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SUMMARY

Converging evidence suggests that the brain encodes time through dynamically changing patterns of
neural activity, including neural sequences, ramping activity, and complex spatiotemporal dynamics.
However, the potential computational significance and advantage of these different regimes have re-
mained unaddressed. We combined large-scale recordings and modeling to compare population dy-
namics between premotor cortex and striatum in mice performing a two-interval timing task. Conventional
decoders revealed that the dynamics within each area encoded time equally well; however, the dynamics
in striatum exhibited a higher degree of sequentiality. Analysis of premotor and striatal dynamics, together
with a large set of simulated prototypical dynamical regimes, revealed that regimes with higher sequen-
tiality allowed a biologically constrained artificial downstream network to better read out time. These re-
sults suggest that, although different strategies exist for encoding time in the brain, neural sequences
represent an ideal and flexible dynamical regime for enabling downstream areas to read out this
information.

INTRODUCTION

Tracking the passage of time on the subsecond to second scale

is critical for motor control andmany forms of learning and cogni-

tion, including the ability to anticipate future events (Ivry and

Spencer, 2004; Merchant et al., 2013a). While the neural mech-

anisms underlying timing remain poorly understood, there is

growing evidence that time is represented via population-level

spatiotemporal patterns of neural activity and that these dynam-

ical regimes are distributed across multiple areas (Paton and

Buonomano, 2018; Wang et al., 2018). To date, numerous

different dynamical regimes have been implicated in timing,

including neural sequences, ramping, and complex mixed and

multi-peaked patterns (Leon and Shadlen, 2003; Hasselmo,

2008; Pastalkova et al., 2008; Long et al., 2010; MacDonald

et al., 2011; van der Meer and Redish, 2011; Kraus et al., 2013;

Stokes et al., 2013; Crowe et al., 2014; Carnevale et al., 2015;

Kraus et al., 2015; Emmons et al., 2017; Heys and Dombeck,

2018; Tsao et al., 2018; Liu et al., 2019). However, the potential

computational significance of these different regimes remains

unclear. In particular, what is the potential computational trade-

off of encoding time through the progressive activation of neu-

rons (a neural sequence), approximately linear changes in firing

rate, or complex neural trajectories in which any given neuron

can exhibit multiple peaks in activity? Answering this question

has been hampered by challenges in rigorously quantifying and

comparing different dynamical regimes across different brain

areas. For example, while it is often the case that neural trajec-

tories appear sequence like when sorted appropriately, the de-

gree of sequentiality is rarely quantified—e.g., the overlap of

the temporal fields of consecutively active neurons (related to

the temporal sparsity) or the presence of additional secondary

peaks is often not taken into account.

Some of the brain areas that have consistently been impli-

cated in timing exhibit fundamentally different circuit motifs;

for example, while premotor areas are characterized by the

presence of robust recurrent excitation, striatal circuits lack

recurrent excitation (Shepherd, 1998). The functional and

computational consequences of these different circuit motifs

for the encoding of time remain unexplored. Here, we explicitly

contrasted the dynamics of dorsolateral striatum (DLS) and

secondary motor cortex (M2) during a two-interval timing

task. We developed novel measures to quantify the sequential-

ity of the dynamics and whether neural activity undergoes tem-

poral scaling from the short to long intervals. We found that the

DLS exhibits more sequential dynamics, which provide a more

flexible regime for downstream areas to read out time in a bio-

logically plausible manner. These findings suggest a previously

unknown computational role for the striatum in timing and pro-

vide general insights into which type of dynamical regimes are

optimal for reading out temporal information in downstream

brain areas.
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RESULTS

We compared simultaneously recorded neural dynamics in M2

and DLS, as head-fixed mice performed a two-interval timing

task (n = 8). Animals were randomly presented with one of two

olfactory cues for 0.2 s. A reward was delivered with a 3 s (cue

1, short interval) or 6 s delay (cue 2, long interval) if mice withheld

licking for the first 1.5 s after cue 1 onset, or 3 s after cue 2 onset

(Figure 1A). Mice learned to differentially time the onset of their

anticipatory licking in response to the cues (Figures 1B–1D).

The mean and standard deviation of the lick onset time were

both significantly higher for the long interval cue (Figures 1E

and 1F).

We next used silicon microprobes to simultaneously record

spiking activity from neurons in M2 and DLS, as well-trained

mice performed the task (range of isolated units: 81–263 in M2,

157–288 in DLS, Figures 2A and 2B). To confirm that, if as re-

ported previously, population dynamics in M2 and DLS encode

Figure 1. Two-Interval Timing Task in Mice

(A) Task schematic. In each trial, micewere presentedwith one of two olfactory cues for 0.2 s and rewarded if theywithheld licking during the time period indicated

in red. Mice were rewarded irrespective of whether they licked or not during the acceptance period shown in gray. Cue 1, short interval; cue 2, long interval.

(B) Learning curve of mean lick onset time for all 8 mice up to the day before recording day (1 session per day). The dashed horizontal lines denote the start of the

lick acceptance period for short- (blue) and long-interval (green) trials.

(C) Lick raster plot on short- (top) and long- (middle) interval trials for one animal on the recording day. Only trials with anticipatory licking are shown (cyan lines

denote the time of reward). Bottom: distribution of the same animal’s lick onset times on short- (blue) and long- (green) interval trials.

(D) Average lick rate on short- (blue) and long- (green) interval trials across all mice (n = 8). Shaded area represents SEM. Cyan lines denote the time of reward.

(E) The mean lick onset time was significantly higher for the long interval (n = 8 mice; two-sided paired t test, t7 = 8.296, p < 0.0001).

(F) The standard deviation of the lick onset time was significantly higher for the long interval (n = 8 mice; two-sided paired t test, t7 = 6.728, p = 0.0003).
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elapsed time, we decoded time from the population activity on a

trial-by-trial basis using a supervised decoder (see STAR

Methods). For both short- and long-interval trials, we found a

similar decoding performance between M2 and DLS (Figures

S1A–S1C). Furthermore, since these areas are also associated

with motor performance, we confirmed that the animals’ lick

onset time could be decoded with similar accuracy from each

area (Figures S1D and S1E). These results demonstrate that

the neural dynamics in both areas can encode two different tem-

poral intervals but do not address whether both areas use similar

encoding schemes. To attempt to rigorously quantify the poten-

tial differences in dynamics in both areas, we introduced a novel

sequentiality index (SqI) bounded between 0 and 1 (see STAR

Methods). Two aspects of neural dynamics were factored into

computing SqI (Figures 2C–2G): first, the entropy of the distribu-

tion of peak firing times across the population—which captures

whether the entire interval is homogeneously ‘‘tiled’’ by the peak

firing times of neurons— and, second, a measure of temporal

sparsity—which captures how much of the activity at each point

in time can be attributed to a single neuron. Interestingly, for both

delay intervals, SqI was significantly higher in DLS relative to M2

(Figure 2E). This difference appeared to be primarily due to a

higher temporal sparsity of DLS dynamics (Figures 2F and 2G).

Given that both areas encoded time but exhibited significant

differences in neural dynamics, a critical question is how the neu-

ral dynamics observed during the short- and long-delay trials are

related. Specifically, whether the response profile scaled from

the short- to the long-delay trials, or if neurons had the same ab-

solute temporal profile in response to both cues (Murakami et al.,

2014;Mello et al., 2015;Wang et al., 2018). To address this ques-

tion, we first examined how well a decoder trained on the short

trials could predict either absolute time (from 0 to 3 s) or scaled

(normalized) time during long trials. While cross-performance

was significantly worse under both conditions, the scaled condi-

tion was significantly better than the absolute (Figure S1C).

Furthermore, cross-sorted neurograms suggested significant

spatial differences during short and long delays, albeit with

some shared early sensory and late motor responses (Figures

S1F and S1G). We next developed an absolute-scaling index

(ASI; Figure S2) to quantify whether each unit’s activity during

both cues is more consistent with an absolute (ASI = 1) or scaling

(ASI = 0) property. While a sizable population of cells scaled their

responses within the cue-reward interval, other units exhibited a

similar temporal profile in response to both cues. The mean ASI,

however, was not significantly different between M2 and DLS,

suggesting a comparable mixture of temporally scaled and

non-scaled response types in both areas.

DLS Dynamics Provides a Better Code to Read Out Time
Experimental and computational studies have suggested that

sequential dynamics observed in numerous brain areas under-

lies timing (Hahnloser et al., 2002; Buonomano, 2005; Long

and Fee, 2008; Pastalkova et al., 2008; Kraus et al., 2013; Rajan

et al., 2016; Murray and Escola, 2017). However, the potential

computational benefit of using neural sequences over other

dynamical regimes to encode time has not been addressed.

We hypothesized that neural sequences provide a flexible

dynamical regime that can be easily read out by downstream

areas utilizing biologically plausible learning rules. First, in

contrast to the sophisticated machine learning approaches

that can perform optimal decoding, biological networks likely

rely on simple associative learning rules such as STDP and

LTP to decode time. Second, since the projecting neurons of

any given area are generally all excitatory or inhibitory, any set

of first-order downstream units should at first pass decode

time using a complement of positive (or negative) weights.

To test this hypothesis, we first examined the ability of hypo-

thetical downstream units to read out time from the experimen-

tally observed dynamics of M2 and DLS. Based on the dynamics

in M2 and DLS, five output units were trained to produce five de-

lays, while only allowing non-negative weights onto the output

units (Figure 3A). Consistent with the higher SqI in DLS, outputs

trained on DLS dynamics during both the short and long intervals

were significantly better at producing the target delays, with per-

formance quantified as the correlation coefficient between the

generated and target trajectories (Figures 3B and 3C). These

regional differences were robust to a range of upper weight

values and target trajectory numbers used in the model (Fig-

ure S3). Importantly, the enhanced DLS performance was not

due to higher activity in this area, and these findings remained

unchanged when the analysis was confined to significantly

responsive cells (Figure S4).

Neural Sequences Provide a Set of Near Orthogonal
Basis Functions to Read Out Time
To further understand why dynamics with higher sequentiality

(i.e., DLS compared toM2) provided the downstream units a bet-

ter regime to read out time, we contrasted a wide range of pro-

totypical experimentally observed regimes, includes families of

neural sequences (Hahnloser et al., 2002; Pastalkova et al.,

Figure 2. Higher-Sequentiality Indices in DLS Compared to M2

(A) Illustration of the silicon microprobe recording site locations in M2 and DLS.

(B) Spiking raster plot for two example units for short (top) and long (middle) intervals with corresponding average firing rate (bottom) in M2 (left) and DLS (right).

(C) Simultaneously recorded population activity from one animal in M2 and the DLS for the short (top) and long (bottom) interval. Each row represents the firing

rate of one unit normalized by its maximum rate. Units were ordered by their latency to maximum firing rate in each area independently (See also Figure S1).

Temporal sparsity is reflected in the off-diagonal regions.

(D) The sequentiality index (SqI) was calculated from the entropy of the peak response times (PE) across all units multiplied by the temporal sparsity (TS).

(E) The SqI in DLS was significantly higher than in M2 for both time intervals (n = 8mice; two-sided paired t test, t7 = 5.157, p = 0.001 and t7 = 5.855, p = 0.0006 for

the short and long intervals, respectively).

(F) The temporal sparsity in DLS was significantly higher than in M2 for both time intervals (n = 8 mice; two-sided paired t test, t7 = 4.486, p = 0.003 and t7 = 5.299,

p = 0.001 for the short and long interval, respectively).

(G) The peak entropy in DLSwas slightly higher than that inM2 for the short interval but not significantly different for the long interval (n = 8mice; two-sided paired t

test, t7 = 2.780, p = 0.027 and t7 = 0.107, p = 0.918 for the short and long interval, respectively).
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2008; Kraus et al., 2013), ramps (Leon and Shadlen, 2003), expo-

nential decaying activity (Shankar and Howard, 2012; Liu et al.,

2019), and complex spatiotemporal dynamics (Carnevale et al.,

2015; Bakhurin et al., 2017), as well as a high-dimensional peri-

odic basis function. Together, these prototypical regimes ex-

hibited a wide spectrum of sequentiality as measured by their

SqI (Figure 4A). Each regime was used as the input to a set of

downstream units that were trained to produce five delays using

the same constraints as those in Figure 3. Compared to other

patterns, e.g., ramping, periodic, or complex (multi-peaked) pat-

terns, sequential trajectories provided the best performance

(Figure 4B). Quantification of this effect revealed a positive cor-

relation of performance with the SqI of different regimes (Fig-

ure 4C). This result can be understood in terms of the set of basis

functions that each dynamical regime provides for downstream

neurons to extract temporal information through a weighted

linear combination of each unit. In the extreme, neural se-

quences offer a quasi-orthogonal set of basis functions to read

out time. And importantly, in contrast to other near orthogonal

basis sets, sequences can be read out using only non-negative

weights. Orthogonal bases provide a larger domain from which

to generate a target vector. Indeed, the model performance

and SqI positively correlated with the average paired angle be-

tween all the units in a given dynamical regime (Figures 4D

and 4E).

DISCUSSION

Previous studies have reported neural codes for elapsed time

in both M2 and DLS (Merchant et al., 2013b; Crowe et al.,

2014; Carnevale et al., 2015; Gouvêa et al., 2015; Mello

et al., 2015; Emmons et al., 2017). Consistent with these pre-

vious results, we observed a distributed code for elapsed time

in both areas during a two-interval timing task. Specifically,

Figure 3. DLS Dynamics with Higher Sequentiality Is Better at Generating Timed Responses

(A) Illustration of the model used to quantify how well downstream networks can read out time from different dynamical regimes. The five outputs units were

trained to generate responses at five different evenly spaced time intervals using a non-negative weight constrained least square model.

(B) Responses of the five output units trained to decode the experimentally observed dynamics in M2 (black) or DLS (red). The model was run separately for the

short (left) and long (right) interval. Target functions are shown in gray.

(C) Performance of the artificial downstream network as measured by the average correlation coefficient between the generated and target trajectories was

significantly higher in DLS for both time intervals (n = 8mice; two-sided paired t test, t7 = 4.565, p = 0.0026 and t7 = 6.027, p = 0.0005 for the short and long interval,

respectively) (see also Figures S2–S4).
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Figure 4. Neural Sequences Provide a Set of Near Orthogonal Basis Functions to Read Out Time

(A) Prototypical examples of different dynamical regimes that can encode time. Examples are based on a number of experimentally observed dynamical regimes,

e.g., linear (lin) or exponential (exp) ramping, and a high-dimensional periodic regime (‘‘Fourier’’). The corresponding sequentiality index (SqI) is displayed on top.

Colored squares emphasize the dynamics used in (B) and corresponding dots in (C)–(E).

(B) The trajectories (color coded as in Figure 3A) generated by 4 activity patterns from (A) denoted by the corresponding color-coded square and the target

functions (gray).

(legend continued on next page)
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using traditional decoders elapsed time was decoded equally

well in M2 and DLS on a trial-by-trial basis. Interestingly, how-

ever, dynamical regimes in DLS and M2 exhibited different

signatures: the dynamics in DLS was more sequential and

provided a better set of basis functions for downstream areas

to read out time in a biologically plausible manner. Impor-

tantly, M2 sends a strong excitatory projection to the DLS,

which plays a role in driving striatal activity during reward-

conditioned behavior (Lee et al., 2019), raising the possibility

that the mutually inhibitory circuit motifs of the striatum are

optimizing cortical dynamics for downstream areas to read

out time (Burke et al., 2017).

We propose that neural sequences can provide a quasi-

orthogonal set of basis functions for downstream areas to read

out time in a biologically plausible manner. The biological con-

straints include the fact that the projecting neurons in a given

area are either excitatory (e.g., cortex) or inhibitory (e.g., stria-

tum); thus, first-order downstream neurons generally receive

only excitatory or inhibitory weights from a given area. Addition-

ally, in contrast to the machine learning and Bayesian decoder

methods often used to demonstrate the encoding of elapsed

time, downstream biological networks are likely to rely on simple

associative forms of synaptic plasticity. These constraints can

severely limit the ability of downstream neurons to effectively

read out time. Here, we showed that when biological constraints

are taken into account, neural sequences provide a superior

dynamical regime to encode time, compared to ramps and com-

plex spatiotemporal patterns. But we stress, that many of the dy-

namic regimes considered (Figure 4), including linear and expo-

nential ramping, can drive complex temporal patterns when

using more sophisticated decoding schemes, or by allowing

positive and negative weights (Shankar and Howard, 2012; Liu

et al., 2019). More generally, however, the quasi-orthogonality

of neural sequences is advantageous because in the extreme it

resembles the coordinate system of neuron space (e.g., neu-

ron’s activity vector over time is composed of 0 s and a single

1). And this standard coordinate system provides the only set

of orthogonal basis functions that does not require negative

values. Indeed, the advantage of sparse neural sequences has

been previously noted in a bird song model showing that

increased temporal sparsity decreases learning time (Fiete

et al., 2004).

These results help clarify a large body of diverse experimental

data regarding temporal processing and raise the hypothesis

that some of the local computations performed by different areas

might be best understood not simply as encoding time but opti-

mizing the code. Specifically, a large body of data has suggested

a pivotal role for the striatum in timing in the range of seconds

and that time is encoded in dynamically changing spatiotem-

poral patterns of neural activity (Buhusi and Meck, 2005; Mer-

chant et al., 2013a; Paton and Buonomano, 2018). Yet it remains

unknown whether the striatum should be considered a timer per

se—in the sense that it actively generates the appropriate dy-

namics or is simply ‘‘propagating’’ the spatiotemporal patterns

of input it receives. Our results are consistent with the suggestion

that, while the DLS might not generate the neural dynamics that

underlies timing, it may optimize the dynamics by creating neural

sequences that are ideally suited for downstream areas to

generate timed patterns.
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(C) The SqI is significantly correlated with the performance of the output units (n = 15 simulated datasets, Pearson correlation coefficient r = 0.890, p < 0.0001).

The black line represents the best linear fit.

(D) Average of the angles between all unit (xi) pairs correlates with model performance (correlation coefficient r = 0.936, p < 0.0001). Note that for the sequence 4

dynamics outlined in red (corresponding to the red dots in C and E) the average angle is 1.47 in radians, corresponding to a near orthogonal 84 degrees.

(E) Average paired angle correlates with sequentiality index (correlation coefficient r = 0.948, P < 0.0001).
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dean V.

Buonomano (dbuono@ucla.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The pre-processed data and codes to analyze the pre-processed data are available at https://dx.doi.org/10.17632/mz357z8pwx.1.

Codes for the ASI and SqI measure used in this study can also be found at: https://github.com/ShanglinZhou/M2_DLS_2Intervals.

The raw data are available on reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Male C57BL/6J mice (n = 8, 14 – 20 weeks old at the time of recording (The Jackson Laboratory #000664) were used in this study.

Animals were kept on a 12-h light cycle, and group housed until the first stereotaxic surgery. All procedures were approved by the

University of California, Los Angeles Chancellor’s Animal Research Committee.

METHOD DETAILS

Surgical procedures
Animals underwent an initial head bar implantation surgery under isoflurane anesthesia in a stereotaxic apparatus (model 1900; Kopf

Instruments) to fix stainless steel head restraint bars bilaterally on the skull with dental cement. Animals recovered for at least one

week before starting behavioral training. Animals underwent a second surgery under isoflurane anesthesia on the day prior to

recording, to make craniotomies for silicon microprobe insertion in M2 and DLS. An additional craniotomy was made over the pos-

terior cerebellum for placement of an electrical reference wire. Animals were individually housed after surgery. All behavioral training

and recording sessions were performed in awake, head-restrained animals.

Two-interval timing task
Micewere food restricted tomaintain their weight at approximately 90%of their baseline level and givenwater ad libitum. During daily

training sessions, animals were mounted on the head bar restraint bracket and stood on a fixed polystyrene ball. Mice were initially

habituated to head fixation and trained to consume a liquid reward (5 mL, 10%sweetened condensedmilk). The rewardwas delivered

from a tube positioned between an infrared lickmeter (IslandMotion) by actuation of an audible solenoid valve (Neptune Research). In

these habituation sessions, animals were given a total of 80 reward stimuli with intertrial interval (ITI) randomly sampled froma uniform

distribution of 20 – 30 s, and were exposed to a constant stream of pure air through a tube positioned in front of the nose (2 L/min air

flow). When animals reached a criterion of consuming at least 90% of the delivered rewards for two consecutive days, they were

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data
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Software and Algorithms

MATLAB MathWorks N/A

Prism GraphPad Software N/A
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LIBSVM Chang and Lin (2011) https://www.csie.ntu.edu.tw/�cjlin/libsvm/
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presented with olfactory cues (isoamyl acetate or citral corresponding to short or long intervals in a counterbalanced manner). Ol-

factory cues with a duration of 0.2 s were made by bubbling air (0.15 L/min) through aromatic liquids diluted 1:10 in mineral oil

(Sigma-Aldrich), and merging this product with the 2 L/min stream of pure air. Initially, cues were followed by reward delivery after

3 s or 6 s irrespective of the animal’s licking response. The short and long interval trials were presented in random order (80 – 100

trials per interval, with ITIs randomly sampled from a uniform distribution of 20 – 30 s). After training animals on both time intervals

using unconditional reward delivery for at least one week (one session per day), we introduced the final stage of training, which

included acceptance windows to further differentiate their licking responses. These windows were defined as 1.5 – 3 s and 3 –

6 s after cue onset for the short and long intervals, respectively. Reward was omitted if mice licked before these time windows; other-

wise, reward was delivered regardless of whether or not they licked. When the mean anticipatory lick onset times exceeded 1.5 s for

the short interval and 3 s for the long interval for at least two consecutive days, animals underwent a surgical procedure in preparation

for recording on the following day. On average animals went through 13.25 ± 1.25 days of training with two cues before recording. On

the recording session, animals received 100 – 240 trials per interval in random order with ITIs randomly sampled from a uniform dis-

tribution of 20 – 30 s. Analysis of neural activity only used trials containing anticipatory licking (both rewarded and unrewarded trials).

Furthermore, to minimize potential confounds from spontaneous licking, we excluded trials in which licking occurred within a one

second period before cue onset.

Electrophysiological recordings
Simultaneous recordings were performed on the right hemisphere in M2 (2.5 mm anterior, 0.55 to 1.75 mm lateral, 0.5 mm ventral

relative to bregma) and DLS (1 mm anterior, 1.9 to 2.5 mm lateral, 3.5 mm ventral relative to bregma), using silicon microprobes con-

taining 256 electrodes targeting each area (type 256A in M2 and 256ANS in DLS) (Yang et al., 2020). The placement of the silicon

microprobes was confirmed histologically at the end of each experiment by coating the prongs with a fluorescent dye (Di-D; Thermo

Fisher) before implantation. Spike sorting was carried out using Kilosort software (Pachitariu et al., 2016). If not specified, all units

were included in the analysis. Each unit’s firing rate per trial was estimated by convolving the spike train with a decaying exponential

kernel (time constant = 0.1 s). Firing rates were then normalized to the range of 0 and 1. To determine whether a cell was significantly

responsive to a particular interval, the firing rate was binned in steps of 0.1 s from the time of cue onset until the end of the interval (3 s

for short, and 6 s for long). A unit was classified as being responsive to a given interval, if there were at least two consecutive bins

showing a significant difference relative to baseline (two sample unpaired t test, p < 0.05).

Absolute scaling index
We developed an absolute scaling index (ASI) to quantify whether the temporal profiles of the neuronal firing rates dilate from the

short to long interval (temporal scaling), or remain unchanged (absolute timing). As illustrated in Figure S2A, this index searches

for the best transformation to match the response profile of the long interval (y(t)) to the short interval (x(t)), by concatenating an ab-

solute portion of the long response (yabs(t)) with a temporally scaled portion of the long response (yscale(t’)). More specifically, we

searched for a breakpoint t to divide y(t) into an absolute and scaled segment, that best matches x(t), as measured by the Euclidean

distance (Dist(t)). In the case of absolute timing the best match will be when the entire short response is matched with the unscaled

early part of the long response with t = tmax, resulting in an ASI = 1—i.e.the first half of the long interval matches the entire short in-

terval. In contrast, an ASI = 0, would correspond to a t = 0, and the response profile of a neuron during the short and long interval

match when plotted in normalized time. ASI is calculated through the following steps.

ð1Þ DistðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXt
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t spans all possible breakpoints from 0 to tmax (for the short interval). The segment before t denotes the absolute period and the

period after t denotes the segment scaled by a = (2*tmax - t)/(tmax - t) for the long response. tmin corresponds to the breakpoint

with the minimal Euclidian distance Dist(t). In steps 3 and 4 the absolute and scaling weights are calculated between dynamics

for short interval and time-warped dynamics for the long interval with Na:b being the number of time points between a and b, and

absolute ratio AbsR(tmin) at tmin were calculated. The absolute temporal factor corresponds to tmin/tmax, and ASI was defined as

the average of the absolute temporal factor and the AbsR(tmin). Only cells responsive to both the short and long intervals were

used for the ASI analysis.

Decoding of elapsed time and lick onset
To test howwell the dynamics inM2andDLScould decode the time elapsed fromcue onset to the scheduled timeof reward,weused a

standard supervised decoder, specifically, a support vector machine (SVM) decoder as described in a previous study (Bakhurin et al.,

2017). Specifically, decoding was performed with a one-to-one multiclass support vector machine (SVM) with a radial-basis function

(RBF) kernel, and implemented using the LIBSVM library (Chang and Lin, 2011). Decoding was performed on a trial-by-trial basis. For

each trial the average firing rate of each neuron was binned to widths of 0.1 s and 0.2 s for the short and long intervals, respectively,

leading to a total of 30 bins for both intervals. Elapsed time was decoded from the population firing rates in each trial by requiring a

classifier to label each rate vector at a given bin in the trial as coming from one of the 30 time bins. Leave-one-trial-out cross validation

was used. By testing a given bin the corresponding predicted time bin was defined as the bin that produced the highest score of all 30

readout units. Performance was defined as the correlation coefficient between the correct and predicted time bin across all trials

tested. To compare the performance for M2 and DLS, we equalized the number of units in each area by using the minimum number

of units (M) of the two areas, and randomly selected M units from the area with larger population to train the SVM, and repeated this

process 10 times. Final performance was defined as the average correlation coefficient across these 10 repetitions.

Lick onset time in each trial was also decoded as described previously (Figures S2C and S2D) (Bakhurin et al., 2017). Dynamics

between 0.4 s before cue onset and 0.4 s after the maximum lick onset in a session was binned with steps of 0.1 s for both the short

and long interval. The labels of each binned population rate vectors at the time, immediately before, and immediately after lick onset

were assigned the value of 1; all other vectors were labeled as 0. The SVM’s output was represented by a single readout that scores

how closely each population vector in the test population trajectory predicts lick onset. The predicted lick onset bin was the one in

which the readout was at its highest value. Testing was performed with a leave-one-trial-out strategy, and the performance was

defined as the root mean square error (RMSE) between the correct lick onset and the predicted onsets across all tested trials.

The number of units was again controlled between M2 and DLS.

Sequentiality Index
To quantify the degree to which different dynamical regimes could be described as a sequence we developed a novel measure of

sequentiality index (SqI). Our SqI was inspired by a previously described measure (Orhan andMa, 2019), but relies on temporal spar-

sity rather than the ridge-to-background ratio, and is bounded between 0 and 1 (Figures 2 and 4). As illustrated in Figure 2D, this

normalized sequentiality index was calculated as:

PE =
XM
j =1

�pj logðpjÞ
,

logðMÞ

TS = 1� <
XN
i = 1

� rti logðrti Þ
,

logðNÞ>t

SqI =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PE � TS

p

where PE (peak entropy) captures the entropy of the distribution of peak times across the entire population. M is the number of bins

for estimating the peak time distribution (30 and 60 for neural dynamics in the short and long intervals in Figure 2, and 10 for the simu-

lated dynamics in Figure 4), and pj is the number of units that peak in time bin j divided by the total number of units. TS (temporal

sparsity) provides a measure of entropy of the distribution of normalized activity in any given bin. TS is maximum when only one

unit accounts for all the activity in each time bin t. rti represents the activity of unit i in time bin t, normalized by the sum of the activity

of all neurons at time t; < > t denotes the time average; and N is the number of units. The SqI approaches 1 when the peak times of

each neuron homogeneously tile the entire duration and one neuron is active at every moment in time withthe temporal fields being

non-overlapping. Note that SqI is sensitive to the width of the temporal fields of the neurons, and this is an important feature because

the extreme sequences with very broad temporal field converge toward a regime with a fixed-point attractor. We stress that because

sequentiality represents a fairly complex feature of dynamics, that no single measure of sequentiality is perfect. Themeasure defined

here seems effective at capturing the biological dynamical regimes studied here. However, it is important to note that this measure

can break down under some artificial manipulations (e.g., if one were to shuffle the time bins of a sequential neural trajectory).
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Non-negative weight constrained least square fitting model
Average dynamics in M2 and DLS, and prototypical dynamical regimes, were used as inputs to five output units (Figures 3 and 4).The

five target intervals were represented asGaussian functions with evenly spacedmeans over a total duration T of 3 or 6 s, representing

the short and long intervals for the M2 and DLS analyses respectively and 1 s for prototypical dynamical regimes. To account for

Weber’s law the width (w) of the Gaussian functions was 0.2 s and 0.4 s for the short and long intervals for the M2 and DLS analyses,

and 0.025 s for the prototypical dynamics.

TargetiðtÞ = e

�ðt � i
6
� TÞ2

2 �w2

To ‘‘train’’ the output units, and ensure that all output weights were non-negative, we used a least square fitting function lsqcurvefit

from MATLAB (MathWorks) with weight constrained between 0 and 10 (unless otherwise specified).

Generation of artificial dynamics
To study the relationship between sequentiality index and the performance of non-negative weight constrained least square fitting

model, we artificially generated various prototypical dynamics regimes composed of 100 units (Figure 4). In these prototypical re-

gimes time spanned 0 to 1 s with steps dt of 0.001 s.

Ramp up (linear)
The activity of unit i xi(t) was defined as:

yiðtÞ = t + 10�3Uð0; 1Þ

xiðtÞ = yiðtÞ =maxðyiðtÞÞ
where U(0,1) was a value sampled from a uniform distribution between 0 and 1 and max (yi(t)) was the maximum value of the yi. In

effect all units ramped from 0 to 1 with the same slope with a small amount of noise.

Ramp up/down (linear)
As above, but 50 units ramped up and 50 units ramped down linearly.

Ramp random
Ramping dynamics of each unit started and ended at a random level chosen between 0 and 1:

a = Uð0;1Þ

b = Uð0; 1Þ

xiðtÞ = a+ ðb� aÞ � t
where a and b were randomly sampled from a uniform distribution U(0,1).

Exponential ramping down
The activity of unit i xi(t) was defined as:

xiðtÞ = e

�t

ti + 10�3Uð0; 1Þ
with ti randomly sampled from a uniform distribution U(0.1, 2) and U(0,1) being a uniform distribution between 0 and 1.

Fourier-like
A Series of sine waves with progressively increasing frequencies was defined as follows (note all values are positive):

xiðtÞ = 0:5 � sinð2 �p � i � tÞ+ 0:5

Chaotic
Dynamics for each unit received independent Gaussian noise, which was described as:

t
dxi
dt

= � xi + sð0;1Þ
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where s (0, 1) is a random number sampled from a Gaussian distribution with 0 mean and 1 standard variance, and time constant t =

0.02 s.

Sequences with different temporal sparsity
Sequential dynamics with different temporal sparsity were defined as follows:

xiðtÞ = e
� ðt�i=100Þ2

2�w2

where w took the values of 0.005, 0.025, 0.1, 0.25, or 0.5 s.

Multiple peaks
Complex multipeaked dynamics was generated similarly to prototypical sequence dynamics, but instead of a single Gaussian each

unit was defined as the sum of p Gaussian functions (p = 1, 5, 10 and 25 respectively), each with a mean chosen from a uniform dis-

tribution U(0,1) and a width of 0.025 s.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were carried out with standard functions in MATLAB (MathWorks) and Prism (GraphPad Software). Data collec-

tion and analysis were not performedwith blinding to the conditions of the experiments. The sample size, type of test and P values are

indicated in the figure legends. Data distribution was assumed to be normal, but this was not formally tested. The P value of Pearson

correlationswas calculatedwith theMATLAB corrcoef function. All data and error bars represent themean andSEM. In all figures, the

convention is *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.
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Figure S1. Related to Figure 2 
Population Dynamics of M2 and DLS Encode Time Equally Well. 
(A) Average cross-temporal classification matrix across all testing trials for the support vector machine (SVM) decoder
applied to M2 (left) and DLS (right) data from one animal. The decoder was separately trained and tested on short (top) and
long (bottom) interval trials.
(B) Comparison of SVM performance (Pearson correlation coefficient between the predicted and correct time bin). There is
no significant difference in performance between M2 and DLS for either time interval (n = 8 mice; two-sided paired t-test, t7
= 0.919, P = 0.389 and t7 = 0.280, P = 0.787 for the short and long interval, respectively).
(C) SVM decoder was trained on data for short interval. Data in three conditions were used to test: 1) Control, leave-out
data for short interval (Train S Test S); Scale, long interval data by uniform down sampling to the same length of short
interval (Train S Test Long (scale)).); Absolute, first 3 s data for long interval (Train S Test Long (abs)). The SVM
performance in the Scale condition is significantly higher than that in the Absolute condition in both M2 and DLS (n = 8 mice,
one-way repeated measures ANOVA on the Fisher transformed correlation coefficient with Tukey multiple comparison
test,** P = 0.004 and P = 0.006 in M2 and DLS respectively).
(D) Heat plot showing predicted lick onset score generated by the SVM trained and tested on dynamics in M2 (left) and DLS
(right) for the short (top) and long (bottom) interval for one mouse. Trials are sorted by actual lick onset time, indicated by
an orange tick mark in each trial.
(E) Comparison of the lick onset decoding performance quantified as the root mean square error between the predicted and
actual lick onset. There is no significant difference in performance between M2 and DLS for either time interval (n = 8 mice;
two-sided paired t-test, t7 = 0.147, P = 0.888 and t7 = 1.648, P = 0.143 for the short and long interval, respectively).
(F) Population activity in M2 plot same as in Figure 2C for short interval (top) and long (bottom) according to index sorted
by firing rate peak delay for the short (left) and long (right) interval respectively.
(G) Same as in F except for DLS.
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Figure S2. Related to Figure 2 
M2 and DLS Dynamics Exhibit Similar Differences between Short and Long Interval Trials. 
(A) Simulated neural responses illustrating how the absolute scaling index (ASI) was calculated. Blue traces represent the

short interval of 3 s, and green the long interval of 6 s (first row). Rows 2 to 5 illustrate series of values for the breakpoint ,
which separates the absolute and scaled segments of the temporal profiles. As exemplified in row 3, dynamics for long

interval before  is denoted as yabs(t) which is just the original dynamics y(0-); dynamics after  is denoted as yscale(t’) which

is uniform down sampling of y(-6) to the length of -3. AbsR (absolute scaling ratio) and Dist(Euclidian distance between
response of short interval and time warped response of long interval) are calculated as described in Star Methods at each

.
(B) Examples of simulated neural responses for short (blue) and long (green) intervals, with the corresponding ASI displayed
at the top. Plots are ordered from high scaling responses (ASI ~ 0) at the top to high absolute responses (ASI ~ 1) at the
bottom.
(C) Example of how ASI changes in simulated neural responses with the same τ (the time point at which time warped
responses of the long interval is most similar to the that of the short interval) but different AbsR (top versus bottom), which
results in different ASI. The ASI is displayed at the top of each plot.
(D) The response of representative cells to both short (blue) and long (green) interval trials in M2 and DLS, with the
corresponding ASI displayed on top.
(E) Fraction of M2 and DLS cells exhibiting scaling (ASI smaller or equal to 0.33), absolute (ASI higher than 0.67), or mixed
responses (ASI higher than 0.33 and smaller or equal to 0.67). Data represent 954 M2 and 1023 DLS cells responsive to
both intervals pooled from n = 8 mice.
(F) There was no significant difference between the mean ASI in M2 and DLS (n = 8 mice; two-sided paired t-test, t7 =
0.172, P = 0.868).
(G) There was no significant difference between the ASI distribution of all cells recorded in M2 (black) and DLS (red). n =
954 M2 and 1023 DLS cells responsive to both intervals pooled from 8 mice, two-sample Kolmogorov–Smirnov test, P =
0.33.
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Figure S3. Related to Figure 3 
Superior Performance of Readout Model Using DLS Dynamics is Robust to Different Parameters. 
(A) The model performance was significantly higher using DLS relative to M2 dynamics under various upper bounds for the 
allowed weights. Short interval (left): n = 8 mice, two-way repeated measures ANOVA on the Fisher transformed correlation 
coefficient, brain region effect: F1,7 = 19.27, P = 0.003. Long interval (right): n = 8 mice, two-way repeated measures ANOVA 
on the Fisher transformed correlation coefficient, brain region effect: F1,7 = 20.21, P = 0.003.
(B) The model performance was significantly higher using DLS relative to M2 dynamics across different number of output 
units (number of target intervals). Short interval (left): n = 8, two-way repeated measures ANOVA on the Fisher transformed 
correlation coefficient, brain region effect: F1,7 = 15.30, P = 0.006. Long interval (right): two way repeated measures ANOVA 
on the Fisher transformed correlation coefficient, brain region effect: F1,7 = 16.93, P = 0.005.
Data were presented as mean±SEM.  
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Figure S4. Related to Figure 3 
Analyses Based on Population Dynamics from the Subset of Neurons that were Classified as Responsive Cells 
(A) Fraction of cells that were significantly responsive to the short or long intervals, or both. In all three conditions, M2
contained a significantly higher fraction of responsive cells (n = 8 mice, two-sided paired t-test, t7 = 4.386, P = 0.003; t7 =
3.997, P = 0.005 and t7 = 4.287, P = 0.004 for the short, long, both intervals respectively).
(B) The sequentiality index in DLS was significantly higher than that in M2 for both time intervals using only responsive cells
(n = 8 mice; two-sided paired t test, t7 = 4.613, P = 0.0024 and t7 = 4.340, P = 0.0034 for the short and long interval,
respectively).
(C) Model performance was significantly higher when output units were trained on DLS dynamics compared to M2 using
only responsive cells, for both time intervals (n = 8 mice; two-sided paired t-test, t7 = 3.319, P = 0.0128 and t7 = 3.135, P =
0.0165 for the short and long interval, respectively).
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