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Goal-directed behavior can benefit from proactive adjustments of cognitive control that occur in anticipation of forthcoming cognitive
control demands (CCD). Predictions of forthcoming CCD are thought to depend on learning and memory in two ways: First, through
direct experience, associative encoding may link previously experienced CCD to its triggering item, such that subsequent encounters with
the item serve to cue retrieval of (i.e., predict) the associated CCD. Second, in the absence of direct experience, pattern completion and
mnemonic integration mechanisms may allow CCD to be generalized from its associated item to other items related in memory. While
extant behavioral evidence documents both types of CCD prediction, the neurocognitive mechanisms giving rise to these predictions
remain largely unexplored. Here, we tested two hypotheses: (1) memory-guided predictions about CCD precede control adjustments due
to the actual CCD required; and (2) generalization of CCD can be accomplished through integration mechanisms that link partially
overlapping CCD-item and item-item associations in memory. Supporting these hypotheses, the temporal dynamics of theta and alpha
power in human electroencephalography data (n � 43, 26 females) revealed that an associative CCD effect emerges earlier than interac-
tion effects involving actual CCD. Furthermore, generalization of CCD from one item (X) to another item (Y) was predicted by a decrease
in alpha power following the presentation of the X-Y pair. These findings advance understanding of the mechanisms underlying memory-
guided adjustments of cognitive control.
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Introduction
Cognitive control refers to a collection of neurocognitive func-
tions that align behavior with internal goals through top-down

modulations on neural information processing, and hence plays a
key role in adaptive behavior (Miller and Cohen, 2001; Waskom
et al., 2014; Egner, 2017). One key feature of cognitive control is
that it adjusts to meet the cognitive control demand (CCD) of the
present environment (Botvinick et al., 1999; Kerns et al., 2004).
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Significance Statement

Cognitive control adaptively regulates information processing to align with task goals. Experience-based expectations enable
adjustments of control, leading to improved performance when expectations match the actual control demand required. Using
EEG, we demonstrate that memory for past cognitive control demand proactively guides the allocation of cognitive control,
preceding adjustments of control triggered by the demands of the present environment. Furthermore, we demonstrate that
learned cognitive control demands can be generalized through mnemonic integration processes, enabling the spread of expecta-
tions about cognitive control demands to items associated in memory. We reveal that this generalization is linked to decreased
alpha oscillation in medial frontal channels. Collectively, these findings provide new insights into how memory-control interac-
tions facilitate goal-directed behavior.
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For example, a driver reacts to worsened driving conditions by
flexibly increasing attention to the road and suppressing irrele-
vant information and behavior. A second key feature of control is
that adjustments can be proactive, preparing an individual to
meet anticipated imminent demands (Braver, 2012). Emerging
data indicate that proactive adaptations are often guided by asso-
ciative learning and memory (Egner, 2014; Abrahamse et al.,
2016; Braem et al., 2019; Chiu and Egner, 2019). For instance, an
experience-based association between a busy overpass and high
CCD could lead to memory-guided proactive engagement of
control the next time one approaches the overpass. The modula-
tion of item-CCD association on cognitive control has been dem-
onstrated in human behavior (Jacoby et al., 2003; Bugg et al.,
2011), with the encoding of item-CCD associations modeled by
temporal difference learning across trials (Chiu et al., 2017).

A central open question is as follows: how does memory guide
adjustments of cognitive control to align control with imminent
CCDs? Intuitively, learning the CCD associated with an item
should allow an organism to proactively adapt cognitive control
to the predicted CCD before the actual demands are detected. To
date, this idea has been modeled in computational simulations
(Blais et al., 2007; Verguts and Notebaert, 2008), yet empirical
tests are scarce. Thus, the first goal of this study is to test this
hypothesis by examining the temporal dynamics of association-
guided cognitive control.

While the acquisition of item-CCD associations depends, in
part, on striatal mechanisms (Chiu et al., 2017), learning often
occurs in multiple neural systems that support distinct memory
types and processes (Poldrack and Packard, 2003; Kumaran et al.,
2016). Hippocampal-dependent mechanisms may support the
generalization of expectations about control to related items in
memory. For example, the high CCD associated with the busy
overpass may be generalized to the roads near the overpass with-
out directly experiencing high CCD on those roads. Indeed, the
generalization of CCD has been documented in human behavior
(Crump and Milliken, 2009; King et al., 2012; Weidler and Bugg,
2016; Surrey et al., 2017; Bejjani et al., 2018), although the neu-
rocognitive mechanisms remain poorly understood. As a second
goal, we tested the hypothesis that the generalization of CCD can
be achieved through integrative encoding (Shohamy and Wag-
ner, 2008; Kuhl et al., 2010), wherein partially overlapping asso-
ciations (e.g., overpass-road and overpass-CCD) result in the
formation of an integrated representation (e.g., overpass-road-
CCD) that supports direct retrieval of CCD expectations for an
item (e.g., road as cue) that have been inherited from another
associated item (e.g., overpass).

To test these hypotheses, we leveraged the high temporal res-
olution of EEG along with a learning and generalization para-
digm. Similar to previous studies of generalization (Zeithamova
and Preston, 2010; Kuhl et al., 2011; Wimmer and Shohamy,
2012; Zeithamova et al., 2012; Bejjani et al., 2018), the task con-
sisted of three phases (Fig. 1): an association phase establishing
tool–landmark associations, a training phase introducing tool–
CCD associations, and a test phase assessing the generalization of
CCD from tools to landmarks. To preview the results, in the
training phase EEG data, the observed temporal dynamics of neu-
ral responses are consistent with associative-memory driven pro-
active engagement of control that precedes further adjustments
of control in response to the actual CCD required by the trial.
These findings were cross-validated using the independent test
phase EEG data. Moreover, the behavioral data at test and EEG
data during the association and test phases provide strong evi-
dence of generalization of CCD via associative memory.

Materials and Methods
Subjects. Fifty-three subjects gave informed written consent, in accor-
dance with procedures approved by the Stanford University Institutional
Review board. Data from 4 subjects were excluded due to low behavioral
performance (accuracy was �3 SDs lower than the group median) in at
least one experimental condition of at least one of the three phases (see
below) (Leys et al., 2013). Data from 6 additional subjects were excluded
due to excessive EEG artifacts. The final sample consisted of 43 partici-
pants (18 –29 years old, mean � 22.1 years; 26 females) with normal or
corrected-to-normal vision and no history of psychiatric or neurological
disorders.

Stimuli and experimental design. The stimuli consisted of eight color
images: four tools and four landmarks (Fig. 1A). The images were pre-
sented on a 23-inch LCD display at 60 Hz using Psychtoolbox 3 and
covered �7.7° of visual angle. The task consisted of three phases: an
association phase, a training phase, and a test phase.

The association phase (Fig. 1A) aimed to elicit the incidental encoding
of tool–landmark associations. To do so, the association phase com-
prised 6 runs of 60 trials each. Each trial consisted of the pairing of a
specific tool followed by a specific landmark; the pairings were repeated
throughout the association phase, creating four unique tool–landmark
associations. The specific pairings were randomized across participants.
Throughout, each image was displayed for 800 ms and the tool–land-
mark images were separated by a uniformly jittered interstimulus inter-
val (900 –1100 ms). To temporally separate the trials and promote the
encoding of the tool–landmark associations, the intertrial intervals were
uniformly jittered between 2250 and 2750 ms (i.e., the intertrial intervals
were substantially longer than the interstimulus intervals). Participants
were not instructed to intentionally encode the tool–landmark associa-
tions. Instead, to ensure that participants attended to the images, their
task was to press a response button using their right index finger when-
ever the encountered image was inverted. A tool image was defined as
inverted when its handle was shown in the bottom half of the image;
landmarks were inverted when their base was above their roof. There
were four presentations of inverted tools and four inverted landmarks in
each run.

The goal of the training phase was to associate each of the four tools
with either a high or low CCD. To this end, participants performed a
variant of the Stroop task (Fig. 1B). On each trial, a compound stimulus,
consisting of a tool image (target) and a superimposed tool name (dis-
tractor), was presented for 800 ms. The participants were required to
identify the tool in the image by pressing a response button while trying
to ignore the tool name. Participants used four fingers of the same hand
to separately respond to the four tools. The response mapping was
counterbalanced across participants. Trials were separated by uniformly
jittered intertrial intervals (2700 –3100 ms). It is well established that,
compared with congruent trials in which the target and distractor lead to
the same response, incongruent trials require higher CCD to resolve the
response conflict between the target and distractor (Cohen et al., 1990;
Botvinick et al., 2001).

The CCD associated with each of the four tools was varied using an
item-specific proportion of conflict (ISPC) manipulation during train-
ing. Specifically, two tools were associated with high CCD (denoted as
TH1 and TH2) by being presented in incongruent trials 75% of the time
(i.e., ISPC � 75%), whereas the other two tools were associated with low
CCD (denoted as TL1 and TL2) by being presented in incongruent trials
25% of the time (i.e., ISPC � 25%). The training phase comprised 6 runs
of 48 trials each, with 12 trials per tool image per run. As such, the
manipulations resulted in a 2 (associative CCD, manipulated by ISPC) �
2 (actual CCD, manipulated by congruency) factorial design. To foster
integration (Zeithamova and Preston, 2010), the association and training
phase runs were interleaved in sets of 2 (Fig. 1D); as detailed below, we
investigated how neural activity in the association phase changed after
exposure to the tool–CCD associations in the training phase.

A final test phase was used to assess the generalization of CCD from
tool–CCD associations (established in the training runs) to landmark–
CCD associations mediated through the tool–landmark associations (in-
duced in the association phase). The task in the test phase was similar to
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the task in the training phase. Participants were required to identify the
image of the landmark while trying to ignore the word label superim-
posed on the image (Fig. 1C). The trial structure and image presentation
times were identical to the training phase. To avoid any potential con-
found due to the overlap in stimulus–response mappings, participants
responded using the other hand than the one used in the training phase.
Across the 4 test runs, two landmarks (LL2 and LH2) were presented in
the same ISPC as their associated tool. Crucially, the other two landmarks
(LL1 and LH1) were presented in a neutral (50%) ISPC and were used to
test the generalization of CCD without the potential confound of expe-
riencing a biased (low or high) ISPC across the test phase. As such, any
ISPC effects for these landmarks must be inherited from their associated
tools. Having biased landmarks (e.g., LL2 and LH2) is not necessary for
generalization to occur (Bejjani et al., 2018).

Behavioral analysis. To test whether the participants were engaged
during the association phase, we calculated the hit rate (responding when
the image was inverted) and overall accuracy (correctly making/with-
holding a response based on task instructions).

In the training phase, we analyzed accuracy and response time (RT).
Accuracy was analyzed using a repeated-measures ANOVA, including
the factors, associated CCD (high/low) and congruency (congruent/in-
congruent). RTs were analyzed using a model-based approach (Chiu et
al., 2017) to assess learning of the tool–CCD associations. Specifically, the
learning of the CCD associated with a tool was modeled using a temporal
difference learning algorithm (Sutton and Barto, 2018) as follows:

Pi(t � 1) � (1 � �)Pi(t) � �C(t)

where C(t) represents the congruency (1 � incongruent; 0 � congruent)
at Trial t; Pi quantifies the model-belief of the CCD associated with tool i;
� is the learning rate that determines how strongly Pi is influenced by
experienced congruency. � was determined using a grid search (see be-
low) and shared across all four tools. Given � and the trial sequence
experienced by a participant, the model produces trial-by-trial estimates
of Pi (i.e., the probability that the forthcoming trial is incongruent) and
PEi, which denotes the unsigned prediction error at Trial t (i.e., the

Figure 1. Experimental design of the three phases in the task. A, In the association phase, participants incidentally formed tool–landmark associations by viewing successively presented tools
followed by their respective associative landmarks. Participants responded to rare inverted images. B, In the training phase, participants performed a variant of the Stroop task, wherein they
identified the tool and tried to ignore the superimposed word. This phase induced associations between tools and CCDs by manipulating how frequently each tool was used in incongruent trials. Each
stimulus is coded by its category (T, Tool; L, landmark), associated/transferred CCD (H, High; L, low), and a number to ensure uniqueness. For example, LL1 indicates a landmark whose associated tool
was paired with low CCD. Two tools (TL1 and TL2) were presented mostly in congruent trials (25% of ISPC), whereas the other two tools (TH1 and TH2) were used mostly in incongruent trials (75%
of ISPC). C, In the test phase, participants performed the Stroop task but encountered the landmarks as stimuli. Two landmarks (LL1 and LH1) were presented using 50% ISPC. The other two
landmarks (LL2 and LH2) were presented using with the same ISPC as their associated tools in the training phase. D, There were 6 interleaved association and training runs, followed by 4 test runs.
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absolute difference between Pi(t) and C(t)).
These model estimates were used to explain the
variance in trialwise RTs as detailed below.

Trials accompanied by nuisance cognitive
processes (e.g., unsuccessful conflict resolution
and posterror slowing), such as error trials and
posterror trials, were excluded from RT analy-
ses. In addition, trials with RTs outside of the
grand median �2.5 SD range were excluded.
For each participant, the remaining trialwise
RTs were regressed against a linear model with
7 regressors (congruency, predicted control
demand, control prediction error, and 4 re-
gressors representing each of the 4 tools). The
shared variance between the predicted CCD
and the congruency regressors ranges from
0.01 and 0.18 (0.14 � 0.01) across subjects.
Low shared variance (e.g., �0.01) is possible
with extreme learning rates (e.g., 1). Control
prediction error shared little variance with
congruency (�0.002 for all subjects) and pre-
dicted CCD (� 0.001 for all subjects). The
learning rate was determined by a grid search
(range: 0 –1, step size � 0.01) that minimized
the sum of squared errors of the model fit using
trial-level RTs. The estimated coefficients in
the winning model were normalized using er-
ror terms from model fitting and were then
passed to group-level analyses, which used
one-sample t tests to examine whether the
mean of a coefficient was significantly different
from 0. The grid search does not constrain the
sign of the estimated coefficients for the regres-
sors and was thus orthogonal to group-level
analysis.

For the test phase, the generalization of an
associated tool’s CCD to its landmark was an-
alyzed using the items with neutral ISPCs (i.e., LL1 and LH1). The
model-based analysis was not used because the focus of this analysis was
the generalization of the CCD through tool–landmark associations
rather than the learning of a new CCD–landmark association from the
trial sequence in the test phase. Instead, we performed repeated-
measures ANOVAs with the factors CCD of the associated tool (high/
low) and congruency (congruent/incongruent) on accuracy and on the
median of RT in each condition.

EEG data acquisition and preprocessing. EEG data from 128-channel
HydroCell Sensor Nets (Electrical Geodesics) were recorded at a sam-
pling rate of 1000 Hz while participants performed the experiment. An
impedance threshold was set to 50k ohms and was checked approxi-
mately every 12 min. EEG data were preprocessed using EEGlab (https://
sccn.ucsd.edu/eeglab/index.php) and in-house MATLAB scripts. EEG
recordings were downsampled to 500 Hz and then went through an
automatic channel rejection procedure based on magnitude and variance
using EEGlab. A high-pass filter of �0.1 Hz was applied to the remaining
data. For all three task phases, the continuous recorded data were divided
into epochs of 1500 ms, ranging from �500 ms to 1000 ms poststimulus
onset. Trial-level data went through the automatic epoch rejection of
EEGlab using the “all methods” option and default settings. Remaining
trials went through another manual epoch rejection process. Trials that
survived the rejection procedures were transformed using independent
component analysis for further manual rejection of components reflect-
ing eye movements and noise. Independent component analysis-filtered
data were rereferenced to the average across all remaining channels.
Missing channels were reconstructed using interpolation. Preprocessed
data were then used in both event-related potential (ERP) and time-
frequency analyses. For ERP analysis, preprocessed EEG data were low-
pass filtered (cutoff � 30 Hz), and the 200 ms before stimulus onset was
used for baseline correction. ERP data ranged from �200 ms to 800 ms.
Statistical analyses were performed at each node in a 2D (channel � time

point) grid. For time-frequency analysis, preprocessed EEG data were
low-pass filtered (cutoff � 50 Hz). Event-related (log) spectral perturba-
tion (ERSP) was calculated using Morlet wavelets (Delorme and Makeig,
2004) at each frequency in theta (4 –7 Hz, 3 cycles), alpha (8 –13 Hz, 6
cycles), and beta (14 –30 Hz, 10 cycles) bands. ERSP was computed at the
trial level and was then grouped and averaged based on experimental
conditions. The ERSP data spanned from �80 ms to 590 ms after the
onset of the stimulus, with a sampling rate of 100 Hz. Statistical analyses
were performed at each of the nodes in a 3D (channel � time point �
frequency) grid.

EEG data analysis. ERP and time-frequency data were divided into
conditions for each task phase. For the association phase, trials with
inverted images were excluded. The remaining trials were divided into 16
conditions, representing the 8 stimuli (4 tools and 4 landmarks) � 2 run
bins (Runs 1 and 2 and Runs 3– 6). At the individual subject level, the
mean trial numbers were 257 (range: 208 –312) and 247 (range: 194 –
314) for tools and landmarks, respectively. By contrasting the EEG sig-
nals in the early (i.e., Runs 1 and 2) with the late part of the association
task (i.e., Runs 3– 6; Fig. 1D), we investigated neural signals related to the
generalization of associated CCD from tools to landmarks via the tool–
landmark associations. The training phase data (219 trials on average,
range: 150 –260) were partitioned into 4 conditions, representing the 2
(associated CCD level: high vs low) � 2 (congruency) factorial design.
CCD level was divided into 2 levels rather than a trial-level continuous
variable as in the model-based analysis. This approach was adopted out
of concern that the signal-to-noise ratio in the EEG data at single chan-
nels, time points, and frequency may be insufficient to ensure robust
signal in each node on each trial and hence may reduce statistical power.
As shown in Figure 2A, model-estimated CCD shows a clear distinction
between tools with high and low CCD levels; thus, the 2 CCD levels
provided a good approximation of the distribution of the model-derived
CCDs, and simultaneously enhanced sensitivity by averaging across mul-

Figure 2. Behavioral results. A–C, Training phase results. A, Individual model-estimated associated CCD levels, measured
as the mean Pi across all trials sharing the same CCD level, plotted as a function of CCD levels. Each line indicates one participant. B,
Group mean�SEM of accuracy, plotted as a function of associated CCD and congruency. C, Individual estimated coefficients for the
associated CCD, congruency (Con), and control prediction error (CPE) regressors of the model-based analysis on RT. D, E, Group
mean � SEM of accuracy (D) and RT (E) in the test phase, plotted as a function of the CCD of the associated tool and congruency.
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tiple trials within each condition. The test phase data (mean trial number:
144, range: 86 –167) were grouped based on a 2 (associated CCD of
paired tool: high/low) � 2 (congruency/incongruency) factorial design.
To avoid bias in ISPC, only landmarks with neutral ISPC (i.e., LL1 and
LH1) were used in tests for generalization of CCD (mean trial number:
72, range: 45– 84).

One main goal of this study is to test the temporal order of associated
and actual CCD effects. To avoid bias, we chose not to use predefined
time windows for different effects, and instead adopted a data-driven
approach that searched the whole temporal span of EEG data following
the onset of the stimulus. Specifically, the statistical analyses of the effects
of interest were conducted using nonparametric cluster-based permuta-
tion tests (Maris and Oostenveld, 2007). Dependent-sample t tests were
performed to compare the conditions at every data node (electrode, time
point, and frequency). Clusters of significant ( p � 0.01, one-tailed tests)
adjacent nodes were identified and grouped together. Two nodes were
considered adjacent when they only differed in one dimension, with the
difference being within 4 cm Euclidean distance between channels, 1
time point (10 ms), or 1 Hz. We then used the maxsum statistics, defined
as the sum of the t statistics across all nodes within a cluster, as a summary
quantification of both the statistical significance within nodes and the
span of the cluster. The nonparametric cluster-based permutation tests
were conducted separately for positive and negative statistics because
difference in sign may indicate different neural processes. To determine p
values that controlled for multiple comparisons, the maxsum of clusters
were compared with a null distribution, which was comprised of the
maxsum of the clusters from 6000 simulations that repeated the same
analysis with randomly shuffled condition labels (e.g., Bramão and Jo-
hansson, 2017; Bramão et al., 2017). Due to the distinct neural processes
represented by and the different number of cycles used for the theta,
alpha, and beta bands, statistical analyses were conducted on these bands
separately. The same threshold for statistical significance was applied to
all frequency bands, allowing for comparison of temporal span across
clusters from different frequency bands.

To test trial-level brain– behavior correlations, we extracted cluster-
mean EEG data (e.g., theta power) for a given cluster from the nonpara-
metric cluster-based permutation tests at each trial as a regressor, which
was combined with a constant regressor to form a GLM. Then the trial-
wise RT was regressed against this GLM to obtain the coefficient for the
EEG data regressor, providing a quantification of the EEG data’s modu-
lation on RT. Critically, because a significant CCD � congruency inter-
action effect (i.e., the difference between when the [generalized]
associated CCD matched the actual CCD and when they did not) was
used to identify the cluster for this analysis, we prevented double-dipping
by performing this analysis separately for each condition of the CCD �
congruency factorial design. The mean of the coefficients from the four
conditions was calculated for each participant and was passed on to a
group-level t test against 0 (i.e., no modulation of EEG data on behavior).

For two clusters found in the nonparametric cluster-based permuta-
tion tests, we compared their temporal distributions marginalized over
channel and frequency (i.e., the likelihood of finding a data node in the
cluster for a given time) to test which cluster emerged earlier. To this end,
we formed the null hypothesis that variable A (representing a marginal-
ized temporal distribution) with distribution PA precedes another ran-
dom variable B with distribution PB. To test this hypothesis, we
calculated the probability that PA precedes a time point b randomly sam-
pled from PB. Once b is drawn, we computed the probability of

P(A � b) ��
0

bPA(a)da. Plugging P	A � b
 into the random sampling

of b based on PB, we obtained the p value as the probability of the null
hypothesis being supported (i.e., P	A � B
), which takes the following
form:

P	 A � B
 � �PB	b
�
0

b

PA	a
dadb

In other words, P	A � B
 denotes the probability of observing a � b by
randomly drawing a and b for infinite times. To avoid confusion with the

inferential statistics (see below), P	A � B
 is henceforth referred to as
“precedence index,” which ranges from 0 to 1. The lower the precedence
index, the less likely A precedes B. In particular, a precedence index of 0.5
indicates that A and B are equally likely to precede each other.

To account for sampling error, we estimated the distribution of the
precedence index using bootstrap resampling. Specifically, we randomly
resampled (with replacement) the subjects to form a new sample of 43
subjects. We then performed the group-level nonparametric cluster-
based permutation tests and identified the clusters showing highest max-
sum statistics for each of the CCD effect and the CCD � congruency
interaction effect. These two clusters were then submitted to the afore-
mentioned temporal distribution comparison. This bootstrap resam-
pling procedure was repeated for 1000 times and resulted in a
distribution of the precedence index that the CCD � congruency inter-
action effect preceded the CCD effect.

Results
Behavioral data
Participants performed the inversion detection task in the asso-
ciation phase with high accuracy (group mean � SEM: 0.99 �
0.004). On the rare trials in which participants needed to respond
to inverted stimuli, the hit rate was 0.97 � 0.01. These results
indicate that participants followed the task instructions and were
attentive to the images.

In the training phase, we first validated the model by compar-
ing its prediction of Pi with the experimental manipulation of
tool–CCD associations. Consistent with the task design, model
belief of CCD for tools with high ISPC (0.68 � 0.01) was signif-
icantly higher than for those with low ISPC (0.32 � 0.01, paired t
test: t(42) � 16.14, p � 0.001; Fig. 2A). Because the predictions
also included the learning process, the model belief of ISPC is
expected to fall below the theoretical value (i.e., 0.25 and 0.75).
Next, analysis of the effect of congruency on participant accuracy
revealed a significant main effect (F(1,42) � 36.43, p � 0.001),
driven by higher accuracy on congruent (0.96 � 0.01) compared
with incongruent trials (0.93 � 0.01). Neither the main effect of
ISPC (F(1,42) � 0.20) nor the interaction between ISPC and con-
gruency (F(1,42) � 1.13, p � 0.29) was significant (Fig. 2B). More-
over, a model-based analysis on RT data replicated the classic
finding that incongruent trials were slower than congruent trials,
evidenced by incongruency positively modulating RT (0.32 �
0.02, t(42) � 11.67, p � 0.001; Fig. 2C, middle column).

More importantly, in the training phase, we expected that the
presentation of the tool would initiate retrieval of its associated
CCD, guiding conflict resolution. Thus, when the associated
CCD deviates from the actual CCD experienced as a function of
congruency on the trial (i.e., when control prediction error is
large), retrieved CCD will mislead conflict resolution, resulting in
slower responses (Jiang et al., 2014, 2015; Chiu et al., 2017;
Muhle-Karbe et al., 2018). These predictions were confirmed by a
significant positive modulation of control prediction error on RT
(0.32 � 0.12, t(42) � 2.66, p � 0.01; Fig. 2C, right column). This
finding indicates successful encoding of the item-specific CCD–
tool associations and the influence of these associations in guid-
ing cognitive control in the training phase. Finally, the
modulation of associated CCD on RT was not significant
(�0.11 � 0.28, t(42) � �0.38, p � 0.71). This null result is con-
sistent with previous studies using ISPC manipulations (Chiu et
al., 2017; Bejjani et al., 2018), and was expected based on afore-
mentioned theory. This is because the difference between differ-
ent levels of associated CCD is short-lived and will be replaced by
actual CCD, leading to limited influence on the main effect of
associated CCD in behavior. As a comparison, we also performed
a repeated-measures 2 � 2 ANOVA on training phase RTs. There
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was a significant main effect of congruency (F(1,42) � 151.13, p �
0.001). Neither the main effect of associated CCD nor the inter-
action was significant (both F values � 1; low ISPC/congruent:
640 � 12 ms; low ISPC/incongruent: 680 � 13 ms; high ISPC/
congruent: 640 � 11 ms; high ISPC/incongruent: 676 � 13 ms).
Compared with the model-based analysis that specifically exam-
ined the learning-related effect, the interaction effect may be con-
founded by other factors, such as feature-binding (Mayr et al.,
2003), perhaps contributing to this null result.

In the test phase, accuracy on landmarks with 50% ISPC (i.e.,
LL1 and LH1) exhibited a significant main effect of congruency
(F(1,42) � 15.59, p � 0.001; Fig. 2D), driven by higher accuracy on
congruent (0.95 � 0.01) than incongruent trials (0.91 � 0.01).
Additionally, a marginally significant main effect of the ISPC of
the associated tool (F(1,42) � 3.88, p � 0.06) evidenced a trend for
higher accuracy in the high CCD (LH1: 0.94 � 0.01) than low
CCD condition (LL1: 0.92 � 0.01). The interaction between the
two factors was not significant (F(1,42) � 0.004). In RT data, there
again was a significant main effect of congruency (F(1,42) � 98.75,
p � 0.001; Fig. 2E), driven by faster responses in the congruent
(670 � 11 ms) than incongruent condition (730 � 14 ms). The
main effect of the ISPC of the associated tool was not significant
(F(1,42) � 1.07, p � 0.31).

Crucially, in the test phase, we observed a significant interac-
tion between the CCD of the associated tool and congruency
(F(1,42) � 9.82, p � 0.003). Similar to the control prediction error
effect found during the training phase, the interaction exhibited a
pattern wherein mismatched CCD of the associated tool and ac-
tual congruency (i.e., LL1 in incongruent trials and LH1 in con-
gruent trials), which corresponded to larger prediction error, led
to slower RTs than matched conditions (i.e., LL1 in congruent
trials and LH1 in incongruent trials). Critically, the fact that the
directly experienced ISPC in the test phase was the same for LL1
and LH1 landmarks rules out the possibility that this interaction
was attributable to the test phase. Consistent with recent behav-
ioral findings (Bejjani et al., 2018), this interaction effect indicates
that the CCD linked to a tool was transferred to its associated
landmark.

EEG results: validation
As the first step of EEG analysis, we validated the data by testing
whether they replicate the congruency effect (specifically, stron-
ger mid-frontal negativity, sometimes followed by stronger pos-
terior positivity on incongruent than congruent or neutral trials)
found in previous ERP studies (Liotti et al., 2000; Folstein and
Van Petten, 2008; Hanslmayr et al., 2008). Consistent with these
studies, in the present experiment, ERP analyses revealed a main
effect of congruency in both the training (Fig. 3A) and test (Fig.
3B) phases. Specifically, in the training phase, a cluster of midline
and frontal channels (Fig. 3C, leftmost panel, corrected p � 0.05)
showed significantly greater positivity on congruent relative to
on incongruent trials, starting �550 ms poststimulus onset (Fig.
3C, second panel from left) and continuing until the end of the
stimulus presentation (i.e., 800 ms). The ERP time courses across
these channels were similar in the test phase (Fig. 3C, right).
Indeed, when testing the congruency effect in this cluster using
test phase data, the pattern of greater positivity on congruent
than incongruent trials persisted (t(42) � 2.53, p � 0.008). Com-
plementing the frontal, midline effect, a cluster of occipital chan-
nels showed greater positivity on incongruent compared with
congruent trials (Fig. 3D, leftmost panel, corrected p � 0.05),
diverging from �550 ms to �800 ms poststimulus onset in both

the training (Fig. 3D, second panel from left) and test phases (Fig.
3D, second panel from right; t(42) � 3.10, p � 0.002).

EEG results: temporal dynamics of memory-guided
cognitive control
Our behavioral data revealed the involvement of associated CCD
in guiding cognitive control (Fig. 2C). Based on the dual mecha-
nisms of cognitive control theory (Braver et al., 2007; Braver,
2012) and computational simulations (Blais et al., 2007; Verguts
and Notebaert, 2008), we hypothesized that, within a trial in the
training and the test phases, cognitive control will first be guided
by the retrieved/predicted CCD and then gradually shift to the
actual CCD (i.e., the experienced [in]congruency). Accordingly,
in the EEG data, we expected that, within a trial, a main effect of
associated CCD would be first observed, reflecting the retrieval of
the associated CCD to guide cognitive control. Subsequently, on
trials in which the retrieved associated CCD conflicted with the
actual CCD required to guide cognitive control, a mismatch ef-
fect would signal the need and engagement in adjustment of con-
trol. In other words, neural activity was expected to differ
between the scenario when the associated and actual CCDs were
consistent (i.e., high CCD in incongruent trial and low CCD in
congruent trial) and when they were inconsistent (i.e., low CCD
in incongruent trial and high CCD in congruent trial), leading to
an interaction effect between associated CCD and congruency
(Fig. 4). We did not consider the main effect of congruency be-
cause it may reflect reactive cognitive control (i.e., withholding
adjustment of cognitive control until the detection of actual
CCD), rather than the proactive cognitive control focused on in
this study.

To test these predictions, we performed 2 (associated CCD:
high/low) � 2 (congruency/incongruency) repeated-measures
ANOVAs on the ERP data and the time-frequency signals (theta,
alpha, and beta bands) from the training phase. Multiple com-
parisons were corrected for using nonparametric cluster-based
permutation tests. To test the neural processes shared by both
training and test phase data (e.g., the generalization of the asso-
ciated CCD) and to examine the validity of the findings, we used
clusters detected in the training phase as ROIs and repeated the
analyses using the ROIs in the test phase data. To be consistent
with the hypothetical chronological order shown in Figure 4, we
first present the results of the main effect of associated CCD and
then the results of the associated CCD � congruency interaction.

Early in the training phase (peaking at �200 ms), we observed
lower alpha-band ERSP on high associated CCD trials than on
low associated CCD trials (Fig. 5A). A nonparametric cluster-
based permutation test statistically confirmed that the high CCD
condition was associated with lowered ERSP in the alpha-band in
a group of left frontal and middle channels (corrected p � 0.048;
Fig. 5C, left) and peaked at �200 ms after stimulus onset (Fig. 5C,
middle, right). No other clusters passed the nonparametric
cluster-based permutation tests.

We next turned to the test phase data and used this cluster to
test the generalization of the CCD to landmarks. A similar spa-
tiotemporal pattern was found in the test phase when comparing
high and low transferred CCD trials (i.e., LH1 vs LL1; Fig. 5B).
Consistent with the training phase data, we observed statistically
significant lower alpha-band ERSP for the high transferred CCD
landmark (i.e., LH1) compared with low transferred CCD land-
mark (i.e., LL1, t(42) � 2.13, p � 0.04; Fig. 5D, left). In the chan-
nels showing an associated CCD effect in the training phase
(Fig. 5C, left), the generalized CCD effect at test demonstrated
temporal and frequency spans similar to those in the training
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phase (Fig. 5D, middle, right). As such, the (generalized) CCD
effects presently observed in two independent sets of EEG data
(i.e., training and test phases) strongly support the notion that
this cluster represents engagement of the (generalized) asso-
ciated CCD.

Later within trials during the training
phase, we observed an interaction be-
tween associated CCD � congruency in
the theta-band ERSP (Fig. 6A), revealing a
cluster that included posterior midline
channels that peaked at �350 ms after
stimulus onset (Fig. 6C, left; corrected p �
0.044). Numerically, the test phase data
displayed a similar interaction in the pos-
terior midline channels (Fig. 6B), which
reflected lower ERSP for trials with mis-
matched associated CCD and congruency
(i.e., incongruent trials with low associ-
ated CCD and congruent trials with high
associated CCD) compared with trials
with matched associated CCD and con-
gruency (i.e., incongruent trials with high

associated CCD and congruent trials with low associated CCD;
Fig. 6C, middle, right). We further found that, at the trial level,
theta-band power in the cluster in Figure 6C explained variance
in RT, such that lower theta power (reflecting mismatch between

Figure 3. Replication of congruency effect in ERP data. A, B, Spatiotemporal distribution of congruency effect in the training and test phases, respectively. C, D, From left to right: Topographic
maps of the duration over which the congruency effect was significant in each channel of the cluster identified by the nonparametric cluster-based permutation tests; temporal distribution of
significant congruency effects in nodes in the cluster; ERP time courses of representative channels, plotted by experimental conditions, in the training and test phases, respectively. Con, Congruent
trials; Inc, incongruent trials. For all time course plots, the temporal resolution is 2 ms.

Figure 4. Hypothetical time course of processes driving the engagement of cognitive control (top) and of the underlying EEG
effects (bottom).
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associated CCD and congruency, or larger control prediction
error) was accompanied by slower responses (collapsed across
conditions in the CCD � congruency factorial design to decon-
found the shared variance in the CCD � congruency interaction
found in both behavioral and EEG data, t(42) � �3.31, p � 0.002;
Fig. 6D). When applying this cluster to test phase data, the inter-
action effect, which was defined following Figure 6A to preserve
the sign of the effect, was also significant (t(42) � �2.13, p � 0.04;
Fig. 6E), and the interaction effect also predicted test phase RT at
the trial level (t(42) � �2.18, p � 0.03; Fig. 6F). The behavioral
relevance of this cluster suggests that it is involved in the online
adjustment of cognitive control that shifts from memory-guided
to actual CCD-guided control.

In the training phase, one other posterior midline cluster dis-
played a significant CCD � congruency interaction effect in the
alpha-band; this effect peaked at �300 ms after stimulus onset
(corrected p � 0.006; compare Fig. 6C, middle). However, when
replicating the aforementioned brain– behavior analysis, alpha-

band power in this cluster did not significantly explain variance
in RT in training phase data (t(42) � �1.79, p � 0.08). Further-
more, when we repeated these analyses using the test phase
data, neither the interaction effect (t(42) � �1.51, p � 0.14)
nor the brain– behavior analysis was significant (t(42) � �0.12,
p � 0.9). Due to the lack of replicability and behavioral rele-
vance, we conclude that activity in this cluster does not reflect
the adjustment of cognitive control following the detection of
the actual CCD. No other clusters passed the nonparametric
cluster-based permutation tests.

ERP analyses revealed neither a main effect of associated CCD
nor an associated � actual CCD interaction that survived the
nonparametric cluster-based permutation tests. These null re-
sults may reflect phase incoherence in event-induced activity
across trials (Bastiaansen and Hagoort, 2003). When repeating
the analyses of main effect of associated CCD and CCD � con-
gruency interaction using test phase data, the nonparametric
cluster-based permutation tests did not reveal any significant re-

Figure 5. Alpha-band oscillations show early (generalized) CCD effects in left middle and frontal channels. A, B, Spatiotemporal distribution of alpha-band CCD effect (high vs low) in the training
and test phases, respectively. C, A cluster showing the associated CCD effect in the training phase. Left, Visualization of channel-wise proportion of significant observations (each observation is
defined as a combination of channel, time point, and frequency) in the cluster showing a significant associated CCD effect. Middle, Size of the associated CCD effect in the cluster, plotted as a function
of frequency and time. The cluster is highlighted by the red box. Right, Time course of cluster-mean (� SEM) ERSP change relative to time course grand mean, plotted as a function of associated CCD
levels. D, Leftmost panel, Test phase individual ERSP averaged within the cluster plotted as a function of generalized CCD levels (left) and group mean (� SEM) ERSP difference between LL1 and LH1
(right). The other two panels are organized similar to C.
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sults. This was possibly due to the low trial count and subsequent
low signal-to-noise ratio at the node level.

None of the three frequency bands showed a significant effect
of congruency. Given that the time window of the time-frequency
analyses ended at 590 ms after stimulus onset, the lack of a sig-
nificant effect here does not contradict the ERP findings showing
a congruency effect after 550 ms after stimulus onset. We specu-
late that the relatively late congruency effects reflect the domi-
nance of actual CCD, after correcting the associative CCD, in
guiding cognitive control (reflected in the associated � actual
CCD interaction).

To determine whether proactive control adjustments in re-
sponse to anticipated CCD precedes further control adjustments
in response to actual CCD, we quantitatively tested whether
the associated CCD effect temporally preceded the CCD �
congruency interaction. For each of the clusters showing the

associated CCD effect (Fig. 5C) and the CCD � congruency
interaction (Fig. 6C), we calculated their marginalized proba-
bilistic density functions on the temporal dimension (Fig. 7)
and calculated the precedence index that the distribution of
the associated CCD effect followed the distribution of the in-
teraction effect (see Materials and Methods). A resulting pre-
cedence index of 0.02 suggested a high chance that the CCD �
congruency interaction effect occurred after the CCD effect.
We also estimated the distribution of the precedence index by
percentile bootstrapping 1000 times (see Materials and Meth-
ods). The nonparametric 95% CI of the precedence index was
[0.0048, 0.4464], which lay outside of the baseline value of 0.5.
This result indicates a p value �0.05 for the null hypothesis
that the CCD effect did not precede the CCD � congruency
interaction effect.

Figure 6. Theta-band oscillations show interaction between associated CCD and congruency in posterior midline channels. A, B, Spatiotemporal distribution of theta-band associated CCD �
congruency interaction in training phase (A) and test phase (B). C, A posterior midline cluster showing significant theta-band associated CCD � congruency interaction. From left to right:
Visualization of channel-wise proportion of significant observations in the cluster; size of interaction effect with the cluster highlighted in red box, plotted as a function of frequency and time; time
course of cluster-mean ERSP, plotted as a function of associated CCD levels. D, Group mean RT (� SEM) in the training phase, plotted as a function of quintiles of the theta-band associated CCD �
congruency interaction effect. RTs in the test phase are visualized similarly in F. E, ERSP when applied to the cluster in C on test phase data, plotted as a function of congruency and (transferred)
associated CCD level.
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EEG results: generalization of CCD through
tool–landmark association
As reported above, even when landmarks LL1 and LH1 were
presented with the same neutral ISPC (50% congruency) during
the test phase, behavioral analyses of RT revealed a significant
interaction between the indirectly paired CCD (i.e., through the
landmark’s associated tool) and congruency (Fig. 2E), and neural
analyses revealed a main effect of the indirectly paired CCD on
alpha-band oscillations (Fig. 5D). These results provide strong
evidence that participants generalized the learned CCD from
tools to their associated landmarks.

In a final set of analyses, we explored the possible mechanisms
supporting this generalization. In particular, we hypothesized
that, during the interleaved presentations of tool–landmark pairs
in the association phase and tool–CCD pairs in the training
phase, these two associations become integrated in memory,
forming a tool–landmark–CCD representation that enables the
generalization of CCD to the landmark (Fig. 8A).

One potential task phase during which integrative encoding
may occur is in Runs 3– 6 of the association phase (i.e., after initial
exposure and encoding of the tool–CCD associations; Fig. 1D).
During the time course of a trial in these runs, presentation of the
tool may reactivate the learned tool–CCD association, which can
then be associated with the subsequent landmark upon its pre-
sentation. To test this possibility, we compared EEG data follow-
ing the presentation of landmark images to that following the
presentation of tool images in Runs 3– 6. The tool image data
were used as a baseline to tease apart EEG data reflecting nuisance
processes, such as perceptual processing. Data from the first 2
runs of the association phase were included as an additional baseline
when tool–CCD associations were not available. This baseline
filters out neural activity of the encoding of the tool–landmark
association and helps isolate signal potentially reflecting integra-
tive encoding. Therefore, the test for integrative encoding took
the form of an interaction between stimulus category (tool vs
landmark) and time (Runs 1 and 2 vs Runs 3– 6), as shown in
Figure 8B.

Across the ERP data and the time-frequency data, the non-
parametric cluster-based permutation tests revealed an alpha-
band, mediofrontal cluster centered at �300 ms after onset of the
landmark image (corrected p � 0.036; Fig. 8C,D, left, middle).
This effect was driven by data from Runs 3– 6, which showed
reduced alpha-band ERSP following the onset of the landmarks,
compared with following the presentation of the tools (Fig. 8D,
right). Given that memory retrieval is accompanied by alpha de-

synchronization (Hanslmayr et al., 2012, 2016), the increased
alpha-band ERSP in tools than landmarks was unlikely to reflect
the retrieval of the tool–CCD association. Critically, to test
whether this interaction effect was linked to the generalization of
CCD to the landmarks, we performed a cross-participant corre-
lation analysis between the cluster-average interaction effect for
each participant and the cluster-mean of the transferred CCD
effect in the test phase (Fig. 5D) for that participant. Similar to the
behavioral analysis, this analysis was performed on items with
neutral test phase ISPC (i.e., LL1 and LH1), to deconfound the
ISPC in the test phase. Results revealed a significant positive re-
lationship (r � 0.38, p � 0.01; Fig. 8E, top), indicating that par-
ticipants with stronger post-landmark alpha power decrease in
the association phase tended to show a stronger alpha-band
transferred CCD effect in the test phase. To examine whether this
effect was item-specific (i.e., only occurring within the same
items), we repeated this analysis by keeping test phase data un-
changed while replacing association phase items LL1 and LH1
with different items LL2 and LH2, thus forming a cross-item
design. A positive correlation coefficient would be evidence
against the item-specific claim. However, a negative correlation
(r � �0.35, p � 0.02; Fig. 8E, bottom) was observed, thus sup-
porting the item-specific claim. The negative correlation shows
that post-landmark alpha power decreased in the association
phase between LL1-LH1 and LL2-LH2 (r � �0.71, p � 0.001),
which may reflect interference between individual associations
during generalization.

An alternative interpretation of the stimulus category � time
interaction may be that it reflects differential processing of or
attention to the tool images relative to the landmark images.
Specifically, because each landmark appears 15 times in each as-
sociation phase run and each tool appears 15 times in each asso-
ciation phase run and 12 times in each training phase run (which
were interleaved with association phase runs), a change in the
EEG response to a stimulus between association phase Runs 1
and 2 and Runs 3– 6 can be viewed as an adaptation effect. From
this perspective, the interaction effect might reflect stronger
adaption effects for tools than landmarks, given that tools were
encountered more often (due to their presentation in the inter-
leaved training phase runs). At the individual level, stronger ad-
aptation for tools than landmarks (compare Fig. 8D, right) might
be attributed to more attention to the tool images in the training
phase; such attention should impact tool processing during the
training phase and thus impact the magnitude of the congruency
effect (e.g., attention-enhanced processing of the task-relevant
stimulus [i.e., the tool image] might reduce the congruency ef-
fect). In short, this alternative interpretation predicts that a stron-
ger stimulus category � time interaction in the association phase
will be related to a weaker congruency effect in the training phase.
To test this prediction, we used cross-subject correlational anal-
yses between the stimulus category � time interaction effect in
the association phase and the congruency effect in the training
phase. Given that significant training phase congruency effects
were observed in the ERP (clusters identified in Fig. 3C,D), be-
havioral accuracy, and RT data (Fig. 2), we conducted four anal-
yses, each using one effect as a measure of the congruency effect.
None of the correlations reached significance (all p values �
0.18). Therefore, the stimulus category � time interaction effect
appears less likely to reflect differential adaptation to the tools
than the landmarks.

Another possibility is that the cluster reflected the change in
the predictability/association strength between tool and land-
mark. If this were true, we would predict that this effect (reflect-

Figure 7. Temporal distribution of the clusters showing main effect of associated CCD and
associated CCD � congruency interaction.
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ing tool–landmark association) and the main effect of associated
CCD in the training phase (reflecting tool–CCD association; Fig.
5C) will jointly predict the main effect of generalized CCD in the
test phase EEG data (Fig. 5D). To test this prediction, we con-
ducted cross-subject rescaling (range: 0 –1) separately on the ef-
fect of tool minus landmark in the cluster reported in Figure 8D
and the training phase associated CCD effect. These rescaled ef-
fects for TL1, TH1, LL1, and LH1 were combined and correlated
with the main effect of generalized CCD for LL1 and LH1 in the
test phase. For the joint prediction, we tested whether the
strength of generalized CCD relates to either (1) the sum of
the two predictor effects or (2) the product of the two predictor
effects. Neither yielded a significant correlation with the general-

ized CCD effect (both p values � 0.18). Thus, it is unlikely that
this effect reflects the predictability/association strength between
the tool and the landmark.

Discussion
How cognitive control is regulated is of key interest in under-
standing goal-directed behavior (Botvinick et al., 2001; Botvinick
and Cohen, 2014; Waskom et al., 2017). Recent theoretic ad-
vances propose that cognitive control can be proactively adjusted
based on prediction of future CCD (Botvinick et al., 2001; Brown
and Braver, 2005; Braver et al., 2007; Braver, 2012). A wealth of
data indicate that such predictions can be based on temporal
information (e.g., Logan and Zbrodoff, 1979; Botvinick et al.,

Figure 8. Time-frequency analysis and results in the association phase. A, The integrative encoding hypothesis. B, The contrast for the stimulus category � time interaction. C, Spatiotemporal
distribution of the interaction effect following the onset of the stimulus. D, A mediofrontal cluster showing significant alpha-band stimulus category � time interaction. From left to right:
Visualization of channel-wise weights in the cluster; size of interaction effect plotted as a function of frequency and time with the cluster highlighted in red box; time course of cluster-mean (� SEM)
ERSP plotted as a function of experimental conditions. E, Transferred CCD effect in the test phase, measured by the alpha-band ERSP difference between LL1 and LH1 in the cluster shown in Figure
5C, plotted out as a function of the stimulus category � time interaction effect for the same items (left) and different items (right) in the association phase.
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1999; Carter et al., 2000; Kerns et al., 2004; Egner and Hirsch,
2005; Egner, 2007; Hazeltine et al., 2011; Aben et al., 2019; De
Loof et al., 2019). Here, we explored another important source of
CCD predictions: learned associations between items and CCD
(e.g., Jacoby et al., 2003; Bugg et al., 2011; Chiu et al., 2017). To
advance understanding of (1) how item-CCD associative mem-
ories proactively guide the regulation of cognitive control and (2)
the neurocognitive mechanisms supporting the generalization of
CCD, we leveraged behavioral and EEG measures acquired while
participants performed a three-phase task that involved the
learning of tool–landmark and tool–CCD associations and the
assessment of the generalization of CCD from tools to landmarks
(Fig. 1). Our findings provide novel evidence for memory-guided
proactive adjustments of control that precede adjustments due to
actual demands, and the generalization of CCD via associative
memory.

Temporal dynamics of memory-guided adjustments of
cognitive control
We first applied a reinforcement learning model (Chiu et al.,
2017) to the behavioral data to quantify how associated CCD and
actual CCD jointly affect behavior. Analyses revealed that train-
ing phase RT scaled with the degree of discrepancy between as-
sociated and actual CCD. Based on the theory of proactive
cognitive control (Braver et al., 2007; Braver, 2012) and compu-
tational simulations (Blais et al., 2007; Verguts and Notebaert,
2008), this observation suggests that the retrieval of associated
CCD leads to proactive adjustments of control that speed goal-
directed behavior when predicted and actual CCD align; by con-
trast, when misaligned, additional reactive adjustments are
required based on actual CCD following its detection. Consistent
with this interpretation, analyses of the EEG data indicated that
the effect of associated CCD emerged earlier than the effect of
actual CCD. Specifically, lower alpha-band ERSP, at left channels
and peaking at �200 ms after stimulus onset, was found in trials
with higher associated CCD (Fig. 5C). This decrease in alpha
oscillations may reflect the increased involvement of selective
attention (Klimesch, 1999; Sadaghiani and Kleinschmidt, 2016)
in anticipation of the forthcoming incongruent trial predicted by
the higher associated CCD. This converges with fMRI data dem-
onstrating that higher associative CCD was accompanied by
greater activation in dorsolateral PFC and ACC (Blais and Bunge,
2010).

Subsequent to the associated CCD effect (Fig. 7), we observed
an interaction between associated and actual CCD in theta-band
ERSP in posterior channels (Fig. 6C). This interaction effect is
consistent with similar interactions in ERP when participants
perform the Stroop (Shedden et al., 2013) and Simon (Whitehead
et al., 2017) tasks. In our data, this interaction appears to be
driven by increased theta-band oscillations when the associated
CCD matched the actual CCD (Fig. 6C, right). While speculative,
compared with a mismatch that requires further adjustment of
cognitive control, a match may lead to elevated readiness of in-
formation processing, which has been associated with higher
theta oscillation (Basar et al., 2001). Crucially, the theta-band
ERSP in these channels was negatively correlated with RT at the
trial level (Fig. 6D). This result is consistent with previous find-
ings that increased task-elicited theta is accompanied by better
performance (Klimesch, 1999), and suggests that this interaction
relates to resolution of the discrepancy between associated and
actual CCD (as slower RTs indicate larger discrepancies that must
be resolved). Importantly, we cross-validated these findings, ob-

serving similar results using the independent data from the test
phase (Figs. 5B,D, 6B, 8B,D).

Generalization of CCD through item-item associations
Our behavioral and EEG data provide strong evidence of transfer
of CCD from tool images to their associated landmarks. Behav-
iorally, we found an interaction between the CCD of the associ-
ated tool and congruency in LL1 and LH1 trials (Fig. 2E) in the
test phase. This finding replicates recent work (Bejjani et al.,
2018). In the EEG data, we observed a significant main effect of
the associated tool’s CCD on landmark-triggered alpha oscilla-
tions during the test phase (Fig. 5D). Critically, neither finding
can be attributed to test-phase learning processes, given that the
ISPCs for LL1 and LH1 items were identical in the test phase. The
only difference between LL1 and LH1 items was the level of CCD
previously bound to their associated tools; as such, these behav-
ioral and EEG differences between these landmarks document
the generalization of CCD from tools to landmarks.

Regarding the neurocognitive mechanisms of generalization,
one possibility is that generalization occurred through integrative
encoding (Shohamy and Wagner, 2008) that merged tool–CCD
associations and tool–landmark associations into conjunctive
tool–landmark–CCD memories (Fig. 8A). Supporting this idea,
we observed differential alpha-band ERSP in medial frontal
channels following repeated presentation of landmarks and tools
in the association phase (tool/landmark � Runs 1 and 2/Runs
3– 6; Fig. 8D). This decrease may be linked to generalization be-
cause it emerged following exposure to the tool–CCD associa-
tions in the training phase (Fig. 8D), and it predicted the
magnitude of the generalized CCD effect in the test phase (Fig.
8E). Prior work has linked decreases in alpha oscillations to mem-
ory encoding and retrieval (Hanslmayr et al., 2012), and have
been posited to reflect desynchronization in cortical activation
that signals a shift from processing present inputs to memory
operations (Hanslmayr et al., 2012, 2016). Moreover, prior ob-
servations indicate that hippocampal processes support memory
generalization (Shohamy and Wagner, 2008; Zeithamova and
Preston, 2010; Kuhl et al., 2011; Wimmer and Shohamy, 2012;
Zeithamova et al., 2012). Thus, our findings provided new in-
sights about the electrophysiological mechanisms in the general-
ization of abstract concepts, such as CCD, through partially
overlapping memories.

As an additional but nonexclusive mechanism, integrative en-
coding may also occur in the training phase of the present para-
digm. Specifically, as the tool–CCD pairings were experienced,
presentation of the tool may have triggered retrieval of the asso-
ciated landmark, providing an opportunity for forming an inte-
grative memory. The present experimental design is not suitable
for examining whether integrative encoding also occurs in the
training phase because this phase lacks baseline conditions that
are required to deconfound nuisance effects (e.g., there were no
training runs that occurred before initial exposure of tool–land-
mark associations). We also did not find a direct correlation be-
tween the sizes of training phase-associated CCD effect and those
of the test phase-transferred CCD effect across participants (r �
�0.19, p � 0.21). Future studies can examine this hypothesis by
moving the first training runs before the first association runs.
Alternatively, generalization during the training phase could be
tested by examining neural evidence for reinstatement of the to-
be-generalized item (Wimmer and Shohamy, 2012; Kurth-
Nelson et al., 2015).

Another possibility is that generalization of CCD occurs at
retrieval (i.e., the test phase) through inference over partially
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overlapping associations, which requires additional time to se-
quentially activate multiple overlapping associations for general-
ization to occur (Kumaran and McClelland, 2012; Horner et al.,
2015; Koster et al., 2018). Whereas Shohamy and Wagner (2008),
among others, provided evidence that integration can occur dur-
ing learning and before the critical generalization test, a recent
study reported slower responses when participants made judg-
ments based on retrieval of direct associations relative to those
based on inferred associations (Koster et al., 2018). In the present
study, our finding that the associated CCD effect preceded actual
CCD effects in guiding cognitive control suggests that generaliza-
tion occurred via integration. Furthermore, the neural timing of
the observed CCD effect in the training phase was similar to that
of the generalized CCD effect in test phase (Fig. 5A,C,D). This
result suggests a direct retrieval of the already generalized land-
mark–CCD association, thus favoring an integrative encoding
account.

A potential confound in the experimental design is that the
generalization effect may co-occur with other processes that also
change over time. Although we ruled out two confounds (adap-
tation and tool–landmark association strength), future studies
should explore the possible influence of other processes that vary
over time.

In conclusion, this study provided new insights into the mech-
anisms of associative memory-guided adjustment of cognitive
control. Specifically, supporting the hypothesis of an earlier in-
volvement of associated CCD than actual CCD in guiding cogni-
tive control, we found an early-onset–associated CCD effect in
alpha oscillations. This effect was temporally followed by an in-
teraction between associative and actual CCD in theta oscilla-
tions, possibly reflecting their competition in guiding cognitive
control. Furthermore, supporting an integrative encoding ac-
count, a generalized associated CCD effect in alpha oscillations in
the test phase was linked to a decrease in alpha oscillation during
the encoding of item–item associations. These findings advance
understanding of the neurocognitive mechanisms supporting
memory-guided cognitive control during goal-directed behavior.
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