
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342721488

Intrinsic network architecture predicts the effects elicited by intracranial

electrical stimulation of the human brain

Article  in  Nature Human Behaviour · July 2020

DOI: 10.1038/s41562-020-0910-1

CITATIONS

0
READS

60

9 authors, including:

Some of the authors of this publication are also working on these related projects:

The Oxford Handbook of Spontaneous Thought: Mind-wandering, Creativity, Dreaming, and Clinical Contexts View project

C3-Brain (2013 - 2030) View project

Kieran Fox

Stanford University

51 PUBLICATIONS   2,359 CITATIONS   

SEE PROFILE

Sori Baek

Princeton University

7 PUBLICATIONS   6 CITATIONS   

SEE PROFILE

Omri Raccah

New York University

7 PUBLICATIONS   18 CITATIONS   

SEE PROFILE

Brett L Foster

Baylor College of Medicine

56 PUBLICATIONS   1,552 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Kieran Fox on 08 July 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/342721488_Intrinsic_network_architecture_predicts_the_effects_elicited_by_intracranial_electrical_stimulation_of_the_human_brain?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/342721488_Intrinsic_network_architecture_predicts_the_effects_elicited_by_intracranial_electrical_stimulation_of_the_human_brain?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/The-Oxford-Handbook-of-Spontaneous-Thought-Mind-wandering-Creativity-Dreaming-and-Clinical-Contexts?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/C3-Brain-2013-2030?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kieran_Fox?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kieran_Fox?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Stanford_University?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kieran_Fox?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sori_Baek?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sori_Baek?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Princeton_University?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sori_Baek?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Omri_Raccah?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Omri_Raccah?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/New_York_University2?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Omri_Raccah?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Brett_Foster?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Brett_Foster?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Baylor_College_of_Medicine?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Brett_Foster?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kieran_Fox?enrichId=rgreq-fbaa8b15cb6f1e0433eca2657f8115cc-XXX&enrichSource=Y292ZXJQYWdlOzM0MjcyMTQ4ODtBUzo5MTA5MTQ4NDkwOTU2ODFAMTU5NDE5MDQzMjcwNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Articles
https://doi.org/10.1038/s41562-020-0910-1

1Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, 
CA, USA. 2School of Medicine, Stanford University, Stanford, CA, USA. 3Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 
Beijing, China. 4Departments of Neurosurgery and Neuroscience, Baylor College of Medicine, Houston, TX, USA. 5Centre National de la Recherche 
Scientifique (CNRS), UMR 7225, Frontlab, Institut du Cerveau et de la Moelle Épinière, Paris, France. 6These authors contributed equally: Kieran C. R. Fox, 
Lin Shi. ✉e-mail: kcrfox@stanford.edu; jparvizi@stanford.edu

For more than a century, intracranial electrical stimulation (iES) 
of brain tissue in awake neurosurgical patients has been known 
to elicit a remarkable variety of perceptual, motor, affective and 

cognitive effects, including somatosensations, visual hallucinations, 
emotions and memories1. Pioneering work by past investigators, 
particularly the legendary Wilder Penfield, laid the foundation for 
a high-level understanding of iES effects throughout the human 
brain2,3. We aimed to build on this work by creating a comprehen-
sive, whole-brain mapping of iES responses, then integrating the 
global pattern of iES effects with emerging models of the brain’s 
large-scale cortical organization4. Non-invasive neuroimaging has 
shown that the brain is organized as a complex mosaic of interlaced, 
intrinsic functional–anatomical networks5,6, and there is growing 
awareness that iES leads to downstream electrophysiological effects 
that depend on the network connectivity profile of the region being 
stimulated7–13. However, it remains to be determined whether there 
is any systematic relationship between the intrinsic functional archi-
tecture of the brain and the frequency or type of first-person reports 
elicited by iES. Beyond addressing fundamental questions about the 
functional organization of the human cortex, further work bridg-
ing iES, neuroimaging and first-person reports might also provide 
relevant information that could help address the challenges facing 
ongoing research using chronically implanted iES devices to modu-
late mood in intractable neuropsychiatric conditions14–16.

Towards these aims, we sought to provide a comprehensive map 
of iES effects across all human intrinsic brain networks, integrat-
ing first-person reports, invasive brain stimulation and existing 
atlases of non-invasive neuroimaging network data drawn from 
large, representative samples5,17,18. Our goals were to: contribute rare 
causal data to higher-order models of cortical organization4; extend 

knowledge of the relationship between network properties and the 
electrophysiological effects of iES7–13 into the domain of human 
behaviour and subjective experience; and inform emerging clinical 
interventions16.

Results
Elicitation rate differs markedly across intrinsic brain networks. 
First, we marshalled evidence from iES functional mapping proce-
dures conducted by a neurologist (J.P.) over the past 10 years at the 
Stanford University Medical Center. Patients with intractable (that 
is, medication-resistant) epilepsy are often implanted with intracra-
nial electrodes to precisely determine the source of their seizures 
before neurosurgical resection of the pathological tissue. Sequential 
stimulation of electrode contacts (so-called functional mapping) 
with iES is a standard and safe19 procedure with great clinical utility, 
resulting in marked improvements in patient outcomes following 
neurosurgery20. The careful recording of any effects elicited by iES 
is a routine part of the functional mapping procedure. Over time, 
this yields rich datasets amenable to exploration of the functional 
characteristics of particular brain regions21,22 or testing of specific 
hypotheses, as in the present study.

Ultimately, we analysed information from 1,537 unique elec-
trode sites implanted in 67 patients with focal epilepsy undergoing 
pre-surgical intracranial electroencephalography (iEEG) monitor-
ing. IES was performed by an experienced neurologist (J.P.) using 
parameters typical in functional mapping sessions (macroelec-
trodes; 50 Hz; 2–10 mA current; 200–300 μs pulse width; admin-
istered during task-free resting states; see Methods). Electrodes 
showing pathological epileptiform activity were identified by the 
attending neurology team and were excluded from analysis; all 
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of the results reported here are therefore from non-epileptic sites 
within the human brain. Following iES, each electrode site was 
coded, using a binary scheme, as either silent or responsive. At silent 
sites, iES elicited no noticeable effect, even at high current ampli-
tude (importantly, in our clinical practice, if stimulation does not 
yield any effect, we increase the current until the maximum safe 
limits are reached; Fig. 1). At responsive sites, iES led to a reportable 
change in experience according to the patient (including objectively 
verifiable effects, such as motor movements, as well as subjective 
experiences such as changes in perception or emotion).

To control for demand characteristics and false positive reports, 
a total of 116 sham stimulations were also delivered (M = 1.73 per 
patient). Only 11 led to false positive reports (the remaining 105 
shams yielding true negatives)—an overall false positive rate of just 
9.5%. Notably, false positives were restricted to just seven patients 
(~10% of our sample), and a single patient contributed nearly half of 
all false positive reports identified (patient 66 committed five type I 
errors). No other patient committed more than a single type I error, 
even after numerous sham stimulations.

After excluding false positives, we determined the network 
membership of each stimulation site. Each electrode was auto-
matically assigned to the nearest intrinsic brain network using a 
population-level atlas23 implemented in subject-specific (native) 
brain space. The ratio of silent to responsive sites across all patients 
was aggregated to derive an overall elicitation rate for each network 
(Fig. 1 and Methods). We found marked differences throughout 
the brain, with high elicitation rates in somatomotor (55%) and 
visual networks (52%), intermediate rates in the salience (50%), 
dorsal attention (39%) and frontoparietal networks (32%), and 
low rates in the limbic (24%) and default networks (21%) (Fig. 2, 
Supplementary Fig. 1 and Table 1). We observed equivalent trends 
using a 17-network parcellation (Fig. 3 and Table 2). Network mem-
bership is already known to be an important factor in predicting 
the downstream electrophysiological sequelae of iES8–12; our find-
ings provide detailed evidence that network membership is also a 
major determinant of the effects that iES has on human behaviour 
and experience. Moreover, far from being merely an emergent, aver-
age pattern, these trends were evident even at the individual level 
in patients with electrodes spanning multiple networks (Fig. 4; all 
participants in Supplementary Information).

Because previous research has shown differences in the effects 
elicited by iES in the left versus right hemispheres21,24, we also 
explored whether any hemispheric asymmetries were present in our 

dataset. We found a small but significant difference in overall elici-
tation rate between the left (34.6%) and right (43.4%) hemispheres 
of the brain (t(1,535) = 3.279; P = 0.001; d = 0.18; 95% confidence 
interval (95% CI) = 0.07–0.29). Post-hoc t-tests showed that this 
difference was driven by higher elicitation rates in the somatomotor 
and salience networks, as well as a lower elicitation rate in the visual 
network, of the right hemisphere. While interhemispheric differ-
ences between other networks were not statistically significant, elic-
itation rates were consistently higher in the right hemisphere (full 
results in Extended Data Fig. 1).

To ensure the reliability of our central finding of differential rates 
across networks, we conducted several supplemental estimations of 
networks’ elicitation rates, using: (1) only electrodes on the lateral 
surface of the brain; (2) only electrodes from the medial surface; (3) 
discovery versus replication samples each including a random half 
of participants based on a 50/50 split; and (4) a randomly selected 
half of all electrodes, averaged over 100 iterations (see Methods). All 
supplemental estimates of network elicitation rates correlated highly 
with our full dataset (seven-network parcellation: all r values ≥ 0.79; 
Supplementary Table 1; 17-network parcellation: all r values ≥ 0.74; 
Supplementary Table 2), indicating that our estimated elicitation 
rates were highly reliable.

Elicitation rate closely tracks the principal gradient in intrin-
sic network functional connectivity. Next, we asked whether this 
pattern showed a relationship with large-scale cortical gradients 
across these networks. Neuroscientists have long proposed that the 
cerebral cortex is organized along a functional–anatomical gradi-
ent, with concrete, unimodal sensory processing at one end of the 
hierarchy and more abstract, transmodal cognition at the other25–

28. Patterns of variance in the functional connectivity within and 
between intrinsic brain networks exhibit such a gradient, anchored 
at one end by unimodal visual and somatomotor networks with low 
variability, and at the other by highly variable, transmodal default 
and limbic networks17. Hierarchical gradients provide a unifying 
framework that promises to shed considerable light on the global 
relationship between the anatomical organization and functional 
properties of the cerebral cortex4, but the effects elicited by iES have 
yet to be integrated with these models. Noticing the correspon-
dence between our findings and the global hierarchy previously 
described by the principal gradient in functional connectivity17, we 
correlated elicitation rates with the mean principal gradient value 
of each network as estimated by intrinsic functional connectivity  

Not
stimulated

Silent

Responsive

a b c d e f
1

2
n

Fig. 1 | experimental protocol: intracranial electrode implantation, ieS functional mapping, and data coding and aggregation. a, First, neurosurgeons 
implanted intracranial electrode arrays (based strictly on clinical criteria), to precisely record from and stimulate the brains of patients with intractable 
epilepsy. b, During so-called functional mapping sessions, as many electrodes as possible were sequentially stimulated using brief pulses of electrical 
current. In an ideal session, all electrodes were stimulated, but in practice iES sessions were limited by both practical (for example, time constraints) 
and clinical (for example, seizure onset) considerations. c, Following each stimulation, the patient reported on whether they detected any change 
in either their body (for example, somatosensations or motor movements) or aspects of their subjective experience (for example, changes in visual 
perception or emotions). If no change was noticed, the current amplitude was gradually increased (within safe limits32) over subsequent stimulations at 
the same electrode. d, Based on patients’ reports, each electrode was classified as either responsive (some change was detected and reported), silent 
(no change, even after repeated, higher-amplitude iES) or not stimulated (electrode not stimulated during functional mapping session due to one of the 
aforementioned constraints). Responsive electrodes were further subcategorized by the type of effect elicited (for example, visual, emotional, etc.).  
e, All electrodes were automatically assigned to a particular intrinsic brain network using a well-validated algorithm23, implemented at the level of patients’ 
individual neuroanatomy (that is, participant-specific space). f, Finally, data from all patients were aggregated in standard MNI space for group-level 
analysis, and the ratio of responsive to silent electrodes was determined for each network.
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variance in the functional MRI (fMRI) blood oxygen level-dependent 
signal (see Methods). We found striking evidence that elicita-
tion rate closely tracks principal gradient values (seven-network 
parcellation: r(5) = 0.96; P < 0.001; 95% CI = 0.75–0.99; Fig. 5a 
and Extended Data Fig. 2; 17-network parcellation: r(15) = 0.82; 
P < 0.001; 95% CI = 0.56–0.93; Fig. 5c and Extended Data Fig. 3), 

with unimodal networks showing the highest elicitation rates and 
transmodal networks the lowest. This relationship also held for all 
of our supplemental estimates of network elicitation rate (Extended 
Data Figs. 2 and 3).

To confirm this relationship independent of network parcella-
tions, and across the gradient’s full range, we extracted principal 

Somatomotor
a

b

Visual Dorsal attention

Mean response rate
0% 55%

Salience Frontoparietal Limbic Default

Fig. 2 | elicitation rate of ieS varies markedly across intrinsic networks (seven-network parcellation). a,b, Aggregated data from all 67 patients in 
standard brain space overlaid on a seven-network parcellation of the cerebral cortex. In a, red circles indicate responsive electrodes, where stimulation 
elicited an effect, and black circles indicate null electrodes, where no effects were elicited even with repeated high-amplitude stimulation. In b, averaging 
of the response rate for each network shows that the mean elicitation rate varies markedly but gradually (that is, linearly) across networks: somatomotor 
and visual networks show the highest response rates; default and limbic networks show the lowest; and other networks show intermediate rates (Table 1). 
Nearly identical trends were observed using a finer 17-network parcellation (Fig. 3 and Table 2).

Table 1 | elicitation rates and current thresholds for the seven-network parcellation

electrodes Current thresholds (mA)

Network total Responsive Silent Mean minimum elicitation 
threshold (±s.d.)

Mean maximum quiescence 
threshold (±s.d.)

Somatomotor 291 159 (54.6%) 132 (45.4%) 4.72 (1.80) 6.67 (2.15)

visual 182 94 (51.7%) 88 (48.3%) 4.16 (2.16) 6.72 (1.45)

Dorsal attention 71 28 (39.4%) 43 (60.6%) 5.50 (2.38) 7.95 (2.24)

Salience 210 104 (49.5%) 106 (50.5%) 4.97 (1.76) 6.32 (1.92)

Frontoparietal 169 54 (32.0%) 115 (68.0%) 4.41 (1.89) 6.62 (1.99)

Limbic 195 47 (24.1%) 148 (75.9%) 4.41 (1.40) 5.82 (2.11)

Default 419 87 (20.8%) 332 (79.2%) 4.88 (2.09) 6.61 (2.02)

totals and means 1,537 573 (37.3%) 964 (62.7%) 4.68 (1.94) 6.54 (2.04)
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Fig. 3 | elicitation rate of ieS varies markedly across intrinsic networks (17-network parcellation). a,b, Aggregated data from all 67 patients in standard 
brain space overlaid on a 17-network parcellation of the cerebral cortex. a, Electrodes are colour coded as in Fig. 2. b, As in the seven-network parcellation 
of the brain (Fig. 2), average response rates for each network vary linearly across a finer-scale 17-network parcellation of the cortical surface.

Table 2 | elicitation rates and current thresholds for the 17-network parcellation

electrodes Current thresholds (mA)

Network total Responsive Silent Mean minimum elicitation 
threshold (±s.d.)

Mean maximum quiescence 
threshold (±s.d.)

01 52 35 (67.3%) 17 (32.7%) 4.21 (2.42) 6.44 (1.42)

02 102 44 (43.1%) 58 (56.9%) 3.83 (2.15) 6.61 (1.37)

03 175 103 (58.9%) 72 (41.1%) 4.39 (1.75) 6.31 (2.16)

04 78 42 (53.9%) 36 (46.1%) 5.34 (1.78) 7.22 (1.88)

05 47 21 (44.7%) 26 (55.3%) 5.05 (2.20) 8.41 (1.59)

06 40 16 (40.0%) 24 (60.0%) 5.69 (1.25) 7.17 (2.41)

07 156 85 (54.5%) 71 (45.5%) 5.07 (1.77) 6.34 (1.81)

08 97 37 (38.1%) 60 (61.9%) 4.61 (2.08) 6.11 (1.72)

09 49 24 (49.0%) 25 (51.0%) 4.25 (1.15) 6.00 (1.98)

10 149 24 (16.1%) 125 (83.9%) 4.81 (1.78) 5.71 (2.14)

11 54 21 (38.9%) 33 (61.1%) 4.86 (1.88) 6.54 (2.64)

12 59 23 (39.0%) 36 (61.0%) 4.14 (1.55) 7.06 (2.15)

13 71 14 (19.7%) 57 (80.3%) 5.69 (2.59) 6.63 (1.93)

14 40 9 (22.5%) 31 (77.5%) 6.11 (2.20) 7.96 (2.13)

15 35 12 (34.3%) 23 (65.7%) 4.38 (0.87) 6.76 (1.89)

16 173 36 (20.8%) 137 (79.2%) 4.38 (1.95) 6.37 (2.12)

17 160 27 (16.9%) 133 (83.1%) 4.88 (2.31) 6.78 (1.87)

totals and means 1,537 573 (37.3%) 964 (62.7%) 4.68 (1.94) 6.54 (2.04)
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gradient values at each vertex in cortical surface space where iES 
had been administered. We used mixed-effects logistic regression 
to relate principal gradient value (fixed effect) to our binary cod-
ing of electrode sites (silent/responsive) as the dependent vari-
able, modelling patient as a random effect (see Methods). We 
found that vertex-level principal gradient values showed a signifi-
cant relationship with our coding of iES effects (χ2(55) = 394.565; 
P < 0.0001; Supplementary Tables 3 and 4), with silent electrode 
sites associated, as expected, with higher principal gradient values.  
Together, these data indicate that the fMRI intrinsic functional con-
nectivity profile of a given brain region is a powerful predictor of 
whether or not effects will be induced with iES—an entirely inde-
pendent modality.

Elicited effects become more heterogeneous ascending the cor-
tical hierarchy. We then undertook a detailed investigation of the 
specific quality of the effects elicited throughout the brain. In line 
with our previous work21, we employed broad, data-driven cat-
egories to classify patients’ reports at every responsive electrode 

where iES elicited some change. Ultimately, eight categories were 
employed: (1) somatomotor; (2) visual; (3) olfactory; (4) vestibu-
lar; (5) emotional; (6) language; (7) memory; and (8) physiological. 
Importantly, no type of effect was excluded a priori: the absence of 
certain categories of effects reported in previous research29 prob-
ably reflects the rarity of certain types of effects, which were not 
observed even in our comparatively large sample (for further 
details, see Methods). Classified results were then pooled to yield an 
estimate of the prevalence of each effect type for each brain network 
(Extended Data Figs. 4 and 5).

We found that the network membership of a stimulated 
electrode significantly predicted the category of elicited effect 
(seven-network parcellation: λ = 0.312; P < 0.001; 17-network 
parcellation: λ = 0.364; P < 0.001), indicating that, as expected29, 
stimulation of different networks yields widely divergent effects. 
However, we also found evidence that the heterogeneity of effect 
categories elicited within a given network correlated with the 
network’s principal gradient value (seven-network parcellation: 
r(5) = 0.77; P = 0.044; 95% CI = 0.04–0.96; Fig. 5b; 17-network  
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parcellation: r(15) = 0.51; P = 0.035; 95% CI = 0.04–0.80; Fig. 5d). 
These significant relationships were observed despite the fact that 
under the null hypothesis (that is, diversity of effects is equal across 
all networks) networks with a larger number of responsive elec-
trodes have a higher probability of exhibiting greater effect diver-
sity (or, equivalently, as the number of responsive electrodes in a 
given network approaches zero, the probability of observing effects 
from all eight of our categories diminishes correspondingly). As 
anticipated, then, when the small number of effects in transmodal 
networks was accounted for by controlling for the total number of 
responsive electrodes in each network, the observed associations 
were amplified (seven-network parcellation: partial r(4) = 0.84; 
P = 0.035; 95% CI = 0.09–0.98; 17-network parcellation: partial 
r(14) = 0.58; P = 0.020; 95% CI = 0.12–0.84). In other words, net-
works lower in the hierarchy were dominated by unimodal effects 
of a single type; for instance, 87.2% of all effects elicited in the visual 
network were visual in nature and 89.3% of effects elicited in the 
somatomotor network involved somatosensation or motor output 
(Extended Data Fig. 4). In contrast, despite showing relatively few 
effects overall, networks at the top of the hierarchy generally exhib-
ited a wider variety of more complex effects that were rarely, if ever, 
observed in unimodal networks—including emotions and memory 
recall (Extended Data Fig. 4; equivalent results using a 17-network 
parcellation are provided in Extended Data Fig. 5). In summary, 
our results indicate that both the diversity and complexity of effects 
scales linearly with the principal gradient.

Network differences in tissue excitability and white matter den-
sity do not explain differential elicitation rates. Finally, we asked 
whether variable elicitation rates might be explained by variations 
in either neurophysiological (tissue excitability) or structural–
anatomical (white matter density) features that are also thought 
to vary across intrinsic networks. The biophysical ramifications 
of artificially administered electrical currents in human brain tis-
sue remain poorly understood1,30,31, so first we asked whether dif-
ferential elicitation rates might be explained by differential tissue 
excitability across networks. For each responsive electrode, we 
identified the minimum current (mA) required to elicit an effect. 
We then calculated a mean elicitation threshold for each network 
by averaging these minimum currents for all electrodes within a 
given network. Although the mean minimum elicitation threshold 
differed significantly across networks (seven-network parcella-
tion: F(6,530) = 2.753; P = 0.012; partial η2 = 0.030; 90% CI = 0.003–
0.047; 17-network parcellation: F(16,520) = 2.473; P = 0.001; partial 
η2 = 0.071; 90% CI = 0.015–0.080; Tables 1 and 2), effect sizes were 
small and statistical significance was clearly driven by the large sam-
ple. Moreover, variations in network elicitation threshold showed no 
significant relationship with either elicitation rate (seven-network 
parcellation: r(5) = 0.01; P = 0.986; 95% CI = −0.75–0.76; Bayes fac-
tor (BF01) = 3.70; 17-network parcellation: r(15) = 0.33; P = 0.201; 
95% CI = −0.18–0.70; BF01 = 2.40) or principal gradient value 
(seven-network parcellation: r(5) = 0.14; P = 0.770; 95% CI = −0.69–
0.81; BF01 = 3.54; 17-network parcellation: r(15) = 0.01; P = 0.964; 
95% CI = −0.47–0.49; BF01 = 5.44). These data comprise evidence 
that there are small variations in tissue excitability across intrinsic 
brain networks (Tables 1 and 2). However, we found no evidence 
that these modest variations explain the large differences in effect 
elicitation; rather, Bayes factors showed moderate evidence in sup-
port of the null hypothesis.

Nonetheless, we further sought to ensure that the high rate of null 
effects in transmodal networks was not due simply to inadequate 
current delivery. To this end, the maximum delivered current (mA) 
yielding no effect for every silent electrode was also tabulated, then 
averaged for each network (see Methods). This mean maximum 
quiescence threshold provided a measure, for each network, of the 
average current delivered at electrodes where no effects were ever 

reported. For all networks, we found that this threshold exceeded 
the mean current required to elicit an effect in the same network 
(that is, null effects were still observed despite higher mean current 
delivery than at electrodes where iES did elicit effects in the same 
network) (Tables 1 and 2). Low rates of effect elicitation in transmo-
dal networks therefore cannot be explained by either higher elicita-
tion thresholds or inadequate current delivery in our study: even at 
high current magnitudes (6–10 mA) that were well above the typical 
threshold for eliciting effects (4–5 mA) but still within established 
safe limits32, transmodal networks were far less likely to yield effects.

Research suggests that intrinsic connectivity heterogeneity 
covaries with regional myelin content33, providing a plausible ana-
tomical basis for the functional correlations in the fMRI blood oxy-
gen level-dependent signal. Therefore, we next explored whether 
regional myelination might also be associated with differential 
elicitation rates across networks. Using publicly available data from 
the Human Connectome Project18, we estimated regional white 
matter density in each network using the ratio of T1-weighted 
to T2-weighted MRI signal. However, we found that a network’s 
average white matter density showed no significant relationship 
with its elicitation rate (seven-network parcellation: r(5) = 0.13; 
P = 0.784; 95% CI = −0.69–0.80; BF01 = 3.56; 17-network parcella-
tion: r(15) = 0.31; P = 0.230; 95% CI = −0.20–0.69; BF01 = 2.65), with 
Bayes factors supporting the null hypothesis.

Together with our assessment of networks’ elicitation and qui-
escence thresholds, these additional null findings provide crucial 
control analyses that reaffirm the specific importance of the prin-
cipal gradient in explaining differential elicitation rates. Although 
differences in tissue excitability or white matter density are logical 
explanations for the large differences we observed in elicitation rate, 
our data show that neither offers a statistically significant explana-
tion for our findings, while in both cases Bayesian inference sup-
ports the null hypothesis.

Discussion
Despite more than a century of iES research on the human brain, 
theoretical understanding of the nature and pattern of elicited 
effects has remained limited. Our data provide compelling evidence 
that the effects elicited by iES closely track a functional hierarchi-
cal gradient characterized in human cerebral cortex with an entirely 
independent methodology (fMRI). Although the strength of this 
relationship might seem surprising, our results are consistent with 
recent research showing that iEEG intrinsic functional connectiv-
ity is powerfully predicted even by Euclidean distance or simple 
measures of white matter connectivity13. Here, however, we showed 
that simpler neurophysiological or neuroanatomical attributes of 
brain tissue, such as electrical excitability or myelin concentration, 
were unable to explain our findings, which were specific to the 
functional, rather than anatomical, aspects of intrinsic networks. 
Building on the growing understanding that functional–anatomical 
network architecture influences the electrophysiological dynamics 
of iEEG7–13, we have extended these investigations into the domain 
of the motor, perceptual, affective and cognitive effects elicited with 
iES (Fig. 6).

To summarize, we demonstrated that network membership—
more specifically, each network’s position along the principal  
gradient—is a potent predictor of whether or not iES will elicit an 
effect (Fig. 2); what type of effect will be elicited (Extended Data 
Figs. 4 and 5); and how heterogeneous the elicited effects will be  
(Fig. 5). In unimodal brain networks, effects were up to fourfold 
more frequent (Table 2) and were largely homogenous (Extended 
Data Figs. 4 and 5). Conversely, effects were relatively rare in 
transmodal networks but much more diverse. These findings are 
consistent with extensive previous research. Past work has found 
that stimulation of networks at the base of the hierarchy yields 
frequent, homogenous and simple effects such as phosphenes and  
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muscle twitches29. Higher in the hierarchy, iES yields rare but diverse 
and complex effects—often, multimodal experiences tinged with 
affect21,22,34. However, we are mindful that our observations did not 
replicate every type of effect reported in past research (for instance, 
refs. 35,36). Moreover, our finding of higher overall elicitation rates in 
the right hemisphere (Extended Data Fig. 1) is not readily explained, 
although it is consistent with recent research showing hemispheric 
asymmetries in the quality of iES-elicited effects, including differ-
ential patterns of emotional valence following orbitofrontal cortex 
stimulation21 and asymmetric changes in face perception following 
stimulation of the fusiform gyrus24,37. We believe that our observa-
tions should be replicated before being inducted into an already vast 
and contentious literature on functional–anatomical hemispheric 
asymmetry38.

In addition to the finding that transmodal networks yielded 
fewer and more diverse effects, it is notable that many effects elicited 
in transmodal networks were preferentially located near boundaries 
with other networks. For instance, in the default network, effects in 
the core of the medial prefrontal cortex were almost entirely absent, 
but in the dorsomedial prefrontal cortex, some somatomotor effects 
were apparent along the network’s posterior boundary, bordering 
the frontoparietal and salience networks (Fig. 2a). Transforming 
electrode locations from individual neuroanatomical space to an 
averaged intrinsic network template evidently creates some amount 
of error, especially given that regions at the boundaries of intrinsic 
networks are less confidently assigned to a given network (that is, 
in reliability analyses, border regions are less confidently assigned 
to a given network) (see Figs. 8 and 10 in ref. 5). This suggests that 
the comparatively low elicitation rates we observed in transmodal 
networks might nonetheless actually be overestimates: an improved 
mapping of network boundaries and better integration with  

individual neuroanatomy would probably reveal that transmodal 
networks are even more quiescent than we report here (with numer-
ous somatomotor and visual effects, for instance, being assigned 
instead to other networks).

What explains such marked inter-network differences and the 
relative quiescence of transmodal regions? Probably one crucial fac-
tor is that, although the effects of iES are strongest nearest to the 
stimulating electrode31, they are not contained locally: injected cur-
rent propagates through local circuitry and via active signal trans-
mission along existing connections with other distant areas, and 
interacts with ongoing electrical activity1,39,40. Recent work suggests 
that iES of functional network hubs (for example, frontoparietal and 
default regions) leads to rapid attenuation of the delivered current 
through a hub’s many long-distance connections, whereas stimula-
tion of low-degree network nodes (for example, unimodal regions) 
leads to targeted, more localized activity8. Several features specific 
to unimodal brain regions are also potentially relevant; for instance, 
unimodal networks tend to contain neurons that are finely tuned 
to specific perceptual features41. Finely tuned neurons in unimodal 
regions are also typically embedded in cortical columns nested 
within topographic organizational plans, such that nearby neurons, 
in both the perpendicular and parallel planes of the cortex, share 
similar (and similarly specific) tuning properties42,43. Prima facie, 
it seems plausible that localized electrical excitation in tissue with 
such properties could readily elicit specific perceptual or motoric 
effects. Furthermore, unimodal neurons and cortical columns are 
both embedded in hierarchical processing streams with strong 
feed-forward projections that convey incoming sensory information 
to higher brain regions for further processing44. Such a hierarchical 
pattern of circuitry seems ideal to amplify the comparatively local-
ized electrical effects exerted by iES. The endogenous amplification 
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Fig. 6 | Representative patient reports following ieS throughout the brain. A selection of first-person reports provided by patients following iES 
throughout all intrinsic networks and brain regions. Text boxes are colour coded to the network in which stimulation yielded the effect, and arrows from 
text boxes point to the approximate location of each stimulating electrode. While the reports have been accurately linked to the associated network and 
brain region of the stimulating electrode, the placements are intended to be illustrative; locations are not exact. Text in quotation marks indicates verbatim 
transcripts of patients’ reports. Detailed discussions of some of the more striking effects are available in our published case studies21,22,24,34,92.
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of exogenously induced activity in unimodal cortical sites known to 
preferentially encode specific and concrete elements of perception 
and action45–49 provides a parsimonious explanation for the many 
simple visual and somatomotor effects we observed. In contrast, 
virtually all of the aforementioned features are absent or attenuated 
in transmodal networks43. Single neurons in transmodal regions 
tend to exhibit much more complex patterns of tuning tied to mul-
tiple aspects of perception, action and intention. Such non-specific 
neural coding has been demonstrated in multiple regions that fall 
within the boundaries of the default and limbic networks, including 
prefrontal50–52, orbitofrontal52–54, medial temporal52,55,56 and poste-
rior cingulate57 cortices. As others have recently pointed out58, elic-
iting a noticeable change in conscious experience would probably 
require perturbation of a large proportion and broad selection of 
neurons characterized by such high-dimensional and non-specific 
neural representations. The relatively localized31 (directly influenc-
ing ~500,000 cells59) and brief pulses of iES are unlikely to meet 
these demands, and additionally, transmodal areas themselves are 
probably poorly placed to directly perturb (or give rise to) expe-
rience. Their preferential phylogenetic expansion60, complex den-
dritic arborization61, highly variable intrinsic connectivity17, high 
synaptic plasticity62, non-specific neuronal tuning50–57 and abstract 
functional roles17,63 all suggest that, instead, they are specialized for 
the interpretation, manipulation and regulation of more concrete 
information originating at the base of the cortical hierarchy. Given 
all of the above considerations, higher elicitation rates in unimodal 
networks and lower rates in heteromodal and transmodal networks 
are reasonable, although the specific basis of these inter-network 
differences remains an open question.

One well-founded concern is that iES effects on transmodal 
networks could be: (1) more amorphous and therefore harder 
for patients to describe; or (2) more easily confused with ongo-
ing spontaneous cognition than the relatively simple and concrete 
perceptual effects elicited in unimodal networks. Both scenarios 
would result in under-reporting by patients (that is, increased 
false negatives, or type II errors) and subsequent underestimates 
of true elicitation rates, and neither possibility should be entirely 
discounted. However, the first concern is mitigated by the fact that 
patients are often eloquent and persistent in reporting nuanced 
and unusual experiences, as demonstrated by many case reports 
of complex, singular iES effects21,22,34–36. Although under-reporting 
of some subtle effects remains a possibility, such a scenario seems 
unlikely to explain the very large (greater than fourfold) differ-
ences in elicitation rate between networks at the base and apex 
of the cortical hierarchy. As for the second concern, transmodal 
networks (particularly the default network) are intimately involved 
in the generation of the spontaneous mind wandering that occurs 
during the resting state64,65. In principle, then, iES might elicit 
effects in these networks that are indistinguishable from the ongo-
ing thoughts, imagery and memories generated spontaneously at 
rest66, leading to false negative reports. Again, while this possibility 
should not be ignored, several factors mitigate the likelihood that it 
either explains or biases our findings. First, mind wandering is most 
prevalent during the most minimally demanding and task-free 
states, and in environments with minimal sensory stimulation67–69. 
Although our patients were given no task during iES, sessions 
typically involved dozens to hundreds of sequential stimulations 
each followed by first-person reports, and all undertaken in a busy 
in-patient hospital setting with multiple researchers present— 
far-from-ideal conditions for the facilitation of spontaneous 
thought. Second, although the nature of iES does not permit a 
precise estimation of the probability of false negative reports (type 
II errors), our quantitative assessment of false positive reports 
found that patients were highly resilient to type I errors follow-
ing sham stimulation. This indicates that, in general, patients dis-
criminate extremely well between background mental activity and  

experiences elicited directly by iES. Combined with the demon-
strated ability of patients to describe unusual experiences21,22,34–36 
and accurately identify iES-elicited memories70, the likelihood 
seems low that false negatives alone can explain low elicitation 
rates in transmodal networks.

Despite considerably lower elicitation rates, iES of transmodal 
regions did sometimes elicit effects (especially in the orbitofrontal 
cortex and anterior cingulate; Fig. 2a). These findings are perhaps 
rooted in the variable functional coupling between transmodal and 
unimodal networks71; that is, the specifics of spontaneous network 
coupling at the precise moment of stimulation could impact whether 
or not iES perturbs experience—a hypothesis that can be further 
tested in future work72. Importantly, the almost total quiescence in 
some regions (especially the anterior prefrontal cortex) does not 
necessarily mean that stimulation there has no consequences. We 
administered iES in a task-free resting state, but stimulation dur-
ing demanding executive tasks, for instance, might have measurable 
effects on performance73, if not on subjective experience. Further 
research exploring iES effects in quiescent regions would be a wel-
come addition to the ongoing debate on the role of higher-order, 
transmodal cortical regions in conscious experience58,74.

Why was the elicitation rate so low overall? The global rate 
throughout the brain was ~37%, and even in unimodal networks, 
iES only elicited effects about half the time. Probably the most plau-
sible and parsimonious explanation is that over the many decades 
that iES has been employed in neurosurgical settings, stimulation 
parameters have gradually been optimized for patient safety and 
clinical utility, not for effect elicitation. Contemporary stimulation 
falls within an empirically derived safe window specifying upper 
limits for charge density32, and stimulation within these parameters 
is evidently adequate to elicit motor effects and trigger seizures at 
epileptic foci (serving the dual clinical aims of identifying tissue that 
should be spared or resected, respectively). However, the maximum 
delivered electrical charge might be too low to guarantee that the 
perturbation of the brain’s ongoing neuroelectrical activity is of suf-
ficient magnitude to always result in reportable or observable effects. 
This supposition is supported by the fact that higher current ampli-
tudes and frequencies tend to result in both a greater number and 
greater intensity of both subjective and motor effects22,30,75–77. These 
psychological and behavioural findings are consistent with neuro-
physiological data showing that increasing charge density results in 
increases in the area of cortical tissue affected by stimulation30,31.

Chronically implanted iES neuromodulation devices are 
increasingly being used to treat the subjective symptoms and 
network abnormalities of neuropsychiatric diseases16. The suc-
cess of these interventions ultimately depends on a sophisticated 
understanding of where stimulation should be administered in 
individual patients’ brains to best modulate both subjective experi-
ence and network functioning. Here, we have shown that network 
membership and connectivity profile are powerful predictors of 
the frequency, category and diversity of effects elicited with iES, 
even though intrinsic networks are interlaced throughout the 
brain in non-intuitive ways, traversing and transcending tradi-
tional neuroanatomical landmarks and arbitrary anatomical gyral 
divisions. This finding has potentially important clinical impli-
cations, especially given that these relationships hold even at the 
level of individual neuroanatomy (Fig. 4). Our results offer further 
evidence in support of the emerging understanding that network 
membership (not just classic anatomical coordinates or gyral iden-
tity) needs to be considered when determining therapeutic targets 
for iES neuromodulation8,13,72,78. In closing, although first-person 
reports combined with iES have long played a seminal role in the 
understanding of local functional properties of the human brain1, 
our study goes beyond previous work by revealing relationships 
between global patterns of brain organization and iES-elicited 
effects on human behaviour.
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Methods
Patient characteristics. Data were drawn from a pool of 119 patients admitted 
to the Stanford Hospital for iEEG monitoring of medically refractory epilepsy 
between 2008 and 2018. We considered all patients who underwent iES sessions 
and also had computed tomography scans and high-resolution T1-weighted MRI 
scans available for precise reconstruction of electrode locations for inclusion in 
the present study. We made every effort to include as many patients as possible in 
order to ensure complete coverage of the cortical mantle; however, many patients 
could not be included because of: (1) the lack of iES sessions conducted; (2) the 
lack of high-quality computed tomography scans for the determination of precise 
electrode locations; (3) the lack of patient-specific anatomical MRI scans for the 
reconstruction of precise electrode locations in the patient’s native brain space; and 
(4) the lack of electrodes covering the cortical grey matter (for example, in patients 
implanted solely with depth electrode arrays). Patients were never excluded based 
on iES elicitation rates, iES effect types or any of our other dependent measures 
(indeed, these measures were not coded, classified or analysed until after the initial 
patient pool had been assembled). Patients were only excluded based on the purely 
practical considerations detailed above. Ultimately our sample comprised 67 
patients (28 female (42%); mean age (±s.d.) = 35.4 ± 12.7 years).

It should be noted that most patients who are implanted with intracranial 
electrodes have been assessed previously with several lines of diagnostic tests and 
have been deemed to be suffering from focal seizures. These patients most often do 
not have diffuse brain disease and are implanted because a single seizure focus has 
been strongly suggested by pre-operative tests (for example, scalp EEG and seizure 
semiology). As we have discussed at length recently59, in patients with focal disease, 
only the epileptic tissue shows pathological electrophysiological activity (and 
even this pathological activity is largely time limited79), while electrodes outside 
the epileptic tissue show normal responses to perceptual stimuli during cognitive 
tasks. Each patient is implanted with a large number of electrodes (100–200), and 
typically only a minority of electrodes exhibit epileptic activity, while the majority 
of electrodes show no signs of epileptic discharges.

Ethics and patient privacy. All patients provided informed consent in accordance 
with the Stanford Institutional Review Board for human experiments. Approval 
for conducting the proposed research was obtained through the Stanford 
University Institutional Review Board. To ensure confidentiality of the participants’ 
information, all data were de-identified and arbitrary codes were assigned to  
each patient’s data.

Physical parameters, placement and localization of intracranial electrodes. 
Patients were implanted with either subdural grid/strip electrode arrays (n = 53 
patients), depth electrodes (stereo-EEG; n = 11 patients) or a mix of both (n = 3 
patients), made by Ad-Tech Medical. Subdural electrode arrays are flexible 
silicon sheets with circular, disc-shaped electrical contacts 2.3 mm in diameter 
interspersed 10 mm apart. For depth electrodes, each probe consisted of 8–10 
electrode contacts spaced 5 mm apart. Contacts were cylindrically shaped 
(length: 2.4 mm; diameter: 1.3 mm; approximate total surface area: 12 mm2). The 
impedance of electrodes was <1,000 Ω, and both depth and subdural electrodes 
had the same hardware impedance. However, the impedance of each contact 
may have differed depending on the characteristics of the cortical or subcortical 
tissue it had been implanted over or within. Despite this, our electrical stimulator 
was designed to adjust the voltage depending on the measured impedance of the 
electrode and, by doing so, keep the delivered current constant. These co-called 
constant-current electrical stimulation devices ensured that the delivered  
current was the intended amount regardless of any minor fluctuations of the  
local impedance.

Across all patients, we ultimately gathered data from 1,476 subdural grid/strip 
electrodes and 61 depth electrodes. The placement of all electrodes was determined 
strictly according to clinical criteria. To precisely determine electrode locations 
for each patient, electrodes localized in a postoperative computed tomography 
scan were linearly projected onto the cortical surface reconstructed from a 
pre-operative T1-weighted MRI scan using the iELVis toolbox23. First, the T1 scan 
was processed and automatically segmented using FreeSurfer version 6.0 (using the 
recon-all command) to reconstruct the pial, leptomeningeal and inflated cortical 
surfaces80,81. A post-implant computed tomography image was spatially registered 
to the space of the higher-resolution T1 scan using a rigid transformation (six 
degrees of freedom; affine mapping). Using BioImage Suite82, we manually labelled 
the electrode locations on the T1-registered computed tomography image. 
The electrode locations were then projected onto the leptomeningeal surface 
to correct for possible post-implant brain shift, using an iterative optimization 
algorithm83. The resulting individual surface and volume coordinates were used 
for visualization. To pool all of the results, electrodes in patient-specific space were 
normalized to Montreal Neurological Institute (MNI) space and displayed on the 
fsaverage6 template MNI brain in the FreeSurfer software package84.

Inclusion of depth electrodes. A limited number of depth electrode contacts were 
included, to increase the coverage of brain areas where the use of subdural strips 
and grids is rare (for example, the medial prefrontal cortex). Specifically, depth 
electrode contacts near either the brain’s medial walls or the ventral surface of the 

frontal lobe were manually identified and included, to improve the sparse coverage 
of these transmodal regions and to provide a comprehensive map of the entire 
cortex. To identify depth electrode contacts near the cortical surfaces, two authors 
(K.C.R.F. and L.S.) manually delineated the extent of the first gyrus along either the 
medial or ventral surface for each electrode and for each patient individually (that 
is, depth electrodes were visualized on coronal brain sections for each patient and 
only electrode contacts that fell within the grey matter of the gyri along the medial 
or ventral surface were included in our analyses). Typically, this included only the 
deepest one or two contacts for each depth electrode; white matter sites were never 
included in our analysis.

Excluded brain regions. Commonly employed intrinsic brain network maps 
include only the cortical surface5; therefore, all subcortical brain regions were 
excluded using this standard anatomical atlas5. Although the hippocampus and 
insula are considered cortical structures, depth electrode contacts situated in 
these regions were also not included in the present study, for several reasons. 
First, transforming deep-depth electrode contacts onto surface (vertex) space is 
problematic23; the error involved in forcing deep-depth electrode contacts into 
surface space entails a corresponding inaccuracy in assigning these electrodes to 
a particular intrinsic brain network. Second, the majority of epileptic seizures are 
known to originate in or near medial temporal lobe structures85—a pattern we 
observed in our pool of patients as well22: iES in these areas in our patients typically 
leads to pathological after-discharges and/or induction of seizures. We therefore 
opted to exclude electrodes from these deep cortical structures in our study.

Intracranial electrical stimulation. Patients underwent iES as part of a routine 
clinical mapping procedure to determine localization of function and seizure 
focus29,59. In an ideal session, iES was systematically delivered to every electrode 
contact in a pseudo-random order to which the patient was blind, but time 
constraints and other clinical considerations (for example, seizure occurrence) 
sometimes precluded stimulation of every contact in every patient. The specifics of 
stimulation were at the discretion of the neurologist administering the iES session 
(J.P.). Typically, bipolar stimulation was delivered using an alternating square 
wave current applied across two adjacent electrodes at 50 Hz, 2–10 mA current 
and a pulse width of 200–300 μs. If we noticed after-discharges, we reduced the 
stimulation current immediately. Safe after-discharge limits were never superseded. 
Further details of stimulation methods and parameters are described extensively in 
our previous work30,86.

Occasional sham stimulations were also delivered to control for demand 
characteristics, particularly when unusual or intense effects were reported. 
During sham stimulation, the experimenter behaved exactly as during veridical 
stimulation, adjusting settings on the stimulator and pressing the same buttons, 
followed by the same standardized questions about any changes in the patient’s 
experience, the only difference being that no current was actually delivered. 
Following each iES pulse or sham stimulation, patients were asked standardized, 
open-ended questions about any experiences evoked (for example, “Did you notice 
anything?” or “Any change?”), with occasional follow-up questions, as needed, to 
further clarify the character of effects. Specific iES parameters and elicited effects 
(or lack thereof) were logged for each stimulation.

Safety of iES. The electrical brain stimulation used in this study is routinely 
employed in clinical practice with an excellent safety profile19,32. The amount of 
electrical charge delivery per pulse was always kept within established safe limits 
(below 30 µC cm−2 pulse−1)87,88.

Controlling for ictal phenomena and other potential confounds. To preclude the 
confounding effects of any ictal phenomena, we ensured that none of the patients 
had an epileptic focus within, or required resection of, the regions included in the 
present dataset. Some patients had electrode grids placed over the ventral surface 
of the orbitofrontal cortex; any smell-related effects elicited by stimulation of 
electrodes along the midline of the ventral surface were excluded from all analyses 
as potentially confounded by stimulation of the olfactory nerve, as detailed in our 
previous work21.

Evaluating and classifying the effects of stimulation. We considered an effect 
of stimulation valid only if: (1) the tissue stimulated was not later determined 
to be pathological or resected; (2) stimulation at a given site did not result in 
seizure(s) or after-discharges; (3) repeated stimulation (one or more repetitions) 
at the same site in the same patient produced the same or a very similar effect; 
and (4) sham stimulation at a given site did not result in any false positive reports. 
Assuming these conditions were met, a patient’s report of any change or experience 
(whether objectively verifiable, as with motor effects, or entirely subjective, as 
with emotional changes) was considered valid and the stimulating electrode was 
classified as responsive. Repeated stimulations at sites yielding positive effects were 
conducted whenever possible, but time and other clinical considerations precluded 
the replication of every observed effect. Silent electrode sites where iES did not 
elicit an effect were also generally stimulated multiple times, with increasing 
current magnitude, to confirm the null effect. As discussed in the text, this ensured 
that the null effects we observed were not due to inadequate current delivery 
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(within safe limits); indeed, the mean current at which null effects were observed 
exceeded the mean current required to elicit an effect for every brain network we 
investigated. Therefore, far from being the result merely of inadequate current 
delivery, our null findings in fact persisted even following the administration of 
considerably greater current magnitude than was typically required to elicit a 
response (see Tables 1 and 2).

Stimulation of motor and premotor areas in the superior parietal and frontal 
lobes often resulted in observable motor effects, from small muscle twitches to 
larger limb movements, in line with extensive previous research89,90. Even though 
the effects for these trials were readily observable, they were coded based not just 
on observed behaviour but also the patient’s first-person report of their experience 
of motor movement (for specific, verbatim examples, see Fig. 6).

Three raters (K.C.R.F., L.S. and S.B.), who were blind to both the location and 
network assignment of each electrode, viewed and coded digitized iES reports and 
video-EEG recordings to confirm the results. As the first aim of the present study 
was to further investigate our recent observations of apparent silence following 
iES to transmodal brain regions21,86, initially a simple binary coding scheme was 
employed: (1) responsive (that is, any reportable effect on subjective experience 
or observable effect on motor output); or (2) silent (that is, null; no discernible 
effect on body or subjective experience, even with repeated stimulation at high 
current levels (within safe limits)). Details of the number of responsive versus 
silent electrodes are given in Table 1 (seven-network parcellation) and Table 2 
(17-network parcellation).

As noted above, iES was delivered using bipolar stimulation (that is, current 
was delivered to brain tissue by creating a voltage difference across two adjacent 
electrode contacts). All effects (and null results) were therefore observed across 
pairs of electrodes; for purposes of visualization and statistical analysis of the 
data, each electrode was coded individually as either responsive or silent (Fig. 
1). Occasionally, a given electrode was paired with more than one other partner 
electrode during subsequent stimulations. Typically, the same effect (or lack 
thereof) was observed, but in rare instances, a given electrode might show 
differential effects with different electrode pairings (for example, responsive with 
one pairing and null with another). In such cases, a conservative approach was 
taken (as per our Methods above): the null hypothesis was always assumed, and 
an effect had to be reproducible upon repeated stimulation at the same site to be 
counted as valid and included in subsequent analyses. Therefore, given a set of 
three adjacent electrodes (a, b, c), if pairing b–c resulted in an effect, but pairing 
a–b did not, electrodes a and b would be coded as silent and only electrode c would 
be coded as responsive. The conservative assumption being employed is that brain 
tissue surrounding electrode c is the primary driver of the reported effect  
following stimulation of the b–c electrode pair, since stimulation of the a–b pair 
yields no effect.

For each electrode coded as responsive, two raters (K.C.R.F. and L.S.) then 
classified the specific qualities of the effects using broad, data-driven categories, 
as in our previous work21. Ultimately, eight categories were employed: (1) 
somatomotor effects, including somatosensations and any observable motor 
effects, such as muscle twitches or limb movements; (2) visual effects, from simple 
phosphenes to more complex perturbations of visual perception such as distortion 
of faces; (3) olfactory effects, described in detail in our recent work21; (4) vestibular 
effects, such as feelings of rotation, flotation and acceleration; (5) emotional 
effects of either positive or negative valence, also described in more detail in our 
recent research22; (6) language effects, including arrest or alteration (for example, 
slurring) of speech; (7) memory recall; and (8) physiological and interoceptive 
effects, such as perceived changes in body temperature or heart rate. Classified 
results were then pooled to yield an estimate of the prevalence of each effect type 
for each brain network (Extended Data Figs. 4 and 5). To clarify further, no type 
of effect was excluded a priori: our categorizations were entirely data driven and 
included all valid effects elicited by electrodes in healthy brain tissue. Notably, we 
never observed some striking iES effects reported by other researchers, such as 
out-of-body experiences35 or elicitation of the intention to move36. Conversely, we 
observed rare but replicable effects (such as the will to persevere34) not yet reported 
by other researchers in nearly a century of iES studies. There are many potential 
reasons for such discrepancies; however, we suspect that the major reason is simply 
the relatively small number of researchers and studies exploring the effects of iES. 
In any event, we wish to reiterate that no effect type was excluded, but rather that 
even in our comparatively large sample of iES patients, not every possible type of 
effect was found to be elicited.

Assigning electrodes to intrinsic brain networks. We aggregated information 
from 1,537 unique electrode sites at which iES had been applied in 67 patients 
(Fig. 1). Electrodes were assigned to a given intrinsic network using an algorithm 
implemented in the iELVis software package23. Briefly, an electrode’s vertex  
location in cortical surface space was compared with standardized maps of 
intrinsic brain network parcellations based on resting-state fMRI data from 1,000 
healthy participants5, and the electrode was assigned to the nearest network23. 
Network assignments were made in individual patients’ neuroanatomical space, 
after which data were collated in standard space for visualization purposes (Fig. 1).  
For the carefully selected (see above) depth electrode contacts near the medial 
cortical surfaces, the algorithm was modified slightly to assign the volume-based 

depth electrode coordinates to the nearest surface vertex coordinate, and network 
assignment was then based on this vertex coordinate. The most commonly used 
intrinsic brain network atlases include seven-network and 17-network parcellations 
of the cerebral cortex5; we employed both parcellation schemes. Details of the 
number of electrodes assigned to each network are given in Table 1 (seven-network 
parcellation) and Table 2 (17-network parcellation).

Estimating elicitation rate for brain networks. We first pooled data on responsive 
and silent electrodes from all patients for every given network (Fig. 1). We then 
divided the number of responsive electrodes by the total number of electrodes in 
each network to estimate network-specific elicitation rates for both seven-network 
(Table 1) and 17-network (Table 2) parcellations of the cerebral cortex. All details 
of the data are available in Tables 1 and 2.

Reliability of elicitation rate. To ensure that our estimates of elicitation rate 
for each network were stable and replicable, we conducted a series of reliability 
analyses by splitting our large dataset (1,537 unique electrodes) in three different, 
independent ways. We estimated network-specific elicitation rates using these 
subsamples and compared them with the elicitation rates based on the full dataset 
(which included all electrodes). First, we calculated elicitation rates separately for 
electrodes on the medial wall versus the lateral surface (including ventral surfaces) 
of the cerebral cortex. Second, we randomly divided our pool of 67 patients into 
discovery (N = 33 patients; n = 777 electrodes) and replication (N = 34 patients; 
n = 760 electrodes) samples and calculated global (medial + lateral) network 
elicitation rates for each group. Finally, we used an algorithm to randomly select 
half of our electrodes and calculate elicitation rates for each network based on this 
subset of all electrodes; this process was repeated over 100 iterations, and average 
elicitation rates for each network from all iterations were employed.

In all cases, the reliability sample estimates correlated extremely well with 
the elicitation rates derived from our full dataset, for both seven-network 
(Supplementary Table 1) and 17-network (Supplementary Table 2) parcellations 
of the cerebral cortex. Elicitation rates based on our reliability samples also closely 
mirrored our central finding of the relationship between elicitation rate and 
principal gradient hierarchy values (Extended Data Figs. 2 and 3).

Principal gradient hierarchy values. The principal gradient hierarchy values 
were derived from a nonlinear embedding of functional connectivity patterns. 
The principal gradient represents the first latent dimension of this embedding 
space, which captures the largest variance in functional connectivity patterns, and 
reflects a spatial gradient of increasingly abstract and integrated processing from 
primary sensory/motor cortices to transmodal regions. The specific methodology 
employed to derive the principal gradient is described in detail in the original 
empirical report17. For the present study, vertex-level principal gradient hierarchy 
values were averaged for standardized seven-network and 17-network parcellations 
of the cerebral cortex5, and these averaged, network-level principal gradient values 
were correlated with our network-level elicitation rates. Vertex-level (as opposed 
to network-averaged) principal gradient values were also employed in additional 
analyses (see next section).

Mixed-effects binary logistic regression. Our central analyses showed a 
strong relationship between mean network elicitation rates and mean network 
principal gradient values. However, such an approach restricts the full range of 
principal gradient values, and also relies on somewhat arbitrary intrinsic network 
boundaries (in that multiple intrinsic network parcellations are equally valid; see 
Fig. 6 in ref. 5). Therefore, to further confirm our findings independent of network 
parcellations, and across the gradient’s full range, we extracted principal gradient 
values at each vertex in cortical surface space where iES had been administered. 
Because of inaccuracies in assigning specific vertex (and hence principal gradient) 
values to depth electrodes, these electrodes were excluded from this analysis. 
Several more electrodes could also not be assigned specific principal gradient 
values due to errors in alignment of the two datasets. Together, these excluded 
electrodes (n = 103) represented a very small proportion of the overall dataset, 
and the final logistic regression included 93.3% of our original sample (n = 1,434 
electrode sites). We implemented binary logistic regression to explore the 
association between principal gradient value (fixed effect) and our binary coding 
of electrode sites (silent/responsive) as the dependent variable. Further details are 
provided in Supplementary Tables 3 and 4.

Estimating the prevalence and heterogeneity of different effect types across 
networks and their relationship with the principal gradient. As described 
above, we classified the effects at all responsive electrodes into one of eight broad, 
data-driven categories. The prevalence of each effect type was tabulated for all 
networks for both the seven-network (Extended Data Fig. 4) and 17-network 
(Extended Data Fig. 5) parcellations of the cerebral cortex. To assess the 
relationship between network membership and the categorized type of effect, we 
estimated the λ coefficient—a measure of association appropriate for nominal (that 
is, categorical) variables. To provide a simple measure of the diversity of effect 
types elicited in each network, we summed the number of categories of different 
effect types elicited in each network (Fig. 5b,d). This diversity measure was related 
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to the principal gradient value using a Pearson correlation to assess whether a 
network’s position in the hierarchy was related to the diversity of effects elicited 
within a given network. Partial correlations were also conducted controlling for the 
total number of responsive electrodes in each network, to account for the fact that 
transmodal networks higher in the hierarchy tended to exhibit far fewer responsive 
electrodes overall.

Mean current elicitation and quiescence thresholds. The factors contributing 
to the excitability of cortical tissue following iES remain poorly understood1,30. 
To explore whether differential elicitation rates might be explained by variance 
in tissue excitability across networks, the amount of current delivered (mA) 
was logged for each instance of stimulation. For each responsive electrode, we 
identified the minimum current required to elicit an effect. We then calculated a 
mean elicitation threshold for each network by averaging these minimum required 
currents for all electrodes within a given network. The mean minimum elicitation 
thresholds for each network are presented in Table 1 (seven-network parcellation) 
and Table 2 (17-network parcellation).

Furthermore, to ensure that the high rate of null effects in transmodal networks 
was not due simply to inadequate current delivery, the maximum delivered current 
yielding no effect for every silent electrode was also tabulated, then averaged 
for each network. For all networks, this mean maximum quiescence threshold 
exceeded the mean current required to elicit an effect in the same network (that 
is, null effects were still observed despite higher mean current delivery than at 
electrodes where iES elicited effects in the same network (see also main text)). The 
mean maximum quiescence thresholds for each network are presented in Table 1 
(seven-network parcellation) and Table 2 (17-network parcellation).

Intracortical myelin content. Intracortical myelin content (sometimes referred 
to as myelin density) is known to vary across intrinsic brain networks, with 
heavier myelination in unimodal networks and lighter myelination in transmodal 
networks4,33. To explore whether regional differences in myelination might be 
associated with differential elicitation rates across networks, we accessed publicly 
available data from the Human Connectome Project18 that estimated regional white 
matter density throughout the brain using the ratio of T1-weighted to T2-weighted 
MRI signal. We averaged these data for each network, using both seven-network 
and 17-network parcellations, to obtain mean myelin density measures for each 
network, and then compared these with elicitation rates for each network as 
determined in our iES sessions.

Statistical analyses. Most statistical tests were conducted using SPSS 20 (IBM), 
with a significance threshold of α = 0.05 (two tailed). For null findings, Jeffreys–
Zellner–Siow Bayes factors91 were used to estimate the likelihood of the null versus 
alternative hypotheses; these analyses were implemented in SPSS 26 (IBM).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon request.

Code availability
Custom code that supports the findings of this study is available from the 
corresponding authors upon request.
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Extended Data Fig. 1 | Hemispheric asymmetries in elicitation rate. For post-hoc individual network comparisons, statistical significance was set  
at p < .007 (α = .05 Bonferroni-corrected for seven multiple comparisons).

NAtuRe HuMAN BeHAvIOuR | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


Articles NaTurE HumaN BEHavIOurArticles NaTurE HumaN BEHavIOur

Extended Data Fig. 2 | Reliability analyses for 7-network elicitation rates. Seven-network parcellation: correlations between elicitation rate and principal 
gradient value across all reliability samples (Pearson’s r, [95% CIs]).
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Extended Data Fig. 3 | Reliability analyses for 17-network elicitation rates. 17-network parcellation: correlations between elicitation rate and principal 
gradient value across all reliability samples (Pearson’s r, [95% CIs]).
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Extended Data Fig. 4 | effect categories elicited in the 7-network parcellation. Frequency of effect types within each network.
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Extended Data Fig. 5 | effect categories elicited in the 17-network parcellation. Frequency of effect types within each network.
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Data collection Data were matched to intrinsic brain networks and visualized using the freely-available iELVis software package and Matlab R2017b. 

Data analysis Data were matched to intrinsic brain networks and visualized using the freely-available iELVis software package and Matlab R2017b. 
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The data are a mix of quantitative network and intracranial stimulation parameters and first-person reports following brain stimulation. 

Research sample The sample comprised 67 neurosurgical patients at the Stanford Hospital tested between 2008 and 2018.

Sampling strategy The sample was a 'convenience' sample of inpatients being treated at the Stanford Hospital. Every effort was made to include data from 
any relevant patients over the past 10 years, including consideration of 119 patients. Ultimately 67 patients were included as having data 
relevant to the present study, with >1500 unique intracranial electrodes.

Data collection Data were collected using intracranial EEG as well as simultaneous video recordings and supplemental handwritten notes of effects 
elicited with stimulation. Typically only the participant and researcher(s) were present, although nursing staff occasionally entered the 
room for necessary procedures. Both experimenter and patient were blind to the aims of the study, as the study is a retrospective 
assessment of a decade of data and was not envisioned beforehand. 

Timing Patients were investigated between 2008 and 2018.

Data exclusions The main relevant exclusions were of pathological electrode channels showing epileptiform activity, which were never considered for 
analysis. Additionally, electrodes that fell outside brain network templates used in our analysis were not included in our analysis. Patients 
were excluded based only on practical considerations (lacking stimulation sessions, lacking MRI brain scans, etc.).

Non-participation No participants dropped out/declined participation. 

Randomization Patients were not assigned to groups, but rather data from all patients was pooled, and global trends across all patients were 
investigated. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See above. Epilepsy affects sexes and races roughly equally and our sample was consistent with this.

Recruitment See above. Data were gathered as part of a routine clinical mapping electrical stimulation procedure conducted with all epilepsy 
patients in the neurosurgical inpatient unit.

Ethics oversight The study was approved by the Stanford Institutional Review Board for human participants research.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging
Experimental design

Design type Only morphometric (structural/anatomical) scans were used in this study.

Design specifications n/a
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Behavioral performance measures n/a

Acquisition

Imaging type(s) Structural

Field strength 3.0 Tesla

Sequence & imaging parameters T1-weighted scan: 256 x 256 matrix, 186 slices, 0.90 x 0.90 x 0.90 mm voxels, 240 mm field-of-view, 7.60 ms TR; SPGR 
sequence.

Area of acquisition Whole-brain scan

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Segmentation of T1 scans and cortical surface reconstructions using Freesurfer v6.0. 

Normalization Data were normalized to MNI space for global analyses using a non-linear transform. 

Normalization template The 'fsaverage6' template in Freesurfer v6.0. 

Noise and artifact removal n/a as our scans were not functional MRI.

Volume censoring n/a as our scans were not functional MRI.

Statistical modeling & inference

Model type and settings n/a

Effect(s) tested n/a

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Correlation coefficients and regression coefficients (not used directly with MRI data; individual patient MRI scans were 
instead used to assign electrodes to specific brain regions and intrinsic networks in subject-specific space).

Correction n/a to our analyses

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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