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Abstract 24 

 Humans can construct rich subjective experience even when no information is available 25 

in the external world. Here we investigated the neural representation of purely internally 26 

generated stimulus-like information during visual working memory. Participants performed 27 

delayed recall of oriented gratings embedded in noise with varying contrast during fMRI 28 

scanning. Their trialwise behavioral responses provided an estimate of their mental 29 

representation of the to-be-reported orientation. We used multivariate inverted encoding models 30 

to reconstruct the neural representations of orientation in reference to the response. We found 31 

that response orientation could be successfully reconstructed from activity in early visual cortex, 32 

even on 0% contrast trials when no orientation information was actually presented, suggesting 33 

the existence of a purely internally-generated neural code in early visual cortex. Additionally, 34 

cross-generalization and multidimensional scaling analyses demonstrated that information 35 

derived from internal sources was represented differently from typical working memory 36 

representations, which receive influences from both external and internal sources. Similar results 37 

were also observed in intraparietal sulcus (IPS), with slightly different cross-generalization 38 

patterns. These results suggest a potential mechanism for how externally-driven and internally-39 

generated information is maintained in working memory.  40 

 41 
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Introduction 48 

Humans have the ability to mentally retain and manipulate visual information even when 49 

the information is not in view. This ability -- visual working memory -- is fundamental to human 50 

cognition (Baddeley, 2003; Engle, Tuholski, Laughlin, & Conway, 1999; Luck & Vogel, 2013). 51 

Understanding how the brain keeps such information online is thus a critical question for 52 

cognitive neuroscience. The sensorimotor recruitment hypothesis posits that sensory cortex is an 53 

important substrate for the representation of fine-grained perceptual information in working 54 

memory (Awh & Jonides, 2001; D'Esposito & Postle, 2015; Serences, 2016); for example, early 55 

visual cortex for maintaining low-level visual information. This view is supported by evidence 56 

from multivariate analyses of functional magnetic resonance imaging (fMRI) data that stimulus-57 

specific information can be decoded from early visual cortex during maintenance of visual 58 

feature information (Harrison & Tong, 2009; Riggall & Postle, 2012; Serences, Ester, Vogel, & 59 

Awh, 2009; Yu & Shim, 2017). With fMRI, a neural code is assessed as a systematic set of 60 

mappings between different values of a cognitive state and different patterns of fMRI activity, 61 

and a shared code is inferred if the same mapping is observed across two domains of cognition. 62 

With this logic it has been demonstrated that, in early visual cortex, visual working memory 63 

shares the same neural codes with visual perception (Harrison & Tong, 2009), attention (Yu & 64 

Shim, 2019), and imagery (Albers, Kok, Toni, Dijkerman, & de Lange, 2013), suggesting that 65 

early visual cortex may serve as a mental buffer for representing visual information across 66 

different categories of cognitive task (Roelfsema & de Lange, 2016).  67 

Although early visual cortex recruits common neural codes for different cognitive 68 

processes, these processes can be driven by distinct sources of information. For example, visual 69 

perception is driven by external, bottom-up input received from the retina, and visual imagery is 70 

driven by internal, top-down input from higher cortical areas (Pearson, 2019). Of course, early 71 
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visual cortex contains numerous reciprocal connections with higher cortical areas, and bottom-up 72 

and top-down signaling are involved in most, if not all visually mediated behaviors, including 73 

visual perception (Gilbert & Li, 2013; Muckli & Petro, 2013). Nevertheless, the fact that visual 74 

imagery shows distinct temporal dynamics, and evolves later in time, compared with visual 75 

perception (Dijkstra, Mostert, Lange, Bosch, & van Gerven, 2018), suggests at least some 76 

meaningful distinction between the processing of externally presented and internally generated 77 

information. 78 

When considering the sensorimotor recruitment hypothesis, it is important to note that 79 

visual working memory cannot be understood as merely the prolongation of sensory processing, 80 

because many stimulus-nonspecific factors can influence representations in working memory. 81 

For example, several studies have demonstrated recall biases toward discrete color centers in 82 

visual working memory for color (Bae, Olkkonen, Allred, & Flombaum, 2015; Bae, Olkkonen, 83 

Allred, Wilson, & Flombaum, 2014; Panichello, DePasquale, Pillow, & Buschman, 2019), 84 

probably due to drift towards stable attractor states established through prior experience 85 

(Panichello et al., 2019). Information from the previous trial can also be reactivated or otherwise 86 

influence the current trial (Bae & Luck, 2019; Barbosa et al., 2020). Moreover, there is 87 

considerable physiological evidence for an important role for feedback from higher cortical 88 

areas. For example, laminar recordings indicate that delay-period input to V1 is most prominent 89 

in supra- and infragranular layers that receive feedback projections from higher areas (Lawrence 90 

et al., 2018; van Kerkoerle, Self, & Roelfsema, 2017), and delay-period local field potentials in 91 

area MT are coherent with spiking in prefrontal cortex (PFC; Mendoza-Halliday, Torres, & 92 

Martinez-Trujillo, 2014). Because typical working memory tasks, including those cited here, 93 

begin with the external presentation of to-be-remembered stimulus information, delay-period 94 

representations presumably reflect the combined influence of processes associated with 95 
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externally presented and with internally generated information. How such “typical” working 96 

memory representations may differ from purely internally generated representations is the focus 97 

of the present study. Although our focus is on representations in early visual cortex, we also 98 

present results from intraparietal sulcus (IPS), because this region has also been implicated in 99 

representing working memory-related information (e.g., Bettencourt & Xu, 2016; Ester, Sprague, 100 

& Serences, 2015; Yu & Shim, 2017). 101 

In the current study, stimulus contrast varied across trials between 0%, 10%, and 60%, 102 

but participants were instructed that a sample orientation would be presented on every trial, and 103 

that a recall response was required at the end of every trial, regardless of subjective visibility. 104 

This allowed us to use responses to infer backwards what they had represented during the delay 105 

period, including on 0% contrast (“null”) trials that lacked external input. These responses could 106 

then be used to investigate internally generated representations in visual working memory 107 

maintenance. The comparison between the null and typical working memory trials (with 10% or 108 

60% contrast) could also be used to isolate processes specific to internally generated 109 

representations.  110 

 111 

Materials and Methods 112 

Participants 113 

All participants were recruited from the University of Wisconsin–Madison community. 114 

Two behavioral experiments (Experiments 1A and 1B) were performed prior to the fMRI 115 

experiment (Experiment 2) to test the visibility of the stimuli to be used in the fMRI experiment. 116 

Thirteen individuals (2 males, mean age 21.0 ± 3.3 years) participated in Experiment 1A, and 7 117 

of these also participated in Experiment 1B, along with 9 new individuals (n = 16 in total; 3 118 

males, mean age 19.6 ± 1.9 years). Eighteen individuals (including one who also participated in 119 
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Experiment 1B) participated in Experiment 2. One of these was excluded due to failure to 120 

comply with task instructions, resulting in 17 individuals (4 males, mean age 23.5 ± 3.8 years) as 121 

the final sample size for Experiment 2. We did not carry out power analysis a priori, but our 122 

sample size was comparable or even superior to those from recent fMRI studies that have used a 123 

similar task design (Bettencourt & Xu, 2016; Ester et al., 2015; Rademaker, Chunharas, & 124 

Serences, 2019; Yu, Teng, & Postle, 2020). All participants had normal or corrected-to-normal 125 

vision, reported no neurological or psychiatric disease, and provided written informed consent 126 

approved by the University of Wisconsin–Madison Health Sciences Institutional Review Board. 127 

All were monetarily compensated for their participation. 128 

 129 

Stimuli and procedure 130 

Sample stimuli were sinusoidal gratings embedded in white noise (spatial frequency = 131 

1º/cycle, radius = 4º), presented at varying levels of Michelson contrast. In Experiment 1A, there 132 

were two types of stimuli: gratings with a high contrast (60%), and gratings with a 75% 133 

threshold-level contrast, determined for each subject with a thresholding task. In Experiments 1B 134 

and 2, there were three types of stimuli: gratings with a high contrast (contrast = 60%), gratings 135 

with a low contrast (contrast = 10%), and null stimuli (contrast = 0%). Importantly, no 136 

orientation information was visible in null gratings, making them equivalent to white noise 137 

patches.  138 

All stimuli were created and presented using MATLAB (MathWorks, Natick, MA) and 139 

Psychtoolbox 3 extensions (Brainard, 1997; Pelli, 1997). In Experiments 1A and 1B, stimuli 140 

were presented on a 21.5-inch iMac screen at a viewing distance of 63 cm and behavioral 141 

responses were made with a computer mouse. In Experiment 2, stimuli were projected via a 60-142 

Hz projector (Avotec Silent Vision 6011, Avotec, Inc., Stuart, FL), and viewed through a coil-143 
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mounted mirror in the MRI scanner at a viewing distance of 69 cm, and participants’ behavioral 144 

responses were made with an MR-compatible trackball response pad (Current Designs Inc., 145 

Philadelphia, PA). During the scan, eye position was monitored and recorded using the Avotec 146 

RE-5700 eye-tracking system (Avotec, Inc., Stuart, FL). 147 

 148 

Experiment 2  149 

We begin with a detailed description of Experiment 2, the experiment of primary 150 

theoretical interest, during which participants performed 1-item delayed recall of orientation in 151 

the fMRI scanner. On each trial, participants viewed a sample stimulus (high, low, or null) 152 

presented at the center of the screen for 0.5 s. After a delay of 9.5 s (or 8.5 s for two 153 

participants), an orientation dial (radius = 4º) was presented centrally, and participants rotated the 154 

dial until its needle matched the remembered orientation as precisely as possible in a 4-s 155 

response window. Critically, participants were told that an oriented grating would be presented 156 

on every trial, although its visibility would vary across trials, and they were instructed to make a 157 

best guess when they were unsure about what the orientation was. Feedback (recall error) was 158 

provided following the response period for 0.5 s, even on null trials, and recall error was 159 

calculated as the angular difference between sample and response orientations, regardless of 160 

whether or not the sample orientation had actually been visible (Figure 1). The sample 161 

orientation for each trial was randomly selected from 1º to 180º in steps of 1º in the orientation 162 

space. The starting position of the needle of the response dial was randomly chosen on every 163 

trial, independent of the sample. 164 

 165 

<----- insert Figure 1 about here -----> 166 

 167 
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For four participants, total trial length was 22 s: for two of the four participants tested 168 

with an 8.5-s delay (S01 and S02), the inter-trial interval (ITI) was 9 s, and for the two tested 169 

with a 9.5-s delay (S03 and S04), ITI was 8 s. For all remaining participants, for whom the delay 170 

was 9.5 s and ITI was 10 s, total trial length was 24 s. To match the number of time points across 171 

participants, all analyses focused on the first 22 s of every trial.  172 

Each run began with an 8-s fixation period, followed by 18 experimental trials, and the 173 

ratio of trial types (high: low: null) during each run was 3:1:2 (i.e., 9 high trials, 3 low trials, and 174 

6 null trials). For one participant (S01), the experimental run in the first scan session was 175 

truncated to 12 trials (i.e., 6 high trials, 2 low trials, 4 null trials) due to a technical problem with 176 

scanning. Each participant completed 28 to 32 runs across two scanning sessions. In total, twelve 177 

participants completed 270 high trials, 90 low trials, and 180 null trials (S02, S05, S06, S08 to 178 

S12, S14 to S17); two participants completed 288 high trials, 96 low trials, and 192 null trials 179 

(S03 and S04); two completed 252 high trials, 84 low trials, and 168 null trials (S07 and S13); 180 

and one (S01) completed 231 high trials, 77 low trials, and 154 null trials. All participants were 181 

debriefed at the end of the study, and none of them reported awareness of the existence of null 182 

trials (i.e., all reported believing that an oriented grating was presented on every trial).  183 

 184 

Experiments 1A and 1B 185 

Prior to the fMRI experiment, we ran two behavioral studies to determine the contrasts of 186 

the gratings to be used in the scanner. The overarching rationale was to develop conditions that 187 

would disguise from participants the fact that a substantial proportion of samples contained no 188 

stimulus information (i.e., null samples). To achieve this, we sought to find two levels of contrast 189 

that were each highly discriminable, but that would create the impression for participants that 190 

subjective visibility would vary from trial to trial. The trial structure for both was similar to that 191 
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from Experiment 2: one sample grating (radius = 3º) with a randomly selected orientation was 192 

presented on the screen for 0.1 s, followed by a brief delay, followed by recall with an 193 

orientation wheel. Responses were self-paced, and feedback was given after each response (0.5 194 

s). 195 

Experiment 1A was carried out to examine how subjects would perform at each of two 196 

levels of contrast: high and at-threshold. It began with a block of 80 trials to determine each 197 

individual’s contrast threshold: After an initial 10 trials of delayed recall (delay of 0.3 s) at a 198 

fixed contrast of 12%, the sample contrast for each of the ensuing trials was adjusted using a 199 

QUEST procedure (Watson & Pelli, 1983). Responses were binarized using a cut-off criterion of 200 

20º of recall error. Four catch trials were interleaved at randomly determined intervals, and on 201 

these catch trials the contrast was set to three times of the contrast from QUEST. The 202 

discrimination contrast threshold of the grating that generated 75% accuracy was determined at 203 

the end of the block. During the remainder of the session, participants performed 5 or 6 blocks of 204 

delayed recall of orientation, delay length was either 1 s or 7 s, and delay length and sample 205 

contrast (60%; at threshold) were fully crossed during each 60-trial block.  206 

Experiment 1B was carried out to examine how subjects would perform at each of the 207 

three levels of contrast that would be used for the fMRI study: high (60%); low (10%), and null 208 

(0%). Participants performed 5 or 6 blocks with 60 trials each; again, delay length was either 1 s 209 

or 7 s, and delay length and sample contrast (high; low; null) were fully crossed. For both 210 

Experiments 1A and 1B, only trials with a 7-s delay were included in the behavioral analyses to 211 

better match the duration of the fMRI task. 212 

 213 

Behavioral analyses 214 
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 Behavioral performance was assessed in two ways. Within-trial recall error was 215 

calculated for high and low trials as the angular difference between the sample and response 216 

orientations, for each condition separately. Differences between conditions were evaluated by 217 

paired t-tests. Serial bias on response from the previous trial was calculated for all three 218 

conditions. This was done by calculating the difference between the current and previous 219 

response, and grouping the difference values into nine 20º-wide bins. To test whether the number 220 

of trials differed between bins, we performed a 𝞆2 goodness of fit test on each condition.  221 

 222 

fMRI methods  223 

Data acquisition 224 

Whole-brain images were acquired with a 3 Tesla GE MR scanner (Discovery MR750; GE 225 

Healthcare, Chicago, IL) with a 32-channel head coil at the Lane Neuroimaging Laboratory at 226 

the University of Wisconsin–Madison HealthEmotions Research Institute (Department of 227 

Psychiatry). Functional images were acquired with a gradient-echo echo-planar sequence (2 s 228 

repetition time (TR), 22 ms echo time (TE), 60° flip angle) within a 64 × 64 matrix (42 axial 229 

slices, 3 mm isotropic). A high-resolution T1 image was also acquired for each session with a 230 

fast spoiled gradient-recalled-echo sequence (8.2 ms TR, 3.2 ms TE, 12° flip angle, 176 axial 231 

slices, 256 × 256 in-plane, 1.0 mm isotropic).  232 

 233 

Preprocessing 234 

Functional MRI data were preprocessed using AFNI (http://afni.nimh.nih.gov) (Cox, 1996). The 235 

first four volumes of each functional run were removed. The data were then registered to the first 236 

volume of the first run within each scan session, and then to the T1 volume of the same session. 237 

Data from the second session were further registered to the T1 volume of the first scanning 238 
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session. The data were then motion corrected, detrended (linear, quadratic, cubic), converted to 239 

percent signal change. Data for subsequent general linear model (GLM) analyses were further 240 

spatially smoothed with a 4-mm FWHM Gaussian kernel. Data for multivariate and univariate 241 

time course analyses were zscored within each run. 242 

 243 

Univariate analyses 244 

Task-related changes in activity were identified with a mass-univariate GLM implemented in 245 

AFNI, with sample, delay and probe epochs of the task modeled with boxcars (0.5 s, 8.5 s or 9.5 246 

s depending on the participant, and 4 s, respectively), each convolved with a canonical 247 

hemodynamic response function. Six nuisance regressors were also included to account for head 248 

motion artifacts in the six dimensions of rigid body motion.  249 

Percent signal change in BOLD activity relative to baseline was calculated for each time point 250 

during the working memory task, baseline was chosen as the average BOLD activity of the first 251 

TR of each trial. BOLD signal change was averaged across trials within each condition, and 252 

across all voxels within each region of interest (ROI; see below).  253 

Statistical significance of BOLD activity against baseline was assessed using two-tailed, one-254 

sample t-tests against 0, and the resultant p values were corrected across time points using FDR 255 

(False Discovery Rate) (Benjamini & Hochberg, 1995). Statistical difference of BOLD activity 256 

between conditions at each time point was assessed using two-tailed paired t-tests, with FDR 257 

correction applied across time points and comparisons.   258 

 259 

Region of interest (ROI) definition 260 

We created subject-specific anatomical ROIs by warping masks from the probabilistic atlas of 261 

Wang and colleagues (2015) to each subject’s structural scan in their native space. Early visual 262 
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anatomical ROIs were created by merging the masks for unilateral V1, V2, and V3 within and 263 

between hemispheres. IPS anatomical ROIs were created by merging the masks for unilateral 264 

regions IPS0-5 within and between hemispheres. For the Early Visual Cortex functionally 265 

defined ROI, we identified the 500 voxels displaying the strongest loading on the contrast 266 

[sample - baseline], collapsing over all three conditions. For the IPS functionally defined ROI, 267 

we identified the 500 voxels displaying the strongest loading on the contrast [delay - baseline], 268 

collapsing over all three conditions. For completeness, an alternate “Sample IPS ROI” was also 269 

defined as the 500 voxels in this anatomical region displaying the strongest loading on the 270 

contrast [sample - baseline]. 271 

 272 

Multivariate inverted encoding modeling 273 

All inverted encoding modeling (IEM) analyses were performed using custom functions in 274 

MATLAB. The IEM assumes that the responses of each voxel can be characterized by a small 275 

number of hypothesized tuning channels. Following previous work, the number of orientation 276 

tuning channels was set to nine (20º apart, equally spaced), and the idealized feature tuning curve 277 

of each channel to a specific orientation 𝜃 was defined as a half-wave-rectified sinusoid raised to 278 

the eighth power (FWHM = 0.82 rad): 279 

𝑓(𝜃) = cos(𝜃 − 𝑐), 280 

Where 𝑐 was the center of the channel. 281 

We then computed the weight matrix (W, v × k, v: the number of voxels; k: the number of 282 

channels) that projects the hypothesized channel responses (C1, k × n, n: the number of trials) to 283 

actual measured fMRI signals in the training dataset (B1, v × n), and extracted the estimated 284 

channel responses (𝐶./, k × n) for the test dataset (B2, v × n) using this weight matrix.  285 
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The relationship between the training dataset (B1) and the channel responses (C1) was 286 

characterized by: 287 

𝐵1 = 𝑊𝐶1 288 

Therefore, the least-squared estimate of the weight matrix (𝑊3 ) was calculated using 289 

linear regression: 290 

𝑊3 = 𝐵1𝐶14(𝐶1𝐶14)51  291 

The channel responses (𝐶./) for the test dataset (B2) was then estimated using the weight 292 

matrix (𝑊3 ): 293 

𝐶./ = 	 (𝑊3 4𝑊3 )51𝑊3 4𝐵/      294 

 Because orientations in the current study were randomly selected from the 1º - 180º 295 

orientation space (in steps of 1º), we did not pick a fixed set of channel centers, as is often done 296 

(Yu & Shim, 2017; Yu, Teng, et al., 2020). Instead, following Rademaker et al. (2019) we first 297 

picked a set of equally spaced channel centers (e.g., 0º, 20º, 40º, 60º, 80º, 100º, 120º, 140º, 160º), 298 

conducted the analysis as described above, and then shifted the channel centers by 1º and 299 

repeated the analysis. The procedure was repeated 20 times, such that all 180 orientations from 300 

1º to 180º  in 1º step served as channel centers. We then combined estimated channel responses 301 

from all iterations of these analyses to create responses of 180 orientation channels. The result, 302 

for any given orientation, can be considered a reconstruction of the model’s estimate of the 303 

neural representation of that orientation. This procedure ensured that our channel estimates were 304 

not biased by any specific channel centers. All channel responses were then centered on a 305 

common center (0º on the x-axis) and averaged for visualization and for statistical comparisons.  306 

 307 

Hypothesis testing 308 
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Analysis plan. If a participant is not aware of the fact that a considerable proportion of 309 

trials will feature null samples that contain no orientation information, we assume that on null 310 

trials they will generate an orientation for response at some point prior to the onset of the 311 

response dial. Furthermore, because the initial orientation of the dial cannot be predicted prior to 312 

its onset, we assume that this response plan will not be kinematic (e.g., how many degrees they 313 

plan to turn the dial), but rather will be the representation of the orientation that the participant 314 

plans to produce at the end of trial. To validate this assumption, our first analysis would be to 315 

train an IEM using the orientation of the response on that trial (response-based IEM). Successful 316 

reconstruction of orientation with this IEM at time points preceding the response (i.e., during the 317 

delay period) would mean that participants were indeed representing the orientation of their 318 

planned response during those earlier time points (response-based neural code).”  319 

Assuming success of this first analysis, the next step would be to determine whether a 320 

common response-based neural code was employed across conditions. This would be done by 321 

applying the response-based IEM from one trial type (e.g., high) to data from the other two trial 322 

types (e.g., low and null). We anticipated three possible outcomes: If reconstruction in a tested 323 

condition was significantly positive, and did not differ from that in the training condition, this 324 

would reflect “full generalization”; if reconstruction in a tested condition was significantly 325 

positive, but was also significantly lower than that in the training condition, this would reflect 326 

“partial generalization”; and if reconstruction in a tested condition was not significant, this would 327 

reflect “failed generalization”. These results would be interpreted as evidence for a fully shared 328 

neural code, for a partly shared neural code, or as a failure to find evidence for a shared neural 329 

code, respectively.    330 
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Finally, because IEM relies on specific hypotheses of orientation channels, we would also 331 

perform a model-free analysis, multidimensional scaling (MDS), to see if this alternative 332 

approach would support conclusions comparable to those suggested by the IEM analyses. 333 

Operationalizing	hypothesis tests. To investigate the codes supporting the representation 334 

of orientation in the different conditions (high; low; null), we trained two IEMs: a response-335 

based IEM labeled according to the orientation of the response on each trial, and a sample-based 336 

IEM labeled according to the sample orientation on each trial. Note that the response-based IEM 337 

would be the focus of our analyses, and results from the sample-based IEM in the null condition 338 

would not be interpretable on its own, but would serve as controls for comparing with the results 339 

from high and low conditions. IEMs were trained and tested using a leave-one-run-out cross-340 

validation procedure, for each condition, time point (or average of time points, e.g., average of 341 

time points 8 - 10 s for delay period), and ROI separately. To compare response-based neural 342 

codes across conditions, we also used a leave-one-run-out procedure, training the response-based 343 

IEM on data from one condition, and testing the IEM on the data from all three conditions, 344 

including the training condition (which would yield the same result as the first analysis) and the 345 

two other conditions. This procedure was performed for each condition, time point (or average of 346 

time points), and ROI separately.  347 

We also trained several complementary IEMs for testing alternative explanations for the 348 

results. First, we trained a mixed IEM using a balanced set of trials from each condition (high; 349 

low; null), and tested this IEM on the same balanced set of trials from each condition separately. 350 

The purpose of this IEM would be to avoid potential concerns with differences in SNR across 351 

IEMs (Liu, Cable, & Gardner, 2018; Sprague et al., 2018). Second, to examine the influence of 352 

previous-trial information on the reconstruction of current-trial information, we trained response-353 
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based IEMs using response labels from the previous trial, or trained sample-based and response-354 

based IEMs while excluding trials with similar response to that of the previous trial. 355 

To characterize the strength of each IEM reconstruction, we collapsed over the channel 356 

responses on both sides of the common center, averaged them, then calculated the slope of each 357 

collapsed reconstruction using linear regression (Foster, Bsales, Jaffe, & Awh, 2017; Samaha, 358 

Sprague, & Postle, 2016). A larger positive slope indicates stronger positive representation. We 359 

used a bootstrapping procedure (Ester et al., 2015; Yu, Teng, et al., 2020) to characterize the 360 

significance of the slopes. For each combination of factors (IEM, condition, time point, or ROI), 361 

seventeen orientation reconstructions were randomly sampled with replacement from the pool of 362 

seventeen participants and averaged. This procedure was repeated 10000 times, resulting in 363 

10000 average orientation reconstructions, and correspondingly 10000 slopes. The probability of 364 

obtaining a negative slope among the 10000 slopes was counted as the one-tailed p-value of the 365 

slope. To characterize the difference between the slopes of two IEM reconstructions, we first 366 

calculated the difference between two bootstrapped slopes 10000 times, which generated 10000 367 

slope differences. The significance of the slope difference was then calculated using the same 368 

one-tailed method as above. All p-values were corrected for multiple comparisons using the FDR 369 

method, across IEMs (sample-based, response-based), conditions (high, low, or null), and time 370 

points.	371 

We also assessed evidence for differences between the slopes of delay-period response-372 

based reconstructions with Bayes Factors (BF), which support evaluation of the amount of 373 

evidence for one hypothesis (H1) against the null hypothesis (H0). H1 referred to a positive 374 

reconstruction and H0 referred to a failed reconstruction (i.e., a slope no larger than 0). For 375 

comparison between the slopes of two reconstructions, H1 referred to the slopes being different 376 

and H0 referred to the absence of evidence for a difference. As an example, a BF10 of 3 would 377 



 17 

indicate that H1 is three times more likely than H0, whereas a BF10 of 0.33 would indicate that H0 378 

is three times more likely than H1. All BF analyses were conducted using the JASP software	379 

(Love et al., 2019). 380 

 381 

Multidimensional scaling. For each ROI and each trial epoch we categorized all response 382 

orientations into four bins (0-45º, 45-90º, 90-135º, 135-180º). Trial number for each condition 383 

was matched by subsampling data from the high and null conditions to match the number of 384 

trials in the low condition. The Euclidean distances between orientation bins and conditions were 385 

then computed using the covariance matrix calculated from the subsampled data. This 386 

subsampling procedure was repeated for 1000 times and averaged. Distances were averaged 387 

across participants, and multidimensional scaling was performed on the distance matrix using the 388 

“cmdscale” function in MATLAB.  389 

 390 

Results 391 

Behavior 392 

Experiment 1A  393 

Participants’ 75% contrast discrimination threshold for recall of orientation against a noise 394 

background ranged between 4-6%, with a mean of 5.0% and a standard deviation of 0.6%. For 395 

delayed recall of the orientation of a sample grating, the average recall error for high contrast 396 

(60%) samples (9.0º ± 1.5º) was significantly lower than for the threshold contrast samples 397 

(17.4º ± 4.4º), t(12) = 5.95, p < 0.001.  398 

 399 

Experiment 1B  400 
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Delayed recall of orientation did not differ between high contrast (60%; 10.2º ± 1.9º) and low 401 

contrast (10%; 10.6º ± 2.7º) conditions, t(15) = 0.64, p = 0.530 (Figure 1). The fact that average 402 

recall error did not differ between the high and low trials established the fact, critical for the logic 403 

of Experiment 2, that low and high samples were comparably visible to participants. This, plus 404 

the marked difference between performance at these two levels of contrast versus performance at 405 

75% threshold (Experiment 1A) indicated that neither high nor low contrast trials were likely to 406 

produce trials in which the sample grating was not visible to the participant (in contrast to some 407 

of the threshold trials in Experiment 1A). 408 

 409 

Experiment 2  410 

Consistent with Experiment 1B, Recall error during scanning did not differ between the high 411 

(11.4º ± 4.0º) and low (11.7º ± 4.8º) trials, t(16) = 0.58, p = 0.567.  412 

Although recall error could not be calculated for null trials, the results from several 413 

analyses suggested that participants did not treat null trials different from trials on which a 414 

sample grating was visible. First, angular difference between the starting position of the response 415 

needle and the recalled orientation did not differ between high, low, and null trials (42.3º ± 2.4º, 416 

41.7º ± 3.9º, 41.8º ± 5.7º, respectively; all ts < 0.85, ps > 0.408), suggesting that the three 417 

conditions were comparable in terms of effort during recall. Second, although sample orientation 418 

on each trial was randomly chosen and the distribution of sample orientations was uniform (i.e., 419 

there was an equal proportion of cardinal and oblique orientations), plotting the distribution of 420 

participants’ raw responses showed biased responses towards oblique orientations (relative to 421 

cardinal orientations) for all three trial types (Figure 2). This indicates that trials of all types were 422 

influenced to a similar extent by a systematic bias, perhaps from one or more stimulus-423 

nonspecific factors such as prior knowledge (Panichello et al., 2019; Yu, Panichello, Cai, Postle, 424 
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& Buschman, 2020). In sum, null and high/low trials were well matched in terms of procedural 425 

details, and the only difference between conditions was the availability of external orientation 426 

information. Therefore, any orientation information observed in the null trials could only be 427 

internally generated.  428 

 429 

<----- insert Figure 2 about here -----> 430 

 431 

fMRI 432 

Time course of BOLD activity 433 

All analyses were carried out at the level of the Early Visual Cortex ROI and the IPS ROI. In 434 

both regions, a conventional time course of BOLD activity change was observed for all three 435 

conditions (Figure 3): sample-evoked activity reached its peak at around 4-6 s after trial onset; 436 

delay-period activity reached its trough at around 8-10 s; and response-evoked activity reached 437 

its peak at around 14-16 s. Time points 8-10 s were subsequently used to operationalize “late 438 

delay-period” activity. In early visual cortex, activity in null trials was slightly lower than that in 439 

high and low trials during sample and early delay epochs (2-8 s; all ps < 0.023), but not at 10 s 440 

(both ps > 0.167) nor during the response epoch (12 s and after; all ps > 0.342). In IPS, in 441 

contrast, null activity was lower during the sample (2-4 s; all ps < 0.005) and response epochs 442 

(12-18 s, all ps < 0.040 except for 12 s between high and null: p = 0.073), but not during the 443 

delay (6-10 s, all ps > 0.132). 444 

 445 

<----- insert Figure 3 about here -----> 446 

 447 

Inverted encoding modeling 448 
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Early visual cortex. To assess the time course of neural representations of orientation, for 449 

each trial type, we applied a sample-based IEM (i.e., trained on the sample label) and a response-450 

based IEM (trained on the response label) to every time point of the trial. For high and low trials, 451 

reconstruction with the sample-based IEM was significant beginning at 4 s after sample onset 452 

and sustained for the remainder of the trial (all ps < 0.001). Similarly, reconstruction with the 453 

response-based IEM were significant for the duration of trial, beginning at 4 s for high trials and 454 

at 2 s for low trials (all ps < 0.040). Sample-based and response-based reconstructions did not 455 

differ at any time point, for either of these two conditions (all ps > 0.157). These results validated 456 

the approach of using participants’ responses as an estimate of the orientation that they 457 

represented earlier in the trial, prior to the response.    458 

 Turning next to null trials, reconstruction with sample-based IEMs did not achieve 459 

statistical significance except for two isolated time points: 2 s (p = 0.017) and 16 s (p = 0.036), 460 

probably due to statistical noise. Note that these null results amounted to confirmation of a sanity 461 

check, because the labels used to train the sample-based IEM did not correspond to what subjects 462 

were presented on these trials. Reconstructions with response-based IEMs, were significant 463 

beginning with 6 s and for the duration of trial (all ps < 0.020; Figure 4A). Critically, these 464 

response-based reconstructions were significantly different from the sample-based 465 

reconstructions for 6-8 s and from 12 s onwards (green asterisks; all ps < 0.012), suggesting that 466 

robust orientation representations specific to the response started from 6 s after trial onset. This 467 

indicates that, beginning relatively early in the trial, participants generated and maintained a 468 

representation with exclusively internally derived information. 469 

 Intraparietal sulcus. In IPS, results were generally comparable to those from early visual 470 

cortex, albeit weaker in magnitude. When focusing on the late-delay period (Figure 4D), sample 471 

and response reconstructions were significant in all conditions (all ps < 0.037), except for the 472 
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sample reconstruction in the null condition (p = 0.259). Time point-by-time point reconstructions 473 

were also qualitatively similar to early visual cortex (Figure 4C): on high trials sample and 474 

response reconstructions emerged during the sample period and were sustained throughout the 475 

trial, as were sample reconstructions on low trials (all ps < 0.041). Response reconstructions 476 

were smaller in slope on low trials, and, with the exception of a single time point (6 s after trial 477 

onset, p = 0.007), did not survive correction for multiple comparisons during the delay. Note that 478 

the lower number of trials for the low condition might have been responsible for the lack of 479 

significance here. Indeed, robust reconstruction of orientation was observed for low trials when 480 

averaging across time points in the delay period (Figure 4D).  481 

Turning to null trials, reconstructions with sample-based IEMs only achieved statistical 482 

significance at 2 s, a result probably be due to statistical noise. Reconstruction with response-483 

trained IEMs, however, was significant for all time points beginning with 4 s (all ps < 0.028), 484 

with the exception of 10 s of the delay period (p = 0.076).  485 

We also carried out these analyses in the Sample IPS ROI (IPS ROI defined using 486 

sample-period activity), and the results (not shown) were qualitatively similar to those in the 487 

Delay IPS ROI. 488 

 489 

<----- insert Figure 4 about here -----> 490 

 491 

One possible concern about the finding of principal theoretical interest from these 492 

analyses -- the reconstruction of response-related stimulus information from the delay period of 493 

null trials (Figure 4) -- is that this might reflect “spillover” of information processed during the 494 

previous trial, rather than evidence for genuinely internally generated stimulus representations. 495 

Additional analyses carried out to assess this alternative possibility ruled it out as a major 496 
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concern, and these are presented at the end of the Results section (see Secondary analyses to 497 

assess the influence of the previous trial on response-based IEMs). 498 

 499 

Comparison of neural codes across high, low, and null trials  500 

Having established robust measurements for internally generated neural representations of 501 

orientation, we next sought to examine the nature of these representations. Specifically, because 502 

representations on null trials were purely internally generated, whereas representations on high 503 

and low trials reflected influences from both external and internal sources, we tested whether the 504 

representations maintained during these different trial types recruited a common neural code, in 505 

keeping with previous demonstrations of a shared neural code between working memory and 506 

perception (Harrison & Tong, 2009), between working memory and attention (Yu & Shim, 507 

2019), and between working memory and imagery (Albers et al., 2013). To this end we trained 508 

IEMs on one condition, and tested it on all three conditions (see Methods). Note that only 509 

response-based IEMs were recruited for this purpose. For these analyses, we emphasized the 510 

results from the late delay period (8-10 s after trial onset; also see Figure 5 for results for the full 511 

time courses). Here we also employed Bayes Factors (BF) to assess the amount of evidence in 512 

generalization. A BF of larger than 3 or smaller than 1/3 can be considered substantial evidence 513 

supporting or rejecting the hypothesis. 514 

 515 

<----- insert Figure 5 about here -----> 516 

 517 

In early visual cortex, we successfully reconstructed orientation from the late-delay 518 

period of low trials with IEMs trained on high trials (p < 0.001, BF10 = 280.3), and of high trials 519 

with IEMs trained on low trials (p < 0.001, BF10 = 79.5). Furthermore, these results demonstrated 520 
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full generalization: reconstructions for high and low trials with the high-trained IEM did not 521 

differ from each other (p = 0.552, BF10 = 0.5); nor did reconstructions for high and low trials 522 

with the low-trained IEM (p = 0.477, BF10 = 0.8; Figure 6A and 6B). When comparing each of 523 

these visible trial types with null trials, in contrast, cross-condition generalization was 524 

asymmetric: For high trials, although the IEM trained on high trials failed to generalize to null 525 

trials (p = 0.135, BF10 = 0.7; Figure 6A), the IEM trained on null trials did successfully 526 

reconstruct orientation on high trials (p = 0.0014, BF10 = 6.0), and reconstructions for high and 527 

null trials with the null-trained IEM did not differ from each other (p = 0.552, BF10 = 0.2; Figure 528 

6C). For low trials, on one hand, the IEM trained on null trials successfully reconstructed 529 

orientation on low trials (p = 0.0013, BF10 = 8.8), and reconstructions for low and null trials with 530 

the null-trained IEM did not differ from each other (p = 0.552, BF10 = 0.2; Figure 6C); On the 531 

other hand, the IEM trained on low trials did generalize to null trials (p = 0.0052, BF10 = 5.3), 532 

although the slope of this reconstruction was lower than that on low trials with the low-trained 533 

IEM (p = 0.030, BF10 = 28.4; Figure 6B), suggesting only partial generalization from low to null 534 

trials. 535 

In IPS, although response-based neural codes were also fully generalizable between high 536 

and low trials (train high-test low, p = 0.007, BF10 = 6.2; train low-test high, p = 0.006, BF10 = 537 

6.9; train high-test high vs. train high-test low, p = 0.732, BF10 = 0.2; train low-test low vs. train 538 

low-test high, p = 0.497, BF10 = 0.3; Figure 6D and 6E), there was no evidence for cross-539 

generalization from null trials to high or low trials (train null-test high, p = 0.215, BF10 = 0.5; 540 

train null-test low, p = 0.061, BF10 = 1.6; Figure 6F), nor from high or low trials to null trials 541 

(train high-test null, p = 0.252, BF10 = 0.4; and train low-test null, p = 0.187, BF10 = 0.6; Figure 542 

6D and 6E).  543 

 544 
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<----- insert Figure 6 about here -----> 545 

 546 

 Although cross-generalization is a common approach for assessing commonality of 547 

neural codes (Albers et al., 2013; Rademaker et al., 2019; Yu & Shim, 2019), interpreting 548 

failures to generalize can be complicated by technical considerations arising from training the 549 

IEM on the same versus on different datasets (Liu, Cable, & Gardner, 2018; Sprague et al., 550 

2018). Therefore, we repeated these analyses but with a single IEM trained on a balanced set of 551 

trials drawn in equal number from high, low, and null trials. Results with this mixed IEM were 552 

complementary to the cross-generalization analyses: in both early visual cortex and IPS, the 553 

mixed IEM generated successful reconstructions of orientation from high and low trials (4-10 s: 554 

all ps < 0.006), but failed on null trials (4-10 s: all ps > 0.140; Figure 7).   555 

 556 

<----- insert Figure 7 about here -----> 557 

 558 

Model-free analyses 559 

Lastly, to determine whether a difference between null and high/low trials would be observed 560 

when no model-based approach was applied to the data, we compared the representational 561 

distances between conditions using MDS. MDS analyses were performed for the sample (4-6 s 562 

after trial onset), delay (8-10 s after trial onset), and response (14-16 s after trial onset) epochs of 563 

the working memory task, separately for early visual cortex and for IPS. For visualization 564 

purposes, response orientations were grouped into four 45º-wide bins.  565 

In early visual cortex, during the sample epoch, the three conditions were discriminable 566 

along Dimension 1, confirming that differences in stimulus contrast influenced sensory 567 

processing (Figure 8A). During the delay period the distance between the high and low 568 
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conditions decreased, such that the two now overlapped along Dimension 1, while the null 569 

condition remained separated from the other two. This suggested that, as stimulus-driven 570 

influences diminished, trials that relied exclusively on internally derived information remained 571 

distinct. This discriminative element carried on into the response period, along Dimensions 2 and 572 

3, despite the fact that participants performed the same type of motor response on every trial. In 573 

IPS, a similar discriminative pattern was also observed between conditions (Figure 8B). Thus, in 574 

both brain areas, patterns of activity on null trials were distinct from those on high/low trials in 575 

multidimensional representational space. The fact that this was true for all epochs of the trial 576 

suggests that this separability was not simply a result of perceptual differences between memory 577 

samples.  578 

 579 

<----- insert Figure 8 about here -----> 580 

 581 

Secondary analyses to assess the influence of the previous trial on response-based IEMs 582 

Recent perceptual history can bias behavior on the current trials (Fischer & Whitney, 2014), 583 

including during working memory tasks (Barbosa et al., 2020; Samaha, Switzky, & Postle, 584 

2019), and it has been shown that the no-longer-relevant content of the previous trial can be 585 

decoded from electroencephalography (EEG) signals recorded during a visual working memory 586 

task (Bae & Luck, 2019). Consequently, we carried out a series of analyses to assess whether the 587 

response-related reconstructions from null trials (Figure 4), rather than reflecting internally 588 

generated stimulus representations, might instead be due to “spillover” of information processed 589 

during the previous trial. We tested this possibility with two approaches. First, we examined if 590 

the response of the previous trial could be reconstructed from patterns of activity of the current 591 

trial in the current data. In early visual cortex we found that the response of the previous trial 592 
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could indeed be reconstructed in all conditions, especially during the earlier portion of the trial, 593 

(all ps < 0.031; Figure 9). However, because above-baseline-level reconstruction of the previous-594 

trial response was present at the very beginning of the trial (i.e., 0 s), and reconstruction of the 595 

current-trial response did not emerge until 6 s after trial onset, we believe it was unlikely that 596 

these two sets of results reflected the same piece of information. Furthermore, in IPS, 597 

reconstruction of the previous trial’s response was almost absent, with the exception of three 598 

isolated time points across all three conditions (all ps < 0.03). This effect alone again cannot 599 

explain the sustained reconstructions of the response orientation on null trials. 600 

 601 

<----- insert Figure 9 about here -----> 602 

 603 

A second approach to assess the possible influence of information from previous trials on 604 

response-related reconstructions from null trials was to redo the analyses after removing the 605 

trials for which the response was most similar to the response on the previous trial. We did this 606 

by first calculating the difference between each trial’s response and the response on the previous 607 

trial, for all three conditions, and grouping the trials by difference values into nine 20º-wide bins. 608 

For high and null trials, the distribution of the differences was not uniform (𝞆2(8) = 19.5 and 609 

81.9, p = 0.012 and p < 0.001, respectively; Figure 10), suggesting a potential influence from 610 

previous trials on the performance of the current trial. Next, for null trials, we removed the 611 

influence from the responses that were closest to the previous response (difference < 10º; bins 612 

highlighted in red in Figure 10) by excluding trials that belonged to this bin and repeating the 613 

IEM analyses on the remaining trials. Significant response reconstructions were still observed in 614 

this subset of null condition trials (Figure 11), increasing our confidence that the representation 615 
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of response-related orientation information on null trials cannot be simply explained as 616 

reactivation of perceptual history from the previous trial.   617 

 618 

<----- insert Figures 10 and 11 about here -----> 619 

 620 

Finally, we examined whether the potency of the spillover effect varied with sample type, 621 

by sorting every high trial as a function of whether it was preceded by a high, low, or null trial. 622 

Results (not shown) indicated that the spillover effect was comparable for each trial type, and 623 

that the time course of each mimicked the pattern seen in Figure 9. 624 

 625 

Discussion 626 

 The human brain processes massive amounts of information every day, from both 627 

external and internal sources. To explore how internally-generated information is represented in 628 

the brain during working memory, we incorporated a null-sample condition into a delayed-recall 629 

task. First, we demonstrated that, after the presentation of a null sample, participants generated a 630 

neural representation that corresponded to the response that they would make at the end of the 631 

trial, confirming that our procedure was successful at producing internally generated working-632 

memory representations. Next, we assessed cross-generalization of the neural representation of 633 

orientations between conditions, and observed an asymmetric pattern in early visual cortex: 634 

IEMs trained on data from null trials generalized fully to data from visible-sample trials, but the 635 

converse was not true. This suggested some difference in the processing of internally generated 636 

representations versus conventional working memory representations that receive influences 637 

from both external and internal sources. This difference in neural codes was also evident when 638 

the data were projected into multidimensional representational space: the patterns of activity for 639 
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high and low trials were clearly segregated from null trials in both early visual cortex and IPS. 640 

Therefore, stimulus information that is derived from an external source is represented differently 641 

than stimulus information that is generated internally. 642 

 Our findings might seem inconsistent with previous work that has demonstrated a shared 643 

neural code between visual working memory and visual imagery in early visual cortex (Albers et 644 

al., 2013). However, because visual imagery tasks often involve elements such as mental 645 

rotations (Albers et al., 2013) or retrocueing manipulations (Dijkstra et al., 2018), they typically 646 

refer overtly to previously presented (i.e., externally originated) information, and this may 647 

explain why similar neural codes are recruited by these two classes of task. It had thus remained 648 

unclear whether “purely” internally-derived representations also share the same neural code as 649 

“conventional” working memory representations. The present results -- indicating that the 650 

representation of orientation in early visual cortex fully generalizes from the null to the high and 651 

low conditions, but not in the other direction – suggest that all three conditions share the same 652 

purely internally generated neural codes, and that conventional working memory representations 653 

contain one or more additional dimensions that are lacking from “purely” internally originated 654 

visual representations. The additional dimension(s) are likely related to processes that are 655 

involved in the initial processing of externally presented information.  656 

 The differences between working memory and internally originated imagery were also 657 

preserved in IPS, where we found that null and high/low trials did not generalize in either 658 

direction, although the effects were generally weaker compared with those in early visual cortex. 659 

These results are in line with previous work demonstrating failures to find evidence -- in higher-660 

order parietal and/or frontal cortex -- for generalization of neural codes between working 661 

memory and visual perception (Rademaker et al., 2019), attention (Yu & Shim, 2019), and 662 

imagery (Albers et al., 2013).  663 
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 What is the nature of the internally generated representations observed in the delay period 664 

of the null condition in the current study? One possibility is a preparatory motor code, similar to 665 

what has been demonstrated for visual working memory for orientation on a task that allowed for 666 

concurrent selection of visual and motor responses (van Ede, Chekroud, Stokes, & Nobre, 2019). 667 

If so this would need to be a highly abstract code, akin to an intention, because the starting 668 

position of the probe in our experiment was randomized from trial-to-trial, and so participants 669 

would not have been able to plan their specific motor response prior to the onset of the response 670 

wheel. Another possibility is that they reflected internally generated representations of 671 

participants’ best guess of the orientation of the sample. This would be consistent with the fact 672 

that the time course of the representation of orientation developed later in time in the null 673 

condition relative to the high and low conditions, especially in early visual cortex. Similarly, it 674 

has been observed that representations of visual imagery develop later in time than do 675 

representations associated with visual perception (Dijkstra et al., 2018) and with visual working 676 

memory (Albers et al., 2013). It is likely that internally generated representations are influenced 677 

by many stimulus-nonspecific factors, such as prior knowledge (Bae et al., 2015; Bae et al., 678 

2014; Panichello et al., 2019; Yu, Panichello, et al., 2020) and recent history (Bae & Luck, 2019; 679 

Fischer & Whitney, 2014), and that these stimulus-nonspecific factors may serve, in part, as 680 

differentiating factors in the coding of externally driven versus internally generated information. 681 

Indeed, we did observe influences from the previous trial in the current experiment, although 682 

spillover from the previous trial alone cannot explain the sustained, robust representations of the 683 

response in the null condition. It should be possible to use the “null-sample” paradigm in 684 

combination with other visual tasks to better understand the nature of internally generated visual 685 

representations. For example, it would be interesting to compare internally generated 686 

representations directly with the codes that support visual perception. It would also be interesting 687 
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to include confidence ratings in future tasks to better understand the subjective experience of the 688 

null task. Finally, by combining the paradigm with ultra-high field fMRI, one would be able to 689 

investigate whether there exist layer-specific representations for purely internally generated 690 

representations.  691 

Our results, together with previous work (Albers et al., 2013; Harrison & Tong, 2009; 692 

Rademaker et al., 2019; Yu & Shim, 2019), suggest a potential mechanism for how the brain 693 

processes information originating from different sources. Early visual cortex represents stimulus 694 

properties with a common neural code that is insensitive to behavioral/cognitive context, such 695 

that the same neural code is shared between visual perception, attention, and working memory, 696 

consistent with the sensorimotor recruitment hypothesis. However, early visual cortex also 697 

registers the source of origination of this information, such that externally originated and 698 

internally originated representations can be differentiated. This distinction between externally 699 

and internally originated representations was also observed in a higher-order cortical area, IPS, 700 

although perhaps with a slightly different pattern. These signals may underlie the neural basis for 701 

how the brain differentiates and maintains signals from different sources. 702 
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Figures and legends 823 

 824 

Figure 1. Trial sequence of the fMRI task 825 

Participants performed a 1-item delayed recall task on oriented gratings. On different trials, they 826 

viewed a high-contrast (60%) grating embedded in noise, a low-contrast (10%) grating 827 

embedded in noise, or a null-contrast (0%) grating embedded in noise (i.e., pure noise patch). 828 

Participants were told orientation information was always presented, despite that the visibility of 829 

the gratings might differ. After a prolonged delay (8.5 s for two participants and 9.5 s for fifteen 830 

participants), they recalled the remembered orientation on an orientation wheel. Feedback was 831 

provided at the end of every response. 832 

  833 



 35 

 834 
Figure 2. Raw response distribution 835 

The raw response distribution of high, low, and null conditions, indicated by the gray histograms. 836 

The black lines indicate the envelope of sample distribution. 837 
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 839 

Figure 3. Time course of BOLD activity in early visual cortex and IPS 840 

A. Trial-averaged BOLD activity in the Early Visual Cortex ROI. B. Time course of BOLD 841 

activity in the IPS ROI. Dark blue, light blue, and gray lines correspond to the high, low, and null 842 

conditions, respectively. Data from the two subjects with 8.5-sec delay periods were included in 843 

the averaged results, but event labels below the x-axis represent the trial sequence for subjects 844 

with 9.5-sec delay periods only for illustration purposes in this and subsequent figures, with S, 845 

D, R representing the Sample, Delay, and Response periods, respectively. Shaded areas indicate 846 

± 1 SEM. 847 
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 849 

Figure 4. Orientation reconstructions in early visual cortex and IPS in the high, low, and 850 

null conditions. 851 

A. Time course of orientation reconstructions (indexed by the slope of reconstruction) in early 852 

visual cortex, from left to right: in high, low, and null condition. B. Orientation reconstruction in 853 

the late delay period (8-10 s after trial onset) in early visual cortex. C. Time course of orientation 854 

reconstructions (indexed by the slope of reconstruction) in IPS, from left to right: in high, low, 855 

and null condition. D. Orientation reconstruction in the late delay period in IPS. Black and red 856 

lines correspond to sample and response, respectively. Black and red asterisks at the top of each 857 

plot denote significance of reconstructions, for sample and response, respectively. Green 858 

asterisks denote significance of difference between response and sample reconstructions. Event 859 

labels below the x-axis represent the Sample (S), Delay (D), and Response (R) periods, 860 

respectively. All p-values were corrected with False Discovery Rate (FDR) across conditions and 861 

time points. Shaded areas denote ± 1 SEM. *p < 0.05. 862 
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 864 

 865 

Figure 5. Time course of generalization of neural codes between the high, low and null 866 

conditions  867 

A. Time course of orientation reconstructions for high, low, and null conditions in early visual 868 

cortex, from left to right: results from high-, low-, and null-trained IEMs. B. Time course of 869 

orientation reconstructions for high, low, and null conditions in IPS, from left to right: results 870 

from high-, low-, and null-trained IEMs. Dark blue, light blue, and gray lines correspond to the 871 

high, low, and null conditions, respectively. Dark blue, light blue, and gray asterisks at the top of 872 

each plot denote significance of reconstruction at each time point relative to baseline, for high, 873 

low, and null conditions, respectively. Event labels below the x-axis represent the Sample (S), 874 

Delay (D), and Response (R) periods, respectively. All p-values were corrected with False 875 

Discovery Rate (FDR) across conditions and time points. Shaded areas indicate ± 1 SEM. *p < 876 

0.05. 877 
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 879 

Figure 6. Generalization of neural codes between the high, low and null conditions  880 

A. Left panel: orientation reconstructions for high, low, and null conditions from the high-trained 881 

IEM, in the late delay period (8-10 s after trial onset) in early visual cortex. Right panel: slopes 882 

of these reconstructions. B. Orientation reconstructions and slopes for high, low, and null 883 

conditions from the low-trained IEM, in the late delay period (8-10 s after trial onset) in early 884 

visual cortex. C. Orientation reconstructions and slopes for high, low, and null conditions from 885 

the null-trained IEM, in the late delay period (8-10 s after trial onset) in early visual cortex. D. 886 

Orientation reconstructions and slopes for high, low, and null conditions from the high-trained 887 

IEM, in the late delay period (8-10 s after trial onset) in IPS. E. Orientation reconstructions and 888 

slopes for high, low, and null conditions from the low-trained IEM, in the late delay period (8-10 889 

s after trial onset) in IPS. F. Orientation reconstructions and slopes for high, low, and null 890 

conditions from the null-trained IEM, in the late delay period (8-10 s after trial onset) in IPS. 891 

Dark blue, light blue, and gray colors correspond to the high, low, and null conditions, 892 

respectively. Dark blue, light blue, and gray asterisks at the top of each plot denote significance 893 

of reconstruction, for high, low, and null conditions, respectively. All p-values were corrected 894 

with False Discovery Rate (FDR) across conditions. Shaded areas and error bars indicate ± 1 895 

SEM. *p < 0.05. 896 
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 898 

Figure 7. Time course of generalization of neural codes between the high, low and null 899 

conditions, using a mixed IEM  900 

A. Time course, in early visual cortex, of orientation reconstructions for high, low, and null 901 

conditions using a mixed IEM. B. Time course, in IPS, of orientation reconstructions for high, 902 

low, and null conditions using a mixed IEM. Dark blue, light blue, and gray lines correspond to 903 

the high, low, and null conditions, respectively. Dark blue, light blue, and gray asterisks at the 904 

top of each plot denote significance of reconstruction at each time point relative to baseline, for 905 

high, low, and null conditions, respectively. Event labels below the x-axis represent the Sample 906 

(S), Delay (D), and Response (R) periods, respectively. All p-values were corrected with False 907 

Discovery Rate (FDR) across conditions and time points. Shaded areas indicate ± 1 SEM. *p < 908 

0.05. 909 
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 910 

Figure 8. Visualization of distances between conditions in multidimensional 911 

representational space 912 

A. Visualization of representational distances between high, low, and null conditions, in early 913 

visual cortex. The top panel shows the same MDS projection of data from the sample epoch from 914 

three perspectives: 3D; a 2D view of dimension 1 vs. dimension 2; and a 2D view of dimension 1 915 

vs. dimension. The middle panel shows three comparable views of the MDS projection of data 916 

from the late delay period, and the bottom panel three comparable views of the MDS projection 917 

of data from the response epoch. B.  MDS analyses of data from IPS, using the same display 918 

conventions as A. Each marker represents one of the orientation bins (0-45º, 45-90º, 90-135º, 919 

135-180º). Dark blue, light blue, and gray colors correspond to the high, low, and null conditions, 920 

respectively. a.u.: arbitrary units. 921 
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 922 

Figure 9. Reconstructions of previous-trial response in early visual cortex and IPS in 923 

the high, low, and null conditions. 924 

A. Time course of reconstructions of previous-trial response (indexed by the slope of 925 

reconstruction) in early visual cortex; B. Time course of reconstructions of previous-trial 926 

response in IPS, from left to right: in high, low, and null condition. Red asterisks at the top of 927 

each plot denote significance of response reconstructions. Event labels below the x-axis 928 

represent the Sample (S), Delay (D), and Response (R) periods, respectively. All p-values 929 

were corrected with False Discovery Rate (FDR) across conditions and time points. Shaded 930 

areas denote ± 1 SEM. *p < 0.05. 931 
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 933 
Figure 10. Distribution of the distance between response on the current trial and that 934 

on the previous trial 935 

The distribution of the distance between response on the current trial and that on the previous 936 

trial, in the high, low, and null conditions, indicated by the gray histograms (bin size = 20º). 937 

The red bar at the center indicates the bin with the smallest distance (<= 10º).  938 
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 940 

Figure 11. Orientation reconstructions in early visual cortex and IPS in the high, low, 941 

and null conditions, after excluding highlighted trials in Figure 10. 942 

A. Time course of orientation reconstructions (indexed by the slope of reconstruction) in 943 

early visual cortex, after excluding trials from the bin with the smallest distance in Figure 10, 944 

from left to right: in high, low, and null condition. B. Orientation reconstruction in the late 945 

delay period (8-10 s after trial onset) in early visual cortex. C. Time course of orientation 946 

reconstructions (indexed by the slope of reconstruction) in IPS, from left to right: in high, 947 

low, and null condition. D. Orientation reconstruction in the late delay period in IPS. Black 948 

and red lines correspond to sample and response, respectively. Black and red asterisks at the 949 

top of each plot denote significance of reconstructions, for sample and response, respectively. 950 

Green asterisks denote significance of difference between response and sample 951 

reconstructions. Event labels below the x-axis represent the Sample (S), Delay (D), and 952 

Response (R) periods, respectively. All p-values were corrected with False Discovery Rate 953 

(FDR) across conditions and time points. Shaded areas denote ± 1 SEM. *p < 0.05. 954 
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