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Abstract 15 

Working memory (WM) is important to maintain information over short time periods to 16 

provide some stability in a constantly changing environment. However, brain activity is 17 

inherently dynamic, raising a challenge for maintaining stable mental states.  To investigate 18 

the relationship between WM stability and neural dynamics, we used electroencephalography 19 

to measure the neural response to impulse stimuli during a WM delay. Multivariate pattern 20 

analysis revealed representations were both stable and dynamic: there was a clear difference in 21 

neural states between time-specific impulse responses, reflecting dynamic changes, yet the 22 

coding scheme for memorized orientations was stable. This suggests that a stable 23 

subcomponent in WM enables stable maintenance within a dynamic system. A stable coding 24 

scheme simplifies readout for WM-guided behaviour, whereas the low-dimensional dynamic 25 

component could provide additional temporal information. Despite having a stable subspace, 26 

WM is clearly not perfect – memory performance still degrades over time. Indeed, we find that 27 

even within the stable coding scheme, memories drift during maintenance. When averaged 28 

across trials, such drift contributes to the width of the error distribution.  29 
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Introduction 30 

Neural activity is highly dynamic, yet often we need to hold information in mind in a stable 31 

state to guide ongoing behaviour. Working memory is a core cognitive function that provides 32 

a stable platform for guiding behaviour according to time extended goals; however, it remains 33 

unclear how such stable cognitive states emerge from a dynamic neural system. 34 

At one extreme, WM could effectively pause the inherent dynamics by falling into a stable 35 

attractor (e.g., [1,2]). This solution has been well-studied and provides a simple readout of 36 

memory content irrespective of time (i.e., memory delay). However, more dynamic models 37 

have also been suggested. For example, in a recent hybrid model, stable attractor dynamics 38 

coexist with a low-dimensional, time varying component ([3,4], see Fig 1A for model 39 

schematics). This permits some dynamic activity, whilst also maintaining a fixed coding 40 

relationship of WM content over time [5]. As in the original stable attractor model, the coding 41 

scheme is stable over time, permitting easy and unambiguous WM read out by downstream 42 

systems, regardless of maintenance duration [6]. Finally, it is also possible to maintain stable 43 

information in a richer dynamical system (e.g., [7]). Although the relationship between activity 44 

pattern and memory content changes over time, the representational geometry could remain 45 

relatively constant [5]. Such dynamics emerge naturally in a recurrent network, and provide 46 

rich information about the previous input and elapsed time [8], but necessarily entail a more 47 

complex readout strategy (i.e., time-specific decoders or a high-dimensional classifier that 48 

finds a high-dimensional hyperplane that separates memory condition for all time points [9]).    49 
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50 

Fig 1. Model predictions.  51 

(A) The relationship between the neural coding scheme of orientations (colours) in WM over 52 

time, illustrated in neural state-space (reduced to three dimensions, for visualisation). Left: A 53 

stable coding scheme within a stable neural population (defined by dimensions 1 & 2; 54 

dimension 3 has no meaningful variance). Middle: A stable coding scheme (dimensions 1 & 2) 55 

within a dynamic neural population (dimension 3). Right: A dynamically changing coding 56 

scheme (coding for orientation and time is mixed across dimensions). (B) The fidelity of the 57 

population code in WM over time. Top: The code decays and becomes less specific over time, 58 

leading to random errors during read-out. Bottom: The code drifts along the feature dimension, 59 

leading to a still sharp, but shifted code during read-out. 60 

Although all models seek to account for stable WM representations, it is also important to note 61 

that maintenance in WM is far from perfect. In particular, WM performance decreases over 62 

time [10], which could be ascribed to two different mechanisms (Fig 1B). On the one hand, the 63 

neural representation could degrade over time, either due to an decrease in WM specific neural 64 

activity or through a broadening of the neural representation [11]. In this framework, the 65 

distribution of recall error reflects sampling from a broad underlying distribution. On the other 66 

hand, the neural representation of WM content might gradually drift along the feature 67 

dimension as a result of the accumulating effect of random shifts due to noise [12]. Even if the 68 
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underlying neural representation remains sharp, variance in the mean over trials results in a 69 

relative broad distribution of errors over trials.  70 

Computational modelling based on behavioural recall errors from WM tasks with varying set-71 

sizes and maintenance periods predict a drift for colours and orientations maintained in WM 72 

[13,14]. At the neural level, evidence for drift has been found in the neural population code in 73 

monkey prefrontal cortex during a spatial WM task [15], where trial-wise shifts in the neural 74 

tuning profile predicted if recall error was clockwise or counter-clockwise relative to the 75 

correct location. Recently, a human fMRI study has found that delay activity reflected the probe 76 

stimulus more when participants erroneously concluded that it matched the memory item  [16], 77 

which is consistent with the drift account. 78 

Tracking these neural dynamics of non-spatial neural representations, which are not related to 79 

spatial attention or motor planning, is not trivial in humans. Previously we found that the 80 

presentation of a simple impulse stimulus (task-relevant visual input) presented during the 81 

maintenance period of visual information in WM results in a neural response that reflects non-82 

spatial WM content [17,18]. Here we extend this approach to track WM dynamics. In the 83 

current study we developed a paradigm to test the stability (and/or dynamics) of WM neural 84 

states and the consequence for readout by “pinging” the neural representation of orientations 85 

at specific time-points during maintenance. 86 

We found that the coding scheme remained stable during the maintenance period, even-though 87 

maintenance time was coded in an additional low-dimensional axis. We furthermore found that 88 

the neural representation of orientations drifts in WM. This was reflected in a shift of the 89 

reconstructed orientation towards the end of the maintenance period that correlated with 90 

behaviour. 91 
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Results 92 

In the present study, human participants completed a free-recall WM task, while EEG was 93 

recorded (Fig 2). Visual impulses were presented at specific time-points during WM 94 

maintenance, allowing us to track the neural dynamics of WM representations throughout the 95 

delay. 96 

97 

Fig 2. Trial schematic and behavioural results.  98 

(A) Two randomly orientated grating stimuli were presented laterally. A retro-cue then 99 

indicated which of those two would be tested at the end of the trial. Two impulses (white 100 

circles) were serially presented in the subsequent delay period. At the end of the trial a 101 

randomly oriented probe grating was presented in the centre of the screen, and participants 102 

were instructed to rotate this probe until it reflected the cued orientation. (B) Report errors of 103 

all trials across all subjects. Data available at osf.io/cn8zf. 104 

Item and WM content-specific evoked responses during encoding and maintenance 105 

The neural response elicited by the memory array contained information about the presented 106 

orientations (p < 0.001, one-sided; Fig 3, left). The first impulse response contained statistically 107 

significant information about the cued item (p = 0.011, one sided), but not the uncued item, 108 

which failed to reach the statistical significance threshold (p = 0.051, one-sided). The 109 

difference between cued and uncued item decoding was not significant (p = 0.694, two-sided; 110 

https://osf.io/cn8zf/
https://osf.io/cn8zf/
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Fig 3, middle). The decodability of the cued item was also significant at the second impulse 111 

response (p < 0.001, one-sided), while it was not of the uncued item (p = 0.921, one-sided). 112 

The decodability of the cued item was significantly higher than that of the uncued item (p = 113 

0.002, two-sided; Fig 3, right). 114 

115 

Fig 3. Decoding results.  116 

Top row: Normalized average pattern similarity (mean-centred, sign-reversed mahalanobis 117 

distance) of the evoked neural responses (100 to 400 ms relative to stimulus onset) as a function 118 

of orientation similarity, and decoding accuracy (cosine vector means of pattern similarities). 119 

Error shadings and error bars are 95 % C.I. of the mean. Asterisks indicate significant decoding 120 

accuracies (p < 0.05, one-sided) or differences (p < 0.05, two-sided). Bottom row: Decoding 121 

topographies of the searchlight analysis. Posterior channels used in all other decoding analyses 122 

are highlighted. Ipsilateral and contralateral channels used to test for item lateralization are 123 

highlighted in turquoise and pink, respectively. Data available at osf.io/cn8zf. 124 

Overall, these results reflect previous findings [18] in that the impulse response reflects 125 

relevant information in WM. However, the marginally significant decoding of the uncued item 126 

https://osf.io/cn8zf/
https://osf.io/cn8zf/
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at impulse 1 suggests that the item might not have been completely dropped from memory ~0.9 127 

sec. after cue and 1.6 sec. before probe presentation. Nevertheless, at impulse 2 (~1.7 seconds 128 

after cue) no detectible trace of the uncued item remained, confirming that participants likely 129 

removed it from memory for optimal processing of the probe stimulus. 130 

The decoding topographies highlight that most of the decodable signal came from posterior 131 

electrodes during both encoding and maintenance and is therefore likely generated by the visual 132 

cortex (Fig 3, bottom row). The decoding difference between contralateral and ipsilateral 133 

posterior electrodes (P7/8, P5/6, P3/4, P1/2, PO7/8, PO3/4, O1/2) was significantly different 134 

during item encoding, with higher item decoding at contralateral compared to ipsilateral 135 

electrodes (p < 0.001, two-sided). Interestingly, no evidence for such lateralization was found 136 

at either impulse 1 (cued item: p = 0.854; uncued item: p = 0.526, two-sided) or impulse 2 137 

(cued item: p = 0.716; uncued item: p = 0.398, two-sided). 138 

Stable WM coding scheme in time 139 

The relationship between orientations and impulses/time is visualized in state-space through 140 

multidimensional scaling (MDS; Fig 4A). While the first dimension clearly differentiates 141 

between impulses, the second and third dimensions code the circular geometry of orientations 142 

in both impulses, suggesting that while the impulse responses are different between impulses, 143 

the orientation coding schemes revealed by the impulses are the same. This is corroborated by 144 

significant decoding accuracy of the impulses (p < 0.001, one-sided; Fig 4B) on the one hand, 145 

but also significant cross-generalization of the orientation code between impulses (p < 0.001, 146 

two-sided), which was not significantly different from same-impulse orientation decoding (p = 147 

0.608, two-sided; Fig 4C). 148 
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 149 

Fig 4. Cross-generalization of coding scheme between impulses.  150 

(A) Visualization of orientation and impulse code in state-space. The first dimension 151 

discriminates between impulses. The second and third dimensions code the orientation space 152 

in both impulses. (B) Trial-wise accuracy (%) of impulse decoding. (C) Orientation decoding 153 

within each impulse (blue) and orientation code cross-generalization between impulses (green). 154 

Error shadings and error bars are 95 % C.I. of the mean. Asterisks indicate significant decoding 155 

accuracies or cross-generalization (p < 0.05). Data available at osf.io/cn8zf. 156 

For completeness we also report the full cross-temporal generalization matrix between 157 

impulses using a continuous decoding analysis (S1 Fig), where a time-resolved classifier was 158 

trained and tested on all possible time-point by time-point combinations [19].  159 

To rule out that the difference in impulse response reported above (Fig 4B) is not only due to 160 

differences in stimulation history and changing WM operations, but also due to temporal 161 

coding, we reanalysed previously published data where a single impulse stimulus was 162 

presented either 1,170 or 1,230 ms after the presentation of a single memory item [17]. The 163 

findings largely replicate the results reported above: State-space visualization of impulse-onset 164 

https://osf.io/cn8zf/
https://osf.io/cn8zf/
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and orientations shows the same circular geometry of the orientations at each impulse onset, 165 

while also highlighting a separation of impulse onsets in state-space (S2A Fig). Decoding 166 

impulse-onset was significantly higher than chance (p = 0.004, one-sided; S2B Fig). Cross-167 

generalization of the orientation code between impulse-onsets was significant (p < 0.001, two-168 

sided), and did not significantly differ from decoding the memorized orientation within the 169 

same impulse-onset (p = 0.240, two-sided; S2C Fig). 170 

Overall, the results of the current study, as well as the reanalyses of [17] provide evidence for 171 

a low-dimensional change over time, that can be revealed by perturbing the WM network at 172 

different time-points (as predicted in [20]). while at the same time providing evidence for a 173 

temporally stable coding scheme of WM content [3,4]. Note that a stable coding scheme at the 174 

global scale (as revealed by EEG in the present study) does not rule out the possible existence 175 

of WM-specific neurons that exhibit time-varying activity during WM maintenance [9,21]. 176 

Specific WM coding scheme in space 177 

As a counterpart to the stable coding scheme in time reported above, we explicitly tested if the 178 

coding scheme is location specific (i.e., dependent on the previous presentation location of the 179 

cued orientation). State-space visualization of cued item location and orientations shows a clear 180 

separation between locations and no overlap in orientation coding between locations (Fig 5A). 181 

The cued location was significantly decodable from the impulse responses (p < 0.001, one-182 

sided; Fig 5B). Cross-generalization of the orientation coding scheme between cued item 183 

locations was not significant (p = 0.376, two-sided), and significantly lower than same side 184 

orientation decoding (p = 0.004, two-sided; Fig 5C). These results reflect previous reports of 185 

spatially specific WM codes, even when location is no longer relevant [22], though we cannot 186 

rule out the presence of spatially invariant representations that are not detectable with our 187 

experiment.  188 
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 189 

Fig 5. No cross-generalization of coding scheme between cued item locations during 190 

impulse responses. 191 

 (A) Visualization of orientation and item location code in state-space. The first dimension 192 

discriminates between item locations. The first and second dimensions code the orientation 193 

space, separately for WM items previously presented on the left or right side. (B) Trial-wise 194 

accuracy (%) of item location decoding. (C) Orientation decoding within each item location 195 

(blue) and orientation code cross-generalizing between different item locations (green). Error 196 

shadings and error bars are 95 % C.I. of the mean. Asterisks indicate significant decoding 197 

accuracies and differences (p < 0.05). Data available at osf.io/cn8zf. 198 

Drifting WM code 199 

The first approach to test for a possible shift of the neural representation towards the adjusted 200 

response (i.e., without report bias, see Methods and S3 Fig) averaged the trial-wise orientation 201 

similarity profiles obtained from the cross-validated orientation reconstruction on all trials (see 202 

Methods and Fig 6A). No significant shift towards the response was evident during 203 

encoding/memory array presentation (circular mean: p = 0.117; asymmetry score: p = 0.125, 204 

https://osf.io/cn8zf/
https://osf.io/cn8zf/
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one-sided; Fig 6B and 6C, left). No evidence for such a shift was found at impulse 1/early 205 

maintenance either (circular mean: p = 0.07; asymmetry score: p = 0.057, one-sided; Fig 6B 206 

and 6C, middle). However, the orientation similarity profile was significantly shifted towards 207 

the response at impulse 2/late maintenance (circular mean: p < 0.001; asymmetry score: p < 208 

0.001, one-sided; Fig. 6B and 6C, right).    209 

210 

Fig 6. Response-dependent averaging of trial-wise similarity profiles demonstrates drift. 211 

Schematic and results.  212 

(A) Testing for shift towards response by averaging trial-wise similarity profiles by CCW/CW 213 

responses. (B) Results of schematised approach in A. Orientation similarity profiles averaged 214 

by response such that a right-ward shift reflects a shift towards the response (purple) at each 215 

event. Purple vertical lines show circular means of the similarity profiles . Insets show 216 

orientation similarity profiles for CCW (blue) and CW (green) responses separately. Error 217 

shadings are 95 % C. I. of the mean. (C) Group-level (circular mean) and subject-level 218 

(asymmetry score) shifts towards the response of each response-dependent similarity profile 219 

are shown in black and grey, respectively. Error-bars are 95 % C. I. of the mean. The blue line 220 
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and shading indicates the mean and 95 % C.I. of the absolute, bias-adjusted behavioural 221 

response deviation (~ 10 degrees). Data available at osf.io/cn8zf. 222 

The second approach to test for a possible shift of the neural representation towards the adjusted 223 

response may be more sensitive since it trains the orientation classifier only on CCW trials, 224 

and tests it on CW trials, and vice versa (see Methods and Fig 7A), thus increasing any response 225 

related shift by a factor of two. This approach yielded similar results as the previous approach, 226 

though the shift magnitudes are indeed larger. Neither the memory array presentation/encoding 227 

(circular mean: p = 0.124; asymmetry score: p = 0.129, one-sided), nor impulse 1/early 228 

maintenance (circular mean: p = 0.104; asymmetry score: p = 0.082, one-sided) showed a 229 

significant shift towards the response (Fig 7B and 7C, left and middle), while impulse 2/late 230 

maintenance did (circular mean: p < 0.001; asymmetry score: p < 0.001, one-sided; Fig 7B and 231 

7C, right). 232 

 233 

https://osf.io/cn8zf/
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234 

Fig 7. Response-dependent training and testing demonstrates drift. Schematic and 235 

results. 236 

 (A) Testing for shift towards response by first splitting the neuroimaging data into CW and 237 

CCW data sets, and training on CW trials and testing on CCW trials, and vice versa. Given an 238 

actual shift, the shift of the resulting orientation reconstruction will be doubled, since training 239 

and testing data are shifted in opposite directions. (B) Results of schematised approach in A. 240 

Average orientation similarity profiles such that a rightward shift reflects a shift towards the 241 

response (purple) at each event. Purple vertical lines show circular means of the similarity 242 

profiles. Insets show orientation similarity profiles for CCW (blue) and CW (green) responses 243 

separately. Error shadings are 95 % C. I. of the mean. (C) Group-level (circular mean) and 244 

subject-level (asymmetry score) shifts towards the response of each response-dependent 245 

similarity profile are shown in black and grey, respectively. Error-bars are 95 % C. I. of the 246 

mean. Data available at osf.io/cn8zf. 247 

Note the reported results of shifts during impulse presentations were obtained by training the 248 

classifier on both impulses but testing it on each impulse separately. This was done to improve 249 

power (as explained in Methods). This improved orientation reconstruction, particularly for the 250 

https://osf.io/cn8zf/
https://osf.io/cn8zf/
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latter shift-analysis where the classifier is trained on only half the trials (CW trials only or 251 

CCW trials only). However, the same analyses based on training (and testing) within each 252 

impulse epoch separately yielded qualitatively similar results (no significant shifts at impulse 253 

1 in either approach, significant shifts at impulse 2 in both approaches; S4 Fig). 254 

Discussion 255 

In the present study, we investigated the neural dynamics of WM by probing the coding scheme 256 

over time, as well as drift in the actual memories. The neural responses to impulse stimuli in 257 

this non-spatial WM paradigm enabled us to show that the coding scheme of parametric visual 258 

feature (i.e., orientation) in WM remained stable during maintenance, reflected in the 259 

significant cross-generalization of the orientation decoding between early and late impulses 260 

(Fig 4). However, memories drift within this stable coding scheme, leading to a bias in 261 

memories (Figs 6 and 7). 262 

This is consistent with previous reports of a stable subspace for WM maintenance [4,5], and 263 

provides evidence for a time-invariant coding scheme for orientations maintained in WM. 264 

However, more dynamic schemes have also been reported [23]. For example, during the early 265 

transition between encoding and maintenance [24,25]. At the extreme end, some have proposed 266 

that WM could be maintained in a dynamical system, where activity continues to evolve 267 

throughout the delay period along a complex trajectory in neural state space (e.g., [26]), 268 

possibly through sequential activation of neurons (e.g., [27]). Dynamic trajectories emerge 269 

naturally from recurrent neural networks, and provide additional information, such as elapsed 270 

time [28]. However, the dimensionality of dynamic coding places an important constraint on 271 

the generalisability of a particular coding scheme over time [6]. In the current study, we find 272 

evidence for a hybrid model [3,4]: stable decoding of WM content, despite dynamic activity 273 

over time. 274 
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Specifically, while there was no cost of cross-generalizing the orientation code between 275 

impulses, there was a clear difference in the neural pattern between them, suggesting that a 276 

separate (low dimensional) dynamic neural pattern codes the passage of time. A reanalysis of 277 

the data of a previously published study [17] confirmed these results, suggesting that the low-278 

dimensional dynamics code for time per se (rather than impulse number).  Importantly, the 279 

low-dimensional representation of elapsed time is orthogonal to the mnemonic subspace, 280 

allowing WM representations to be stable.  This hybrid of stable and dynamic representations 281 

may emerge from interactions between dynamic recurrent neural networks and stable sensory 282 

representations [3]. It is also possible that more complex dynamics could be observed in a more 283 

complex WM paradigm [23]. 284 

Our index of WM-related neural activity was based on an impulse response approach that we 285 

previously developed to measure WM-related changes in the functional state of the system 286 

[17,18], including ‘activity-silent’ WM states [29,30]. For example, activity states during 287 

encoding could result in a neural trace in the WM network through short-term synaptic 288 

plasticity [31,32], resulting in a stable code for maintenance, whereas the time-dimension could 289 

be represented in its gradual fading [20,33,34]. The stable WM-content coding scheme could 290 

also be achieved by low-level activity states that self-sustain a stable code through recurrent 291 

connections, a key feature of attractor models of WM [1,35], while dynamic activity patterns 292 

are coded in an orthogonal subspace that represents time. While we did not explicitly consider 293 

tonic delay activity, it is nonetheless possible that the impulse responses also reflect non-linear 294 

interactions with low-level, persistent activity states that are otherwise difficult to measure with 295 

EEG. Therefore, we cannot rule out a contribution of persistent activity in the stable coding 296 

scheme observed here. 297 

We also found evidence that the orientation code itself drifts along the orientation dimension, 298 

which is correlated with recall errors. While there was no bias in the neural orientation 299 
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representation at either encoding or early maintenance, the second impulse towards the end of 300 

the maintenance period revealed a code that was shifted towards the direction of response error. 301 

This pattern of results is consistent with the drift account of WM, where neural noise leads to 302 

an accumulation of error during maintenance, resulting in a still sharp, but shifted (i.e. slightly 303 

wrong) neural representation of the maintained information [1,14]. While previous 304 

neurophysiological recordings from monkey PFC found evidence for drift for spatial 305 

information [15], we could demonstrate a shifting representation that more faithfully represents 306 

non-spatial WM content that is unrelated to sustained spatial attention or motor preparation, by 307 

using lateralized orientations in the present study.    308 

Bump attractors have been proposed as an ideal neural mechanism for the maintenance of 309 

continuous representations (i.e. space, orientation, colour), where a specific feature is 310 

represented by the persistent activity “bump” of the neural population at the feature’s location 311 

along the network’s continuous feature space. Neural noise randomly shifts this bump along 312 

the feature dimension, while inhibitory and excitatory connections maintain the same overall 313 

level of activity and shape of the neural network [36,37]. Random walk along the feature 314 

dimension is thus a fundamental property of bump attractors, and has been found to explain 315 

neurophysiological findings [15]. Typically, this is considered within the framework of 316 

persistent working memory, however transient bursts of activity could also follow similar 317 

attractor dynamics [32,38]. For example, while temporary connectivity changes of the 318 

memorized WM item may indeed slowly dissolve and become coarser, periodic activity bursts 319 

may keep this to a minimum, by periodically reinstating a sharp representation [32]. However, 320 

since this refreshing depends on the read-out of a coarse representation, the resulting 321 

representation may be slightly wrong and thus shifted. This interplay between decaying silent 322 

WM-states that are read out and refreshed by active WM-states also predicts a drifting WM 323 

code, without depending on an unbroken chain of persistent neural activity. 324 
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Moreover, the representational drift does not necessarily have to be random. Modelling of 325 

report errors in a free recall colour WM task suggests that an increase of report errors over time 326 

may be due to separable attractor dynamics, with a systematic drift towards stable colour 327 

representations, resulting in a clustering of reports around specific colour values, in addition to 328 

random drift elicited by neural noise [39]. The report bias of oblique orientations seen in the 329 

present study could be explained by a similar drift towards specific orientations, which would 330 

predict an increase of report bias for longer retention periods. However, clear behavioural 331 

evidence for such an increase in systemic report errors of orientations is lacking [10]. In the 332 

present study we isolated random from systematic errors, both as a methodological necessity, 333 

and to allow us to attribute any observed shift to random errors. Thus, while a systematic drift 334 

towards specific orientations might be possible, the shift in representation reported here is 335 

unrelated to it.  336 

Our results suggest that maintenance in WM is dynamic, although the fundamental coding 337 

scheme remains stable over time. Low-dimensional dynamics could provide a valuable readout 338 

of elapsed time, whilst allowing for a time-general readout scheme for the WM content. We 339 

also show that drift within this stable coding scheme could explain loss of memory precision 340 

over time.   341 

Methods 342 

Ethics statement 343 

The study was approved by the Central University Research Ethics Committee of the 344 

University of Oxford (R42977/RE001) that adheres to the Declaration of Helsinki. Participants 345 

gave written informed consent prior to participation. 346 
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Participants 347 

Twenty-six healthy adults (17 female, mean age 25.8 years, range 20-42 years) were included 348 

in all analyses. Four additional participants were excluded during preprocessing due to 349 

excessive eye-movements (more than 30% of trials contaminated). Participants received 350 

monetary compensation (£10 an hour) for participation.  351 

Apparatus and stimuli 352 

The experimental stimuli were generated and controlled by Psychtoolbox [40], a freely 353 

available Matlab extension. Visual stimuli were presented on a 23-inch (58.42 cm) screen 354 

running at 100 Hz and a resolution of 1,920 by 1,080. Viewing distance was set at 64 cm. A 355 

Microsoft Xbox 360 controller was used for response input by the participants. 356 

A grey background (RGB = 128, 128, 128; 20.5 cd/m2) was maintained throughout the 357 

experiment. A black fixation dot with a white outline (0.242°) was presented in the centre of 358 

the screen throughout all trials. Memory items and the probe were sine-wave gratings presented 359 

at 20% contrast, with a diameter of 8.51° and spatial frequency of 0.65 cycles per degree, with 360 

randomised phase within and across trials. Memory items were presented at 6.08° eccentricity. 361 

The rotation of memory items and probe were randomized individually for each trial. The 362 

impulse stimulus was a single white circle, with a diameter of 20.67°, presented at the centre 363 

of the screen. The retro-cue was two arrowheads pointing right (>>) or left (<<) and was 1.58° 364 

wide. A coloured circle (3.4°) was used for feedback. Its colour depended dynamically on the 365 

precision of recall, ranging from red (more than 45 degrees error) to green (0 degrees error). A 366 

pure tone also provided feedback on recall accuracy after each response, ranging from 200 Hz 367 

(more than 45 degrees error) to 1,100 Hz (0 degrees error). 368 
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Procedure 369 

Participants participated in a free-recall, retro-cue visual WM task. Each trial began with the 370 

fixation dot. Participants were instructed to maintain central fixation throughout each trial.  371 

After 1,000 ms the memory array was presented for 200 ms. After a 400 ms delay, the retro-372 

cue was presented for 100 ms, indicating which of the previously presened items would be 373 

tested, rendering the other item irrelevant. The first impulse stimulus was presented for 100 374 

ms, 900 ms after the offset of the retro-cue. After a delay of 700 ms, the second impulse 375 

stimulus was presented for 100 ms. After another delay of 700 ms the probe was presented. 376 

Participants used the left joystick on the controller with the left thumb to rotate the orientation 377 

of the probe until it best reflected the memorized orientation and confirmed their answer by 378 

pressing the “x” button on the controller with the right thumb. Note that one complete rotation 379 

of the joystick corresponded to 0.58 of a rotation of the probe. In conjunction with the fact that 380 

the probe was randomly orientated on each trial, it was impossible for participants to plan the 381 

rotation beforehand or memorize the direction of the joystick instead of the orientation of the 382 

memory item. Accuracy feedback was given immediately after the response where both the 383 

coloured circle and tone were presented simultaneously. Each participant completed 1,100 384 

trials in total, over a course of approximately 135 minutes, including breaks. See Fig 2A for a 385 

trial schematic. 386 

EEG acquisition 387 

EEG was acquired with 61 Ag/AgCl sintered electrodes (EasyCap, Herrsching, Germany) laid 388 

out according to the extended international 10–20 system and recorded at 1,000 Hz using Curry 389 

7 software (Compumedics NeuroScan, Charlotte, NC). The anterior midline frontal electrodes 390 

(AFz) was used as the ground. Bipolar electrooculography (EOG) was recorded from 391 
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electrodes placed above and below the right eye and the temples. The impedances were kept 392 

below 5 kΩ. The EEG was referenced to the right mastoid during acquisition. 393 

EEG preprocessing 394 

Offline, the EEG signal was re-referenced to the average of both mastoids, down-sampled to 395 

500 Hz, and bandpass filtered (0.1 Hz high-pass and 40 Hz low-pass) using EEGLAB [41]. 396 

The continuous data was epoched relative to the memory array onset (-500 ms to 3,600 ms) 397 

before independent component analysis [42] was applied. Components related to eye-blinks 398 

were subsequently removed. The data was then epoched relative to memory array onset and 399 

the two impulse onsets (0 ms to 400 ms), and trials were individually inspected. Trials with 400 

loss of fixation, visually identified from the electrooculography, and trials with non-401 

archetypical artefacts, visually identified from the EEG, in the memory array epoch and in 402 

either impulse epoch were removed from all subsequent analyses. Furthermore, trials where 403 

the report error was 3 circular standard deviations from the participant’s mean response error 404 

were also excluded from EEG analyses to remove trials that likely represent complete guesses 405 

[43]. This led to the removal of M = 2.3% (SD = 1.2%) trials due to inaccurate report trials, in 406 

addition to the M = 3.52 % (SD = 4.21%) and M = 5% (SD = 5.2%) of trials removed due to 407 

eye-movements and non-archetypical EEG artefacts from the memory array and impulse 408 

epochs, respectively. 409 

MVPA on electrophysiological data is usually performed on each time-point separately. 410 

However, by taking advantage of the highly dynamic waveform of evoked responses in EEG 411 

by pooling information multivariately over electrodes as well as time can improve decoding 412 

accuracy, at the expense of temporal resolution [44,45]. Since the previously reported WM-413 

dependent impulse response reflects the interaction of the WM state at the time of stimulation 414 

and does not reflect continuous delay activity, we treat the impulse responses as discrete events 415 
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in the current study. Thus, the whole time-window of interest relative to impulse onsets (100 416 

to 400 ms) from the 17 posterior channels was included in the analysis. The time window was 417 

based on previous, time-resolved findings, which showed that the WM-dependent neural 418 

response from a 100 ms impulse (as used in the current study) is largely confined to this 419 

window [18]. In the current study, instead of decoding at each time-point separately, 420 

information was pooled across the whole time-window. The mean activity level within each 421 

time window was first removed for each trial and channel separately, thus normalizing the 422 

voltage fluctuations over time and isolating the dynamic, impulse-evoked neural signal from 423 

more stable brain states. The time-window was then down-sampled to 100 hz by taking the 424 

average every 10 ms. This was done to reduce the number of dimensions, which both reduces 425 

computational demands but also improves signal to noise by removing redundant dimensions 426 

of extremely high frequency voltage changes in the EEG (>100 hz) that are unlikely to reflect 427 

genuine brain activity. This resulted in 30 values per channel, each of which was treated as a 428 

separate dimension in the subsequent multivariate analysis (510 in total). This data format was 429 

used on all subsequent MVPA analyses, unless explicitly mentioned otherwise. The same 430 

approach over the same time window of interest was used in our previous study [46]. 431 

Orientation reconstruction 432 

We computed the mahalanobis distances as a function of orientation difference to reconstruct 433 

grating orientations [18]. The following procedure was performed separately for items that 434 

were presented on the left and right side. Since the grating orientations were determined 435 

randomly on a trial-by-trial basis and the resulting orientation distribution across trials was 436 

unbalanced, we used a k-fold procedure with subsampling to ensure unbiased decoding. Trials 437 

were first assigned the closest of 16 orientations (variable, see below) which were then 438 

randomly split into 8 folds using stratified sampling. Using cross-validation, the train trials in 439 

7 folds were used to compute the covariance matrix using a shrinkage estimator [47]. The 440 
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number of trials of each orientation bin in the 7 train folds were equalized by randomly 441 

subsampling the minimum number of trials in any bin. The subsampled train trials of each 442 

angle bin were then averaged. To pool information across similar orientations, the average bins 443 

of the train trials were convolved with a half cosine basis set raised to the 15th power [48–50]. 444 

The mahalanobis distances between each trial of the left-out test fold and the averaged and 445 

basis-weighted angle-bins were computed. The resulting 16 distances per test-trial were 446 

normalized by mean centring them. This was repeated for all test and train fold combinations. 447 

To get reliable estimates, the above procedure was repeated 100 times (random folds and 448 

subsamples each time), separately for eight orientation spaces (0° to 168.75°, 1.40625° to 449 

170.1563°, 2.8125° to 171.5625°, 4.2188° to 172.9688°, 5.625° to 174.375°, 7.0313° to 450 

175.7813°, 8.4375° to 177.1875°, 9.8438° to 178.5938°, each in steps of 11.25°). For each trial 451 

we thus obtained 800 samples for each of the 16 mahalanobis distances. The distances were 452 

averaged across the samples of each trial and ordered as a function of orientation difference. 453 

The resulting “similarity profile” was summarized into a single value (i.e., “decoding 454 

accuracy”) by computing the cosine vector mean of the similarity profile [18], where a positive 455 

value suggests a higher pattern similarity between similar orientations than between dissimilar 456 

orientations. The approach was the same for the reanalysis of [17]. 457 

We also repeated the above analysis iteratively for a subset of electrodes in a searchlight 458 

analysis across all 61 electrodes. In each iteration, the “current” as well as the closest two 459 

neighbouring electrodes were included in the analysis (similar as in [51]). The freely available 460 

MATLAB extension fieldtrip [52] was used to visualise the decoding topographies. Note that 461 

the topographies were flipped, such that the left represents the ipsilateral and the right the 462 

contralateral side relative to stimulus presentation side. 463 
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Orientation code generalization 464 

To test cross-generalization between impulses, instead of training and testing within the same 465 

time-window, the train folds were taken from the impulse 1 epoch, and the test fold from the 466 

impulse 2 epoch, and vice versa. The analysis was otherwise exactly as described above using 467 

8-fold cross-validation with separate trials in each fold. 468 

To test cross-generalization between presented cued locations (i.e., whether the cued item was 469 

previously presented on the left or on the right), the classifier was similarly trained on trials 470 

where the cued item was presented on the left and tested on trials where the cued item was 471 

presented on the right, and vice versa. Since left and right trials were independent trial sets, 472 

cross-validation does not apply. However, to ensure a balanced training set, the number of trials 473 

of each orientation bin were nevertheless equalized by subsampling (as described above), and 474 

this approach was repeated 100 times. 475 

The cross-generalization of the orientation code between impulse onsets in [17] was tested with 476 

the same analyses as the location cross-generalization described in the paragraph above: The 477 

classifier was trained on the early onset condition, and tested on the late-onset condition, and 478 

vice versa, while making sure that the training set is balanced through random subsampling.  479 

Impulse/time and location decoding 480 

To decode the difference of the evoked neural responses between impulses, we used a leave-481 

one-out approach. The mahalanobis distances between the signals from a single trial from both 482 

impulse epochs and the average signal of all other trials of each impulse epoch were computed. 483 

The covariance matrix was computed by concatenating the trials of each impulse (excluding 484 

the left-out trial). The average difference of same impulse distances was subsequently 485 

subtracted from different impulse distances, such that a positive distance difference indicates 486 

more similarity between same than different impulses. To convert the distance difference into 487 
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trial wise decoding accuracy, positive distance differences were simply converted into “hits” 488 

(1) and negative into “misses” (0). The percentage of correctly classified impulses were 489 

subsequently compared to chance performance (50%). 490 

The presentation side and impulse onset (in [17]) was decoded using 8-fold cross-validation, 491 

where the distance difference between different and same location/onset was computed for 492 

each trial, which were then converted to “hits” and “misses”. 493 

Visualization of the spatial, temporal, and orientation code 494 

To explore and visualize the relationship between the location or impulse/time code and the 495 

orientation code in state space (see Fig 1A for different predictions), we used classical 496 

multidimensional scaling (MDS) of the mahalanobis distances between the average signal of 497 

trials belonging to one of four orientation bins (0° to 45°, 45° to 90°, 90° to 135°, 135° to 180°) 498 

and location (left/right) or time (impulse 1/impulse2). 499 

For the visualization of the code across impulse/time, distances were computed separately for 500 

left and right trials, before taking the average. Within each orientation bin, the data of half of 501 

the trials were taken from impulse 1, and the data of the other half from impulse 2 (determined 502 

randomly). The number of trials within each orientation of each impulse were equalized 503 

through random subsampling before averaging. The mahalanobis distances between both 504 

orientation and impulses were then computed using the covariance matrix estimated from all 505 

trials of both impulses. This was repeated 100 times (for each side), randomly subsampling and 506 

splitting trials between impulses each time and then taking the average across all iterations.  507 

For the visualization of the code across space, the data of each trial were first averaged across 508 

impulses. The number of trials of orientation bins (same as above) of each location were 509 

equalized through random subsampling. The mahalanobis distances of the average of each bin 510 
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within each location condition were computed using covariance estimated from all left and 511 

right trials. This was repeated 100 times, before taking the average across all iterations. 512 

For the code across impulse onset/time visualization of the data from [17], the same procedure 513 

as in the paragraph above was used, but instead of visualizing the stimulus code between 514 

locations, it was visualized between impulse onsets (-30 ms, +30 ms).  515 

Relationship between behaviour and the neural representation of the WM item 516 

We were interested if imprecise reports that are clockwise (CW) or counter-clockwise (CCW) 517 

relative to the actual orientation are accompanied by a corresponding shift of the neural 518 

representation in WM (see Fig 1B for model schematics). We used two approaches to test for 519 

such a shift (Figs 6A and 7A). 520 

First, the trial-wise pattern similarities as a function of orientation differences (as obtained from 521 

the orientation-reconstruction approach described above) were averaged separately for all CW 522 

and CCW responses (Fig 6A). Note that CW and CCW responses were defined relative to the 523 

median response error within each orientation bin. This ensures a balanced proportion of all 524 

orientations in CW and CCW trials, which is necessary to obtain meaningful orientation 525 

reconstructions. It furthermore removes the report bias away from cardinal angles in the current 526 

experiment (S3 Fig), similar to previous reports of orientation response biases [53], and thus 527 

isolates random from systematic report errors.  528 

We used another approach that exaggerates the potential difference between CW and CCW 529 

trials and thus might be more sensitive to detect a shift. The data was first divided into CW and 530 

CCW trials using the same within orientation bin approach as described above. The classifier 531 

was then trained on CW trials, and tested on CCW trials, and vice versa (Fig 7A). The 532 

orientation bins in the training set were balanced through random subsampling, and the 533 

procedure was repeated 100 times. Given an actual shift in the neural representation, the shift 534 
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magnitude of the resulting orientation reconstruction of this method should be doubled, since 535 

both the testing data and the training data (the reference point) are shifted, but in opposite 536 

directions. 537 

To improve orientation reconstruction from the impulse epochs, the classifier was trained on 538 

the averaged trials of both impulses but tested separately on each impulse epoch individually. 539 

While training on both impulses improved orientation reconstruction, in particular for the 540 

second approach where only half of the trials are used for training, the shifts in orientation 541 

representations as a function of CW/CCW reports are qualitatively the same when training and 542 

testing within each impulse epoch separately (Figs 6, 7, and S4 Fig). 543 

The resulting similarity profiles for CW and CCW reports were summarized such that a 544 

positive/CW shift reflects a shift towards the response. The similarity profile of CCW reports 545 

were thus flipped and then averaged with the similarity profile of CW reports. Evidence for a 546 

shift in the similarity profile was then computed both at the group and at the subject level. At 547 

the group level, the shift magnitude was quantified by averaging the shifted similarity profiles 548 

across all subjects and then taking the circular mean of the resulting population level similarity 549 

profile. At the subject level, an “asymmetry score” of each subject’s similarity profile was 550 

computed by subtracting the pattern similarities of all negative orientation differences (i.e., -551 

67.5, -45, and -22.5 degrees, which represent orientations away from the response) from all 552 

positive orientation differences (i.e. 67.5, 45, and 22.5 degrees, which represent orientations 553 

towards the response). Thus, if the similarity profile is shifted towards the response, then the 554 

neural patterns of specific orientations should be more similar to orientations in the direction 555 

of the response error compared to the opposite, resulting in a positive “asymmetry score”. 556 
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Statistical significance testing 557 

To test for statistical significance of average decoding, we first repeated the decoding analysis 558 

in question 1,000 times with randomised condition labels over trials (either orientations, cued 559 

location, or impulse), such that the condition labels and the EEG signal were unrelated. The 560 

resulting 1,000 values per subject were then transformed into a null-distribution of t-values, 561 

which was used to perform a t-test against chance performance with a significance threshold 562 

of p = 0.05. Note that tests of within condition decoding (within presentation location, 563 

impulse/onset) were one-sided, since only positive decoding is plausible in those cases, 564 

whereas tests of cross-generalization between conditions were two-sided, since negative 565 

decoding is theoretically plausible in those cases.  566 

Comparisons of decodability between conditions/items were tested for statistical significance 567 

by subtracting the 1,000 values of each “null” decoder from another, before computing the null 568 

distribution of difference t-values. All difference tests were two-sided. 569 

A null distribution for the “asymmetry score” towards the response was obtained by 570 

randomizing the report-errors within each orientation bin, meaning that trials within each bin 571 

were randomly labelled CW and CCW. In the case of the “report-dependent averaging of 572 

similarity profiles” (Fig 6A), report errors were randomized with respect to the trial-wise 573 

similarity profiles of the orientation decoder output 1,000 times. In the case of the “response-574 

dependent training and testing“ (Fig 7A), report errors were random with respect to the EEG 575 

signal, before training the orientation decoder on randomly labelled “CCW” trials and testing 576 

it on the other trials that are randomly labelled “CW” (and vice versa) 1,000 times. These 577 

randomly averaged similarity profiles were then used in both cases to obtain a null distribution 578 

of “asymmetry score” t-values, which in turn was used to perform a t-test on the “asymmetry 579 

scores” against zero.  580 
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The circular mean of the shifted average similarity profile at the group level was tested against 581 

0. The of each subject was flipped left to right with 0.5 probability, such that a subject’s 582 

positively shifted similarity profile would then be negatively shifted, before computing the 583 

circular mean of the resulting similarity profile averaged over all subjects 100,000 times. The 584 

resulting null distribution was used to obtain the p-value by calculating the proportion of 585 

permuted similarity profiles with circular means more positive than the observed group-level 586 

circular mean. 587 

All tests of similarity profile shift (asymmetry score and circular mean) were one-sided, since 588 

we expected the shift of the neural representation of the orientation to be towards the response.  589 

For visualization, we computed the 95 % confidence intervals (CI) by bootstrapping the data 590 

in question 100,000 times.  591 

  592 
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Supporting information 745 

 746 

S1 Fig. Full cross-temporal decoding matrix of the orientation of the cued item between 747 

impulses.  748 

Black bars indicate the presentation times of the impulses. Continuous EEG data from posterior 749 

channels (see methods) was baselined relative to impulse 1 (-200 to 0 ms), smoothed with a 750 

gaussian smoothing kernel (SD = 16 ms), and down-sampled to 100 Hz. The classifier (the 751 

same as described in the methods) was then trained and tested on all possible time-point by 752 

time-point combinations. Data available at osf.io/cn8zf.  753 

https://osf.io/cn8zf/
https://osf.io/cn8zf/
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 754 

S2 Fig. Cross-generalization of coding scheme between impulse onsets in reanalyses of 755 

[17].  756 

(A) Visualization of orientation and impulse-onset code in state-space. The third dimension 757 

discriminates between impulse-onsets. The first and second dimensions code the orientation 758 

space in both impulses. (B) Trial-wise accuracy (%) of impulse-onset decoding. (C) Orientation 759 

decoding within each impulse-onset (blue) and orientation code cross-generalizing between 760 

impulse-onsets (green). Error shadings and error bars are 95 % C.I. of the mean. Asterisks 761 

indicate significant decoding accuracies or cross-generalization (p < 0.05). Data available at 762 

osf.io/cn8zf.  763 

https://osf.io/cn8zf/
https://osf.io/cn8zf/
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764 

S3 Fig. Report-bias of orientations.  765 

Participants showed a bias, exaggerating the tilt of oblique orientations, manifesting itself as 766 

a repulsion form the cardinal axes (0 and 90 degrees; left), similar to previous reports [53]. To 767 

ensure an unbiased estimate of a possible shift in our analysis, and to isolate random from 768 

systematic errors, the report bias was removed by subtracting the median error within 11.25 769 

degree orientation bins (middle). By removing orientation-specific error, the resulting error 770 

distribution is narrower (right). Clockwise and counter-clockwise reports were defined as 771 

positive and negative reports relative to this “adjusted”, unbiased, report error. Data available 772 

at osf.io/cn8zf.  773 

https://osf.io/cn8zf/
https://osf.io/cn8zf/
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774 

S4 Fig. Within impulse training and testing to estimate drift.  775 

(A)  Response-dependent averaging of trial-wise similarity profiles (Fig 6A). Shift towards 776 

response: Impulse 1: p = 0.492 (circular mean), p = 0.500 (asymmetry score); Impulse 2: p = 777 

0.022 (circular mean), p = 0.020 (asymmetry score), one-sided. (B) Response-dependent 778 

training and testing (Fig 7A). Shift towards response: Impulse 1: p = 0.545 (circular mean), p 779 

= 0.525 (asymmetry score); Impulse 2: p = 0.009 (circular mean), p = 0.004 (asymmetry score), 780 

one-sided. Same convention as Figs 6B, 6C, 7B, and 7C. Data available at osf.io/cn8zf. 781 

https://osf.io/cn8zf/
https://osf.io/cn8zf/

