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Abstract

■ Humans can construct rich subjective experience even when
no information is available in the external world. Here, we inves-
tigated the neural representation of purely internally generated
stimulus-like information during visual working memory.
Participants performed delayed recall of oriented gratings em-
bedded in noise with varying contrast during fMRI scanning.
Their trialwise behavioral responses provided an estimate of
their mental representation of the to-be-reported orientation.
We used multivariate inverted encoding models to reconstruct
the neural representations of orientation in reference to the
response. We found that response orientation could be success-
fully reconstructed from activity in early visual cortex, even on

0% contrast trials when no orientation information was actually
presented, suggesting the existence of a purely internally
generated neural code in early visual cortex. In addition, cross-
generalization and multidimensional scaling analyses demon-
strated that information derived from internal sources was
represented differently from typical working memory represen-
tations, which receive influences from both external and internal
sources. Similar results were also observed in intraparietal
sulcus, with slightly different cross-generalization patterns.
These results suggest a potential mechanism for how externally
driven and internally generated information is maintained in
working memory. ■

INTRODUCTION

Humans have the ability to mentally retain and manipulate
visual information even when the information is not in view.
This ability—visual working memory—is fundamental to
human cognition (Luck & Vogel, 2013; Baddeley, 2003;
Engle, Tuholski, Laughlin, & Conway, 1999). Understanding
how the brain keeps such information online is thus a crit-
ical question for cognitive neuroscience. The sensorimo-
tor recruitment hypothesis posits that sensory cortex is an
important substrate for the representation of fine-grained
perceptual information in working memory (Serences,
2016; D’Esposito & Postle, 2015; Awh & Jonides, 2001),
for example, early visual cortex for maintaining low-level
visual information. This view is supported by evidence
from multivariate analyses of fMRI data that stimulus-
specific information can be decoded from early visual
cortex during maintenance of visual feature information
(Yu & Shim, 2017; Riggall & Postle, 2012; Harrison &
Tong, 2009; Serences, Ester, Vogel, & Awh, 2009). With
fMRI, a neural code is assessed as a systematic set of
mappings between different values of a cognitive state
and different patterns of fMRI activity, and a shared code
is inferred if the same mapping is observed across two
domains of cognition. With this logic, it has been demon-
strated that, in early visual cortex, visual working memory
shares the same neural codes with visual perception
(Harrison & Tong, 2009), attention (Yu & Shim, 2019),

and imagery (Albers, Kok, Toni, Dijkerman, & de Lange,
2013), suggesting that early visual cortex may serve as a
mental buffer for representing visual information across
different categories of cognitive task (Roelfsema & de
Lange, 2016).
Although early visual cortex recruits common neural

codes for different cognitive processes, these processes
can be driven by distinct sources of information. For exam-
ple, visual perception is driven by external, bottom–up
input received from the retina, and visual imagery is driven
by internal, top–down input from higher cortical areas
(Pearson, 2019). Of course, early visual cortex contains
numerous reciprocal connections with higher cortical
areas, and bottom–up and top–down signaling are involved
in most, if not all, visually mediated behaviors, including
visual perception (Gilbert & Li, 2013; Muckli & Petro,
2013). Nevertheless, the fact that visual imagery shows dis-
tinct temporal dynamics and evolves later in time, com-
pared with visual perception (Dijkstra, Mostert, de Lange,
Bosch, & van Gerven, 2018), suggests at least some mean-
ingful distinction between the processing of externally
presented and internally generated information.
When considering the sensorimotor recruitment hypoth-

esis, it is important to note that visual working memory can-
not be understood as merely the prolongation of sensory
processing, because many stimulus-nonspecific factors can
influence representations inworkingmemory. For example,
several studies have demonstrated recall biases toward dis-
crete color centers in visual working memory for color
(Panichello, DePasquale, Pillow, & Buschman, 2019; Bae,

1Chinese Academy of Sciences, Shanghai, China, 2University of
Wisconsin–Madison

© 2021 Massachusetts Institute of Technology Journal of Cognitive Neuroscience 33:6, pp. 1142–1157
https://doi.org/10.1162/jocn_a_01702

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/33/6/1142/1913694/jocn_a_01702.pdf by guest on 26 M
ay 2021

http://crossmark.crossref.org/dialog/?doi=10.1162/jocn_a_01702&domain=pdf&date_stamp=2021-4-13


Olkkonen, Allred, & Flombaum, 2015; Bae, Olkkonen,
Allred, Wilson, & Flombaum, 2014), probably because of
drift toward stable attractor states established through prior
experience (Panichello et al., 2019). Information from the
previous trial can also be reactivated or otherwise influence
the current trial (Barbosa et al., 2020; Bae & Luck, 2019).
Moreover, there is considerable physiological evidence for
an important role for feedback from higher cortical areas.
For example, laminar recordings indicate that delay-period
input to primary visual cortex (V1) is most prominent in
supra- and infragranular layers that receive feedbackprojections
from higher areas (Lawrence et al., 2018; van Kerkoerle, Self, &
Roelfsema, 2017), and delay-period local field potentials in the
motion-sensitive middle temporal area MT are coherent with
spiking in PFC (Mendoza-Halliday, Torres, & Martinez-Trujillo,
2014). Because typical working memory tasks, including
those cited here, begin with the external presentation of
to-be-remembered stimulus information, delay-period rep-
resentations presumably reflect the combined influence of
processes associated with externally presented and with inter-
nally generated information. How such “typical”workingmem-
ory representationsmay differ from purely internally generated
representations is the focus of this study. Although our focus is
on representations in early visual cortex, we also present results
fromintraparietal sulcus (IPS),because this regionhasalsobeen
implicated in representing working memory-related informa-
tion (e.g., Yu & Shim, 2017; Bettencourt & Xu, 2016; Ester,
Sprague, & Serences, 2015).
In the current study, stimulus contrast varied across tri-

als between 0%, 10%, and 60%, but participants were in-
structed that a sample orientation would be presented
on every trial and that a recall response was required at
the end of every trial, regardless of subjective visibility.
This allowed us to use responses to infer backward what
they had represented during the delay period, including
on 0% contrast (“null”) trials that lacked external input.
These responses could then be used to investigate inter-
nally generated representations in visual working memory
maintenance. The comparison between the null and typi-
cal working memory trials (with 10% or 60% contrast)
could also be used to isolate processes specific to inter-
nally generated representations.

METHODS

Participants

All participants were recruited from the University of
Wisconsin–Madison community. Two behavioral experi-
ments (Experiments 1A and 1B) were performed prior to
the fMRI experiment (Experiment 2) to test the visibility of
the stimuli to be used in the fMRI experiment. Thirteen
individuals (2 men, mean age = 21.0 ± 3.3 years) partici-
pated in Experiment 1A, and 7 of these also participated
in Experiment 1B, along with 9 new individuals (n = 16
in total; 3 men, mean age = 19.6 ± 1.9 years). Eighteen
individuals (including one who also participated in

Experiment 1B) participated in Experiment 2. One of these
was excluded because of failure to comply with task in-
structions, resulting in 17 individuals (4 men, mean age =
23.5 ± 3.8 years) as the final sample size for Experiment 2.
We did not carry out power analysis a priori, but our sample
size was comparable or even superior to those from recent
fMRI studies that have used a similar task design (Yu, Teng,&
Postle, 2020; Rademaker, Chunharas, & Serences, 2019;
Bettencourt & Xu, 2016; Ester et al., 2015). All participants
had normal or corrected-to-normal vision, reported no
neurological or psychiatric disease, and providedwritten in-
formed consent approved by the University of Wisconsin–
Madison Health Sciences institutional review board. All
were monetarily compensated for their participation.

Stimuli and Procedure

Sample stimuli were sinusoidal gratings embedded in white
noise (spatial frequency = 1°/cycle, radius = 4°), presented
at varying levels of Michelson contrast. In Experiment 1A,
therewere two types of stimuli: gratingswith a high contrast
(60%) and gratings with a 75% threshold-level contrast, de-
termined for each participant with a thresholding task. In
Experiments 1B and 2, there were three types of stimuli:
gratingswith a high contrast (contrast= 60%), gratings with
a low contrast (contrast=10%), andnull stimuli (contrast=
0%). Importantly, no orientation information was visible in
null gratings, making them equivalent to white noise
patches.

All stimuli were created and presented using MATLAB
(The MathWorks) and Psychtoolbox 3 extensions
(Brainard, 1997; Pelli, 1997). In Experiments 1A and 1B,
stimuli were presented on a 21.5-in. iMac screen at a view-
ing distance of 63 cm and behavioral responses weremade
with a computer mouse. In Experiment 2, stimuli were
projected via a 60-Hz projector (Avotec Silent Vision
6011, Avotec, Inc.) and viewed through a coil-mounted
mirror in the MRI scanner at a viewing distance of 69 cm,
and participants’ behavioral responses were made with an
MR-compatible trackball response pad (Current Designs
Inc.). During the scan, eye position was monitored and
recorded using the Avotec RE-5700 eye-tracking system
(Avotec, Inc.).

Experiment 2

We begin with a detailed description of Experiment 2, the
experiment of primary theoretical interest, during which
participants performed one-item delayed recall of orienta-
tion in the fMRI scanner. On each trial, participants viewed
a sample stimulus (high, low, or null) presented at the
center of the screen for 0.5 sec. After a delay of 9.5 sec
(or 8.5 sec for two participants), an orientation dial (radius =
4°) was presented centrally, and participants rotated the dial
until its needle matched the remembered orientation as
precisely as possible in a 4-sec response window. Critically,
participants were told that an oriented grating would be
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presented on every trial, although its visibility would vary
across trials, and they were instructed to make a best guess
when they were unsure about what the orientation was.
Feedback (recall error) was provided after the response
period for 0.5 sec, even on null trials, and recall error was
calculated as the angular difference between sample and
response orientations, regardless of whether or not the
sample orientation had actually been visible (Figure 1).
The sample orientation for each trial was randomly selected
from 1° to 180° in steps of 1° in the orientation space. The
starting position of the needle of the response dial was ran-
domly chosen on every trial, independent of the sample.

For four participants, total trial length was 22 sec: For
two of the four participants tested with an 8.5-sec delay
(S01 and S02), the intertrial interval (ITI) was 9 sec, and
for the two tested with a 9.5-sec delay (S03 and S04), ITI
was 8 sec. For all remaining participants, for whom the
delay was 9.5 sec and ITI was 10 sec, total trial length
was 24 sec. To match the number of time points across
participants, all analyses focused on the first 22 sec of
every trial.

Each run began with an 8-sec fixation period, followed
by 18 experimental trials, and the ratio of trial types (high:
low:null) during each run was 3:1:2 (i.e., nine high trials,
three low trials, and six null trials). For one participant
(S01), the experimental run in the first scan session was
truncated to 12 trials (i.e., six high trials, two low trials, four
null trials) because of a technical problem with scanning.
Each participant completed 28–32 runs across two scan-
ning sessions. In total, 12 participants completed 270 high
trials, 90 low trials, and 180 null trials (S02, S05, S06, S08 to
S12, S14 to S17); two participants completed 288 high

trials, 96 low trials, and 192 null trials (S03 and S04); two
completed 252 high trials, 84 low trials, and 168 null
trials (S07 and S13); and one (S01) completed 231 high
trials, 77 low trials, and 154 null trials. All participants were
debriefed at the end of the study, and none of them
reported awareness of the existence of null trials (i.e., all
reported believing that an oriented grating was presented
on every trial).

Experiments 1A and 1B

Prior to the fMRI experiment, we ran two behavioral studies
to determine the contrasts of the gratings to be used in the
scanner. The overarching rationale was to develop condi-
tions that would disguise from participants the fact that a
substantial proportion of samples contained no stimulus
information (i.e., null samples). To achieve this, we
sought to find two levels of contrast that were each highly
discriminable, but that would create the impression for
participants that subjective visibility would vary from trial
to trial. The trial structure for both was similar to that from
Experiment 2: one sample grating (radius = 3°) with a ran-
domly selected orientation was presented on the screen
for 0.1 sec, followed by a brief delay, followed by recall with
an orientation wheel. Responses were self-paced, and feed-
back was given after each response (0.5 sec).
Experiment 1A was carried out to examine how partici-

pants would perform at each of two levels of contrast: high
and at-threshold. It began with a block of 80 trials to deter-
mine each individual’s contrast threshold: After an initial
10 trials of delayed recall (delay of 0.3 sec) at a fixed con-
trast of 12%, the sample contrast for each of the ensuing

Figure 1. Trial sequence of the fMRI task. Participants performed a one-item delayed recall task on oriented gratings. On different trials, they viewed
a high-contrast (60%) grating embedded in noise, a low-contrast (10%) grating embedded in noise, or a null-contrast (0%) grating embedded in noise
(i.e., pure noise patch). Participants were told orientation information was always presented, despite that the visibility of the gratings might differ.
After a prolonged delay (8.5 sec for two participants and 9.5 sec for 15 participants), they recalled the remembered orientation on an orientation
wheel. Feedback was provided at the end of every response.
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trials was adjusted using a QUEST procedure (Watson &
Pelli, 1983). Responses were binarized using a cutoff crite-
rion of 20° of recall error. Four catch trials were interleaved
at randomly determined intervals, and on these catch
trials, the contrast was set to 3 times of the contrast from
QUEST. The discrimination contrast threshold of the
grating that generated 75% accuracy was determined at
the end of the block. During the remainder of the session,
participants performed five or six blocks of delayed recall
of orientation, delay length was either 1 sec or 7 sec, and
delay length and sample contrast (60%; at threshold) were
fully crossed during each 60-trial block.
Experiment 1B was carried out to examine how partici-

pants would perform at each of the three levels of contrast
that would be used for the fMRI study: high (60%), low
(10%), and null (0%). Participants performed five or six
blocks with 60 trials each; again, delay length was either
1 or 7 sec, and delay length and sample contrast (high;
low; null ) were fully crossed. For both Experiments 1A
and 1B, only trials with a 7-sec delay were included in
the behavioral analyses to better match the duration of
the fMRI task.

Behavioral Analyses

Behavioral performance was assessed in two ways. Within-
trial recall error was calculated for high and low trials as
the angular difference between the sample and response
orientations, for each condition separately. Differences
between conditions were evaluated by paired t tests.
Serial bias on response from the previous trial was calcu-
lated for all three conditions. This was done by calculating
the difference between the current and previous re-
sponse, and grouping the difference values into nine
20°-wide bins. To test whether the number of trials dif-
fered between bins, we performed a χ2 goodness of fit
test on each condition.

fMRI Methods

Data Acquisition

Whole-brain images were acquired with a 3 Tesla GE MRI
scanner (Discovery MR750; GE Healthcare) with a 32-
channel head coil at the Lane Neuroimaging Laboratory
at the University of Wisconsin–Madison HealthEmotions
Research Institute (Department of Psychiatry). Functional
images were acquired with a gradient-echo echo-planar
sequence (2 sec repetition time (TR), 22-msec echo time,
60° flip angle) within a 64 × 64 matrix (42 axial slices,
3 mm isotropic). A high-resolution T1 image was also ac-
quired for each session with a fast SPGR echo sequence
(8.2-msec TR, 3.2-msec echo time, 12° flip angle, 176 axial
slices, 256 × 256 in-plane, 1.0 mm isotropic).

Preprocessing

fMRI data were preprocessed using AFNI (afni.nimh.nih
.gov; Cox, 1996). The first four volumes of each functional

run were removed. The data were then registered to the
first volume of the first run within each scan session and
then to the T1 volume of the same session. Data from the
second session were further registered to the T1 volume
of the first scanning session. The data were then motion
corrected, detrended (linear, quadratic, cubic), and con-
verted to percent signal change. Data for subsequent gen-
eral linear model analyses were further spatially smoothed
with a 4-mm FWHMGaussian kernel. Data for multivariate
and univariate time course analyses were z-scored within
each run.

Univariate Analyses

Task-related changes in activity were identified with a
mass-univariate general linear model implemented in
AFNI, with sample, delay, and probe epochs of the task
modeled with boxcars (0.5, 8.5 or 9.5 sec depending on
the participant, and 4 sec, respectively), each convolved
with a canonical hemodynamic response function. Six nui-
sance regressors were also included to account for head
motion artifacts in the six dimensions of rigid body
motion.

Percent signal change in BOLD activity relative to base-
line was calculated for each time point during the working
memory task; baseline was chosen as the average BOLD
activity of the first TR of each trial. BOLD signal change
was averaged across trials within each condition and
across all voxels within each ROI (see below).

Statistical significance of BOLD activity against baseline
was assessed using two-tailed, one-sample t tests against 0,
and the resultant p values were corrected across time
points and comparisons using FDR (false discovery rate;
Benjamini & Hochberg, 1995). Statistical difference of
BOLD activity between conditions at each time point
was assessed using two-tailed paired t tests, with FDR
correction applied across time points and comparisons.

ROI Definition

We created subject-specific anatomical ROIs by warping
masks from the probabilistic atlas of Wang, Mruczek,
Arcaro, and Kastner (2015) to each participant’s structural
scan in their native space. Early visual anatomical ROIs
were created by merging the masks for unilateral V1, V2,
and V3 within and between hemispheres. IPS anatomical
ROIs were created by merging the masks for unilateral re-
gions IPS0-5 within and between hemispheres. For the
Early Visual Cortex functionally defined ROI, we identi-
fied the 500 voxels displaying the strongest loading on
the contrast (sample− baseline), collapsing over all three
conditions. For the IPS functionally defined ROI, we iden-
tified the 500 voxels displaying the strongest loading on
the contrast (delay − baseline), collapsing over all three
conditions. For completeness, an alternate “Sample IPS
ROI” was also defined as the 500 voxels in this anatomical
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region displaying the strongest loading on the contrast
(sample − baseline).

Multivariate Inverted Encoding Modeling

All inverted encoding modeling (IEM) analyses were per-
formed using custom functions in MATLAB. The IEM
assumes that the responses of each voxel can be character-
ized by a small number of hypothesized tuning channels.
After previous work, the number of orientation tuning
channels was set to nine (20° apart, equally spaced), and
the idealized feature tuning curve of each channel to a
specific orientation θ was defined as a half-wave-rectified
sinusoid raised to the eighth power (FWHM = 0.82 rad):

f θð Þ ¼ cos θ− cð Þ8

where c was the center of the channel.
We then computed the weight matrix (W, v × k, v: the

number of voxels; k: the number of channels) that projects
the hypothesized channel responses (C1, k × n, n: the
number of trials) to actual measured fMRI signals in the
training dataset (B1, v × n), and extracted the estimated
channel responses (Ĉ2, k × n) for the test data set (B2,
v × n) using this weight matrix.

The relationship between the training data set (B1) and
the channel responses (C1) was characterized by:

B1 ¼ WC1

Therefore, the least-squared estimate of the weight
matrix (Ŵ) was calculated using linear regression:

Ŵ ¼ B1CT
1 C1CT

1

� �−1

The channel responses (Ĉ2) for the test data set (B2) was
then estimated using the weight matrix (Ŵ):

Ĉ2 ¼ Ŵ
T
Ŵ

� �−1
Ŵ

T
B2

Because orientations in the current study were randomly
selected from the 1–180° orientation space (in steps of 1°),
we did not pick a fixed set of channel centers, as is often
done (Yu, Teng, et al., 2020; Yu & Shim, 2017). Instead, after
Rademaker et al. (2019) we first picked a set of equally
spaced channel centers (e.g., 0°, 20°, 40°, 60°, 80°, 100°,
120°, 140°, 160°), conducted the analysis as described above,
and then shifted the channel centers by 1° and repeated the
analysis. The procedure was repeated 20 times, such that all
180 orientations from 1° to 180° in 1° step served as channel
centers. We then combined estimated channel responses
from all iterations of these analyses to create responses of
180 orientation channels. The result, for any given orienta-
tion, can be considered a reconstruction of the model’s esti-
mate of the neural representation of that orientation. This
procedure ensured that our channel estimates were not bi-
ased by any specific channel centers. All channel responses
were then centered on a common center (0° on the x axis)
and averaged for visualization and for statistical comparisons.

Hypothesis Testing

Analysis plan. If a participant is not aware of the fact
that a considerable proportion of trials will feature null
samples that contain no orientation information, we
assume that, on null trials, they will generate an orienta-
tion for response at some point prior to the onset of the
response dial. Furthermore, because the initial orientation
of the dial cannot be predicted prior to its onset, we as-
sume that this response plan will not be kinematic (e.g.,
how many degrees they plan to turn the dial), but rather
will be the representation of the orientation that the par-
ticipant plans to produce at the end of trial. To validate
this assumption, our first analysis would be to train an
IEM using the orientation of the response on that trial
(response-based IEM). Successful reconstruction of orien-
tation with this IEM at time points preceding the response
(i.e., during the delay period) would mean that partici-
pants were indeed representing the orientation of their
planned response during those earlier time points (response-
based neural code).
Assuming success of this first analysis, the next step

would be to determine whether a common response-
based neural code was employed across conditions. This
would be done by applying the response-based IEM from
one trial type (e.g., high) to data from the other two trial
types (e.g., low and null). We anticipated three possible
outcomes: If reconstruction in a tested condition was sig-
nificantly positive, and did not differ from that in the train-
ing condition, this would reflect “full generalization”; if
reconstruction in a tested condition was significantly
positive, but was also significantly lower than that in the
training condition, this would reflect “partial generaliza-
tion”; and if reconstruction in a tested condition was not
significant, this would reflect “failed generalization.” These
results would be interpreted as evidence for a fully shared
neural code, for a partly shared neural code, or as a failure
to find evidence for a shared neural code, respectively.
Finally, because IEM relies on specific hypotheses of ori-

entation channels, we would also perform a model-free
analysis, multidimensional scaling (MDS), to see if this
alternative approach would support conclusions com-
parable to those suggested by the IEM analyses.

Operationalizing hypothesis tests. To investigate the
codes supporting the representation of orientation in
the different conditions (high; low; null ), we trained
two IEMs: a response-based IEM labeled according to
the orientation of the response on each trial and a
sample-based IEM labeled according to the sample orien-
tation on each trial. Note that the response-based IEM
would be the focus of our analyses, and results from the
sample-based IEM in the null condition would not be in-
terpretable on their own, but would serve as controls for
comparing with the results from high and low conditions.
IEMs were trained and tested using a leave-one-run-out
cross-validation procedure, for each condition, time point
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(or average of time points, e.g., average of time points
8–10 sec for delay period), and ROI separately. To compare
response-based neural codes across conditions, we also used
a leave-one-run-out procedure, training the response-based
IEMon data from one condition, and testing the IEMon the
data from all three conditions, including the training
condition (which would yield the same result as the first
analysis) and the two other conditions. This procedure
was performed for each condition, time point (or average
of time points), and ROI separately.
We also trained several complementary IEMs for testing

alternative explanations for the results. First, we trained a
mixed IEM using a balanced set of trials from each condi-
tion (high; low; null ) and tested this IEM on the same
balanced set of trials from each condition separately.
The purpose of this IEM would be to avoid potential con-
cerns with differences in signal-to-noise ratio across IEMs
(Liu, Cable, & Gardner, 2018; Sprague et al., 2018). Second,
to examine the influence of previous-trial information on
the reconstruction of current-trial information, we trained
response-based IEMs using response labels from the previ-
ous trial, or trained sample-based and response-based IEMs
while excluding trials with similar response to that of the
previous trial.
To characterize the strength of each IEM reconstruction,

we collapsed over the channel responses on both sides of
the common center, averaged them, then calculated the
slope of each collapsed reconstruction using linear regres-
sion (Foster, Bsales, Jaffe, & Awh, 2017; Samaha, Sprague, &
Postle, 2016). A larger positive slope indicates stronger
positive representation. We used a bootstrapping procedure
(Yu, Teng, et al., 2020; Ester et al., 2015) to characterize the
significance of the slopes. For each combination of factors
(IEM, condition, time point, or ROI), 17 orientation recon-
structions were randomly sampled with replacement from
the pool of 17 participants and averaged. This procedure
was repeated 10,000 times, resulting in 10,000 average orien-
tation reconstructions, and correspondingly 10,000 slopes.
The probability of obtaining a negative slope among the
10,000 slopes was counted as the one-tailed p value of the
slope. To characterize the difference between the slopes of
two IEM reconstructions, we first calculated the difference
between two bootstrapped slopes 10,000 times, which gen-
erated 10,000 slope differences. The significance of the
slope difference was then calculated using the same
one-tailed method as above. All p values were corrected
for multiple comparisons using the FDR method, across
IEMs (sample-based, response-based), conditions (high,
low, or null), and time points.
We also assessed evidence for differences between the

slopes of delay-period response-based reconstructions
with Bayes Factors (BF), which support evaluation of the
amount of evidence for one hypothesis (H1) against the
null hypothesis (H0). H1 referred to a positive reconstruc-
tion, andH0 referred to a failed reconstruction (i.e., a slope
no larger than 0). For comparison between the slopes of
two reconstructions, H1 referred to the slopes being

different and H0 referred to the absence of evidence for
a difference. As an example, a BF10 of 3 would indicate that
H1 is 3 times more likely than H0, whereas a BF10 of 0.33
would indicate that H0 is 3 times more likely than H1.
All BF analyses were conducted using JASP(Love et al., 2019).

MDS. For each ROI and each trial epoch (sample: 4–6 sec
after trial onset, delay: 8–10 sec after trial onset, and re-
sponse: 14–16 sec after trial onset), we categorized all re-
sponse orientations into four bins (0–45°, 45–90°, 90–135°,
and 135–180°). Trial number for each conditionwasmatched
by subsampling data from the high and null conditions to
match the number of trials in the low condition. The
Euclidean distances between orientation bins and conditions
were then computed using the covariance matrix calculated
from the subsampled data. This subsampling procedure was
repeated for 1000 times and averaged. Distances were aver-
aged across participants, and MDS was performed on the
distance matrix using the cmdscale function in MATLAB.

RESULTS

Behavior

Experiment 1A

Participants’ 75% contrast discrimination threshold for
recall of orientation against a noise background ranged
between 4% and 6%, with a mean of 5.0% and a standard
deviation of 0.6%. For delayed recall of the orientation of a
sample grating, the average recall error for high contrast
(60%) samples (9.0° ± 1.5°) was significantly lower than
for the threshold contrast samples (17.4° ± 4.4°), t(12) =
5.95, p < .001.

Experiment 1B

Delayed recall of orientation did not differ between high
contrast (60%; 10.2° ± 1.9°) and low contrast (10%; 10.6° ±
2.7°) conditions, t(15) = 0.64, p = .530 (Figure 1). The fact
that average recall error did not differ between the high
and low trials established the fact, critical for the logic of
Experiment 2, that low and high samples were comparably
visible to participants. This, plus the marked difference
between performance at these two levels of contrast
versus performance at 75% threshold (Experiment 1A),
indicated that neither high nor low contrast trials were
likely to produce trials in which the sample grating was
not visible to the participant (in contrast to some of the
threshold trials in Experiment 1A).

Experiment 2

Consistent with Experiment 1B, recall error during scan-
ning did not differ between the high (11.4° ± 4.0°) and
low (11.7° ± 4.8°) trials, t(16) = 0.58, p = .567.

Although recall error could not be calculated for null
trials, the results from several analyses suggested that par-
ticipants did not treat null trials different from trials on
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which a sample grating was visible. First, angular differ-
ence between the starting position of the response needle
and the recalled orientation did not differ between high,
low, and null trials (42.3° ± 2.4°, 41.7° ± 3.9°, 41.8° ±
5.7°, respectively; all ts < 0.85, ps > .408), suggesting that
the three conditions were comparable in terms of effort
during recall. Second, although sample orientation on
each trial was randomly chosen and the distribution of
sample orientations was uniform (i.e., there was an equal
proportion of cardinal and oblique orientations), plotting
the distribution of participants’ raw responses showed
biased responses toward oblique orientations (relative to
cardinal orientations) for all three trial types (Figure 2).
This indicates that trials of all types were influenced to a
similar extent by a systematic bias, perhaps from one or
more stimulus-nonspecific factors such as prior knowledge
(Yu, Panichello, Cai, Postle, & Buschman, 2020; Panichello
et al., 2019). In summary, null and high/low trials were
well matched in terms of procedural details, and the only
difference between conditions was the availability of ex-
ternal orientation information. Therefore, any orientation
information observed in the null trials could only be
internally generated.

fMRI

Time Course of BOLD Activity

All analyses were carried out at the level of the Early
Visual Cortex ROI and the IPS ROI. In both regions, a

conventional time course of BOLD activity change was ob-
served for all three conditions (Figure 3): Sample-evoked
activity reached its peak at around 4–6 sec after trial onset;
delay-period activity reached its trough at around 8–
10 sec; and response-evoked activity reached its peak
at around 14–16 sec. Time points 8–10 sec were subse-
quently used to operationalize “late delay-period” activity.
In early visual cortex, activity in null trials was slightly
lower than that in high and low trials during sample
and early delay epochs (2–8 sec; all ps < .023), but not
at 10 sec (both ps > .167) nor during the response epoch
(12 sec and after; all ps > .342). In IPS, in contrast, null
activity was lower during the sample (2–4 sec; all ps <
.005) and response epochs (12–18 sec, all ps < .040 ex-
cept for 12 sec between high and null: p = .073), but not
during the delay (6–10 sec, all ps > .132).

IEM

Early visual cortex. To assess the time course of neural
representations of orientation, for each trial type, we ap-
plied a sample-based IEM (i.e., trained on the sample la-
bel) and a response-based IEM (trained on the response
label) to every time point of the trial. For high and low tri-
als, reconstruction with the sample-based IEM was signif-
icant beginning at 4 sec after sample onset and sustained
for the remainder of the trial (all ps < .001). Similarly, re-
construction with the response-based IEMwere significant
for the duration of trial, beginning at 4 sec for high trials

Figure 2. Raw response
distribution. The raw response
distribution of high, low, and
null conditions, indicated by
the gray histograms. The black
lines indicate the envelope of
sample distribution.

Figure 3. Time course of BOLD
activity in early visual cortex and
IPS. (A) Trial-averaged BOLD
activity in the Early Visual
Cortex ROI. (B) Time course of
BOLD activity in the IPS ROI.
Dark blue, light blue, and gray
lines correspond to the high,
low, and null conditions,
respectively. Data from the
two participants with 8.5-sec
delay periods were included
in the averaged results, but
event labels below the x axis
represent the trial sequence
for participants with 9.5-sec
delay periods only for illustration purposes in this and subsequent figures, with S, D, R representing the Sample, Delay, and Response periods,
respectively. Shaded areas indicate ± 1 SEM. *p < .05
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and at 2 sec for low trials (all ps < .040). Sample-based and
response-based reconstructions did not differ at any time
point, for either of these two conditions (all ps > .157).
These results validated the approach of using participants’
responses as an estimate of the orientation that they rep-
resented earlier in the trial, prior to the response.
Turning next to null trials, reconstruction with sample-

based IEMs did not achieve statistical significance except
for two isolated time points: 2 sec ( p = .017) and 16 sec
( p= .036), probably because of statistical noise. Note that
these null results amounted to confirmation of a sanity
check, because the labels used to train the sample-based
IEM did not correspond to what participants were pre-
sented on these trials. Reconstructions with response-
based IEMs were significant beginning with 6 sec and for
the duration of the trial (all ps< .020; Figure 4A). Critically,
these response-based reconstructions were significantly
different from the sample-based reconstructions for 6–
8 sec and from 12 sec onward (green asterisks; all ps <
.012), suggesting that robust orientation representations
specific to the response started from 6 sec after trial onset.
This indicates that, beginning relatively early in the trial,
participants generated and maintained a representation
with exclusively internally derived information.

IPS. In IPS, results were generally comparable to those
from early visual cortex, albeit weaker in magnitude. When
focusing on the late delay period (Figure 4D), sample and
response reconstructions were significant in all conditions
(all ps < .037), except for the sample reconstruction in
the null condition ( p = .259). Time-point-by-time-point
reconstructions were also qualitatively similar to early visual

cortex (Figure 4C): on high trials sample and response
reconstructions emerged during the sample period and
were sustained throughout the trial, as were sample recon-
structions on low trials (all ps< .041). Response reconstruc-
tions were smaller in slope on low trials and, with the
exception of a single time point (6 sec after trial onset,
p = .007), did not survive correction for multiple compari-
sons during the delay. Note that the lower number of trials
for the low condition might have been responsible for the
lack of significance here. Indeed, robust reconstruction of
orientation was observed for low trials when averaging
across time points in the delay period (Figure 4D).

Turning to null trials, reconstructions with sample-
based IEMs only achieved statistical significance at 2 sec, a
result probably because of statistical noise. Reconstruction
with response-trained IEMs, however, was significant for
all time points beginning with 4 sec (all ps < .028), with
the exception of 10 sec of the delay period ( p = .076).

We also carried out these analyses in the Sample IPS
ROI (IPS ROI defined using sample-period activity), and
the results (not shown) were qualitatively similar to those
in the Delay IPS ROI.

One possible concern about the finding of principal
theoretical interest from these analyses—the reconstruc-
tion of response-related stimulus information from the
delay period of null trials (Figure 4)—is that this might
reflect “spillover” of information processed during the
previous trial, rather than evidence for genuinely internally
generated stimulus representations. Additional analyses
carried out to assess this alternative possibility ruled it out
as a major concern, and these are presented at the end of
the Results section (see Secondary Analyses to Assess the

Figure 4. Orientation reconstructions in early visual cortex and IPS in the high, low, and null conditions. (A) Time course of orientation
reconstructions (indexed by the slope of reconstruction) in early visual cortex, from left to right: in high, low, and null condition. (B) Orientation
reconstruction in the late delay period (8–10 sec after trial onset) in early visual cortex. (C) Time course of orientation reconstructions (indexed
by the slope of reconstruction) in IPS, from left to right: in high, low, and null condition. (D) Orientation reconstruction in the late delay period
in IPS. Black and red lines correspond to sample and response, respectively. Black and red asterisks at the top of each plot denote significance
of reconstructions, for sample and response, respectively. Green asterisks denote significance of difference between response and sample
reconstructions. Event labels below the x axis represent the Sample (S), Delay (D), and Response (R) periods, respectively. All p values were
corrected with FDR across conditions and time points. Shaded areas denote ± 1 SEM. *p < .05.
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Influence of the Previous Trial on Response-based IEMs
section).

Comparison of Neural Codes across High, Low, and
Null Trials

Having established robust measurements for internally
generated neural representations of orientation, we next
sought to examine the nature of these representations.
Specifically, because representations on null trials were
purely internally generated, whereas representations on
high and low trials reflected influences from both external
and internal sources, we tested whether the representa-
tionsmaintained during these different trial types recruited
a common neural code, in keeping with previous demon-
strations of a shared neural code between workingmemory
and perception (Harrison & Tong, 2009), between working
memory and attention (Yu & Shim, 2019), and between
working memory and imagery (Albers et al., 2013). To this
end, we trained IEMs on one condition and tested them on
all three conditions (see Methods section). Note that only
response-based IEMs were recruited for this purpose. For
these analyses, we emphasized the results from the late
delay period (8–10 sec after trial onset; also see Figure 5 for
results for the full time courses). Here, we also employed
BF to assess the amount of evidence in generalization. A
BF of larger than 3 or smaller than 1/3 can be considered
substantial evidence supporting or rejecting the hypothesis.

In early visual cortex, we successfully reconstructed ori-
entation from the late delay period of low trials with IEMs
trained on high trials ( p< .001, BF10 = 280.3), and of high
trials with IEMs trained on low trials ( p < .001, BF10 =
79.5). Furthermore, these results demonstrated full gener-
alization: Reconstructions for high and low trials with the

high-trained IEM did not differ from each other ( p= .552,
BF10 = 0.5); nor did reconstructions for high and low trials
with the low-trained IEM ( p= .477, BF10 = 0.8; Figure 6A
and 6B). When comparing each of these visible trial types
with null trials, in contrast, cross-condition generalization
was asymmetric: For high trials, although the IEM trained
on high trials failed to generalize to null trials ( p = .135,
BF10 = 0.7; Figure 6A), the IEM trained on null trials did
successfully reconstruct orientation on high trials ( p =
.0014, BF10 = 6.0), and reconstructions for high and null
trials with the null-trained IEM did not differ from each
other ( p = .552, BF10 = 0.2; Figure 6C). For low trials,
on one hand, the IEM trained on null trials successfully re-
constructed orientation on low trials ( p = .0013, BF10 =
8.8), and reconstructions for low and null trials with the
null-trained IEM did not differ from each other ( p =
.552, BF10 = 0.2; Figure 6C); on the other hand, the IEM
trained on low trials did generalize to null trials ( p =
.0052, BF10 = 5.3), although the slope of this reconstruc-
tion was lower than that on low trials with the low-trained
IEM ( p = .030, BF10 = 28.4; Figure 6B), suggesting only
partial generalization from low to null trials.
In IPS, although response-based neural codes were also

fully generalizable between high and low trials (train high–
test low, p = .007, BF10 = 6.2; train low–test high, p =
.006, BF10 = 6.9; train high–test high vs. train high–test
low, p = .732, BF10 = 0.2; train low–test low vs. train low–
test high, p = .497, BF10 = 0.3; Figure 6D and 6E), there
was no evidence for cross-generalization from null trials to
high or low trials (train null–test high, p= .215, BF10 = 0.5;
train null–test low, p = .061, BF10 = 1.6; Figure 6F), nor
from high or low trials to null trials (train high–test null,
p = .252, BF10 = 0.4; and train low–test null, p = .187,
BF10 = .6; Figure 6D and 6E).

Figure 5. Time course of
generalization of neural codes
between the high, low, and null
conditions. (A) Time course of
orientation reconstructions for
high, low, and null conditions
in early visual cortex, from left
to right: results from high-,
low-, and null-trained IEMs.
(B) Time course of orientation
reconstructions for high, low,
and null conditions in IPS, from
left to right: results from high-,
low-, and null-trained IEMs.
Dark blue, light blue, and gray
lines correspond to the high,
low, and null conditions,
respectively. Dark blue, light
blue, and gray asterisks at
the top of each plot denote
significance of reconstruction
at each time point relative to baseline, for high, low, and null conditions, respectively. Event labels below the x axis represent the Sample (S),
Delay (D), and Response (R) periods, respectively. All p values were corrected with FDR across conditions and time points. Shaded areas indicate
± 1 SEM. *p < .05.
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Although cross-generalization is a common approach
for assessing commonality of neural codes (Rademaker
et al., 2019; Yu& Shim, 2019; Albers et al., 2013), interpret-
ing failures to generalize can be complicated by technical
considerations arising from training the IEM on the same
versus on different data sets (Liu et al., 2018; Sprague et al.,
2018). Therefore, we repeated these analyses but with
a single IEM trained on a balanced set of trials drawn
in equal number from high, low, and null trials. Results
with this mixed IEM were complementary to the cross-
generalization analyses: In both early visual cortex and

IPS, the mixed IEM generated successful reconstructions
of orientation from high and low trials (4–10 sec: all
ps < .006), but failed on null trials (4–10 sec: all ps >
.140; Figure 7).

Model-free Analyses

Lastly, to determinewhether a difference betweennull and
high/low trials would be observed when no model-based
approach was applied to the data, we compared the rep-
resentational distances between conditions using MDS.

Figure 6. Generalization of neural codes between the high, low, and null conditions. (A) Left panel: orientation reconstructions for high, low, and
null conditions from the high-trained IEM, in the late delay period (8–10 sec after trial onset) in early visual cortex. Right panel: slopes of these
reconstructions. (B). Orientation reconstructions and slopes for high, low, and null conditions from the low-trained IEM, in the late delay period (8–
10 sec after trial onset) in early visual cortex. (C) Orientation reconstructions and slopes for high, low, and null conditions from the null-trained IEM,
in the late delay period (8–10 sec after trial onset) in early visual cortex. (D) Orientation reconstructions and slopes for high, low, and null conditions
from the high-trained IEM, in the late delay period (8–10 sec after trial onset) in IPS. (E) Orientation reconstructions and slopes for high, low, and
null conditions from the low-trained IEM, in the late delay period (8–10 sec after trial onset) in IPS. (F) Orientation reconstructions and slopes for
high, low, and null conditions from the null-trained IEM, in the late delay period (8–10 sec after trial onset) in IPS. Dark blue, light blue, and gray
colors correspond to the high, low, and null conditions, respectively. Dark blue, light blue, and gray asterisks at the top of each plot denote
significance of reconstruction, for high, low, and null conditions, respectively. All p values were corrected with FDR across conditions. Shaded areas
and error bars indicate ± 1 SEM. *p < .05.

Figure 7. Time course of
generalization of neural codes
between the high, low, and null
conditions, using a mixed IEM.
(A) Time course, in early
visual cortex, of orientation
reconstructions for high, low,
and null conditions using a
mixed IEM. (B) Time course,
in IPS, of orientation
reconstructions for high, low,
and null conditions using a
mixed IEM. Dark blue, light
blue, and gray lines correspond
to the high, low, and null
conditions, respectively. Dark
blue, light blue, and gray
asterisks at the top of each plot denote significance of reconstruction at each time point relative to baseline, for high, low, and null conditions,
respectively. Event labels below the x axis represent the Sample (S), Delay (D), and Response (R) periods, respectively. All p values were corrected
with FDR across conditions and time points. Shaded areas indicate ± 1 SEM. *p < .05.
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MDS analyses were performed for the sample (4–6 sec
after trial onset), delay (8–10 sec after trial onset), and re-
sponse (14–16 sec after trial onset) epochs of the working
memory task, separately for early visual cortex and for IPS.
For visualization purposes, response orientations were
grouped into four 45°-wide bins.

In early visual cortex, during the sample epoch, the three
conditions were discriminable along Dimension 1, confirm-
ing that differences in stimulus contrast influenced sensory
processing (Figure 8A). During the delay period, the dis-
tance between the high and low conditions decreased, such
that the two now overlapped along Dimension 1, whereas
the null condition remained separated from the other two.
This suggested that, as stimulus-driven influences dimin-
ished, trials that relied exclusively on internally derived in-
formation remained distinct. This discriminative element
carried on into the response period, along Dimensions 2
and 3, despite the fact that participants performed the
same type of motor response on every trial. In IPS, a sim-
ilar discriminative pattern was also observed between con-
ditions (Figure 8B). Thus, in both brain areas, patterns of
activity on null trials were distinct from those on high/low
trials in multidimensional representational space. The fact
that this was true for all epochs of the trial suggests that

this separability was not simply a result of perceptual dif-
ferences between memory samples.

Secondary Analyses to Assess the Influence of the
Previous Trial on Response-based IEMs

Recent perceptual history can bias behavior on the current
trials (Fischer & Whitney, 2014), including during working
memory tasks (Barbosa et al., 2020; Samaha, Switzky, &
Postle, 2019), and it has been shown that the no-longer-
relevant content of the previous trial can be decoded from
EEG signals recorded during a visual working memory task
(Bae & Luck, 2019). Consequently, we carried out a series
of analyses to assess whether the response-related recon-
structions from null trials (Figure 4), rather than reflecting
internally generated stimulus representations, might in-
stead be because of “spillover” of information processed
during the previous trial. We tested this possibility with
two approaches. First, we examined if the response of the
previous trial could be reconstructed frompatterns of activ-
ity of the current trial in the current data. In early visual cor-
tex, we found that the response of the previous trial could
indeed be reconstructed in all conditions, especially during
the earlier portion of the trial, all ps < .031 (Figure 9).

Figure 8. Visualization of distances between conditions in multidimensional representational space. (A) Visualization of representational distances
between high, low, and null conditions, in early visual cortex. The top panel shows the same MDS projection of data from the sample epoch from
three perspectives: 3-D; a 2-D view of Dimension 1 versus Dimension 2; and a 2-D view of Dimension 1 versus Dimension 3. The middle panel shows
three comparable views of the MDS projection of data from the late delay period, and the bottom panel shows three comparable views of the MDS
projection of data from the response epoch. (B) MDS analyses of data from IPS, using the same display conventions as (A). Each marker represents
one of the orientation bins (0–45°, 45–90°, 90–135°, 135–180°). Dark blue, light blue, and gray colors correspond to the high, low, and null
conditions, respectively. a.u. = arbitrary units.
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However, because above-baseline-level reconstruction of
the previous-trial response was present at the very begin-
ning of the trial (i.e., 0 sec), and reconstruction of the
current-trial response did not emerge until 6 sec after trial
onset, we believe it was unlikely that these two sets of results
reflected the same piece of information. Furthermore, in
IPS, reconstruction of the previous trial’s response was
almost absent, with the exception of three isolated time
points across all three conditions (all ps < .03). This effect
alone again cannot explain the sustained reconstructions of
the response orientation on null trials.
A second approach to assess the possible influence of

information from previous trials on response-related re-
constructions from null trials was to redo the analyses
after removing the trials for which the response was most
similar to the response on the previous trial. We did this
by first calculating the difference between each trial’s
response and the response on the previous trial, for all
three conditions, and grouping the trials by difference
values into nine 20°-wide bins. For high and null trials, the
distribution of the differences was not uniform, χ2(8) =

19.5 and 81.9, p = .012 and p < .001, respectively
(Figure 10), suggesting a potential influence from previ-
ous trials on the performance of the current trial. Next,
for null trials, we removed the influence from the
responses that were closest to the previous response (dif-
ference < 10°; bins highlighted in red in Figure 10) by
excluding trials that belonged to this bin and repeating
the IEM analyses on the remaining trials. Significant
response reconstructions were still observed in this
subset of null condition trials (Figure 11), increasing our
confidence that the representation of response-related
orientation information on null trials cannot be ex-
plained as simply reactivation of perceptual history from
the previous trial.

Finally, we examined whether the potency of the spill-
over effect varied with sample type, by sorting every high
trial as a function of whether it was preceded by a high,
low, or null trial. Results (not shown) indicated that the
spillover effect was comparable for each trial type and that
the time course of each mimicked the pattern seen in
Figure 9.

Figure 9. Reconstructions of
previous-trial response in early
visual cortex and IPS in the high,
low, and null conditions. (A)
Time course of reconstructions of
previous-trial response (indexed
by the slope of reconstruction)
in early visual cortex. (B) Time
course of reconstructions of
previous-trial response in IPS,
from left to right: in high, low,
and null condition. Red asterisks
at the top of each plot denote
significance of response
reconstructions. Event labels
below the x axis represent the
Sample (S), Delay (D), and
Response (R) periods,
respectively. All p values were
corrected with FDR across
conditions and time points.
Shaded areas denote ± 1 SEM.
*p < .05.

Figure 10. Distribution of the
distance between response on
the current trial and that on the
previous trial. The distribution
of the distance between
response on the current trial
and that on the previous trial,
in the high, low, and null
conditions, indicated by the
gray histograms (bin size =
20°). The red bar at the center
indicates the bin with the
smallest distance (≤ 10°).
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DISCUSSION

The human brain processes massive amounts of informa-
tion every day, from both external and internal sources. To
explore how internally generated information is represented
in the brain during working memory, we incorporated a
null-sample condition into a delayed-recall task. First, we
demonstrated that, after the presentation of a null sample,
participants generated a neural representation that corre-
sponded to the response that they would make at the end
of the trial, confirming that our procedure was successful
at producing internally generated working-memory repre-
sentations. Next, we assessed cross-generalization of the
neural representation of orientations between conditions
and observed an asymmetric pattern in early visual cortex:
IEMs trained on data from null trials generalized fully to
data from visible-sample trials, but the converse was not
true. This suggested some difference in the processing
of internally generated representations versus conven-
tional working memory representations that receive influ-
ences from both external and internal sources. This
difference in neural codes was also evident when the data
were projected into multidimensional representational
space: The patterns of activity for high and low trials were
clearly segregated from null trials in both early visual cor-
tex and IPS. Therefore, stimulus information that is de-
rived from an external source is represented differently
than stimulus information that is generated internally.

Our findings might seem inconsistent with previous
work that has demonstrated a shared neural code between
visual working memory and visual imagery in early visual
cortex (Albers et al., 2013). However, because visual

imagery tasks often involve elements such as mental rota-
tions (Albers et al., 2013) or retrocueing manipulations
(Dijkstra et al., 2018), they typically refer overtly to previ-
ously presented (i.e., externally originated) information,
and this may explain why similar neural codes are recruited
by these two classes of task. It had thus remained unclear
whether “purely” internally derived representations also
share the same neural code as “conventional” working
memory representations. The present results—indicating
that the representation of orientation in early visual cortex
fully generalizes from the null to the high and low condi-
tions, but not in the other direction—suggest that all three
conditions share the same purely internally generated
neural codes and that conventional working memory rep-
resentations contain one or more additional dimensions
that are lacking from “purely” internally originated visual
representations. The additional dimension(s) are likely re-
lated to processes that are involved in the initial processing
of externally presented information.
The differences between working memory and inter-

nally originated imagery were also preserved in IPS,
where we found that null and high/low trials did not
generalize in either direction, although the effects were
generally weaker compared with those in early visual
cortex. These results are in line with previous work
demonstrating failures to find evidence—in higher-order
parietal and/or frontal cortex—for generalization of neural
codes between working memory and visual perception
(Rademaker et al., 2019), attention (Yu & Shim, 2019),
and imagery (Albers et al., 2013).
What is the nature of the internally generated represen-

tations observed in the delay period of the null condition

Figure 11. Orientation reconstructions in early visual cortex and IPS in the high, low, and null conditions, after excluding highlighted trials in
Figure 10. (A) Time course of orientation reconstructions (indexed by the slope of reconstruction) in early visual cortex, after excluding trials from
the bin with the smallest distance in Figure 10, from left to right: in high, low, and null conditions. (B) Orientation reconstruction in the late delay
period (8–10 sec after trial onset) in early visual cortex. (C) Time course of orientation reconstructions (indexed by the slope of reconstruction) in
IPS, from left to right: in high, low, and null conditions. (D) Orientation reconstruction in the late delay period in IPS. Black and red lines correspond
to sample and response, respectively. Black and red asterisks at the top of each plot denote significance of reconstructions, for sample and response,
respectively. Green asterisks denote significance of difference between response and sample reconstructions. Event labels below the x axis represent
the Sample (S), Delay (D), and Response (R) periods, respectively. All p values were corrected with FDR across conditions and time points. Shaded
areas denote ± 1 SEM. *p < .05.
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in the current study? One possibility is a preparatorymotor
code, similar to what has been demonstrated for visual
working memory for orientation on a task that allowed
for concurrent selection of visual and motor responses
(van Ede, Chekroud, Stokes, & Nobre, 2019). If so, this
would need to be a highly abstract code, akin to an inten-
tion, because the starting position of the probe in our
experiment was randomized from trial to trial, and so
participants would not have been able to plan their spe-
cific motor response prior to the onset of the response
wheel. Another possibility is that they reflected internally
generated representations of participants’ best guess of
the orientation of the sample. This would be consistent
with the fact that the time course of the representation
of orientation developed later in time in the null condition
relative to the high and low conditions, especially in early
visual cortex. Similarly, it has been observed that repre-
sentations of visual imagery develop later in time than do
representations associated with visual perception (Dijkstra
et al., 2018) and with visual working memory (Albers et al.,
2013). It is likely that internally generated representations are
influenced by many stimulus-nonspecific factors, such as
prior knowledge (Yu, Panichello, et al., 2020; Panichello
et al., 2019; Bae et al., 2014, 2015) and recent history (Bae
& Luck, 2019; Fischer & Whitney, 2014), and that these
stimulus-nonspecific factors may serve, in part, as differenti-
ating factors in the coding of externally driven versus
internally generated information. Indeed, we did observe
influences from the previous trial in the current experiment,
although spillover from the previous trial alone cannot
explain the sustained, robust representations of the
response in the null condition. It should be possible to
use the “null-sample” paradigm in combination with
other visual tasks to better understand the nature of
internally generated visual representations. For example,
it would be interesting to compare internally generated
representations directly with the codes that support
visual perception. It would also be interesting to include
confidence ratings in future tasks to better understand
the subjective experience of the null condition. Finally,
by combining the paradigm with ultra-high field fMRI,
one would be able to investigate whether there exist
layer-specific representations for purely internally
generated representations.
Our results, together with previous work (Rademaker

et al., 2019; Yu & Shim, 2019; Albers et al., 2013; Harrison
& Tong, 2009), suggest a potential mechanism for how the
brain processes information originating from different
sources. Early visual cortex represents stimulus properties
with a commonneural code that is insensitive to behavioral/
cognitive context, such that the same neural code is shared
between visual perception, attention, and workingmemory,
consistent with the sensorimotor recruitment hypothesis.
However, early visual cortex also registers the source of
origination of this information, such that externally origi-
nated and internally originated representations can be
differentiated. This distinction between externally and

internally originated representations was also observed
in a higher-order cortical area, IPS, although perhaps with
a slightly different pattern. These signals may underlie the
neural basis for how the brain differentiates and maintains
signals from different sources.
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