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Abstract

Adaptive cognitive-control involves a hierarchical cortico-striatal gating system that supports

selective updating, maintenance, and retrieval of useful cognitive and motor information.

Here, we developed a task that independently manipulates selective gating operations into

working-memory (input gating), from working-memory (output gating), and of responses

(motor gating) and tested the neural dynamics and computational principles that support

them. Increases in gating demands, captured by gate switches, were expressed by distinct

EEG correlates at each gating level that evolved dynamically in partially overlapping time

windows. Further, categorical representations of specific maintained items and of motor

responses could be decoded from EEG when the corresponding gate was switching,

thereby linking gating operations to prioritization. Finally, gate switching at all levels was

related to increases in the motor decision threshold as quantified by the drift diffusion model.

Together these results support the notion that cognitive gating operations scaffold on top of

mechanisms involved in motor gating.

Author summary

How do humans decide which information is relevant to attend to in memory, which cog-

nitive operation to take, and when? Flexibly updating, maintenance and retrieval of rele-

vant information from working memory (WM) are thought to be managed by gating

computations in the frontostriatal network, supporting higher order learning and cogni-

tive flexibility. Using the reference-back-2 task, we tested the key properties of gating.

Namely that they are selective (“content-addressable”) and that principles of cognitive

“actions” (including input gating of WM, output gating from WM) are scaffold on top of

the motor gating operations. Using trial-by-trial EEG indexing and quantitative computa-

tional modeling (the hierarchical drift-diffusion model) we showed that action selection at

all three levels of gating have separable neural signatures but they operate partly in
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parallel, such that decisions about a response are processed to some degree even while the

identity of the cognitive rule were uncertain. Furthermore, we showed analogous compu-

tations across levels of gating as selection of WM representation and of motor action lead

to increase in the estimated decision threshold and to enhanced neural coding of the

selected information thereby providing a novel link between WM gating and WM

prioritization.

Introduction

Optimal flexible behavior requires an agent to not only respond to incoming sensory events

but to adaptively adjust action selection based on context, including previous events in mem-

ory [1]. Moreover, while some events in memory need to be robustly maintained over time in

the face of distracting interference, sometimes sensory events dictate that such memories

should be disrupted and rapidly updated. This challenge is referred to as the stability vs flexi-

bility tradeoff [2–4] and highlights the need for a context-dependent control mechanism that

selectively gates information into and out of working-memory (WM) to guide actions [5–10].

Adaptive control is particularly crucial given a capacity-limited WM system in a complex envi-

ronment, where only a subset of perceptual information is task-relevant and only a subset of

currently maintained WM items may be useful for guiding ongoing behavior.

The PBWM (prefrontal cortex basal ganglia working memory) model is a computational

model that leverages powerful mechanisms of dopaminergic reinforcement learning (RL) in

basal ganglia (BG) so as to optimize gating policies that control access to and from prefrontal

cortex, to be held in WM [9–11]. According to PBWM, gating of both motor and WM actions

are implemented by a common canonical set of operations whereby phasic DA signals rein-

force BG gating actions that yield successful task performance. A distinguishing characteristic

of the PBWM model is that WM gating is an elaboration of the more established BG mecha-

nism of motor gating [7,9,11]. Indeed, according to PBWM, WM gating can be further divided

into input gating, whereby BG can control access to stored information in PFC, and output gat-
ing, whereby other BG circuits can control which among several maintained WM items should

influence motor decisions (response gating; see Fig 1). Moreover, PBWM extensions further

assume that frontostriatal gating processes operate across a spectrum of abstract actions rang-

ing from action plans in premotor cortex (PMC) to context-relevant cognitive information

(like rules and task sets) in more anterior PFC [11–13]. Various imaging, lesion and pharma-

cological studies have provided support for PBWM gating mechanisms (see [14–16] for

reviews). These cognitive and motor gating circuits are nested within a cortico-striatal hierar-

chical system that is arranged on a rostral-caudal axis in the frontal lobe (Fig 1) [17–20], such

that the posterior response gate is dependent on, and constrained by, the more rostral cogni-

tive gates [6,11,12]. Indeed, anatomical studies have revealed asymmetric topography with

more fibers projecting information from anterior PFC to posterior BG [21]. Nevertheless,

despite this converging evidence for hierarchical PFC-BG gating interactions, the core

assumption that response, input and output gating share computational properties–or how

they unfold in time–has not been rigorously tested.

The N-back task is often used for examining variations in executive function [22–23].

While the N-back likely depends on both input and output gating (and can be modeled with

PBWM [24]), experimentally, it provides a coarse measurement of WM control processes that

are confounded with a variety of complex cognitive processes (e.g., encoding, inhibition, bind-

ing, matching, maintenance, updating and removal). To address this issue, and to focus on
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input gating specifically, we recently developed the reference-back task [25–29], a continuous

WM updating task. Behavioral, EEG and fMRI data support the notion that the reference-back

task taxes cortico-striatal input gating [27,29,30,31]. However, a core distinguishing feature of

the PBWM framework from that of other gating models is that it affords selective gating,

whereby items can be input gated to, and output gated from, distinct addresses in memory

Fig 1. Schematic of the PBWM architecture for canonical gating operations. (a) The gating system is composed of three core circuits that are

hierarchically arranged from left to right. For illustration the operations needed to solve the task used in this paper are shown. At the beginning of a trial,

the memory layer actively maintains the information from the previous trial (e.g., “O” and “%”). Sensory information (e.g., the “X” in the visual input) is

transiently represented in a prefrontal cortex layer (labeled “PFC-in”). The input gate controls whether the new visual information (e.g., “X”) is updated to

be maintained in a PFC memory layer, and if so, to which address or anatomical “stripe” within that layer (selective gating). The colored frame in the

visual input represents a task cue signifying the updating policy that should be taken by the input gate. In this example, the red frame indicates that

memory should be updated, so the input gate selectively updates the right PFC stripe (corresponding with the letter category, replacing the “O” in

memory with “X”). The output gate controls which memory representations is prioritized in PFC-out (e.g., a deep layer of the PFC) to influence

subsequent processing (e.g., here the relevant representation in memory is “O” and not “%”, given that the input to be compared is in the letter category).

The response gate controls which motor response to select (e.g., here “same” (S) or “different” (D)) in posterior prefrontal layer (labeled here PMC), by

comparing the output-gated memory representation (“O”) with the current visual input (“X”). Gate switching at the output and response gates are

reflected by the change in the active stripe between the previous trial (t-1) and in the current trial. (b) An example of a maintenance trial. The blue task

cue indicates that the appropriate updating policy is maintenance, and thus sensory information (e.g., “X”) is prevented from being updated in PFC

memory (the gating signal from the BG is therefore a No-Go, indicated by the red BG). Gate switching in the input gate corresponds with moving

between updating state (as shown in a) and maintenance state (as shown in b). Yellow squares indicate active stripe selected by the corresponding gate.

The orange square represents the newly updated stripe in memory. The predicted temporal order of the gating loops is depicted at the bottom right of the

figure with input and output gating starting roughly at the same time continuing in parallel (indicated in orange) with output gating terminating later

(serial termination indicated in grey). The response gate is expected to initiate with some delay due to conflict at upper levels, and to terminate even later

than the output gate.

https://doi.org/10.1371/journal.pcbi.1008971.g001

PLOS COMPUTATIONAL BIOLOGY Analogous computations in working memory input, output and motor gating

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008971 June 7, 2021 3 / 24

https://doi.org/10.1371/journal.pcbi.1008971.g001
https://doi.org/10.1371/journal.pcbi.1008971


(represented as PFC “stripes” or ensembles in the PBWM model). Here we aimed to augment

the reference-back task (see review [32]) to more directly assess these separable content-

addressable input and output gating functions, while also assessing how they relate to response

gating.

To do so, we amended the reference-back task to mirror the SIR2 task, one of the key tasks

developed to illustrate the need for learning selective gating policies in PBWM [10]. To manip-

ulate the need for selective gating in a content-addressable manner, the SIR2 task includes two

separate store cues (S1 or S2) in which the associated WM items had to be updated indepen-

dently to separable WM stores and then accessed independently in response to corresponding

recall probes (R1 or R2), in arbitrary order and over intervening distractors [10]. Through RL,

PBWM learned a selective input gating policy that placed S1 and S2 items into separate PFC

stripes, and an output gating policy that accesses the appropriate stripe given the correspond-

ing R1 or R2 probe, thus implementing content-addressable memory. Given the unpredictable

order in which items are stored and recalled, models without selective gating policies cannot

solve the SIR2 task. This same selective gating ability was shown to useful to perform complex,

hierarchically structured tasks and for supporting generalizability and task structure learning

[11,12,33,34]. However, the SIR2 task does not have psychometric properties useful for human

experimentation.

The reference-back-2 task (Fig 2) retains all the key features of SIR2 and allows laboratory

testing of content-addressable selective input and output gating. The reference-back-2 task,

like the original reference-back, is a continuous WM updating task that is composed of two

trial types. Updating trials require both a matching decision and WM updating, whereas main-
tenance trials are equivalent in their perceptual and decision making demands but do not

require WM updating. To introduce the need for selective gating, the reference-back-2 task

includes stimuli that belong to two different categories (e.g., symbol/letter), where only one of

these representations is relevant on each trial. In updating trials (marked with a red frame),

participants need to update only the stimulus in WM belonging to the same category as the

presented stimulus, while continuing to maintain that of the other category; thus demanding

selective input gating (see Fig 1). The input gate, gates relevant information (e.g., the probed

“X”) into a specific WM memory address (stripe) given the appropriate context (e.g., the red

Fig 2. Trial events in the reference-back-2 task. Trials with red frame are updating trials, while blue trials are

maintenance trials. On each trial, participants make a matching decision between the probe and last stimulus

presented in red from the same category. Each side of the thought bubble represents an address (or PFC “stripe”) in

WM. During updating, input gates assign information to an address based on its category. During output gating, the

relevant category is accessed from memory for the decision. The response gate makes the same/different selection. See

the method section for more detail.

https://doi.org/10.1371/journal.pcbi.1008971.g002
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frame indicates to update). Further, for making the matching decision, only the currently rele-

vant category item should be considered; thus demanding selective output gating. The output

gate selects amongst maintained WM representations (in the memory layer) and output gates

relevant information for subsequent processing (e.g., given the letter category in the probe, the

relevant representation in memory is “O” and not “%”). Finally, for motor responding, the par-

ticipant needs to compare the probed stimulus (“X”) to the WM representation selected by the

output gate (“O”), in order to respond “same” or “different”, thus demanding selective

response gating.

Here, we aim to test four key predictions from PBWM. First, we assessed whether input,

output, and response gating share analogous computations that evolve dynamically in time. In

particular, in PBWM, gating signals are used to displace prefrontal activity states with new

information. Thus, when gating demands (at any level) switch from one trial to the next, a

transient period of conflict ensues in which the previous and currently relevant information

are competing. As such, PBWM predicts gate switching will be associated with an independent

response time cost that arises from PFC conflict analogous to that experienced when needing

to switch motor responses in PMC [35]. Indeed, all levels of conflict are thought to recruit the

same basal ganglia mechanism that slows down responses and increases decision threshold

[12,35]. This prediction is also consistent with findings in which switching between objects in

WM during cognitive operations gives rise to a performance cost [36,37]. In that literature, the

slowing in switch trials is attributed to “attentional control”: the need to move the focus of

attention to the other object in WM. Under this view, attention is allocated to only one process

at a time thus creating a bottleneck that controls which WM representation to select (i.e., pri-

oritize) and use to guide subsequent cognitive operations or action selection [38,39].

Second, we tested the core PBWM prediction that output gating is used to enhance the

representation associated with the currently relevant category (bolded representation in Fig 2).

Previous work has shown that focused attention to one WM item prioritizes it. Directing

attention to a specific WM content during the retention interval using an external cue (retro-

cue; see review by [40]) or by instructing participants to refresh (“think of”) [41,42] puts such

content in a privileged state where it is more resistant to perceptual interference, has better

memory strength (reduced errors at retrieval) and heightened accessibility for later use

[38,40,43,44]. WM prioritization is marked by sustained, elevated neural activity [45–47] and

persistent alpha suppression [48] that increases decodability of the prioritized representations

[48–51]. Such an account is consistent with output gating, but to date the gating WM literature

and the WM prioritization literature have not been linked. To this end, we aimed to directly

test the prediction that output gating (and switches thereof) places demands on prioritization

to increase neural discriminability between the two candidate categories. Analogously, we also

predicted that response switching will boost the neural indexing of the corresponding motor

action representation, given that switches at the motor level place additional demands on

response gating.

Third, we tested the prediction that input, output and response gating are processed in par-

allel. Converging evidence from neural network modeling of hierarchical rule learning

[11,12,52], and experimental work with cognitive-control tasks (e.g., [53–55]) suggest that

WM and action selection are managed by independent mechanisms, operating mostly in par-

allel on different levels of information. In biologically inspired models of PBWM [11,12,52],

parallel processing can occur when PFC projections to lower level striatum are strong, result-

ing in faster accumulation of evidence across levels of the hierarchy to favor a single response.

The evidence for parallel processing across levels of information is also well documented in

task switching literature when task sets and responses both switch [53–55] but also when con-

text and items in WM both switch [56]. Parallel processing in these cases is signified by under-
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additive interactions reflecting that the cost of switching two levels of decision was less than

the sum of their individual durations.

However, the PBWM modeling simulations and EEG work suggest that processing is not

perfectly parallel: indeed, conflict about the task-set in PFC has to be resolved before motor

action selection can be informed by the task-set. In the model, the degree of this influence is

controlled by projections to the STN leading to an increase in decision threshold that prevents

interference in stimulus-response mappings across task-sets [12]. Relatedly, in EEG data,

switches in higher level task rules gave rise to anterior EEG signatures which precede those of

more posterior motor EEG signatures [35]. Therefore, while there is evidence for simultaneous

accumulation of evidence for decision across levels, there is also evidence for serial termination

where response decision is delayed by conflict at the higher cognitive level. We aimed to assess

whether neural markers of input, output and response gating are separately detectable, and

whether their temporal order will also exhibit this partly parallel dynamic.

Finally, we tested whether the behavioral costs associated with gate switching can be

assessed more quantitatively by computational models that summarize the impact of BG gat-

ing on response time distributions. The behavioral dynamics of BG gating neural networks at

the motor level can be approximated by the drift diffusion model (DDM) [57]. Moreover, in

these models and related electrophysiological data, premotor conflict (e.g., following switches),

lead downstream in the BG to an increase in the effective “decision threshold”, buying more

time to allow more cautious and deliberate response selection [35,58–60]. Hierarchical

PFC-BG models further suggest that this same computation is recruited when conflict occurs

at higher level prefrontal task representations, preventing the lower level corticostriatal circuit

from selecting actions until such conflict is resolved [12]. Thus according to PBWM, conflict

at the WM levels (switches in WM gating) should give rise to an increase in the motor response

decision threshold. We thus aimed to test whether neural markers of response switching and

conflict are also impacted by switches of WM input and output gating, and whether they are

accompanied by a concomitant change in decision threshold.

In sum, the current study was designed to test the hypotheses that selective input, output

and response gating are managed by analogous computations and that they are distinguishable

temporally. Very little is known on the order in which selective cognitive and action decisions

are operating and how they unfold in time. This is important, in part, because input and out-

put gating rely on close cortico-striatal circuits that may require high temporal resolution to

disentangle. Furthermore, we investigate the functional role of WM gating and response gat-

ing. We employ a trial-by-trial indexing approach of EEG signals to quantify the implications

of selective gating on the prioritization of WM and action representations. Finally, we will

examine if the same control mechanisms that are engaged to response conflict during motor

switching are also recruited in response to cognitive conflict arising from multiple items or

task rules held in WM. To quantify these dynamics, we will employ an abstract mathematical

model, the hierarchical drift-diffusion model (HDDM) [35,61].

Results

We first assessed the most basic prediction that switches at each gating level (input, output,

response) will translate into separable costs on behavior. Three-way repeated-measures ANO-

VAs were run on mean RT and mean error rate as a function of switches in input (update,

maintain) × output category (letters, symbols) × response (same, different).

For RT, significant main effects were observed for switches at all levels: input (F1,29 = 103.99,

p< .001, ηp
2 = .78), output (F1,29 = 54.06, p< .001, ηp

2 = .65) and response (F1,29 = 5.40, p = .03,

ηp
2 = .16). The faster RT for repeats than for switches is consistent with the canonical gating
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model in which a switch at any level incurs conflict and delays motor responding. Significant

under-additive interactions (Fig 3) were also observed between input × output (F1,29 = 57.81,
p< .001, ηp2 = .67), input × response (F1,29 = 81.51, p< .001, ηp2 = .74), and output × response

(F1,29 = 36.51, p< .001, ηp2 = .56). The three-way interaction was also significant (F1,29 = 18.39,
p< .001, ηp2 = .39) indicating that the under-additive interactions between switches at two lev-

els is limited to the case where the third level was not switching.

For error rate, the only significant effect was for the 2-way input × response interaction

(F1,29 = 43.00, p< .001, ηp2 = .60), such that switches in input gating demands were related to

increased accuracy for response switching (Fig 3). This result indicates a speed-accuracy trade-

off given the RT results from that same interaction; this will be further investigated with the

DDM model below. None of the main effects nor the other interactions were significant

(F1,29<3.7, p>.06). Note that an extended five-way ANOVA was also conducted with WM

state (updating, maintenance), updating frequency (rare, frequent) and the three gating levels

Fig 3. Behavioral effects of switching in gating demands. Mean RT (a-c) and error rate (d-f) demonstrate under-additive interactions at all levels (output and

response, input and response and, input and output).

https://doi.org/10.1371/journal.pcbi.1008971.g003
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(switch, repeat) in input, output and response gating. The results of this larger analysis are

reported in S1 Text and S1 Fig.

Temporal evolution of neural gating dynamics across levels

Given that switches in gating demands at all levels had observable effects on behavior, but with

under-additive interactions, we also assessed whether such switches would be observable in

neural activity. The impact of gating was most observable during switch trials, which induce a

transient period of conflict in cortex (the equivalent of an ERP in the model) [12,35,62]. Nota-

bly, these models are hierarchical, such that neural signatures of gate switching evolve in time,

with higher level gates inducing conflict prior to the response gate (Fig 4A; [62]). As noted in

the introduction these processes are predicted to evolve partly in parallel leading to under-

additive interaction but also to terminate serially. Indeed, previous behavioral work has

showed evidence for a combination of parallel and serial processing among cognitive and

response selections, a result that was captured using the same hierarchical PFC-BG neural net-

work model [52].

To evaluate whether gating processes are observable and whether they evolve in parallel or

in serial, we focus on trial-to-trial switches that place demands on input, output, and response

gating independently. Accordingly, we leverage three orthogonal switch versus repeat trial

contrasts to index gating demands: (a) Input gating: The transition from maintenance trials to

updating trials requires a shift from a closed to an open input gate, in order to selectively

Fig 4. (a) Summed activation over units in PFC-BG neural network, showing impact of gate switch vs repeat (a) early in PFC and later in motor cortex

adapted from [62]). (b-c) Current study. (b) Scalp map topography for the predictors that survived permutation correction for the three gating types (input

in updating trials, output, response in three rows from top to bottom). The color in the scalp map represent the t-value of the average regression weights in

each electrode at the time range indicated above each scalp map. Input, output and response gating signatures evolve sequentially in time, but with clear

temporal overlap. (c) Grand ERP plots at representative electrodes from the significant univariate patterns show significant and dissociable effects for

switching during input, output and response gating. The shaded error bars represent standard error of the mean (SEM) and the black markers on the x-axis

reflect the time points where the difference between switch and repeat was significant.

https://doi.org/10.1371/journal.pcbi.1008971.g004
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update the task-relevant category. These switch trials are compared to update repeat trials. (b)

Output gating: The relevant category for guiding the match decision is selected from within

memory using output gating. When the category switches across trials, a new address must be

accessed, placing higher demands on the output gate relative to when the category repeats. (c)

Response gating: Switches of the same/different response should result in transient conflict at

the level of the response decision relative to repeats.

We used a regression approach to extract spatiotemporal clusters that reflect the three gat-

ing effects on the trial-by-trial EEG signal, controlling for RT and multiple comparisons (see

Methods; [63,64]). The results of this regression analysis yielded significant univariate patterns

for WM input gating, output gating and response gating (Fig 4B). Notably, the neural markers

of all three gating levels (input, output and response) evolved dynamically in order (Fig 4B),

but with substantial overlap in time (410ms– 470ms), consistent with previous empirical stud-

ies and hierarchical computational models of cortico-striatal circuitry [12,52]. The response

index also persisted on its own after the input and output gate signatures (see Fig 4B). The dis-

tinct univariate patterns of activity for each gating level, with largely overlapping time win-

dows, provides neural and temporal support for the PBWM prediction that WM is managed

by independent gate selection mechanisms operating mostly in parallel [52]. A closer look at

these univariate patterns showed distinct ERP components for each level of gating at sites

where the univariate patterns had maximal activity (Fig 4C). Specifically, the switch in the

input gate to WM in updating trials showed increase in amplitude in the parietal P3b [65]. The

same parietal site also showed a positive effect for response switching but at a later time win-

dow in the positive slow wave (PSW) component [66]. Finally, output switching was associated

with a frontally negative enhancement in the N2 time range [67]. We speculate about the role

of these ERP effects in the Discussion.

Gating as a prioritization mechanism

Having identified putative neural signatures of gating operations, we next sought to assess the

functional impact of gate switching in terms of prioritization of task-relevant representations.

The reference-back-2 task employed in this study is suited to study this question: in every trial,

two representations are held in WM. Only one, however, is relevant to guide action selection

(and to be selectively updated in WM when needed), while the other representation is prospec-

tively relevant and therefore still requires maintenance. This design allowed us to test if selec-

tion within WM (output gating) shares the same neural manifestation as action selection

(response gating). We leveraged a trial-by-trial indexing approach [63,64]. Thus in contrast to

the last section, in which we identified neural signatures of gate switching, here we used GLM

to extract spatiotemporal clusters in the EEG signal that reflect the representations themselves

(e.g., relevant category and response), controlling for RT, WM state (update, maintenance)

and multiple comparisons ([63,64] see methods).

Supporting the notion that switches at the relevant level enhance the need for gating, we

found that the trial-wise neural similarity increased following switches of the relevant gate (see

Fig 5B and 5C). Specifically, output switching enhanced the neural difference between the two

categories whereas response switching enhanced the neural difference between the two motor

action representations. These increases in discriminability were very transient in maintenance

trials (only around 200ms) while in updating trials, the benefit for output switching lasted

throughout the trial (180-450ms; see Fig 5B). This finding is consistent with the PBWM model

scheme in which selective updating of WM further enhances activity in the memory layer

(Fig 1) which is compounded with impact of output and response switching operations.

Together these results support the notion that selective gating at both cognitive and the motor
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level share the functional role of prioritization that increases the neural index of the represen-

tation selected by the relevant gate.

Gate switching at any level increases decision threshold

The behavioral results described above revealed that switches at any level of gating were related

to increased RT cost. To further decompose separable cognitive processes that give rise to such

Fig 5. Temporal dynamics of neural prioritization by gating. (a) Trial-by-trial indexing of gated representations.

Univariate patterns were identified for each representation of interest using GLM. Trial by trial similarity indices

obtained by computing the dot-product between the 2D voltage-time map on individual trials with that of the mask for

the relevant representation. As an example, the similarity computation with the category mask is shown. This

similarity index is obtained over sliding window time bins (red rectangle). The result is a temporally evolving EEG

index of similarity in time points for which the mask was significant (see methods for more detail). (b-c) The temporal

dynamics of similarity indices to the relevant representations in updating (left) and maintenance (right) trials. (b) The

neural similarity to the selected category enhanced following switches in the output gate. (c) The neural similarity to

the selected action enhanced following switches in the response gate. Note that the GLM mask of action was significant

in two time windows (in an early window between 100-500ms and in a later window 670-800ms) that are separated by

the black dashed line (in between these periods the mask was not significant, and hence there is no similarity to plot).

The shaded error bars represent standard error of the mean (SEM). The black markers on the x-axis reflect the time

points where the similarity index differed between switch and repeat (see methods for more detail).

https://doi.org/10.1371/journal.pcbi.1008971.g005
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changes in RT, we leveraged the drift diffusion model (DDM). As noted in the introduction,

various studies have suggested that dorsomedial frontal cortex detects response conflict (which

is elevated following switches) and it recruits prefrontal sub-thalamic pathway mechanisms

that increase the effective decision threshold [57–59]. In the DDM, changes in the threshold

are used as a cognitive control mechanism that regulates the speed-accuracy tradeoff, with

larger thresholds related to slower but more accurate decisions. Importantly this threshold

parameter is separable from impacts of other parameters (such as the rate of evidence accumu-

lation or “drift rate”, whereby a slower drift rate would lead to slower but less accurate deci-

sions). Thus to properly test out PBWM prediction, we relied on the joint distribution of RTs

and error rates and fit the DDM.

To illustrate the functional importance of the decision threshold on optimal behavior dur-

ing conflict, consider the following example. Imagine you are driving in the morning from

home on your routine way to work but this morning you have to first stop by the dentist for a

scheduled appointment. You get to the intersection near your work place where you always

take a left to get to work so the visual information of the familiar intersection gives rise to a

prepotent response to turn left. However, now you also need to consider your goal in WM that

you first need to get to your dentist appointment. You then need to retrieve the directions to

the dentist from memory before you can decide if it requires going left or right. This situation

is referred to as a response conflict because the incorrect habitual response to turn left com-

petes with the context-dependent correct response, which may be to turn right. Such conflict

is thought to be managed by an interaction between the medial PFC and the STN that can tem-

porarily pause the response gate by sending diffused excitatory projections to the GPi through

a “hyperdirect” pathway that bypasses the striatum. This excitatory projection to the GPi, tem-

porarily suppresses the response gate [68,69] preventing it from selecting any response includ-

ing the premature response that was activated based on the visual input alone. Neural models

and previous empirical findings demonstrated that such response conflict is reflected by a

mid-frontal EEG signature that triggers the increase of the decision threshold on the response

gate via the mPFC-STN network [35,58,70–74]. The additional time provided by the increased

decision threshold, allows a more cautious and deliberate response selection that also considers

the evidence provided by WM information. An important extension of previous findings that

we aimed to test here was whether information selection to or in WM by the input and the out-

put gate, also manifests as a cognitive conflict that delays responses until the WM conflict is

resolved, as predicted by hierarchical models of PFC-BG [12].

Bayesian parameter estimation with HDDM revealed that the DDM provided an adequate

fit to choice proportions and response time distributions (Figs 6 and S2 and S3). Moreover,

switches at each independent level of gating (input, output, and response) were related to

increased decision thresholds (see Fig 7 for statistics). Notably, in updating trials, such effects

were incrementally larger when switches were closer to the response level. This result supports

the notion that response conflict has preferential impact on motor decision threshold, but that

switches in higher level gates can nevertheless recruit the same process.

Relatedly, parameter estimates revealed under-additive interactions (Fig 7) that mirrored

those described in behavioral summary statistics above, and are also consistent with the EEG

findings that gate switches overlapped in time. Specifically switching both input and output

gates increased threshold to a similar level as switching only one gate, again suggesting that

input and output gating in WM are two independent selection mechanisms that can be man-

aged simultaneously. Furthermore, in updating trials, the threshold was most strongly elevated

by response gate, such that any additional conflict at the cognitive level (by input or output

switch) did not further elevate the threshold much when response conflict was present. Con-

versely, in maintenance trials, input gate switching (i.e., switching to a maintenance policy by
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closing the gate) had the strongest impact on threshold whenever another gate was switching

with it. We speculate about potential mechanisms for this effect in the discussion.

Discussion

These findings provide heretofore untested empirical support for the PBWM theoretical

framework in which working memory involves a hierarchy of (content-addressable) selective

input, output, and response gating operations. First, we developed a task that separately taxes

the need for input and output gating processes, motivated directly by the computations in

PBWM. The cortico-striatal gating framework offers a theory of selective gating that includes

not only plausible mechanisms for learning and generalization of gating policies [6,7,9,18,62]

but also supports advanced cognitive control functions, like hierarchical control [12], higher

order learning, and cognitive flexibility [11] in complex tasks like the reference-back-2 task

used in this study. The previous reference-back task focused on input gating [26,27,29,32] and

its correlates in PFC and BG [30]. Here, we augmented that task by adding the need to track

two independent categories over trials, thereby taxing selective input gating, while also orthog-

onally manipulating output gating. The advantage of the reference-back-2 task is that it is a

continuous task that manipulates selective input and output gating demands to/from a particu-

lar address in memory, while preserving the need for continued maintenance of other infor-

mation across trials.

Second, we confirmed the basic prediction that neural correlates of input, output, and

response gating evolve dynamically and have analogous effects on behavior. The mass-univari-

ate analysis of the EEG provided the temporal confirmation of this prediction by showing dis-

tinct spatiotemporal patterns for each gating level (input, output, response) that were

independent and partially overlapping in time (see [53] for similar conclusions in PBWM sim-

ulations and behaviorally in a hierarchical rule task). An ERP analysis of selected electrodes

Fig 6. Model fit. (a) Behavioral RT distributions across the group are shown for switching at each level (red line)

together with posterior predictive simulation from the HDDM (light blue) in updating trials. Distributions of correct

(the right positive tail) and incorrect (left negative tail) trials show good correspondence between data and model. (b)

Model fit with Quantile-Quantile plots. Model fit to behavior can be more precisely viewed using quantile-quantile

plots, showing quantiles of the empirical behavioral RT distributions (black) against the 50 simulation of RT

distribution (colored lines, capturing model uncertainty) from the posterior predictive of the HDDM model, for

correct response (positive RT) and incorrect responses (negative RT) in updating trials. Quantiles were computed at

the group level. The empirical RT was mostly within the range of the simulated RT with a small over-estimation at the

right tail of the distribution.

https://doi.org/10.1371/journal.pcbi.1008971.g006
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where the observed mass-univariate response was maximal, showed that each gating decision

was marked with a different ERP component, suggesting again that each gating decision

engages a separate mechanism. Specifically, input switching to an updating policy was marked

by an increase in the P3b component, possibly reflecting the change in the relevance of the per-

ceptual stimulus for the updating of WM (triggered by the switch in the task cue) [65,66]. This

is consistent with previous work with the reference-back that has linked the P3b component to

the categorization of the stimulus as goal-relevant [28] or as meaningful for behavioral adapta-

tion in a context-specific manner [75]. The N2-like enhancement during output switching

potentially reflects the increased need for response monitoring [67] induced by the conflict in

the output gate. Such interpretation would be consistent with the predicted dependency

between hierarchical gating loops such that conflict at the higher level output gate may also

temporarily increase response conflict [12]. Finally, response switching was marked by an

increase in the posterior PSW amplitude, possibly reflecting difficulty in selection or prepara-

tion of an action that is different from that already planned or still in memory from the previ-

ous trial [66,76].

Third, we found that output gating (and particularly, switches therein) enhances the neural

index of WM content selectively for the relevant category. The probabilistic and unpredictable

Fig 7. Under-additive interaction between gating selections. Decision threshold parameter estimates from HDDM in updating (orange bars) and

maintenance trials (green bars), exhibit main effects of gate switching at each independent level of gating (input, output, and response), and under-additive

interactions between gate switches in input-output, input-response, and output-response. Error bars reflect within-subject 95% highest density interval of the

posterior distribution, in each case relative to maintenance repeat trials.

https://doi.org/10.1371/journal.pcbi.1008971.g007

PLOS COMPUTATIONAL BIOLOGY Analogous computations in working memory input, output and motor gating

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008971 June 7, 2021 13 / 24

https://doi.org/10.1371/journal.pcbi.1008971.g007
https://doi.org/10.1371/journal.pcbi.1008971


switching between categories imposed a dynamic need to access distinct “addresses” within

WM to update to, and read out from. This task property also had the important advantage of

overcoming the challenge of measuring memory prioritization without being contaminated by

the removal of irrelevant information [77] that often coincides with such prioritization manip-

ulations (e.g., [38]). The similarity measure analysis suggested that neural representations of

relevant WM categories were enhanced following WM gate switches at the corresponding lev-

els. Analogously, neural representations of motor responses were enhanced following response

switches. We thus propose that gating operations, perhaps implemented by corticostriatal cir-

cuits, are partially responsible for previous observations of prioritization. Similar conclusions

have been made in attentional shift experiments in which one or another stimulus category

becomes relevant, and where striatal activity dictates whether PFC selectively enhances poste-

rior representations of the relevant category [78]. Nevertheless, further investigations are

needed to determine which neural mechanisms provide prioritization gain during gate switch-

ing. For example, gate switching may change the “active neural trace” (e.g., [50]) of representa-

tions or it may increase their accessibility for read-out (e.g., in other prefrontal layers as in

PBWM). Other studies suggest that prioritization does not simply amplify relevant representa-

tions but that it also modifies the formatting of the non-selected representation so that they are

less similar to the form that would be read out (e.g., [79,80]). Future research should also test

whether gate switching facilitates coupling between cognitive rules and relevant task features

like action representations. [81,82]

Finally, the above neural and behavioral findings were further supported by quantitative

computational modeling using HDDM. Hierarchical PFC-BG models suggest that conflict at

the level of PFC representations recruits the same mechanism to prevent premature motor

responding [12,35]. We thus assessed whether gate switches at all levels of the WM hierarchy

are quantitatively related to adjustments in decision threshold that is thought to reflect cogni-

tive control, thus related to slower but more accurate responding (Fig 7). We found that

switches at any gating level were related to increases in the estimated decision threshold. This

finding builds on previous studies showing that switches or response conflict gives rise to

increased threshold via PFC-BG mechanisms [57–60], but extends it to confirm the hierarchi-

cal PFC-BG model prediction that such effects hold for switches at more cognitive levels [12].

Furthermore, by comparing the impacts of threshold adjustment when multiple gates are

switching, the HDDM analysis provided some further insight into the observed parallel pro-

cessing patterns in RT and in the EEG. First, threshold adjustments were under-additive, with

largest adjustments dictated predominantly by switches in response gate for updating trials,

but by switches in input gating for maintenance trials (i.e., the need to close the gate to prevent

updating). We speculate that closing the gate over WM might also recruit the same prefrontal

sub-thalamic pathway thought to be involved in transient response inhibition (e.g., [70,83]),

therefore switching to a maintenance mode might have a larger impact on motor gating than

switching to an updating mode. A limited finding that is consistent with this hypothesis is the

previous observation in the reference-back task [27] that input switching to maintenance (gate

closing) was marked by a mid-frontal EEG signature that has previously been associated with

the triggering of the mPFC-STN network during response conflict [58,70]. Future research

should test the possible similarities in the neural mechanisms that are triggered by response

inhibition vs cognitive inhibition in WM.

Notably, these threshold effects were obtained even though drift rate was also allowed to

vary by condition (see S4 Fig). In the DDM, (lower) drift rates can also capture slowed RT

when a condition is more difficult, as opposed to a control mechanism. Accordingly, we did

observe that drift rates were slower in conditions that required more cognitive processing to

succeed: updating vs. maintenance trials and switches at the cognitive level vs. switches at the
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response level. In both cases additional cognitive processing is required: updating trials require

replacing WM content in addition to accessing previous content for responding, and switches

at the cognitive levels are known to be more difficult than simple response switches (e.g., [84]).

These findings boost the interpretation that gate switches at any given level are specifically

related to elevated decision thresholds, while accounting for impact of difficulty on drift rate.

A key property of the cortico-striatal model that gained support by current findings is that

higher order cognitive “actions” (input and output gating operations) scaffold on top of the

canonical computational motor gating operations. Indeed, striatal dysfunctions such as in Par-

kinson’s disease causes not only progressive motor degeneration but also cognitive deficits

that are both related to the dysfunction of the gating system [85]. More recent work also found

that degraded ability to perform selective updating of WM is the key marker of the cognitive

deficits in Parkinson’s [86].

Lastly, our study has various limitations. First and foremost, while the EEG method allowed

us to assess the temporal dynamics of gating signals and representation decoding, it does not

afford the ability to assess the involvement of corticostriatal circuits specifically. Functional

imaging studies have implicated striatum in input gating in the reference back task [30], and

output gating in other tasks [6], but testing the involvement of this circuit in selective content-

addressable gating awaits further study.

Second, with the aim to increase our understanding of the latent cognitive processes that

give rise to the full behavior in the reference-back-2 task and not just the mean RT and error

rate, we leveraged the HDDM framework. However, it is likely that the decision process

engaged during working memory gating diverges from that assumed by the standard DDM,

and other models should be considered in future work (including those with time-varying

drift rates and/or boundaries). Such models are difficult to estimate, but recent tools open the

door for such investigations [87]. Moreover, future research could also employ a model-based

approach where neural patterns are linked to cognitive mechanisms through computational

models (e.g., [58,88]).

Methods

Ethics statement

All participants were compensated for their participation and gave written informed consent

as approved by the Human Research Protection Office of Brown University under protocol

0901992629, “Learning and Decision Making Genetics and EEG”

Participants

Thirty-two right-handed adults (aged 18–24; 18 female) with normal or corrected-to-normal

vision completed the experiment. All spoke English natively, were screened for neurological

medications/conditions. Two participants were excluded from the analysis, due to technical

problems with the experiment. All behavioral and EEG data has been made available on Dryad

(https://doi.org/10.5061/dryad.00000002t [89]).

Stimuli and procedure

Stimuli presentation and behavioral data collection were implemented using the Psychophys-

ics Toolbox extensions in Matlab [90–91]. One out of four possible stimuli was presented on

each trial. The stimuli were each of a distinct category: letters (“X”, “O”) and symbols (“%”,

“#”) with two stimuli in each category. The stimuli appeared in a random order. Each trial

started with a presentation of a stimulus inside a colored frame (red or blue), that indicated
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whether it was an updating trial or a maintenance trial. Participants had to make a matching

decision between the presented stimulus and the last item category that was presented inside

the updating color (e.g., red). Therefore, letters had to be compared with letters, and symbols

with symbols. For all trials (regardless of blue or red) required participants to follow the same

rule of comparing the stimulus with that of the corresponding category in the most recent

updating trial. Participants were instructed about the meaning of the color (i.e., which one cor-

responded to reference to be updated and which one indicated the stimulus should only be

compared to that in memory). The selected reference color (red or blue) was counterbalanced

between participants. The color of the frame in each trial was biased with 75% probability for

one color in the first six blocks of the experiment and 75% probability for the other color for

the last six blocks of the experiment. The order of color bias was chosen randomly. The biased

color manipulation allowed us to have a more stable measure of selective output gating where

the relevant category changed (output switch) but fewer trials in which there was also a color

(input policy) switch. Participants were instructed that there will be a color bias that will flip

once during the experiment. “Same” and “different” responses were indicated by using the

right and left index fingers, respectively, to press ‘Z’ and ‘/’ on the keyboard. Response map-

pings were chosen randomly for each participant.

Stimulus presentation was limited to 3 sec. The response was followed by an inter-trial

interval that was jittered between 800–1000 ms. Participants were instructed to keep their eyes

fixated on the center of the screen throughout the experimental blocks. The first two trials in a

block were always updating trials with stimuli from the two categories. Participants were

instructed that accuracy will not be measured in the first two trials in the block. The experi-

ment comprised of 12 blocks, including 90 trials each. Participants had to reach 80% accuracy

on the practice block before they began the experiment. Participants were allowed to repeat

the practice block up until 4 times.

Electroencephalogram (EEG) Recording and processing

Scalp voltage was measured using 62 Ag/AgCl electrodes referenced to a site immediately pos-

terior to Cz using a Synamps2 system (bandpass filter 0.5–100 Hz, 500-Hz sampling rate). Pre-

processing was conducted using the EEGLAB and ERPLAB toolboxes [92–93]. During pre-

processing, data were low-pass filtered at 30 Hz and high-pass filtered at 0.1 Hz. Epochs were

segmented from -200 to +800 ms surrounding stimulus onset and were baseline corrected

from –200 to 0 ms before the onset of the stimulus. The epoched data were visually inspected

and those containing large artifacts due to facial electromyographic (EMG) activity or other

artifacts (except for eye blinks) were manually removed. Independent components analysis

(ICA) was next conducted using EEGLAB’s runica algorithm. Components containing blink,

oculomotor artifacts, or other artifacts that could be clearly distinguished from genuine neural

activity signals, were subtracted from the data.

Data processing for univariate EEG analysis

To extract the neural correlates in the EEG signal of conditions of interest we employed a mass

univariate approach. A multiple regression analysis was conducted for each participant, in

which the EEG amplitude at each electrode site and time point was predicted by the conditions

of interest while controlling for other factors such as RT (such an approach was recently used

[63,64]). For the regression analysis, the EEG signal recorded with 500 Hz sampling rate was

down-sampled by a factor of 4, resulting in 125 time points for the selected window of

-200:800 ms around stimulus onset. The EEG signal was z-scored before it was entered to the

robust multilinear regression analysis to account for remaining noise in the data [64].
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Two separate multilinear regressions were run. The first regression assessed the neural cor-

relates for gate switching. It included 7 regression factors: log of RT (to remove variability due

to slower responses in some conditions; [64]), and 6 contrasts dummy coded as 1 and 0: WM

state (updating vs maintenance), input gating (WM state switch vs repeat), output gating (cate-

gory switch vs repeat), response gating (action switch vs repeat), bias (frequent updating vs

rare updating), and finally one interaction between WM state × input gating (to search for a

selective input gating pattern in updating trials).

The other regression assessed the neural prioritization of representations, i.e. to identify an

EEG signal that differentiates between representations at each gating level. The second regres-

sion included 4 factors: log of RT and 3 contrasts dummy coded as 1 and 0: WM state (updat-

ing vs maintenance), category (symbols vs letters) and action (same vs different).

Statistical analysis of GLM weights

Statistics on the regression weights were performed across participants for all electrodes and

time points by testing the significance of each point against 0. To correct for multiple compari-

sons, we performed cluster-mass correction by permutation testing [94] with custom written

Matlab scripts. All analysis code has been made available on Zenodo (https://doi.org/10.5281/

zenodo.4623800 [89]). Cluster-based test statistics were calculated by taking the sum of the t-

values within a cluster of significant points with threshold for a t test significance level of

P = 0.001. This was repeated 1000 times, generating a distribution of maximum cluster-mass

statistics under the null hypothesis. Only clusters with greater mass than the maximum cluster

mass obtained with 95% chance permutations were considered significant [64]. The results of

the second regression analysis yielded significant univariate patterns for the two representation

types (category and action). Note that a different regression model was also run to assess the

neural correlates of stimulus representations. This regression produced a significant univariate

pattern only for the “O” representation but not for any of the other stimuli. Therefore, we did

not continue with further analyses related to stimulus similarity.

Trial-by-trial similarity index

Using the GLM masks we then computed the dot product between individual trials (voltage

maps of electrode � time) and the identified masks (electrode � time maps of t-values of signifi-

cant pixels; [64]). This computation produced a trial-level similarity measure (see Fig 5A) that

presumably reflects how similar the EEG signal of the probed representation in memory on a

given trial to the mask activity of this representation. To visualize the temporal dynamics of

the EEG index (Fig 5B), the similarity measure procedure was calculated in sliding time bins

of 40 ms across the epoch, and applied only to time bins in which the original mask was signifi-

cant. The similarity index was calculated 121 times in each trial, with a 32ms overlap between

time bins. The temporal similarity indexing was obtained by calculating the mean similarity

between trials where one representation was probed and when the other one was probed. The

effect of gate switch and repeat on the similarity index was calculated using t-tests on the indi-

vidual time bins.

Note that to test the effect of gate switching on prioritization, we excluded trials from the

temporal dynamic analysis where the same stimulus was repeated from the previous trial. This

exclusion allowed us to control for impact of perceptual switches that could have elicited an

involuntary stimulus-driven enhancement of memory representations that match the probed

category stimulus (e.g., [28,95]). Therefore, we restricted analysis to output repeat trials involv-

ing a perceptual change (e.g., from “X” to “O”), while output switch trials also included a cate-

gory change (e.g., from “X” to “%”).
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Drift diffusion modeling

The DDM is a common sequential sampling model of two-choice RT tasks. The advantage of

this model is that it can translate response time distributions and error rates to the underlying

generative parameters in each task condition, and it has previously been used to summarize

decision dynamics that arise from BG gating [35,58–60]. The core parameters in the model are

threshold (or boundary separation) a, drift rate v, and non-decision time t. Threshold is the

distance between the response boundaries, where higher threshold indicates that more evi-

dence needs to be accumulated before committing to a choice, leading to slower but more

accurate responses. Conflict or switching in motor responses leads to elevated decision thresh-

olds [35,58–60]. Drift rate is the rate in which evidence is accumulated. Larger drift rates are

usually interpreted to reflect higher quality of evidence that is expressed by faster and more

accurate response times. Finally, non-decision time captures the processes that are not related

to the decision making process such as stimulus encoding and motor execution.

We tested whether the DDM provides a good model of RT distributions of correct and

incorrect choices during the reference-back-2 task in which the decision threshold can be

adjusted as a function of conflict or switches at any gate level (while allowing the drift rate to

also vary by condition)). The underlying decision-making process during the reference-back-2

task were estimated from the DDM likelihood functions [35]. We used hierarchical Bayesian

estimation of DDM parameters, where individual’s fit is constrained and informed by the

group distribution leading to more accurate estimation of parameters at both the individual

and group level [35].

Parameter estimation in the Hierarchical Bayesian framework used the Markov-chain

Monte-Carlo (MCMC). HDDM is especially beneficial for estimating individual parameters

while optimizing the tradeoff between random and fixed-effects [35]. The first two trials in

each block, omission trials, and trials with very fast RT (<200ms) were excluded from the anal-

ysis. RT was limited to 3sec. There were three thousand samples generated from the posterior

using four chains. The first thousand (burn-in) and every second (thinning) were discarded.

Proper chain convergence was tested between the MCMC chains, using the Rˆ statistic [96],

which measures the degree of variation between chains relative to the variation within chains.

The maximum Rˆ value across all parameters in all eight models was 1.03, indicating that all

chains converged successfully [97].

Statistical analysis was performed on the group mean posteriors. The Deviance Information

Criterion (DIC) was used for model comparison [98] which balances model fit against com-

plexity. We first tested the simplest model where the five conditions (WM state, input switch-

ing, output switching, response switching, and updating frequency) were used as regression

weights without interactions and with group level estimates (DIC: 29339). We systematically

added interactions, and the model with the best fit was one in which drift rate and threshold

exhibited 4-way interactions (DIC 28806). This best fitting model was estimated again allowing

for subject-level estimates in each condition (DIC 27232):

Threshold ~ a_mr + Update_frequency + (WM state × input × output × response) +. . .

Drift rate ~ v_mr + Update_frequency + (WM state × input × output × response).

A_mr is the intercept for threshold and v_mr is the intercept for drift-rate, Update_fre-

quency reflects the high or low frequency of updating, and the 4-way interaction captured

all combinations of switch or repeat during updating and maintenance trials (15 combinations

in total). Within subject regressions were used such that all gate switch effects are evaluated

relative to the maintenance repeat condition (the intercept), using patsy in HDDM. Signifi-

cance was determined if the 95% confidence interval of the posterior mean did not overlap

with 0.
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Behavior characterization and model validation

We first plotted the overall RT distributions for each gating condition and interaction, sepa-

rately for updating and for maintenance trials (Figs 6 and S2) using Gramm plotting tool-

box [99]. This plot showed that the HDDM model captures choice proportions (of correct and

incorrect trials) and the different shape of the RT distributions within each gating condition,

simultaneously. A critical test of a the DDM model is that it can capture the full RT distribu-

tions in each condition. Although we used model fit statistics (DIC) to select the best-fitting

model, it is also important to validate that the best fitting model can capture the observed

response proportions and RT distributions. For this model validation we generated quantile-

quantile plots describing the correspondence between behavior and DDM predictions (Figs 7

and S3) [99]. We compared the shape of the empirical RT distribution to the shape of the sim-

ulated RT distribution by plotting each data against a theoretical normal distribution. The

plots in Figs 7 and S3 exhibit the RTs on the y-axis as a function of the estimated quantiles on

the x-axis based on the inverse of the continuous cumulative distribution function (quantile

function) that was estimated at the group level. RTs of the model were simulated 50 times

from the posterior predictive of the HDDM model and plotted on top of each other to show

the uncertainty in the model. As can be seen, the empirical RT was mostly within the range of

the simulated RT with a small over-estimation at the right tail of the distribution.

Supporting information

S1 Fig. Behavior effects of gate switching. Mean RT (A-C) and Error rate (D-F) demonstrate

differences in performance across all levels of gate switching and interactions between gating

levels (output and response, input and response and, input and output) in maintenance trials

(left panels) and updating trials (right panels).

(TIF)

S2 Fig. Model fit. Behavioral RT distributions across the group are shown for switching at

each level (red line) together with posterior predictive simulation from the HDDM (light

blue). Distributions of correct (the right positive tail) and incorrect (left negative tail) trials in

updating trials (left) and maintenance trials (right) show good correspondence between data

and model.

(TIF)

S3 Fig. Model fit with Quantile-Quantile plots. Model fit to behavior can be more precisely

viewed using quantile-quantile plots, showing quantiles in updating (left) and maintenance

(right) trials, of the empirical behavioral RT distributions (black) against the 50 simulation of

RT distribution (colored lines, capturing model uncertainty) from the posterior predictive of

the HDDM model, for correct response (positive RT) and incorrect responses (negative RT).

Quantiles were computed at the group level.

(TIF)

S4 Fig. Drift rate parameter estimations from the HDDM. Drift rate in updating (orange

bars) and maintenance trials (green bars) exhibit slowing (lower drift) in conditions that

required more cognitive processing and exhibit facilitative interactions between gate switches.

A possible interpretation for the facilitation finding is that WM updating decisions increase

the mutually facilitative effect of switching across the gating system. The relative drift rates are

presented as positive for plotting convenience.

(TIF)
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