

Exploring the Relationship between Verbal Working Memory and Language Production using fMRI and TMS

Introduction

Perspectives on Verbal Working Memory (WM) Maintenance

Specialized Systems

- WM maintenance achieved via langauge-independent storage systems (e..g the "phonological loop," Baddeley, 1986) - Maintenance of verbal information localized in parietal regions (Paulesu, Frith & Frackowiak, 1993; Smith, Jonides, Marshuetz & Koeppe, 1998)

Emergent Properties

- WM maintenance achieved via temporary activation of long-term perception and action systems (Postle, 2006; Ruchkin, Grafman, Cameron & Berndty, 2003)
- Same regions of the brain associated with langauge perception and production will underlie WM maintenance (Buchsbaum & D'Esposito, 2008) - Language production hypothesis: verbal WM maintenance achieved by the language production architecture (Acheson & MacDonald, 2008)

Present Study: Testing a Language Production-based Locus to WM Maintenance

- **1. Dissociate Sub-Processes of Language Production** - Language production dissociable into subprocesses associated with lexical-semantic retrieval (middle temporal gyrus; MTG) and the serial ordering
- of phonological elements (i.e. "phonological encoding;" posterior superior temporal gyrus; pSTG; Indefrey & Levelt, 2004)
- 2. Target the pSTG and MTG for rTMS stimulation as people perform language production and memory tasks - Use stimuli that lack semantic content (i.e., nonwords) that are likely to induce speech errors (i.e., phonologically similar items)

Prediction: Dissociation in the Effect of rTMS on Performance by Region Stimulated Picture Naming Rapid Reading Delayed Recall

pSTG		X	X
MTG	X		

fMRI Procedure

Design: Rapid Event-Related, with random stiumulus presentation jittered in time	• •
ISIs ranged between 4-12 seconds	
Acquisition: Whole-brain T1-weighted images (3T GE Signa VH/I)	
Anatomical : 256 sagittal slices	
256X192 matrix (0.9375 mm X 0.9375 mm X 0.8 mm, no skip)	Non
Functional: 30 axial slices	NON
gradient echo, echoplanar sequence (TR=2000ms, TE=50ms)	
64X64 matrix (3.75mm X 3.75 mm X 4 mm, no skip)	
Data Analysis:	

BOLD response was modeled using AFNI Gamma functions (GAM)

rTMS Procedure

Picture Naming

- Participants named color pictures of
- common objects (Rossion & Pourtis, 2004) rTMS designed to target lexical-semantic access, occurring 100 ms prior through 200 ms after
- stimulus onset (4 pulses; Indefrey & Levelt, 2004) 80 trials per region

100 ms 200 ms TMS ON

 Each subject's head was coregistered with his/her MRI using eXimia Navigated Brain Stimulation (NBS) frameless stereotaxy navigation system (Nexstim).

• rTMS (10 Hz, 110% MT, -Magstim Standard Rapid, Whitland, UK)

 Stimulation timing varied depending on the task, but occurred randomly on half the trials

• Stimulation intensity was corrected for scalp-to-cortex distance (Stokes et al., 2005).

 Location of targets determined by individual brain activation during the fMRI tasks

• Task order, repeated twice per region: Reading, Picture, Recall, Picture

Region stimulation counter-balanced

Delayed Serial Recall

- Participants read a ist of 5 rhyming nonwords outloud at a rate of 1 nonword/sec followed by a delay of 3 seconds
- 40 trials per region

Rapid Paced-Reading

- Participants presented with a list of 5 rhyming nonwords one-at-a-time
- Whole list was presented for 2 seconds to allow participants to prepare to speak
- Paced-reading initiated by a tone, read at a rate of 300 ms/word; the whole list was read twice
- rTMS occurred for 3 seconds starting 200 ms before paced reading (30 pulses)
- 40 trial per region, half with rTMS

	rel	+	pel	••••	lel		rel	р
FixationIndividual Word Presentation1 sec750 ms on, 250 ms fixation5 sec							Whole) Li
							20	

Daniel J. Acheson, Massihula Hamidi, Jeffrey R. Binder, Bradley R. Postle 1. Department of Psychology, University of Wisconsin, Madison 2. Department of Neurology, Medical College of Wisconsin, Milwaukee

- rTMS began at the onset of the delay and continued for 3 secs (30 pulses)

rTMS Selection and Data Analysis

Selection of rTMS Regions

- Regions were defined on a subject-specific basis, using an uncorrected threshold of p<0.05 - The following contrast was used to elicit activation for lexical-semantic (positive values) and phonological encoding (negative values) processes:

[picture - scrambled picture] - [nonword reading - consonant strings]

Behavioral Analyses

Substitutions: rel nel pel kel lel

Posterior Superior Temporal Gyrus (**pSTG**) = phonological encoding

Middle Temporal Gyrus (**MTG**) = lexical-semantic processing

Participants

13 participants (6 female) participated and were compensated at \$20/hr. Mean age was 24.5 (SD=4.2). Two participants were excluded due to an inability to complete the experiment.

Speaking Times:

- Manually scored based on speech spectrogram - Speech Initiation Latency = time from beginning of trial to begin speaking
- Total Speech Duration = time from beginning of the onset of speaking to finish speaking

Speech Error Analyses:

- Participant utterances were phonetically transcribed - Two types of speech errors were coded for each item:

- **Omissions** = leaving an item out of an utterance
- **Substitutions** = substituting one item for another; only contextual substitutions (i.e. those from the target list) are reported

Collapsing across 1- and 2-syllable words: No Effect Analysis was restricted to1-syllable words.

One-Syllable Word Total Speech Duration

Questions or comments? Contact: djacheson@wisc.edu

- impacts both production and WM tasks

References

Baddeley, A.D. (1986). Working Memory. New York: Clarendon Press/Oxford University Press. Indefrey, P., & Levelt, W.J. (2004). The spatial and temporal signatures of word production components. Cognition, 92, 101-144.

MTG - No effect on error rates in serial recall and rapid-paced reading

- Faster speech onset and duration latencies for 1-syllable words 2. Results consistent with the emergent properties perspective on WM maintenance

- although the type of speech error was different across WM (omission) and production tasks (substitutions), results confirmed that stimulation of regions involved in phonological encoding in production negatively

3. Non-specific effects on picture naming tasks merit future research

- could be a simple orienting response or rTMS stimulation using these timing parameter may have been affecting both phonological encoding and lexical-semantic retrieval.

Acheson, D.J., & MacDonald, M.C. (in press). Verbal working memory and langauge production: Common approaches to the serial ordering of verbal information. *Psychological Bulletin*.

- Buchsbaum, B.R., & D'Esposito, M. (2008). The search for the phonological store: From loop to convolution. *Journal of Cognitive Neuroscience*, 20, 762-778.
- Rossion, B., & Pourtis, G. (2004). Revisiting Snodgrass and Vaderwart's object set: The rle of surface detain in basic-level object recognition. Perception, 33, 217-236
- Ruchkin, D.S., Grafman, J., Cameron, K., & Berndt, R.S. (2003). Working memory retention systems: A state of activated long-term memory. Behavioural Brain Sciences, 26, 709-728 Smith, E.E., Jonides, J., Marshuetz, C. & Koeppe, R.A. (1998). Components of verbal working memory: Evidence from neuroimaging. Proceedings of the National Academy of Sciences, U.S.A., 95, 876-882
- Stokes, M.G., Chambers, C.D., Gould, I.C., Henderson, T.R., Janko, N.E., Allen, N.B., & Mattingly, J.B. (2005) A simple metric for scaling motor threshold based on scalp-cortex distance: Application to studies using transcranial magnetic stimulation. *Journal of Neurophysiology*. 94, 4520-4527.
- Acknowledgements: This research was funded by NIH grant MH064498 to B.R.P, an NARSAD award to G. Tononi (U.W. Psychiatry), and a fellowship from the University of Wisconsin