occurrence, and amplitude
of the bursts. Burst specific power was calculated by sub-
selecting segments of the data with an oscillation present.
For the examinations of waveform shape in Figure 5,
oscillations were simulated as asymmetric sine waves,
and the bycycle toolbox (version 1.0.0) was used to quan-
tify waveform shape in the time domain (Cole &
Voytek, 2019). For this, signals were band-pass filtered
around the frequency of interest (here: 10 Hz) to extract
the time points of zero-crossings of the signal. The time
points were used to segment the broadband data into
cycles, determining several cycle parameters. For this
example, simulated time series were created with varying
rise-decay symmetry, which is the ratio of time in the ris-
ing and decaying segments of the oscillation, which cre-
ates asymmetric oscillations.

For the spatial mixing demonstration in Figure 6, the
New York Head (ICBM-NY) was used (Huang
et al., 2016) as a head model. Two sources are placed in
the posterior cortex, and the corresponding sensor signals
are calculated using the leadfield. Oscillations were simu-
lated as asymmetric waves, created as the sum of two
sines waves with a fixed phase lag. Topographies were
visualised using MNE-python (Gramfort, 2013). In
Figure 7, instantaneous measures were computed by
applying the Hilbert transform to signals that had been
bandpass filtered into the alpha range (8–12 Hz), taking
the angle as the phase estimate, and using the derivative
of the instantaneous phase as a measure of instantaneous
frequency. Phase synchrony was measured using the
phase locking value (Lachaux et al., 1999).
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