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Abstract  36 

Functional connectivity studies have identified at least two large-scale neural systems that 37 

constitute cognitive control networks – the frontoparietal network (FPN) and cingulo-opercular 38 

network (CON). Control networks are thought to support goal-directed cognition and behavior. 39 

It was previously shown that the FPN flexibly shifts its global connectivity pattern according to 40 

task goal, consistent with a “flexible hub” mechanism for cognitive control. Our aim was to 41 

build on this finding to develop a functional cartography (a multi-metric profile) of control 42 

networks in terms of dynamic network properties. We quantified network properties in (male 43 

and female) humans using a high-control-demand cognitive paradigm involving switching 44 

among 64 task sets. We hypothesized that cognitive control is enacted by the FPN and CON via 45 

distinct but complementary roles reflected in network dynamics. Consistent with a flexible 46 

“coordinator” mechanism, FPN connections were varied across tasks, while maintaining within-47 

network connectivity to aid cross-region coordination. Consistent with a flexible “switcher” 48 

mechanism, CON regions switched to other networks in a task-dependent manner, driven 49 

primarily by reduced within-network connections to other CON regions. This pattern of results 50 

suggests FPN acts as a dynamic, global coordinator of goal-relevant information, while CON 51 

transiently disbands to lend processing resources to other goal-relevant networks. This 52 

cartography of network dynamics reveals a dissociation between two prominent cognitive 53 

control networks, suggesting complementary mechanisms underlying goal-directed cognition. 54 

 55 

Significance Statement  56 
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Cognitive control supports a variety of behaviors requiring flexible cognition, such as rapidly 57 

switching between tasks. Furthermore, cognitive control is negatively impacted in a variety of 58 

mental illnesses. We used tools from network science to characterize the implementation of 59 

cognitive control by large-scale brain systems. This revealed that two systems – the 60 

frontoparietal (FPN) and cingulo-opercular (CON) networks – have distinct but complementary 61 

roles in controlling global network reconfigurations. The FPN exhibited properties of a flexible 62 

coordinator (orchestrating task changes), while CON acted as a flexible switcher (switching 63 

specific regions to other systems to lend processing resources). These findings reveal an 64 

underlying distinction in cognitive processes that may be applicable to clinical, educational, and 65 

machine learning work targeting cognitive flexibility. 66 

 67 

Introduction 68 

Theories of cognitive control – processes supporting goal-directed cognition and behavior – 69 

suggest the need for flexibly reconfigurable neural systems to support controlled processing 70 

(Desimone and Duncan, 1995; Miller and Cohen, 2001; Schneider and Chein, 2003; Cole et al., 71 

2013b). In order for an individual’s goals to be implemented, goal-relevant information must be 72 

appropriately represented across large-scale neural systems, or networks. Importantly, goals 73 

and goal-relevant information are subject to change over time (such as sensorimotor 74 

information that corresponds to changing task conditions). Processing these dynamic changes 75 

must be guided amongst neural systems that represent goal-relevant information. Cognitive 76 

control networks are proposed to enact this guidance via network interactions that are flexible 77 

with respect to the current task context (Waskom et al., 2014). Thus, we focus here on the role 78 
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of large-scale network dynamics as task goals are updated across 64 systematically-related task 79 

contexts (Fig. 1).  80 

The theoretical insight that large-scale network interactions are essential to cognitive 81 

control evolved over the last several decades, beginning with empirical observations (e.g., 82 

Fuster et al., 1985), which then led to the biased competition theory (Desimone et al., 1990, 83 

1995). This theory focused on lateral prefrontal cortex influencing the visual system by biasing 84 

its competition for attentional resources toward goal-relevant representations. Building on the 85 

biased competition theory, the guided activation theory generalized this prefrontal network 86 

mechanism to all task domains. This theory proposed a general role for top-down prefrontal 87 

influences in accomplishing task goals (Miller and Cohen, 2001). More recently, the flexible hub 88 

theory generalized the guided activation theory beyond prefrontal cortex to the entire 89 

frontoparietal network (FPN) and formalized the importance of cross-network, global 90 

connectivity changes in implementing cognitive control (Cole et al., 2013b). The present study 91 

builds on this work to further verify and expand the flexible hub theory. 92 

 Simultaneous with these advances in theory have been observations of a second major 93 

neural system supporting cognitive control: the cingulo-opercular network (CON). Like the FPN, 94 

the CON is active as a function of cognitive control demands across a wide variety of tasks 95 

(Dosenbach et al., 2006; Yeo et al., 2015; Crittenden et al., 2016). However, CON and FPN are 96 

not equally active for all task conditions (Dosenbach et al., 2006; Yeo et al., 2015) and they 97 

maintain distinct functional network architectures in terms of resting-state functional 98 

connectivity (rsFC) (Dosenbach et al., 2007; Power et al., 2011; Ji et al., 2019) and task-state 99 

functional connectivity (tFC) (Cole et al., 2014; Crittenden et al., 2016). Moreover, the specific 100 
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functional contributions of CON regions have not been fully established, with some studies 101 

suggesting that CON regions specify overall task set modes of processing (Dosenbach et al., 102 

2007; Sadaghiani and D'Esposito, 2015), and others emphasizing the CON’s role in reactive 103 

(phasic) attention (Seeley et al., 2007), and relatedly, conflict processing (Cole et al., 2009; 104 

Botvinick, 2007; Braem et al., 2019). Ultimately, unlike the FPN, the relationship between the 105 

CON and the flexible hub theory (and the theories it builds upon) remains unclear. 106 

 The present study builds on our prior work demonstrating flexible hub properties in FPN 107 

regions (Cole et al., 2013b), expanding on the characterization of these FPN network 108 

mechanisms, while also investigating CON network mechanisms. We previously found that 109 

FPN’s global tFC patterns flexibly updated according to task demands more than any other 110 

network, including CON (Cole et al., 2013b). However, given that large-scale network dynamics 111 

are central to cognitive control, and given that both the CON and FPN contain hubs (Power et 112 

al., 2011; Ito et al., 2017), we hypothesized that CON reflects flexible hub properties in addition 113 

to FPN. Unlike FPN’s continuous goal-coordinating role, we expected CON to exhibit a more 114 

discrete network switching mechanism, reflecting its proposed role in specifying overall task-set 115 

modes of processing (Dosenbach et al., 2007; Sadaghiani and D'Esposito, 2015). Consistent with 116 

this, we found that FPN regions act as “flexible coordinators” and CON regions as “flexible 117 

switchers”, providing separate but complementary network mechanisms in support of cognitive 118 

control (Fig. 2). 119 

 120 

Materials and Methods 121 

Participants  122 
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Right-handed, healthy adult participants (N = 106) were recruited from Rutgers University and 123 

the surrounding Newark, New Jersey community. Six participants were excluded from analyses 124 

due to technical errors, leaving a total sample size of N = 100 (Table 1 and Table 2 detail 125 

demographic characteristics). To improve replicability, we used a split-sample validation 126 

approach (Anderson and Magruder, 2017) with a random subset of n = 50 comprising a 127 

discovery dataset (Table 1), and the remaining n = 50 comprising a replication dataset (Table 2). 128 

All participants provided informed consent in accordance with protocols approved by the 129 

Institutional Review Board of Rutgers University-Newark. Each participant provided or 130 

completed the following: (1) demographic information and intake survey questions, (2) the 131 

National Institutes of Health Cognition Toolbox (Gershon et al., 2013), including a 132 

neuropsychological battery, (3) behavioral training on the C-PRO task (outside the scanner), (4) 133 

resting-state fMRI, and (5) C-PRO task fMRI. The subsets of data assessed herein included (1), 134 

(4), and (5) (see Schultz et al., 2019 for assessment of other variables). As listed in the right-135 

most columns of Tables 1 and 2, there were no significant differences between identified 136 

genders on the distributions of age, ethnicity, or education.  137 

 138 

Concrete Permuted Rule Operations (C-PRO) paradigm 139 

The C-PRO paradigm was designed to involve rapid instructed task learning (RITL) through 140 

compositionally combining various task rules (Cole et al., 2010, 2013a; Ito et al., 2017). This 141 

further provided a high demand on cognitive control across all C-PRO task states. We used a 142 

modified version of the PRO paradigm from Cole et al. (2010), which was previously introduced 143 

by Ito et al. (2017) (Fig. 1). This paradigm permutes rules across three domains: four logic rules 144 



 

 7 

(both, not both, either, and neither), four sensory rules (red color, vertical orientation, high 145 

pitch sound, and constant tone), and four motor rules (left index, right index, left middle, and 146 

right middle fingers). This amounts to 12 rule sets represented 16 times across 64 unique task 147 

states. The software for presenting the task was E-Prime version 2.0.10.353 (Schneider et al., 148 

2002).  149 

In each task state, an initial instruction screen was presented for 3925 ms for 150 

participants to memorize a given permuted rule set (Fig. 1). This was followed by a jittered 151 

delay (1570 – 6280 ms, randomized from a uniform distribution), then three trials of paired 152 

audiovisual stimuli for participants to adjudicate based upon the given rule set (2355 ms each 153 

trial; inter-trial interval of 1570 ms). Another jittered delay occurred at the end of each task 154 

state (7850 – 12560 ms, randomized), which was immediately followed by the next permuted 155 

rule set instruction screen. An example instruction screen (Fig. 1; task state one) read: “BOTH, 156 

VERTICAL, LEFT INDEX”, indicating: “If both stimuli are vertical, press your left index finger”. In 157 

each of the three trials that followed, participants judged if both paired stimuli were vertically 158 

oriented, and either pressed the left index finger button to indicate “true” or the left middle 159 

finger button to indicate “false” (a judgement of “false” was always the same hand but 160 

opposite finger). Importantly, stimuli were always presented with auditory and visual features 161 

concurrently. Thus, focusing on the sensory rule given by the instructions was paramount (i.e., 162 

“VERTICAL” indicated that one should ignore auditory information, color information, and only 163 

focus on line orientation). Additionally, participants were required to remember and apply 164 

conditional logic and nontrivial motor commands each trial. Altogether this multitask 165 

behavioral paradigm is condition-rich and necessitates ongoing cognitive control.  166 



 

 8 

Each participant completed a training session outside the scanner and a testing session 167 

within the scanner (task-state fMRI) 30 minutes later. During the training session participants 168 

equally practiced four rule sets that contained all 12 rules. This practice set was 169 

counterbalanced amongst participants and supplementary instruction was provided for training 170 

purposes (e.g., use the same hand but opposite finger to indicate “false”). Task fMRI scans were 171 

performed in eight runs, altogether containing 64 task state miniblocks, twice over (e.g., 128 172 

task miniblocks), with each block composed of a permuted rule set (Fig. 1). Each task fMRI run 173 

was approximately eight minutes in duration, and identical miniblocks were never presented 174 

consecutively. Overall, mean performance was 83.47% correct (SD = 9.00%). There was no 175 

significant difference in performance (percent correct) between males (M = 83.65%, SD = 176 

10.44%) and females (M = 83.33%, SD = 7.80%); t(74.71) = 0.17, p = 0.87.  177 

 178 

Experimental design and statistical analysis  179 

Participants were randomly allocated to either a discovery dataset (n = 50) or replication 180 

dataset (n = 50) (Table 1 and Table 2, respectively). The replication dataset was not analyzed 181 

until after analyses of the discovery dataset were complete. Analyses of replication data were 182 

identical to analyses of discovery data (using the same code, including all chosen parameters), 183 

and additionally included measures of similarity between replication and discovery results to 184 

quantify expected generalizability (Anderson and Magruder, 2017).  185 

 Whenever multiple comparisons were addressed, we utilized the Max-T nonparametric 186 

permutation testing approach (10,000 permutations unless otherwise specified) with maxima-187 

derived 95% confidence intervals for statistical hypothesis testing against zero (Blair and 188 
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Karniski, 1993; Nichols and Holmes, 2002). To analyze the similarity of two correlation 189 

(weighted adjacency) matrices we used the Mantel permutation test, which performs a 190 

Pearson’s correlation across the upper triangles (off-diagonal) of the matrices (Mantel, 1967; 191 

Glerean et al., 2016). The Mantel test is more conservative than a standard comparison 192 

between connectivity matrices because it takes into account the fact that observations in 193 

distance/similarity matrices are not independent (an assumption of both parametric and 194 

standard non-parametric tests). In each Mantel analysis, we again used nonparametric 195 

permutation procedures to derive statistics that make minimal assumptions about probability 196 

distribution (10,000 permutations unless otherwise specified). Henceforth we will describe 197 

these matrix similarity statistics as Mantel-r.  198 

 199 

MRI parameters 200 

All MRI data were collected at the Rutgers University Brain Imaging Center (RUBIC). When 201 

possible, the best practices suggested by the Human Connectome Project preprocessing 202 

pipelines were followed (Glasser et al., 2013). A 3T, 32-channel head coil within a Siemens Trio 203 

scanner was used to obtain multiband, whole-brain, and echo-planar imaging (EPI). The 204 

repetition time (TR) was 785 ms; the echo time (TE) was 34.8 ms; the flip angle was 55°; the 205 

bandwidth was 1924 Hz/Px; the in-plane field-of-view (FoV) read was 208 mm; 72 slices; 2.0 206 

mm isotropic voxels; and the multiband acceleration factor was 8. Whole-brain and high-207 

resolution T1-weighted and T2-weighted anatomical scans were also acquired, with an isotropic 208 

voxel resolution of 0.8 mm. Spin echo field maps were obtained in both the anterior-posterior 209 

and posterior-anterior directions. Resting-state fMRI scans were 14 minutes in duration, 210 
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amounting to 1070 TRs. Each task (i.e., C-PRO) fMRI run was approximately eight minutes in 211 

duration, adding up to approximately one hour in the scanner for the task session (36 TRs per 212 

task miniblock; 4608 TRs altogether).  213 

 214 

fMRI preprocessing  215 

The open-source Human Connectome Project minimal preprocessing pipeline (Glasser et al., 216 

2013), version 3.5.0, was applied to all neuroimaging data. This included: anatomical 217 

reconstruction and segmentation; EPI reconstruction, segmentation, and spatial normalization 218 

to a standard template; intensity normalization; and motion correction. The resulting data was 219 

in CIFTI 64k-vertex grayordinate space, and all subsequent analyses were performed in MATLAB 220 

R2014b (The Mathworks, Inc.). Following minimal preprocessing, vertices were parcellated into 221 

360 cortical regions (180 per hemisphere) per the Glasser et al. (2016) atlas. To parcellate each 222 

of these regions, we calculated the average time series of enclosed vertices.  223 

 Next, we performed nuisance regression on parcellated resting-state and task-state data 224 

using 6 motion parameters plus their derivatives (totaling 12 motion parameters), and 225 

volumetrically-extracted ventricle and white matter time series (via FreeSurfer 226 

http://surfer.nmr.mgh.harvard.edu/), plus their first derivatives (16 regressors overall). Note 227 

that global signal was not removed due to evidence that it can artificially introduce negative 228 

relationships (Murphy et al., 2009). Task time series were further processed to account for 229 

confounding effects introduced by simultaneous sensory inputs (e.g., left and right primary 230 

visual area, V1) and their downstream effects by fitting a general linear model (GLM) to task 231 

activity estimated by a finite impulse response (FIR) function. This removal of cross-event mean 232 
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task-locked activity has been shown to reduce task-evoked correlation false positives while 233 

retaining most (~90%) of the correlated variance between fMRI time series and without 234 

inflating false negatives (Cole et al., 2019). In the task GLM, each task run was separately 235 

demeaned, and drift was accounted for with a per-run linear trend.  236 

 237 

Functional connectivity estimation  238 

Functional connectivity (FC) was estimated for parcellated (region-wise), pre-processed data, 239 

per participant and per state (one resting state and 64 C-PRO task states). Across the whole 240 

cortex, we utilized Fisher’s Z-transformed Pearson correlation coefficients to compute 241 

interregional relationships of blood-oxygen-level dependent (BOLD) time series, resulting in 360 242 

by 360 connectivity matrices. Given the complex nature of subsequent analyses (i.e., network 243 

metrics) we chose this method of FC estimation for simplicity and wide-reaching 244 

comprehension. In the present study, connectivity estimates tended to decrease from rest to 245 

task, a finding that has been observed across numerous prior studies (that utilized various 246 

model species and neural recording methods) (Cohen and Maunsell, 2009; He, 2013; Cole et al., 247 

2014; Ponce-Alvarez et al., 2015) and has well-founded neural mechanisms (Ito et al., 2019).  248 

We chose to use FIR regression to remove cross-block mean task-evoked activations 249 

prior to Pearson correlation estimation (sometimes termed “background connectivity”, as in 250 

Norman-Haignere et al., 2012) based on recent results demonstrating that this approach was 251 

better able to remove confounding effects of task-evoked activity than alternative approaches, 252 

such as psychophysiological interactions (PPI) (Cole et al., 2019). Our prior global variability 253 

coefficient (see Materials and Methods section below section on network metrics) results were 254 
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based on generalized PPI connectivity estimates (Cole et al., 2013b), such that the present 255 

results provided improved testing of the flexible hub theory.  256 

 257 

Network partition  258 

We applied the cortical portion of the Cole-Anticevic brain-wide network partition (CAB-NP) (Ji 259 

et al., 2019; Fig. 3), which was based on publicly available Human Connectome Project data. 260 

The CAB-NP was based on resting-state fMRI data across the whole brain, and used the Louvain 261 

community detection algorithm to assign parcellated cortical regions (Glasser et al., 2016) into 262 

12 functional networks. The CAB-NP corroborated features of well-known cortical partitions 263 

(Gordon et al., 2016; Power et al., 2011; Yeo et al., 2011), yet found novel but robust networks. 264 

The CAB-NP was implemented for all analyses except network flexibility, which requires the 265 

application of community detection (Louvain Q-modularity; see Materials and Methods section 266 

below on network flexibility).  267 

Given that our novel network metric (see Materials and Methods section on network 268 

partition deviation) quantifies network affiliation changes from an intrinsic partition, it was 269 

important (in order to avoid inflated deviation estimates) to ensure that the intrinsic partition 270 

was applicable to the present group of subjects. We first partitioned resting-state data by 271 

sorting regional FC estimates per the 12 CAB-NP network indices. We then found the maximum 272 

FC estimate (i.e., the intrinsic “preference”) for each region (per participant), and tested if its 273 

location was equivalent to the CAB-NP. If this index was different from the CAB-NP in over 50% 274 

of participants, we reassigned that region to its empirically-derived preference. We henceforth 275 

used this empirically-adjusted CAB-NP to sort task-state data into networks (Fig. 3C and 3D).  276 
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In select analyses, we probed the similarity of two partitions. To accomplish this, we 277 

used the Jaccard index, which is a standard measure of similarity from set theory. For example, 278 

the Jaccard index was used to assess the similarity of the empirically-adjusted resting-state 279 

partitions of the discovery and replication datasets. We used the MATLAB jaccard function, 280 

which utilized the “intersection over union” formula on label vectors A and B, with the 281 

following equation:  282 ( , ) =  | ( , )|/| ( , )| 
Per state, the intersection equaled the number of true positives (i.e., overlap of two partitions), 283 

and the union was the number of true positives summed with the number of false positives and 284 

false negatives. 285 

 286 

Network metrics  287 

Interregional connectivity was probed by three network metrics for state-based reconfiguration 288 

properties (Medaglia et al., 2015): (1) Global variability coefficient (GVC; Cole et al., 2013b, and 289 

relatedly, between-network variability coefficient (BVC; novel but related to Ito et al., 2017), (2) 290 

Network flexibility (NF; Bassett et al., 2011, 2013a), and (3) Network partition deviation 291 

(deviation; novel). Network metrics were computed across states and averaged across regions 292 

that compose a given network, per participant. In analyses that used standardized metrics (i.e., 293 

z-scores), standardizations were performed before network averages and standard errors were 294 

computed. Figure 4 illustrates the algorithms of these metrics schematically. Table 3 295 

summarizes the primary characteristics of these metrics, including formulae, interpretations, 296 

parameter-space considerations, and reliance on a predefined network partition. A predefined 297 
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network partition is sometimes called a “hard partition”, and refers to the use of a predefined 298 

network or community assignment structure, such that each parcellated region is indexed into 299 

the partition a priori (Sporns and Betzel, 2016).  300 

  301 

Global Variability Coefficient (GVC)  302 

GVC was originally developed by Cole et al. (2013b), and characterizes changing patterns of 303 

connectivity across task states by measuring the variability of interregional connectivity (Fig. 4A 304 

and Table 3). Thus, GVC treats spatial changes in connectivity, across states, as continuous. No 305 

parameters are required by the user and a predefined network partition is not necessary (aside 306 

from regional parcellation, as in the present study) (Table 3).  307 

 In Cole et al. (2013b), FPN connections exhibited the highest GVC compared to all other 308 

networks. In that study, the FPN also maintained connectivity patterns that could decode task 309 

information (using an earlier version of the C-PRO paradigm). Further, FPN connectivity was 310 

found to vary systematically with similarity of C-PRO task states. Taken together this suggested 311 

that (1) FPN regions exert adaptive task control as flexible hubs, and (2) GVC results were not 312 

driven by noise. We replicated these findings and extended the analysis to CON connections. In 313 

brief, the 64 C-PRO task states have zero to two overlapping rules (Fig. 1). For example, one 314 

task’s rules included both, high pitch, and left middle, and another included both, red, and left 315 

middle. These example tasks had two overlapping rules (both and left middle). We created a 64 316 

by 64 similarity matrix to quantify these overlap sets, and quantified the Spearman’s Rho for 317 

FPN and CON connections for those sets. Next, we restricted the same analysis by only 318 

including FPN and CON regions with the highest GVC, in the following increments: top 10%, 8%, 319 
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6%, 4%, and 2%. This addresses whether highly variable connectivity (as measured by GVC) 320 

relates systematically to task context (Cole et al., 2013b).  321 

 322 

Between-Network Variability Coefficient (BVC) 323 

BVC was inspired by Cole et al. (2013b), and is related to between-network global connectivity 324 

in Ito et al. (2017). BVC is equivalent to GVC, except within-network connectivity estimates are 325 

withheld from the computation of standard deviation (Fig. 4A). This change from GVC accounts 326 

for the potential confound that within-network connections might confer upon results. In Cole 327 

et al. (2013b), FPN had the highest participation coefficient compared to all other networks, 328 

suggesting that FPN regions maintain many between-network connector hubs. BVC simply 329 

quantifies this in a manner closer to GVC. BVC (unlike GVC) required the use of a predefined 330 

network partition to define the regional bounds of each network. All other specifications of BVC 331 

are identical to GVC (Table 3).  332 

 333 

Network Flexibility (NF)  334 

NF was originally developed by Bassett et al. (2011, 2013a, 2013b) to quantify how often (i.e., 335 

for how many tasks) a region changes its network “allegiance”, and standardizes this by all 336 

possible changes. NF is conceptually related to GVC because both metrics quantify large-scale 337 

changes in functional network configurations. In the present study, we specifically tested if NF 338 

and GVC estimate comparable aspects of network configuration. NF characterizes the 339 

spatiotemporal dynamics related to task-state time series by quantifying temporal variability in 340 

network partition solutions. These network partitions are determined by an optimized quality 341 
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function for community detection termed multilayer modularity (also termed multislice or 342 

multiplex in some studies) (Louvain Q-modularity; Mucha et al., 2010). Thus, NF does not utilize 343 

a predefined network partition, but instead requires community detection to be applied per 344 

dataset. Required parameters ( , ) could be used to tune the degree to which connections 345 

were treated as discrete versus continuous in space (  is the spatial resolution parameter) 346 

and/or time (  is the temporal resolution, or coupling, parameter). In the present study, we 347 

swept a parameter space of  and , ranged around their prototypical values (Bassett et al., 348 

2013; Braun et al., 2015; Chen et al., 2015; Amelio and Tagarelli, 2017). We swept the 349 

modularity function’s parameter space by ranging  from zero to 2.0 in steps of 0.2; and  from 350 

zero to 5.0 in steps of 0.5. For both free parameters, zero is the lower limit. An upper limit of 351 

2.0 for  was based on prior observations that task states tend to merge into one large state at 352 

higher coupling values (Bassett et al., 2013a). At the upper limit of  (5.0), spatial resolution 353 

becomes acute and each region develops its own network. Additionally, the temporal dynamics 354 

conferred by  are no longer available at the upper limit of  (Chen et al., 2015; Amelio and 355 

Tagarelli, 2017). This sweep yielded an 11 by 11 matrix of NF estimates, per region (and per 356 

participant). We compared regional NF estimates to regional GVC estimates (both metrics were 357 

standardized, and Spearman’s rank-order correlation quantified similarity in these measures 358 

across participants), to assess the point in the parameter-space wherein NF and GVC overlap 359 

most. These comparisons were performed for both the network-mean and regional-mean 360 

vectors. Briefly, we found that NF and GVC characterized shared aspects of network 361 

configurations in a specific sector of NF’s parameter-space (see Results). This motivated the 362 

development of a novel metric (see next section on network partition deviation) that was less 363 
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linked to chosen parameters. The remaining Results are based upon GVC and this novel metric 364 

(such as the cognitive cartographies; see Results). Importantly, however, there are future 365 

research questions that may be better addressed by NF.  366 

 367 

Network Partition Deviation   368 

To reconcile divergent principles and results of GVC and NF (see Results), we created a novel 369 

metric termed network partition deviation (or just “deviation”). The primary goal of developing 370 

deviation was to quantify network reconfiguration in a highly principled manner. This involved a 371 

principled definition for what it means for a region to “reconfigure”: a change in the network 372 

community that a given region is most connected with (i.e., the network with the highest mean 373 

connectivity). Deviation was the percent of task states (more generally, the relative frequency 374 

across time), in which a given region’s “preference” deviated from the predefined partition. To 375 

quantify this, deviation enumerated network reassignments from a predefined partition across 376 

task states (Table 3 and Fig. 4B). Per task state and per region, connectivity estimates (across 377 

the other 359 regions) were searched for the maximum value. The network location of this 378 

maximum (relative to the predefined partition) was indexed as the network assignment 379 

preference for that given state. To illustrate how network reassignment was computed, we 380 

generated a video of the regional network preferences across task states, projected onto a 381 

standard brain schematic (Multimedia 1). We used the Connectome Workbench software to 382 

generate these visualizations (Marcus et al., 2011).  383 

We used the Cole-Anticevic brain-wide network partition (Ji et al., 2019), plus 384 

adjustments derived from the empirical resting-state fMRI data of the participants studied 385 
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herein, as the predefined reference (Fig. 3). This a priori network partition can be thought of as 386 

a minimal parameter space maintained by deviation in the present study, however future work 387 

may apply community detection (i.e., empirically-based network partition) if appropriate. 388 

Deviation may be accompanied by its complementary measure, network partition adherence, 389 

which was the relative frequency of states in which a given region adhered to its predefined 390 

network assignment (or 1-deviation, meaning that deviation and adherence add up to 1, or 391 

100% of task states). We further unpacked deviation by depicting which networks were 392 

preferred by regions (when deviating from the partition), generating reassignment profiles.  393 

 394 

Cognitive control cartographies  395 

We rendered one primary mapping of cross-state network-reconfiguration properties, and two 396 

secondary mappings which broke up the primary mapping’s properties into within-network and 397 

between-network scores. For the secondary mappings, within-network GVC was computed by 398 

setting between-network FC estimates to ‘NaN’ (i.e., ‘not a number’ in MATLAB) before 399 

inputting data into the GVC algorithm (Fig. 5A). Likewise, between-network GVC was computed 400 

by setting within-network FC estimates to ‘NaN’ (Fig. 5B). This effectively nullified the variability 401 

for those regions such that GVC ignored them during computation (which principally employs 402 

standard deviation across states; Fig. 4A and Table 3). Between-network GVC was equivalent to 403 

BVC described above. Within-network deviation was computed by setting FC estimates of 404 

between-network regions to the resting-state FC for those regions before inputting data into 405 

the deviation algorithm (Fig. 5C). Likewise, for between-network deviation, we substituted 406 

within-network estimates with corresponding regions’ resting-state FC (Fig. 5D). We considered 407 
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the use of resting-state FC most appropriate given deviation’s inherent comparison to the 408 

resting-state partition. Thus, deviation away from the resting-state partition would always be 409 

zero for regions set to their resting-state estimates. Figure 5 visually depicts the input data 410 

schemes for each of these secondary cartographies.  411 

 412 

Decoding analyses 413 

A classification analysis was performed for each functional network to test if network 414 

connectivity patterns could be used to significantly decode task state. As in Cole et al. (2013b), 415 

three 4-way classifications were performed using connectivity patterns from each network 416 

separately. Unlike Cole et al. (2013b), we extended the cohort to include n = 50 (per discovery 417 

and replication datasets), used correlation as a classifying distance measure (Haxby et al., 2001; 418 

Mur et al., 2009; Ito et al., 2017), and performed 8-fold cross validation. We performed within-419 

subjects classifications. Each subject had 64 samples of task-state connectivity estimates for 420 

each distinct task rule set (see Fig. 1 and Materials and Methods section above on functional 421 

connectivity estimation). Of those 64 samples, classifiers were trained on a random subset 422 

(over 8 folds) of 56 task states and tested on the remaining (held out) 8 task states. Each task 423 

state was a combination of three rule domains: logic, sensory, and motor. For each of the three 424 

decoding analyses, we isolated specific rules from each of these domains. Therefore, the labels 425 

associated with these states were according to: (1) logic (both, not both, either, or neither), (2) 426 

motor (left middle, left index, right middle, or right index), and (3) sensory (vertical, red color, 427 

high pitch, constant tone) rule-set domains (Fig. 1). Therefore, chance accuracy was 25% in 428 

each 4-way analysis. We averaged task-state connectivity patterns (i.e., features) across 429 
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identical training-set labels (e.g., in the logic rule-set classification: training-set connectivity 430 

estimates that contained “both” were averaged). We used a minimum-distance classifier (based 431 

on Spearman’s rank correlation score), where a test set would be classified as the rule type 432 

whose centroid was closest in multivariate space (Mur et al., 2009). We compared these 433 

distances for each set of matched versus mismatched training and test set labels. When a 434 

matched similarity score was larger than all mismatched similarities, this was deemed an 435 

accurate decoding. To summarize, decoding accuracy was the percent of rules accurately 436 

decoded (in each of the three rule set domains), averaged across 8 folds (Varoquaux et al., 437 

2017).  438 

In order to assess cross-subject statistical significance of the decoding accuracies of each 439 

network, we performed right-tailed student’s t-tests against chance accuracy. We then utilized 440 

the Max-T nonparametric permutation testing approach (1,000 permutations) to address 441 

multiple comparisons (see Materials and Methods section above on experimental design and 442 

statistical analysis for details). In each permutation, rule-set labels were randomly shuffled 443 

before the classification analysis was performed. A null distribution of decoding accuracies and 444 

corresponding t-statistics was built and used to assess statistical significance. 445 

 446 

Code and software accessibility 447 

We included all MATLAB, python, and demo code in a publically available platform. Data is 448 

available at the level of functional connectivity estimation, for the use of loading into demo 449 

scripts. Data at other levels of processing, or data otherwise presented in this study, are 450 
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available upon request. The master GitHub repository for this study can be found here: 451 

https://github.com/ColeLab/controlCartography  452 

 453 

Results  454 

Intrinsic and Task-State Functional Connectivity  455 

Replicating previous findings (Cole et al., 2014), cortex-wide rsFC (Fig. 6A) and tFC (Fig. 6B) 456 

estimates were highly similar. This significant similarity was observed for the average tFC taken 457 

across all 64 C-PRO tasks (Mantel-r = 0.89, p < 0.0001, R2 = 0.79), as well as for each C-PRO rule 458 

individually (Table 4). This aligns with previous observations that the set of networks present 459 

during rest are highly related to the set of networks present during task states. In addition to 460 

the minimal cognitive demands during rest providing a cognitive baseline for a variety of tasks, 461 

this result suggests that rest may be an appropriate intrinsic reference state for characterizing 462 

changes in networks across multiple task states. The similarity observed between rsFC and tFC 463 

(all 64 C-PRO tasks) in the replication dataset was comparable (Mantel-r = 0.90, p < 0.0001, R2 = 464 

0.81).  465 

To summarize changing connectivity from the resting state to the average task state, we 466 

created a task versus rest difference matrix, and found 21% of those values to be significant 467 

differences (max-T critical threshold = 5.46, 5,000 permutations). The finding that rsFC and tFC 468 

(across multiple task states) are highly correlated, yet the differences between them are 469 

nontrivial, justified subsequent analyses of functional reconfigurations between these two 470 

kinds of states. Findings were consistent in the replication dataset: approximately 32% 471 

significant rest-to-task differences (max-T critical = 5.67).  472 
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 473 

Network Metrics: Variability Coefficients 474 

Our prior work found that the FPN contains flexible hub regions – network nodes capable of 475 

rapid reconfiguration with changing task demands (flexible) that have extensive connectivity 476 

(hubs) (Cole et al., 2013b). Recent work has suggested that the CON also contains hub-like 477 

regions (Ito et al., 2017; Power et al., 2013), yet it is unknown if they are likewise flexible. 478 

Accordingly, we used two related metrics to assess if networks contain flexible hub regions 479 

(Cole et al., 2013b): global variability coefficient (GVC), and between-network variability 480 

coefficient (BVC) (Fig. 4A and Table 3).  481 

Critically, Cole et al. (2013b) only involved N = 15 subjects, compared to the n = 50 482 

discovery and separate n = 50 replication datasets in the present study. Thus, replicating the 483 

results of Cole et al. (2013b) would be nontrivial. Replicating the main result of Cole et al. 484 

(2013b), regions of the FPN had the highest GVC (Fig. 7A) and BVC compared to the mean of all 485 

other networks (GVC: max-T(49) = 10.94, p < 0.0001; BVC: max-T(49) = 10.69, p < 0.0001). BVC 486 

and GVC results were highly correlated at both the network (Fig. 7A) and regional levels (Fig. 487 

7B) (network-wise: r = 0.9912, p < 0.00001, R2 = 0.9824 cross-network shared variance; region-488 

wise: r = 0.9972, p < 0.0001, R2 = 0.9944 cross-region shared variance), suggesting that within-489 

network estimates do not dominate the outcome of GVC analyses.  490 

These results were replicated in the replication dataset: the FPN demonstrated the 491 

highest GVC (Fig. 7F) and BVC compared to the mean of all other networks (GVC: max-T(49) = 492 

7.23, p < 0.0001; BVC: max-T(49) = 6.93, p < 0.0001). BVC and GVC results were also tightly 493 

correlated at both the network and regional levels in the replication dataset (network-wise: r = 494 
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0.9925, p < 0.00001, R2 = 0.985 cross-network shared variance; region-wise: r = 0.9975, p < 495 

0.0001, R2 = 0.995 cross-region shared variance). Additionally, both GVC and BVC results highly 496 

overlapped between discovery and replication datasets (GVC: Rho = 0.9091, p < 0.00001; BVC: 497 

Rho = 0.881, p = 0.0002). 498 

In conjunction with many studies reporting increased FPN activity as a function of 499 

cognitive control demands (Yeo et al., 2015), this pattern of results supports the notion that the 500 

FPN contains flexible regions adaptively configured for multitask control. Further, we compared 501 

GVC between control networks and each of the other networks. FPN regions were significantly 502 

higher than each other network (using the max-T approach, p < 0.0001), except for the ventral 503 

multimodal network. CON regions were significantly different (typically lower) than each other 504 

network on the measure of GVC (using the max-T approach, p < 0.0001), except for posterior 505 

multimodal and ventral multimodal networks. Lastly, a paired-samples t-test comparing FPN 506 

and CON revealed a significant difference in GVC scores (t(49) = 11.68, p < 0.00001), suggesting 507 

that the two proposed control networks exhibit distinct variability of global connectivity. In the 508 

replication dataset, FPN regions’ GVC scores were also significantly higher than each other 509 

network, except for the ventral multimodal network (orange bar in Fig. 7F). CON regions were 510 

significantly different from each other network on the measure of GVC in the replication 511 

dataset, with no exceptions (Fig. 7F). The paired-samples t-test contrasting FPN and CON 512 

specifically also showed a significant difference on GVC scores in the replication dataset (t(49) = 513 

10.55, p < 0.00001).  514 

 Despite evidence that FPN has strong global variability consistent with flexible hubs, it 515 

remains unclear if that variability is systematically related to task information content – a 516 
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prerequisite for flexible hubs to implement task-related reconfigurations. Prior findings (Cole et 517 

al., 2013b) demonstrated that FPN connections systematically vary with increasing task-state 518 

similarity. We sought to replicate this result in FPN and – given the current focus on cognitive 519 

control systems – we additionally analyzed CON connections. As in Cole et al. (2013b), task-520 

state similarity was taken as the number of overlapping, or shared, rules presented to 521 

participants, across all 64 tasks (Fig. 7C; also see Materials and Methods). We then measured 522 

Spearman rank correlations (as a score of similarity) amongst connections according to these 523 

task-state pairings, for both FPN (Fig. 7D) and CON regions (Fig. 7E). An approximately linear 524 

relationship was observed, suggesting that shifts in connectivity systematically relate to shifts in 525 

task state, and are not simply a byproduct of noise. Note that at the subject level, the effect size 526 

of shifting connectivity is not interpretable because it is unknown how many connection 527 

changes are required to cognitively implement a task-rule change (e.g., two robust connection 528 

changes may be enough cognitively, but produce small correlation changes at the network 529 

level). The linear regression weights of these similarity scores were consistently different from 530 

zero across subjects (FPN: t(49) = 35.51, p < 0.00001; CON: t(49) = 33.25, p < 0.00001). Next, we 531 

performed the same analyses, but restricted the connections to those maintaining the highest 532 

variability (across top 2% to 10% in steps of 2%) across task states (i.e., the “VC” of GVC) for 533 

both the FPN (as in Cole et al., 2013b) and CON. Results were similar to the main results across 534 

all thresholds, with linear weights significantly different from zero (p < 0.05). These results 535 

suggest that GVC results are likewise driven by systematic changes in connectivity, and not 536 

network noise. These results additionally reveal that CON also systematically changes its global 537 



 

 25 

connectivity pattern according to task goals, though the GVC results suggest these systematic 538 

changes are smaller in CON (and most other networks) than FPN. 539 

Next, we tested the hypothesis that global FPN and CON connectivity patterns were 540 

specific enough to each task set that they could be used to reliably predict the current task 541 

rules being used. As in Cole et al. (2013b), FPN (as well as all other networks in the present 542 

study) features were restricted by their somatomotor network (SMN) connections in the tests 543 

of motor-domain rule classification. We tested how well control network connectivity patterns 544 

could be used to decode rule sets in the three C-PRO domains (logic, sensory, and motor; Fig. 1) 545 

by assessing task decodability of every CAB-NP network (Fig. 3) with nonparametric 546 

permutation testing to address multiple comparisons (see Materials and Methods). In each 547 

domain there were four distinct rules, thus chance accuracy was 25%.  548 

Consistent with our hypothesis that FPN and CON are especially important for network-549 

level representation of task information, FPN and CON were the only two networks whose 550 

connectivity patterns could be used to decode all three rule domains across both discovery and 551 

replication datasets (Fig. 8) (p < 0.05, nonparametrically corrected for multiple comparisons). 552 

The connectivity patterns of other networks could be used to decode task information in a 553 

more limited manner, often for functionally-relevant task domains (e.g., SMN for motor rules; 554 

Fig. 8A and Fig. 8C). To clarify the pattern of task-rule decoding results across control and non-555 

control networks, we generated binarized matrices depicting statistical significance (Fig. 8B and 556 

8D). This allowed us to more easily observe which networks’ cortical connectivity patterns 557 

could be used to significantly decode rule sets across all three C-PRO task domains (marked by 558 

arrows in Fig. 8B and 8D). In the discovery dataset, the cognitive control networks, FPN and 559 
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CON, plus LAN were the only networks that decode all rule sets. In the replication dataset, only 560 

the FPN and CON could significantly decode all rule sets. It is worth noting that LAN came close 561 

to maintaining decodability across all rule types in the replication dataset as well, but did not 562 

survive correction for multiple comparisons in the sensory domain (t(49) = 1.48, p = 0.08). 563 

Decodability of task information in the language network is consistent with all of the C-PRO 564 

rules having been cued with words (Fig. 1). The tendency for control networks’ global 565 

connectivity patterns to so consistently carry task rule information in all three domains suggests 566 

that their network interactions likely carry information critical to task representation. 567 

  568 

Network Metric: Flexibility  569 

Network Flexibility (NF) measures functional network dynamics related to task-state time series 570 

(Bassett et al., 2011, 2013a, 2013b; Mucha et al., 2010; Cole et al., 2014), and is thus highly 571 

relevant to our current hypotheses regarding control network reconfigurations. Conceptually, 572 

NF is aligned with GVC, particularly as both quantify large-scale changes in functional network 573 

configurations. However, it is unknown whether these metrics capture the same aspects of 574 

network reconfiguration. The computations of both GVC and NF are oriented around a measure 575 

of network change, however, the approaches are distinct enough to hypothesize that NF and 576 

GVC will not entirely overlap. We hypothesized that differentiation between NF and GVC would 577 

lend insight into the nature of control network reconfiguration. In particular, GVC assesses 578 

continuous changes in connectivity strengths, while NF assesses discrete network 579 

reassignments.  580 
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The multilayer modularity step required parameters  (temporal resolution or 581 

“coupling”) and  (spatial resolution) to be chosen. The standard values used for these 582 

parameters across multiple studies are  = 1 and  = 1 (Bassett et al., 2013b; Chen et al., 2015; 583 

Braun et al., 2015). NF that resulted from community detection at  = 1 and  = 1 was termed 584 

NF-standard. Since there is only a limited theoretical basis for those parameter choices, we 585 

computed NF across a range of values around these standards, such that  was varied between 586 

zero and five in steps of 0.5; and  was varied between zero and two in steps of 0.2 (Fig. 9A and 587 

9B). These sweeps resulted in 121 vectors of regional NF estimates (per participant). It was 588 

clear that results depended substantially on the exact values of  and , such that we were 589 

unable to make systematic inferences regarding flexibility of network assignments using NF. To 590 

illustrate this: we identified parameters (  = 2.5 and  = 0.2) that yielded high cross-node 591 

similarity to GVC, termed NF-matched (discovery dataset: Rho = 0.8169, p < 0.00001 as in Fig. 592 

9D; replication dataset: Rho = 0.6993, p = 0.015) and others  = 0.5 and  = 0.2 that yielded a 593 

negative relationship with GVC, termed NF-unmatched (discovery dataset: Rho = -0.4546, p = 594 

0.14 as in Fig. 9E; replication dataset: Rho = -0.3077, p = 0.34), while the NF-standard 595 

parameters (  = 1 and  = 1) yielded a positive but not significant relationship with GVC 596 

(discovery dataset: Rho = 0.4825, p = 0.12 as in Fig. 9C; replication dataset: Rho = 0.3147, p = 597 

0.32).  598 

 599 

Network Metric: Partition Deviation  600 

Given that NF demonstrated inconsistent results dependent on tuning parameters, we created 601 

a novel metric, Network Partition Deviation (or simply, deviation), that could quantify network 602 
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reconfiguration without the need for a parameter search. Deviation enumerates network 603 

reassignments across task states by quantifying the percent of states (i.e., the relative 604 

frequency across tasks) in which a given region deviates from a predefined partition (see 605 

Materials and Methods, Fig. 4B, Table 3, and Multimedia 1). We employed the CAB-NP adjusted 606 

by the empirical resting-state data of participants herein (Fig. 3) as the intrinsic, predefined 607 

reference. See prior work (Cole et al., 2014; Krienen et al., 2014) and the Results section 608 

“Intrinsic and Task-State Connectivity” above for evidence that resting state provides an 609 

appropriate intrinsic network configuration to act as a reference for assessing network 610 

deviations.  611 

Of the cognitive control networks of interest here – the CON and the FPN –  the CON 612 

displayed the highest mean deviation, which was significantly higher than the mean across all 613 

other networks (max-T(49) = 12.74, p < 0.0001) (Fig. 10A). Moreover, the FPN demonstrated 614 

deviation that was near the mean, and was not significantly different from the mean across all 615 

other networks. This contrasted from the conclusions drawn from GVC, which showed the FPN 616 

significantly above the mean, and the CON significantly below it. Similarly in the replication 617 

dataset, CON regions’ deviation scores were again significantly higher than the mean of all 618 

other networks (max-T(49) = 16.33, p < 0.0001) (Fig. 10E).   619 

Next, we performed planned contrasts of the control networks’ deviation scores versus 620 

each other networks’ deviation scores, using the max-T method to correct for multiple 621 

comparisons (see Materials and Methods). The CON’s deviation was significantly higher than 622 

every other network (p < 0.0001), except for the orbito-affective network. Deviation estimates 623 

of FPN regions were significantly different from about half of the other networks (p < 0.0001), 624 
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including: secondary visual, somatomotor, cingulo-opercular, auditory, posterior multimodal, 625 

ventral multimodal, and orbito-affective. The deviation of FPN and CON regions were 626 

significantly different (t(49) = 6.28, p < 0.00001), suggesting that the control networks differ on 627 

how often they deviate from their intrinsic partitions across task states. In the replication 628 

dataset, CON regions’ deviations scores were significantly higher than each other network, 629 

except for the orbito-affective network. Lastly, the paired samples t-test to compare the 630 

deviation of CON and FPN in the replication dataset likewise showed a significant difference 631 

(t(49) = 9.13, p < 0.00001).  632 

To further explore the task-state reconfiguration property that deviation was capturing, 633 

we generated “reassignment profiles” at both the network (Fig. 10C) and region (Fig. 10D) 634 

levels. Reassignment profiles showed precisely which networks were preferred when a region 635 

was deviating from the intrinsic partition. As shown in Fig. 10C, the CON deviated to many 636 

other networks in an evenly-distributed manner (relative to other networks’ reconfigurations) 637 

with some bias to somatomotor connections, whereas the FPN deviated less overall and with 638 

more specific preferences, favoring the dorsal attention, language, and default networks (in 639 

addition to itself). As with other graph metric results, deviation estimates highly overlapped 640 

between discovery and replication datasets (Rho = 0.958, p < 0.00001), as did reassignment 641 

profiles (Rho = 0.848, p < 0.0001).  642 

 643 

Network Cartographies 644 

We found that FPN regions expressed high GVC yet relatively low deviation. In contrast, CON 645 

regions displayed lower GVC yet higher deviation. Altogether, the CON and the FPN both 646 
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exhibited higher reconfiguration properties than other networks. However, the diversity of 647 

findings across network metrics suggested that composite, multidimensional profiles were 648 

warranted to fully map out their functionalities. Careful examination of network metric 649 

estimates for CON and FPN regions clarified the pattern of results. FPN connectivity tended not 650 

to deviate (and when it did, to only a small number of networks as in Fig. 10C and 10D), 651 

whereas CON connectivity was more uniform (or “evenly” deviating, as in Fig 10C and 10D). 652 

Figure 11A depicts prominent network properties in a cartographic manner (Guimerà and 653 

Nunes Amaral, 2005; Mattar et al., 2015), charting GVC on the y-axis against deviation on the x-654 

axis. The FPN can be found in the upper right quadrant of this cartography, near the mean 655 

demarcation line for deviation (the vertical gray line, Fig. 11A), pointing to the high-variability 656 

yet low-deviation performance of FPN regions in response to cognitive control task state 657 

changes. The CON can be found in the lower right quadrant of the cartography in Fig. 11A, 658 

suggesting a low-variability yet high-deviation complement to FPN in properties supporting 659 

cognitive control.  660 

To expand upon the primary mapping in Fig. 11A, we generated two secondary 661 

cartographies that depict the quantification of each primary measure’s within-network and 662 

between-network scores (see Materials and Methods). Briefly, within-network dynamics were 663 

assessed by keeping the between-network connectivity fixed across states (defined by resting 664 

state). Similarly, between-network dynamics were assessed by keeping the within-network 665 

connectivity fixed across states (defined by resting state) (see Fig. 5 for data input schematics). 666 

Figure 11B charts these dimensions of GVC, showing both within-network and between-667 

network FPN connections to be high on global variability, and CON to be near-mean on both 668 
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within-network GVC and between-network GVC. Figure 11C depicts within- and between-669 

network deviation. Both FPN and CON regions were near the mean for between-network 670 

deviation (yet on opposing sides of the mean, see vertical gray line in Fig. 11C), yet low and 671 

high, respectively, for within-network deviation. This suggests that CON’s high deviation was 672 

driven primarily by changes in within-network connectivity.  673 

Supporting dissociation of FPN and CON in terms of network dynamics, we directly 674 

compared FPN and CON regions on each secondary cartographic metric (Fig. 11B and 11C), and 675 

found the following: (1) FPN was significantly higher than CON on within-network GVC (t(49) = 676 

8.92, p < 0.00001); (2) FPN was significantly higher than CON on between-network GVC (t(49) = 677 

11.43, p < 0.00001); (3) CON was significantly higher than FPN on within-network deviation 678 

(t(49) = 6.55, p < 0.00001); and (4) FPN was significantly higher than CON on between-network 679 

deviation (t(49) = 4.88, p = 0.000012) (see prior results sections for FPN versus CON 680 

comparisons on GVC and deviation scores related to Fig. 11A, where all regions were included). 681 

This pattern of results replicated in the replication dataset: (1) FPN was significantly higher than 682 

CON on within-network GVC (t(49) = 8.65, p < 0.00001); (2) FPN was significantly higher than 683 

CON on between-network GVC (t(49) = 10.26, p < 0.00001); (3) CON was significantly higher 684 

than FPN on within-network deviation (t(49) = 6.16, p < 0.00001); and (4) FPN was significantly 685 

higher than CON on between-network deviation (t(49) = 2.13, p = 0.03).  686 

To explore these results further, we created a color-coded graph of the partition 687 

reassignments captured by each version of deviation (Fig. 12). To quantify the relationships 688 

between reassignment patterns we used the Jaccard similarity index (see Materials and 689 

Methods). We found FPN’s between-network deviation (i.e., within-network connectivity held 690 
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constant) was more similar to “all-data” deviation than its within-network deviation (i.e., 691 

between-network connectivity held constant): Jaccard indices of 0.29 and 0.18, respectively 692 

(Fig. 12B). Yet, CON’s within-network deviation was more similar to “all-data” deviation than its 693 

between-network deviation (Jaccard indices of 0.31 and 0.16, respectively; Fig. 12A). 694 

Supporting dissociation of FPN and CON network dynamics, the Jaccard similarity indices for 695 

CON and FPN were significantly different (Jaccard for deviation all-data and deviation within-696 

network data, CON vs FPN: t(49) = 3.30, p = 0.0018; Jaccard for deviation all-data and deviation 697 

between-network data, CON vs FPN: t(49) = -4.61, p = 0.00003).  698 

This result supports the conclusion that the high deviation exhibited by the CON was 699 

driven by its within-network connections, indicating that CON task-related dynamics were 700 

driven mostly by reduction in within-network intrinsic connectivity (network “disbanding”) to 701 

increase the strength of between-network connections relative to (now-reduced) within-702 

network connections. In contrast, FPN regions maintained their within-network connection 703 

patterns while varying their between-network connection patterns across rest and task. This is 704 

consistent with FPN maintaining its intrinsic within-network connectivity while reconfiguring its 705 

between-network connections in a task-specific manner. Moreover, the pattern of CON within-706 

network decreases were task-specific (Fig. 7E, Fig. 8, and Fig. 12). This is consistent with CON 707 

being a flexible hub network like FPN, but with a distinct mechanism involving “switching” from 708 

within-network to out-of-network connectivity via dynamic reduction of within-CON 709 

connectivity.  710 

 711 

Discussion  712 
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The chief conclusion of the current study was that combining network science measures into 713 

network cartographies (multi-dimensional functional “mappings”) allowed us to characterize 714 

cognitive control brain systems as either flexible coordinators (frontoparietal regions) or 715 

flexible switchers (cingulo-opercular regions). Network cartographies consisted of two primary 716 

dimensions: 1) GVC, which measures global FC reconfiguration across task states in a 717 

continuous manner and, 2) deviation, which measures global FC reconfiguration from rest to 718 

task in a discrete manner (Fig. 11). We found that FPN exhibited high GVC but low deviation, 719 

while CON showed the opposite pattern, consistent with complementary mechanisms of 720 

cognitive control. FPN appeared to act as a “flexible coordinator”, based on its extensive 721 

between-network FC reconfiguration along with maintenance of its within-network connections 722 

across rest and task states. In contrast, CON appeared to act as a “flexible switcher”, based on 723 

extensively reducing its within-network connections from rest to task to effectively switch to 724 

other networks during tasks (Fig. 2).  725 

 The present findings are broadly consistent with the view proposed by Dosenbach et al. 726 

(2006, 2007, 2008), which posited – based on fMRI task activations and resting-state FC – that 727 

control networks implement dissociable mechanisms. We used tFC along with dynamic graph-728 

theoretic measures to expand on Dosenbach et al. In that work, FPN regions enacted control in 729 

a manner described as “active, adaptive, and online”. The high tFC-based global variability we 730 

observed in FPN regions is consistent with adaptive monitoring and adjustment important for 731 

controlled processing (Cole and Schneider, 2007; Sadaghiani and D'Esposito, 2015; Crittenden 732 

et al., 2016). In contrast to FPN, Dosenbach et al. (2006, 2007, 2008) proposed that CON 733 

underlies “stable set maintenance, task mode, and strategy” (also shown by Vaden et al., 2013). 734 
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While we did find CON connectivity changes to be more consistent (across task states) than FPN 735 

(Fig. 7), we propose that its functional switching relates to the biased competition model put 736 

forth by Desimone et al. (1990, 1995) and related theories, as described below.  737 

 The biased competition model posits that neural representations compete for 738 

resources, such that stimuli, actions, and/or thoughts compete for attention during task 739 

performance (Desimone and Duncan, 1995). The theory suggests that competition is biased by 740 

top-down goal-related signals from prefrontal cortex and related areas (i.e., control networks). 741 

These top-down control signals are thought to shift the competition in bottom-up processing 742 

(e.g., in visual cortex), such that goal-relevant processes become more salient and more likely 743 

to “win”. For instance, a top-down control signal could bias color-naming representations over 744 

word-reading representations to aid in Stroop task performance. This theory was built upon by 745 

the guided activation theory (Miller and Cohen, 2001) and flexible hub theory (Cole et al., 746 

2013b). In line with these later theories, we recently posited that such top-down biases to 747 

bottom-up competitive processes are especially important for RITL paradigms (such as the C-748 

PRO task), and that they are implemented by tFC changes from control networks (Cole et al., 749 

2017). In the present study, connectivity patterns of FPN and CON regions significantly decoded 750 

C-PRO task rules (Fig. 8), suggesting that distributed interactions implemented by cognitive 751 

control networks critically support task representations. Further, network science measures 752 

probing those interactions suggested that top-down biases are implemented via two 753 

complementary mechanisms.  754 

First, CON regions appeared to reduce their within-network connectivity and flexibly 755 

switch to other networks in a task-dependent manner. We observed this switching to occur 756 
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with a relatively uniform distribution, across tasks and switched-to networks (Fig. 7 and Fig. 757 

10C), and with high deviation across tasks (Fig. 10A). We posit that CON transiently disbands 758 

and switches networks to lend resources (“weight” or “energy”) to help goal-relevant 759 

regions/networks (e.g., visual and motor regions during visuo-motor tasks) win competitions 760 

with other regions/networks (or representations). Importantly, we propose that CON’s 761 

switching property specifically helps win competitions by reducing functional interference from 762 

goal-irrelevant systems, such as interference with distracting stimuli or amongst goal-relevant 763 

representations. Second, FPN regions appeared to flexibly coordinate their global patterns of 764 

goal-driven biases with each other via maintaining within-network connectivity. This likely 765 

facilitates the coordination of complex task sets via facilitating interactions amongst 766 

combinations of task representations. This account illustrates a fundamental trade-off in 767 

controlled processing: implementing goal-relevant “programs” by FPN through coordinated 768 

(but potentially interfering) top-down biases, versus lending of resources via independent (and 769 

therefore less likely to interfere) top-down biases by CON to help goal-relevant brain systems 770 

win competitions. 771 

 Interestingly, FPN’s between-network connectivity patterns were variable, but FPN’s 772 

within-network intrinsic configuration remained intact across task states (Fig. 2 and Fig. 12). On 773 

the one hand, between-network FC variability corroborates the notion that FPN supports task-774 

specific coding (Crittenden et al., 2016) and selective attention demands (Sadaghiani and 775 

D'Esposito, 2015). On the other hand, within-network FC preservation suggests that FPN 776 

regions are coordinating the FC changes across FPN regions. These dynamics are well-suited to 777 

address the “variable binding” problem (Feldman, 2013), where variable stimulus information 778 
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must be linked to task rules to enact cognitive computations. In C-PRO tasks, variable rules 779 

must link via logical operations to perform a given task, and variable stimuli must link to those 780 

rules to produce correct behavior (Fig. 1). The maintenance of FPN’s intrinsic organization 781 

combined with between-network reconfigurations, suggests a coding process that includes 782 

FPN, along with other, task-specific regions. This computational format would allow for variable 783 

stimulus information to be bound on a task-to-task basis. Specifically, we propose that FPN’s 784 

role in this scheme is to flexibly coordinate task-specific coding. Notably, this would impose 785 

high processing demands on FPN regions, which we suggest to be facilitated by the CON freeing 786 

up resources, pointing to a computational trade-off across these two cognitive control 787 

networks.  788 

 Two other networks joined CON in having low variability and high deviation: the OAN 789 

and the primary visual network (VIS1). OAN had both the lowest GVC and the highest deviation 790 

of all networks. This suggests that the switching mechanism proposed for CON also occurs for 791 

OAN, though other studies suggest distinct functionality for OAN. Anatomically, OAN is localized 792 

to a small number of regions – ventromedial prefrontal cortex and nearby subcortical regions (Ji 793 

et al., 2019). Human lesion studies and animal models suggest a core role of OAN in emotion 794 

processing and value representation (Roy et al., 2012), and likely receives direct dopaminergic 795 

projections from the ventral tegmental area (Seamans and Yang, 2004). Emotion processing 796 

may seem counter to the non-emotional C-PRO paradigm, yet evidence from human lesion 797 

studies (Koenigs et al., 2007) and neuroimaging (Botvinick and Braver, 2015) demonstrates that 798 

emotion, in the form of motivation, biases competition between outcomes during complex 799 

decisions. Future research should assess whether OAN provides a similar mechanism to CON for 800 
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top-down biasing, but via an emotional/motivational mode of processing. In contrast to OAN 801 

and CON, VIS1 was not diverse in its connectivity switches, primarily switching to the secondary 802 

visual network (extrastriate cortex) (Fig. 10C and 10D), consistent with integrated processing 803 

across the two visual networks. 804 

Aside from the high-variability/low-deviation and low-variability/high-deviation 805 

cartographic mappings of the FPN and CON, respectively (Fig. 11A), there were two other 806 

scenarios possible. First, high-variability and high-deviation across task states: networks 807 

exhibiting this profile would have fluctuating connectivity as well as notable partition 808 

reassignment from rest to task. The default network (red diamond in Fig. 11A) appeared to be 809 

the only network trending in this direction. Secondly, low-variability and low-deviation across 810 

task states: networks exhibiting this profile would have stable connectivity estimates and 811 

adhere to their intrinsic partition. The auditory network was the only observed herein (pink 812 

diamond in Fig. 11A), which may relate to sensory regions’ proposed “rigid core” organization 813 

(Bassett et al., 2013b). Other sensory-motor networks had low deviation compared to cognitive 814 

networks, suggesting low vs. high deviation was indicative of sensory-motor vs. cognitive 815 

network properties. Future work is warranted to explore this, particularly if diverse task 816 

paradigms are implemented.  817 

 An essential consideration for future studies regards the question of timescale. 818 

Dosenbach et al. (2007, 2008) found increases in CON activity to be sustained across tasks, 819 

while FPN activations were present at task onset then adaptively varied with changing task 820 

demands. In the present work, we applied network metrics across a set of dynamic task states 821 

demanding high levels of cognitive control. While measures of global variability summarized 822 
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varying connectivity patterns across states, further examination could determine the timescales 823 

of control network mechanisms. Relatedly, future studies would benefit from considering how 824 

electrophysiological signatures of neural processing and network properties relate in terms of 825 

the instantiation of cognitive control. In resting-state based studies, Sadaghiani et al. (2010, 826 

2012) found distinctions between FPN and CON based on alpha band signatures. Spontaneous 827 

CON activity related to increases in global power, while FPN related to increases in long-range 828 

phase synchrony. These signatures correspond to the functions of tonic alertness and phasic 829 

control, respectively. In future work, both rest and control-related task states should be 830 

assessed via alpha band signatures, as well as potential changes in those signatures from rest to 831 

task. A potential outcome is that increases in global power (CON) and long-range synchrony 832 

(FPN) would be more apparent from rest to task, constituting another “mappable” 833 

reconfiguration property of cognitive control. This would further support the proposition that 834 

CON is suited to lend processing resources, and FPN to adaptively integrate task-specific 835 

information. Moreover, possible interactions between the properties discovered herein (Fig. 836 

11) and electrophysiological properties remains an empirical question.  837 

 Taken together, constructing a functional cartography by combining multiple network 838 

science measures allowed us to characterize FPN and CON as complementary systems of 839 

cognitive control. We demonstrated that FPN regions enacted control via flexible coordination 840 

of reconfiguring connectivity patterns, and CON regions enacted control via flexible switching of 841 

network affiliations to lend resources to task-relevant networks. All results replicated in a 842 

dataset with distinct subjects, and expanded prior theories that distinct mechanisms of 843 

cognitive control are instantiated in parallel via separate large-scale brain systems. Looking 844 
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forward, we expect the dynamic network neuroscience approach expanded upon here will be 845 

effective for functionally characterizing the relationship between neural and cognitive dynamics 846 

in other brain systems and other cognitive paradigms. 847 
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Figure/Table Legends  1008 

Figure 1. The Concrete Permuted Rule Operations (C-PRO) cognitive paradigm. First, an 1009 

instruction screen presented the rules for a given task (3925 ms). Participants next applied 1010 

these rules to pairs of consecutively presented audiovisual stimuli (auditory waveforms are 1011 

visually depicted here, but were only presented audibly to participants). Two example task-rule 1012 

sets are depicted, as well as how participants were trained to interpret the rules (e.g., rule 1013 

descriptions on the right-most portion of the figure) (see Materials and Methods for details). 1014 

The 12 possible rules are listed on the right.  1015 

 1016 

Figure 2. Schematic depictions of cognitive control network functional properties. (See 1017 

Materials and Methods and Results for details on network measures). In each panel, a “toy” 1018 

version of the control network is prominently depicted in the center (with a reduced number of 1019 

regions, or nodes, and simplified within-network connections), and out-of-network exemplars 1020 

are depicted as truncated and surrounding the control network of interest (DAN: dorsal 1021 

attention network, LAN: language network, DMN: default mode network, and SMN: 1022 

somatomotor network). Each of these surrounding networks also contains within-network 1023 

regions and connections, but these were not depicted here for simplicity. (A) Regions in the 1024 

frontoparietal network (FPN) acted as flexible coordinators. This entailed high global variability 1025 

(GVC) and low partition deviation across task states. From example task state one to task state 1026 

two, FPN regions maintained their within-network connectivity (low deviation) and out-of-1027 

network connectivity changes were variable across states (high GVC). (See Results for details). 1028 

(B) Regions in the cingulo-opercular network (CON) acted as flexible switchers. This entailed 1029 
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low global variability and high partition deviation. From example task state one to task state 1030 

two, CON regions dropped their within-network connectivity (high deviation) and out-of-1031 

network connectivity changes were consistent across states (low GVC). (See Results for details). 1032 

 1033 

Table 1. Demographic characteristics of the discovery dataset (n = 50). There were no 1034 

significant differences between identified genders on the distributions of age, ethnicity, or 1035 

education (right column). *The measure of center used for the age variable was the mean, and 1036 

for categorical variables of ethnicity/race and education it was the mode. For the education 1037 

variable, student refers to “some college”. **Hypothesis testing of significant differences 1038 

between males and females. Age: two-sample t-test adjusted for unequal sample sizes. 1039 

Ethnicity/race and education: a chi-square test of independence.  1040 

 1041 

Table 2. Demographic characteristics of the replication dataset (n = 50). All table features are 1042 

the same as in Table 1. Note that there were no significant differences between identified 1043 

genders on the distributions of age, ethnicity, or education (right column).  1044 

 1045 

Figure 3. The Cole-Anticevic brain-wide network partition (CAB-NP) adjusted by empirical 1046 

resting-state FC, for both the discovery and replication datasets. (A) Regional (y-axis; Glasser 1047 

et al., 2016 parcels) assignments are color-coded according to the CAB-NP (rightmost scale). 1048 

The CAB-NP column depicts the original resting-state network partition by Ji et al., 2019. The 1049 

empirically-derived rest preferences are shown, unordered, for both the discovery and 1050 

replication datasets, as well as their ordered counterparts (i.e., “adjusted partitions”). These 1051 



 

 49 

adjusted partitions were used for all analyses. (B) CAB-NP by Ji et al. (2019) projected onto 1052 

brain regions. (C) The empirically-adjusted CAB-NP for the discovery dataset projected onto 1053 

brain regions. The Jaccard similarity coefficient between the CAB-NP and the empirically-1054 

adjusted discovery set partition was 0.6989. (D) The empirically-adjusted CAB-NP for the 1055 

replication dataset projected onto brain regions. The Jaccard similarity coefficient between 1056 

discovery and replication partitions was 0.9595, suggesting the partition method used herein 1057 

will have high external validity. The Jaccard similarity coefficient between the CAB-NP and the 1058 

empirically-adjusted replication set partition was 0.6947. This suggests a relatively high 1059 

similarity between each of the empirically-adjusted partitions (discovery and replication) and 1060 

the CAB-NP. The least similarity was observed in the primary visual network, which was 1061 

expanded to include CAB-NP secondary visual and dorsal attention regions in the empirical 1062 

adjustments.  1063 

 1064 

Figure 4. Schematic depictions of network metric algorithms. (A) Global variability coefficient 1065 

(GVC), reproduced with permission (Cole et al., 2013b). Between-network variability coefficient 1066 

(BVC) is measured equivalently, except within-network connections are withheld. (B) Network 1067 

partition deviation. Per region (large yellow example node labeled “i”): each of its 359 1068 

connectivity estimates were averaged according to their CAB-NP (see Materials and Methods 1069 

and Fig. 3) networks (bar graph in top example), resulting in 12 FC estimates per region. 1070 

Network “preferences” (network location of maximum FC estimate; thickest lines) were tallied 1071 

across task states. How often a given region deviated from its predefined partition (intrinsic 1072 

state) was computed [tally / total number of tasks]. Lower deviation: the example region 1073 
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deviated in one out of two hypothetical task states (50% deviation = deviation of 0.5). Higher 1074 

deviation: the example region deviated in two out of two hypothetical states (100% deviation = 1075 

deviation of 1). The colored nodes encircling the example region represent example regions 1076 

from example networks, and black lines of variable width represent FC estimates (edge 1077 

weights).  1078 

 1079 

Table 3. Summary of the network metrics for cognitive control properties across states. 1080 

Global variability coefficient (GVC; Cole et al., 2013b), between-network variability coefficient 1081 

(BVC), and network partition deviation (novel) (named in column 1) are described in terms of 1082 

the following: (Column 2) their mathematical or algorithmic formulae. All equation symbols are 1083 

expressed consistently.  Formula terms: n = brain regions; N = number of regions; i = region 1; l 1084 

= task 1; T = tasks; FC = weighted adjacency matrix; x-barr = mean; FC_il = edge weight, per 1085 

region, per task; FCl = FC matrix, per task; n’ = out-of-network regions; N’ = number of out-of-1086 

network regions; i’ = region 1, out-of-network; l’ = task 1, out-of-network regions only; FC_i’l = 1087 

edge weight, per out-of-network region, per task; FCl’ = FC matrix, out-of-network regions only, 1088 

per task; c = network regions; C = number of network regions; rS = predefined partition; FC_cl = 1089 

edge weights per network-region, per task. (Column 3) What each metric measured. This was 1090 

how results were interpreted, and mechanisms or properties were framed. (Column 4) If each 1091 

metric relied on user-chosen parameters (e.g., had a parameter-space). (Column 5) If each 1092 

metric relied on a predefined network partition (also see Materials and Methods).  1093 

 1094 
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Multimedia 1. Video depiction of cortical network reassignments across task states, 1095 

computed via network partition deviation. The video depicts each region’s network 1096 

“preference” observed during the computation of network partition deviation, across all 64 C-1097 

PRO task states, and for n = 50 discovery dataset participants (see Materials and Methods). 1098 

Briefly, per task state and region, the maximum connectivity estimate was found, and its 1099 

location relative to the predefined partition (empirically adjusted CAB-NP; as in Fig. 3) was 1100 

indexed (see Fig. 4B and Table 3). These network indices were then mapped back onto brain 1101 

schematics to visualize how deviation defines network reassignment across tasks. This video 1102 

also depicts the dynamics captured by deviation. Some patches of cortex remained stable in 1103 

their network assignments across states (such as primary and secondary visual networks, 1104 

shown mainly in occipital regions as blue and purple, respectively). However, some regions 1105 

and/or networks reassigned with more frequency, such as the shifts in cingulo-opercular 1106 

preference. The goal of deviation was to quantify these patterns in a systematic manner. 1107 

Cortical regions on each brain schematic represent the Glasser parcellation scheme (2016), and 1108 

colors correspond to the CAB-NP naming system (Ji et al., 2019; Fig. 3).  1109 

 1110 

Figure 5. Input data schemes used in computing measures of the secondary cognitive control 1111 

cartographies. Data refers to functional connectivity estimates (Pearson’s R; colored according 1112 

to the bottom-most scale). Put another way, each panel contains modified correlation matrices. 1113 

The cross-state means are visually represented, but analyses included all 64 C-PRO task states. 1114 

Axes are color coded according to the empirically-adjusted CAB-NP (see Fig. 3). (A) 1115 

Representation of input data for within-network GVC. Between-network FC estimates were set 1116 
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to ‘NaN’ (white). (B) Input data for between-network GVC. Within-network FC estimates were 1117 

set to ‘NaN’ (white). (C) Input data for within-network deviation. Between-network FC 1118 

estimates were set to their resting-state values. (D) Input data for between-network deviation. 1119 

Within-network FC estimates were set to their resting-state values. 1120 

 1121 

Figure 6. Functional connectivity (FC) estimation. (A) Resting-state functional connectivity 1122 

(rsFC) across 360 by 360 regions (regional parcellation as in Glasser et al., 2016), ordered per 1123 

the CAB-NP, adjusted by resting-state preferences (see Materials and Methods and Fig. 3) 1124 

(color-coded along each matrix edge as in C). Discovery-set grand averages are depicted. (B) 1125 

Task-state functional connectivity (tFC) across 360 by 360 brain regions, ordered and estimated 1126 

as in A (grand averages: n = 50 and 64 C-PRO task states). (C) Cortical schematic of the Cole-1127 

Anticevic Brain-wide Network Partition (CAB-NP) (Ji et al., 2019), empirically adjusted by the 1128 

resting-state preferences of the present participants (see Materials and Methods and Fig. 3). LH 1129 

= left hemisphere; RH = right hemisphere. Color-coding scheme of networks and acronyms 1130 

listed in parentheses are used consistently throughout the present paper. Note that the two 1131 

cognitive control networks of special interest included the CON (plum) and FPN (yellow). 1132 

 1133 

Table 4. Summary of the similarities between intrinsic rsFC and multi-task FC. Each row lists a 1134 

task-state (i.e., tFC) comparison to rsFC (Fig. 6A). These tFC estimates were based on each of 1135 

the 12 C-PRO rules (see Fig. 1), and averaged across participants. Columns list the Mantel-r 1136 

statistic, corresponding p-value in scientific notation (nonparametric permutation testing; see 1137 
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Materials and Methods and Glerean et al., 2016), and shared variance (R^2). Connectivity of all 1138 

C-PRO rule sets significantly correlated with rsFC. 1139 

 1140 

Figure 7. Global variability coefficient (GVC). (A) Network-mean GVC, across discovery dataset 1141 

participants and all C-PRO task states. Error bars: standard error of the mean. Asterisks: 1142 

statistically significant t-tests, using the max-T approach (see Materials and Methods). 1143 

Horizontal, dashed line: average GVC across networks. (B) Regional-mean GVC, projected onto 1144 

a cortical surface. LH = left hemisphere, RH = right hemisphere. (C) Similarity of C-PRO task 1145 

states, represented by number of overlapping rules (0 overlapping rule = blue, 1 overlapping 1146 

rule = green, 2 overlapping rules = yellow). An overlap of 3 rules exists along the diagonal 1147 

(white), but these connections were not included in analyses because connectivity similarity 1148 

would be Rho = 1 (identical task states). (D) Relationship between FPN connectivity similarity 1149 

and task similarity. All connectivity estimates were included. Grey dashed line: linear trend, 1150 

with associated beta and t-test significance listed. (E) Same as D, but for CON regions. The 1151 

results in D and E demonstrated that control network connectivity similarity varied 1152 

systematically with task similarity, suggesting that GVC results (A and B) were not driven by 1153 

network noise. (F) Same as A, but replication dataset GVC results at the network level. (G) Same 1154 

as B, but replication dataset GVC results at the regional level. GVC results highly overlapped 1155 

between discovery (A) and replication (F) datasets: Rho = 0.9091, p < 0.00001. 1156 

 1157 

Figure 8. Decoding task rule information with task-state connectivity. (A) Cross-subject 1158 

(discovery dataset) network-mean decoding accuracies for logic, motor, and sensory rules (4-1159 
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way classifications where chance accuracy was 25%, represented by the horizontal, dashed 1160 

line). Error bars: standard error of the mean. Asterisks: statistically significant t-tests using the 1161 

max-T approach (see Materials and Methods). (B) Statistical significance tallies (binarized: black 1162 

= significant or 1, white = not significant or 0) for each network (y-axis, color-labeled) and each 1163 

rule set (x-axis) for the discovery dataset. Black arrows to the left of y-axis color labels mark 1164 

networks that significantly decoded all three types of rules, which included the control 1165 

networks, CON and FPN, as well as the language network (LAN). (C) Same as in A, but for the 1166 

replication dataset. (D) Same as in B, but for the replication dataset. The control networks, CON 1167 

and FPN, were the only networks to significantly decode all three rule types in the replication 1168 

dataset. LAN came close (as in B), but it’s statistical significance did not survive the permutation 1169 

testing procedure for sensory rules. (E) The CAB-NP color scheme used across all panels A-D (as 1170 

in Fig. 3, but rearranged to highlight the cognitive control networks). Both FPN and CON 1171 

connectivity patterns significantly decoded task rules above chance, demonstrating their 1172 

importance in task representation.  1173 

 1174 

Figure 9. Comparison of global variability coefficient (GVC) and network flexibility (NF), 1175 

discovery dataset. (A) Network-wise comparisons (Spearman’s rank order correlation) of GVC 1176 

and NF sweeped by multilayer modularity parameters, across participants. (B) Same as A, but at 1177 

the region-wise level. (C) Regional mean GVC plotted over regional mean NF-standard 1178 

(multilayer modularity parameters:  = 1 and  = 1). NF-standard results were yielded by the 1179 

standard parameter combination. Each region (mean across n = 50 participants) was plotted as 1180 

individual scatter points, and color-coded according to the network it belongs to (as in Fig. 3). 1181 
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(D) Same as C, but with NF-matched represented on the y-axis (  = 2.5 and  = 0.2). This 1182 

parameter combination yielded NF results most correlated with GVC (or, “matched”), as 1183 

depicted in A and B by dark red squares. (E) Same as C and D, but with NF-unmatched 1184 

represented on the y-axis (  = 0.5 and  = 0.2). This parameter combination yielded NF results 1185 

least correlated with GVC (or, “unmatched”), as depicted in A and B by blue squares. The 1186 

variable results in panels C-E motivated the need for a new measure of network reconfiguration 1187 

that was less linked to parameter selection. 1188 

 1189 

Figure 10. Network Partition Deviation. Mean, error bars, and hypothesis testing specifications 1190 

were the same as in Fig. 7. (A) Network-mean deviation, discovery dataset. See the Discussion 1191 

for interpretations of the orbito-affective network (OAN). (B) Regional-mean deviation, 1192 

discovery dataset. (C) Network-level reassignment profiles. For each intrinsic network (x-axis), 1193 

adherence (or 1-deviation) is depicted as the portion of the bar (connecting network) with the 1194 

equivalent color. All other colors codify exactly which connecting networks were being 1195 

preferred (see Table 3 and Fig. 4) when deviating from the predefined partition. That is to say, 1196 

deviation in A is expanded in C to show frequency of reassignments, across task states. (D) The 1197 

same as in C, but the x-axis is depicted at the regional level (i.e., these regional reassignments 1198 

were averaged to generate C). (E) Network-mean deviation, replication dataset. (F) Regional-1199 

mean deviation, replication dataset. Deviation results highly overlapped between discovery (A) 1200 

and replication (E) datasets: Rho = 0.9580, p < 0.00001.  1201 

 1202 
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Figure 11. Cognitive control cartographies, discovery dataset. (A) GVC (as in Fig. 7A) plotted 1203 

over deviation (as in Fig. 10A), with demarcation lines (dashed and crossed gray lines) indicating 1204 

the cross-network mean for each dimension (all axes are centered at these marks for ease of 1205 

viewing). This allowed us to “map out” multidimensional properties at once. For example, 1206 

networks in the lower right quadrant of A (such as CON) exhibited GVC lower than the mean 1207 

and deviation higher than the mean. This mapping suggests a nonlinear relationship between 1208 

GVC and deviation, suggesting that each measure characterized a unique network property. In 1209 

all panels, control network diamonds (FPN: yellow, CON: plum) are highlighted with dark black 1210 

outlines and are larger than other network diamonds, with the sole visualization purpose of 1211 

standing out as cognitive control networks.  (B) GVC scores (y-axis of panel A) expanded by 1212 

within-network and between-network values. (C) Deviation (x-axis of panel A) scores expanded 1213 

by within-network and between-network values. The far-right legend depicts the CAB-NP color 1214 

scheme (as in Fig. 3) used for the diamonds.  1215 

 1216 

Figure 12. Reassignments conferred by the variants of network partition deviation in the 1217 

control cartographies. Reassignment is the network index (based on the intrinsic partition) of 1218 

the highest mean connectivity estimate, per task state. In each panel, Jaccard indices are listed 1219 

to indicate similarity between two partitions. Network assignments are color coded (as in Fig. 1220 

3), and the 64 C-PRO task states are collapsed into 12 rule sets (plus Rest as a reference on each 1221 

x-axis). (A) Left: Network reassignments of CON regions from the deviation algorithm, with all 1222 

connectivity data included in the input (Fig. 11A, x-axis). Middle: Within-network CON estimates 1223 

used in the deviation algorithm (Fig. 11C, y-axis; see Fig. 5C). The Jaccard similarity of within-1224 
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network and all-data deviation is 0.31. Right: Between-network CON estimates used in the 1225 

deviation algorithm (Fig. 11C, x-axis; see Fig. 5D). The Jaccard similarity of between-network 1226 

and all-data deviation is 0.16, which is lower than the within-network similarity to all-data. (B) 1227 

Same as panel A, except for FPN regions. The Jaccard similarity scores are: within-to-all = 0.18, 1228 

between-to-all = 0.29. Thus, FPN showed the reverse pattern to CON, where between-network 1229 

deviation is more similar to all-data deviation than within-network deviation.  1230 
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Table 1. Demographic characteristics of the discovery dataset (n=50).  

 Male (n=19) Female (n=31)  

 
n % center* 

SD 

(+/-) 
n % center* 

SD 

(+/-) 

test 

(male vs female)** 

Age (years)   21.2 2.9   19.9 1.6 t(48)=1.71, p=0.10 

    18-24 17 89.5   31 100    

    25-34 2 10.5   0 0    

    35-44 0 0   0 0    

Ethnicity/Race   White n/a   Black n/a (5, N=50)=6.29, p=0.18 

    American Indian or Alaskan Native 0 0   0 0    

    Asian 5 26.3   10 32.3    

    Black or African American 3 15.8   12 38.7    

    Hispanic or Latino 4 21.1   2 6.5    

    Native Hawaiian or Pacific Islander 0 0   0 0    

    White or Caucasian 7 36.8   6 19.4    

    Other 0 0   1 3.2    

Education   Student n/a   Student n/a (2, N=50)=1.27, p=0.26 

    Some college/Associate’s degree 15 79   28 90.3    

    College/Graduate degree 4 21.1   3 9.7    

    Not reported 0 0   0 0    
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Table 2. Demographic characteristics of the replication dataset (n=50).  

 Male (n=25) Female (n=25)  

 
n % center* 

SD 

(+/-) 
n % center* 

SD 

(+/-) 

test 

(male vs female)** 

Age (years)   25 5.4   23.2 3.5 t(48)=1.44, p=0.16 

    18-24 12 48   17 68    

    25-34 10 40   8 32    

    35-44 3 12   0 0    

Ethnicity/Race   Asian n/a   Asian n/a (5, N=50)=7.23, p=0.3 

    American Indian or Alaskan Native 3 12   0 0    

    Asian 8 32   10 40    

    Black or African American 5 20   3 12    

    Hispanic or Latino 1 4   4 16    

    Native Hawaiian or Pacific Islander 0 0   0 0    

    White or Caucasian 7 28   8 32    

    Other 1 4   0 0    

Education   Graduate n/a   Student n/a (2, N=50)=1.47, p=0.48 

    Some college/Associate’s degree 9 36   12 48    

    College/Graduate degree 13 52   12 48    

    Not reported 3 12   1 4    
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Table 3. Summary of the network metrics for cognitive control properties across states.   

Metric 

Name 
Formula 

Measures; 

Property 

Parameter-

space? 

Relies on 

pre-defined 

partition? 

Global 

Variability 

Coefficient 

(GVC) 

௡ܥܸܩ =  1ܰ ෍ඨ∑ ௜௟ܥܨ) − ி஼௟)ଶ௟்ୀଵݔ̅ ܶ − 1௡
௜ୀଵ  

Variable FC 

across tasks; 

flexible hubs 

No No 

Between-

Network 

Variability 

Coefficient 

(BVC) 

௡ܥܸܤ =  1ܰ′ ෍ ඨ∑ ௜ᇲ௟ܥܨ) − ி஼௟ᇱ)ଶ௟்ୀଵݔ̅ ܶ − 1௡ᇱ
௜ᇲୀଵ  

Variable FC 

across tasks, 

between-

network; 

flexible hubs 

No Yes 

Network 

Partition 

Deviation 

(deviation) 

௡݊݋݅ݐܽ݅ݒ݁݀ = 1 −  ⎣⎢⎢
⎢⎡∑ ቈቆmax ൬∑ ܥ௖௟௖௥ௌୀଵܥܨ ൰ቇ ∈ ቉௟்ୀଵܵݎ ܶ ⎦⎥⎥

⎥⎤ 
Network 

preference 

changes vs 

intrinsic (rest); 

reassignment 

profile 

Minimal Yes 
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Table 4. Summary of the similarities between intrinsic rsFC and multi-task FC.  

Task FC Data: C-PRO Rule Set 
Correlation with Rest  

(Mantel-r) 

p-value  

(permutation testing) 

Shared Variance 

(R2) 

Sensory rules    

          Vertical orientation 0.7966 3.05 x 10–8  0.6345 

          Red color 0.7918 3.17 x 10–8 0.6269 

          High pitch sound 0.7964 3.10 x 10–8 0.6343 

          Constant tone 0.7864 3.24 x 10–8 0.6185 

Motor rules    

          Left index finger 0.7847 3.26 x 10–8 0.6157 

          Right index finger 0.7966 3.60 x 10–8 0.6345 

          Left middle finger 0.7939 3.14 x 10–8 0.6302 

          Right middle finger 0.7844 3.33 x 10–8 0.6153 

Logic rules    

          Both 0.7983 3.04 x 10–8 0.6372 

          Either 0.7934 3.74 x 10–8 0.6295 

          Not both 0.7833 3.28 x 10–8 0.6136 

          Neither 0.7966 4.62 x 10–8 0.6345 

 




