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How do organisms learn to do again, on-demand, a behavior

that led to a desirable outcome? Dopamine-dependent cortico-

striatal plasticity provides a framework for learning behavior’s

value, but it is less clear how it enables the brain to re-enter

desired behaviors and refine them over time. Reinforcing

behavior is achieved by re-entering and refining the neural

patterns that produce it. We review studies using brain-

machine interfaces which reveal that reinforcing cortical

population activity requires cortico-basal ganglia circuits.

Then, we propose a formal framework for how reinforcement in

cortico-basal ganglia circuits acts on the neural dynamics of

cortical populations. We propose two parallel mechanisms: i)

fast reinforcement which selects the inputs that permit the re-

entrance of the particular cortical population dynamics which

naturally produced the desired behavior, and ii) slower

reinforcement which leads to refinement of cortical population

dynamics and more reliable production of neural trajectories

driving skillful behavior on-demand.
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Introduction: motor reinforcement is neural
reinforcement
When organisms discover a desirable outcome after

performing a particular movement, they increase the

occurrence of that movement. This behavioral principle

is Thorndike’s Law of Effect [1]. How does an organism

learn which movement led to the outcome, and impor-

tantly, how does it select again that movement at the

next attempt? The problem of credit assignment and
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re-entrance is crucial for understanding learning [2]. This

problem can become easier to solve if we consider that the

animal does not need to exactly re-do the same movement

that was reinforced, but instead can re-enter a set of

behaviors that obeys similar task-constraints and increases

the probability of obtaining an outcome. Indeed, early in

training organisms seem to re-enter behaviors similar to

those that led to the outcome from the repertoire of

attempts, with variation from trial to trial [3–5]. Withfurther

reinforcement, they gradually reduce variability and refine

movement to more directly and efficiently achieve the

outcome [6,7].

Motor reinforcement depends on dopamine-dependent

plasticity at cortico-striatal synapses [8–11]. During rein-

forcement, neural ensembles and activity patterns in

cortico-basal ganglia circuits are gradually refined, follow-

ing a similar pattern to the movement [2,8,12–16]. This is

logical, as learning occurs because the neural patterns

producing actions that lead to reinforcement are re-

entered more frequently and more precisely. Just

as the organism does not need to replicate the exact

behavior that led to an outcome, the brain may not need

to replicate the exact pattern of neural activity. First,

there is degeneracy: many neural activity patterns can

cause the same motor output because many neurons in

several motor control centers possess parallel lines of

influence to the spinal cord driving muscles [17,18].

Second, entering a set of neural patterns that leads to a

set of behaviors that obeys similar task-constraints to the

target increases the probability of obtaining an outcome.

Thus, the brain can learn from reinforcement to produce

neural population activity within a target activity set

which produces behavior within a target behavior set.

Hence, the motor reinforcement problem is a neural

reinforcement problem. In this review, we will focus

on discussing how the brain re-enters a target activity

set in motor cortex neurons for two reasons. First, motor

cortex can control movement directly through spinal cord

projections. Second, and perhaps more importantly,

motor cortex can coordinate many motor control centers

in the brain including the basal ganglia, thalamus,

midbrain, brainstem, and spinal circuits, and they are

the only class of supraspinal neurons that possess these

broadcasting projections [18]. We will present a perspec-

tive that defends that what is reinforced through plasticity

at different time courses and locations in cortico-basal

ganglia circuits [16] are the outcome-relevant population

dynamics in the cortex, and that this plasticity leads to fast

re-entrance and gradual refinement of cortical population
Current Opinion in Neurobiology 2020, 60:145–154
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dynamics, which underlies the learning of what behavior

is relevant and how to perform it.

The brain learns from reinforcement to re-
enter and refine cortical population activity
controlling a brain-machine interface
Studying the neural reinforcement principles underlying

behavioral reinforcement is challenging because it is hard

to identify and observe the exact neural populations control-

lingbehavior, andhenceto interpret the impactofchanges in

neural activity in particular neurons on the occurrence of

behavior. Closed-loop brain-machine interfaces (BMIs) are a

useful experimental tool because the experimenter defines

the mapping from observed neural activity to behavior, thus

defining the target activity set that triggers a desirable

outcome, such as a reward.

The brain can consolidate activity patterns for BMI

control much like it does for motor control. Early work

in the 1970s found that activity of individual motor cortex

neurons could be reinforced if given sensory feedback on

the firing rate [19,20]. Initial research on BMIs optimized

to decode information about natural movement found

that through closed-loop experience of the consequence

of neural activity on the BMI, subjects improved BMI

control, decreased neural variability, and changed neural

encoding of prosthetic movement [21–24].

More recent primate studies established that the brain

can learn to re-enter motor cortex population activity to

control a BMI [25]. With training the neural patterns for

BMI control gradually stabilized and were readily

recalled, similar to neural activity evolution during motor

reinforcement. The large initial trial-to-trial neural and

neuroprosthetic variability decreased, and consistent

neural trajectories emerged resulting in fast and direct

neuroprosthetic movements [25,26�]. This gave insight

into how the brain learns to re-enter and then gradually

refine neural activity and behavior. Initially, the brain

learned by modulating both the neurons controlling the

BMI (direct neurons) as well as surrounding cortical

network (indirect neurons), but gradually, the brain

reduced modulation of indirect neurons relative to direct

neurons [27,28]. Investigating the fine-scale spatial struc-

ture of credit assignment, a closed-loop optical BMI

approach using 2-photon calcium imaging showed that

early in training mice modulated the activity of the target

direct neurons but also neighboring indirect neurons in

close spatial vicinity; as training progressed animals

learned to mostly modulate the activity of direct neurons

[29], and learning could even be localized to an individual

direct neuron [30]. Additional primate BMI studies

studying adaptation to decoder perturbations [31–33]

found that even within the direct neuron population

the brain learns to assign credit to the direct neurons

specifically driving behavioral error.
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Cortico-basal ganglia circuits are necessary
for reinforcement of cortical activity
Many experiments show that motor reinforcement

depends on plasticity at the glutamatergic inputs to

striatum, namely cortico-striatal synapses [8–11]. The

striatum receives glutamatergic input carrying sensory,

motor, and cognitive information from across cortex, parts

of thalamus, and limbic areas as well as dopaminergic

input carrying reinforcement signals from the midbrain

(ventral tegmental area VTA and substantia nigra pars

compacta SNc). The output of the basal ganglia (GPi,

SNr) modulates motor control by directly or indirectly

inhibiting or disinhibiting downstream brainstem

populations that can serve as command lines to spinal

cord circuits [18]. Thus, the basal ganglia are poised to use

outcome-related signals to learn a mapping from environ-

mental and cognitive states into control of brainstem

activity to produce behaviors that lead to desirable

outcomes. However, basal ganglia output also directly

inhibits/disinhibits the thalamus and hence cortex [34]. Is

plasticity at glutamatergic synapses in striatum necessary

to learn to produce patterns of cortical activity that lead to

desirable outcome?

Closed-loop BMI experiments showed that indeed cortico-

striatal plasticity is necessary for learning to re-enter target

motor cortex activity [35�]. As rodents learned to produce a

specific pattern of activity in motor cortex to obtain reward,

dorsal striatum neurons developed target-predictive

modulation of activity [35]. Direct neurons in cortex devel-

oped coherence with dorsal striatum spiking and local field

potential, which was not seen with indirect neurons [36].

Importantly, mice lacking the essential NR1 subunit of the

NMDA receptor specifically in striatal projection neurons,

and hence with disrupted cortico-striatal plasticity, could

not learn to re-enter a cortical pattern that leads to

reward more frequently than chance. Thus, plasticity in

the cortico-striatal network resulted in task-related

striatum activity and credit assignment to specific cortical

neurons and patterns driving behavior.

The ability to reinforce specific behaviors that lead to reward

relies on the activity of midbrain dopamine neurons, which

modulates cortico-striatal plasticity [37–39]. Dopamine

neurons in the ventral tegmental area (VTA) are thought

to encode a reward-prediction error which signals difference

between the animal’s predicted and received reward [40]

and is useful for reinforcing behavior [3]. This phasic activity

of VTA is sufficient to reinforce specific behaviors that

precede it, as animals learn to reproduce target behaviors

that trigger VTA self-stimulation [41–44].

But how is the specific behavior reinforced and re-entered

more frequently? It seems logical that neural patterns that

lead to phasic VTA activity would be reinforced,

constituting a Neural Law of Effect [45�]. A rodent

BMI experiment found evidence for this principle: mice
www.sciencedirect.com
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learned to re-enter more frequently a rare motor

cortex activity pattern that triggers optogenetic VTA

self-stimulation [45�]. The striatum receives input from

most cortices, and it would be adaptive for reinforcement

to act even in primary sensory cortices, which encode not

only antecedent stimuli but also exhibit internally driven,

task-relevant modulations [46]. An intriguing BMI

experiment found that rats and mice can learn to re-enter

a target activity set in primary visual cortex to receive

reward [47]. Learning was prevented when neurons in the

dorsomedial striatum (DMS), which receives input from

visual cortex, were optogenetically inhibited, but not

during inhibition of nearby neurons in the dorsolateral

striatum. Interestingly, after learning, DMS inhibition did

not affect target activity re-entrance, indicating that the

striatum is crucial for learning to re-enter cortical patterns

that lead to desired outcomes, but not necessarily to

execute that entrance after learning.

The closed-loop BMI experiments discussed above

demonstrated that animals can learn to produce cortical

patterns that lead to desired outcomes, such as they can

produce behaviors, and that cortico-basal ganglia loops

and dopamine are crucial for this reinforcement. Here, we

propose a framework for how neural reinforcement acts on

the dynamics of cortical populations. We propose two

parallel mechanisms for how the brain uses cortico-basal

ganglia circuits to re-enter and refine cortical population

activity leading to desirable outcome: fast reinforcement

to re-enter particular cortical population dynamics which

naturally produces target activity resulting in variable but

successful behavior, and slower reinforcement of cortical

population dynamics which leads to refinement of neural

ensembles and reliable production of neural trajectories

driving skillful behavior on-demand.

Re-entering neural activity to achieve desired
outcome: reinforcement learning of neural
dynamics and control
Let us now revisit our main question of how organisms

learn to re-enter on-demand neural population activity

that led to a desirable outcome. To address this question

we propose to first consider how a particular pattern of

neural activity is entered in the first place using a

framework of neural dynamical systems. Neural dynamics

has been critical for understanding motor cortex activity

and its relationship to movement [48–53�]. The input

connectivity and within-population connectivity deter-

mine the neural dynamics of a population of neurons; that

is, the rules which dictate how population activity transi-

tions across time and neurons (Figure 1a,b), as a function

of input and connectivity, and defines activity dimensions

(Figure 1c,d) and trajectories which are easier/harder to

be entered (Figure 1e). Population dynamics render-

specific transitions of activity natural and easy, and others

more difficult to achieve. For example, let us model

neural population activity as a linear dynamical system
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(Figure 1a,b), which has well-developed theory:

x t þ 1ð Þ ¼ Ax tð Þ þ Bu tð Þ, where x tð Þ is a vector containing

the activity of each neuron in the population, u tð Þ is a

vector of inputs to the population, the A matrix captures

dynamics within the neural population, and B is the

input matrix which maps input signals into population

activity. While both AxðtÞ and Bu tð Þ drive xðt þ 1Þ, there

is a crucial distinction: dynamics AxðtÞ should be

general across different goals, while input u tð Þ can vary

for different goals.

This can give us a conceptual basis tounderstand howeasy or

difficult it is for the brain to enter a particular population

activity pattern, as recently reviewed [54]. The covariance

(in steady-state) of motor cortex activity Sx defines and

orders dimensions of neural activity by how much activity

prefers to enter them (Figure 1c,d). It relates to the

interaction of A; B, and is the solution to the Lyapunov

equation Sx ¼ ASxA
T þ BSuB

T . Neural covariance

relates to the minimum energy (or effort) of u needed

to reach a target neural activity pattern x� given by:

Emin ¼ x�TS�1
x x�. (This expression assumes there’s no

time limit on reaching x� and is calculated with Su ¼ I
to encode that each input can be equally and

independently used.) Thus, from the control perspective,

achieving a target on an activity dimension v with large

neural covariance s vð Þ ¼ vTSxv requires small external

input (and a target on a low-covariance dimension

requires large external input). If s vð Þ ¼ 0, activity

can not at all be reached along dimension v. The

dimensions which have large s are an activity

subspace which has been termed the population’s

‘intrinsic manifold’ [55,56�].

Now we can consider, given a dynamics view of how

population activity is entered, how is activity re-entered?

We postulated that the brain does not learn by precisely

replicating initial successful activity. Reinforcement

learning theory presents the setting of an agent interact-

ing with its environment, learning a policy puaðtÞ j sðtÞÞ
parameterized by u which maps states s to a distribution

over actions a in order to maximize rewards r [3]. We

propose a model, in which the brain learns to adjust

parameters of control and population dynamics in parallel

to maximize reward. This makes the target population

activity easier to achieve (i.e. less input u is needed),

which makes the target activity more likely to be

re-entered even with noisy input. We define a probability

distribution describing the brain’s interaction with the

environment as follows: population activity x tð Þ
and behavior yðtÞ update behavior yðt þ 1Þ and reward

rðt þ 1Þ with parameters b unknown to the brain:

pb y t þ 1ð Þ; r t þ 1ð Þ j x tð Þ; yðtÞð Þ. Let the neural population

be feedback-controlled with parameter w via

u tð Þ ¼ gwðx tð Þ; yðtÞÞ. (Note, we can model feedback

being a function of only neural population activity or

only of behavior.) The brain modifies initial parameters
Current Opinion in Neurobiology 2020, 60:145–154
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Figure 1
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Entrance of target population activity through control of neural dynamics.

(a) A neural dynamics view of how activity is entered in a motor cortex population. Here is an illustrative example of the brain sending input u(t) to

control activity x(t) of a small population of recurrently connected neurons. The network visualization motivates the relationship between physical

connections and activity dynamics. Strong cortical connections are bold blue, weak are light blue. Neural dynamics are modeled with linear

equations. (b) Linear dynamical system modeling of the pairwise interactions between neurons and input. (c) The effect of A matrix dynamics is

shown by blue arrows, which show the direction neural activity prefers to evolve at each point in neural activity space, where each axis is one

neuron’s activity. This 3-neuron example reveals strong covariance in the x1–x2 subspace. In general, the covariance subspace captures activity

modulations broadly across observed neurons, but for the sake of transparency, this example exhibits most covariance between neuron 1 and 2.

(d) We zoom in on the plane of prominent neural covariance, where each axis is one neuron’s activity. Dark green vector shows the input direction

of the B matrix which has most gain and thus requires least u(t) input to affect neural activity, and the light green input vector has the least gain

and thus requires the most input to affect neural activity. The neural covariance is shown in the gray ellipsoid, which reveals activity directions

which are easier to move along (labeled with green ‘Easier’), and directions which are harder to move along (labeled with red ‘Hard’). Note that the

black primary axis of covariance is not aligned with the strong input direction because the A matrix dynamics performs counter-clockwise rotation

(visualized with blue arrows at each point of activity space). (e) Two example neural activity trajectories are shown. The black trajectory is easy to

achieve, because it initially moves along the strong input direction, and then flows along neural dynamics. The red trajectory is difficult because it

initially moves along the weak input direction, and then moves opposite to the direction of neural dynamics.
u ¼ A; B; w (Figure 2a) to learn reward-obtaining behavior

(Figure 2b) through neural activity x tð Þ �
pux tð Þj x t � 1ð Þ; y t � 1ð ÞÞ (Figure 2c). We will call A; B
parameters of neural dynamics, as they map directly into

neural activity space, and call w parameters of control.

Learning w can select particular dimensions within the

subspace defined by A; B, and controls how neural

activity transitions in time within those dimensions

(Figure 2d). Learning A; B can modify the subspace

neural activity preferentially occupies to be oriented to

target activity (Figure 2e). Learning B changes the
Current Opinion in Neurobiology 2020, 60:145–154 
directions and gain by which input drives activity. Learn-

ing A modifies how neural activity acts on itself, which can

be visualized as a flow field in neural activity space.

Studying reinforcement learning of neural
dynamics with brain-machine interfaces
Closed-loop BMIs can be used to test how the brain learns

activity patterns which have a particular relationship to pre-

existing neural dynamics. A relevant study hypothesized

that it is easier for the brain to learn neural patterns within

its pre-existing covariance [56�,57] (Figure 3a), which
www.sciencedirect.com
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Figure 2
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Re-entrance of target population activity through reinforcement learning of neural dynamics.

We illustrate how re-entrance of target neural activity through reinforcement learning can underlie motor learning. (a) Reinforcement learning of

neural activity may operate on parameters of neural dynamics. We identify three parameters: 1) w which maps cortical activity x(t) and behavior y

(t) to input u(t) to the target cortical population, 2) B which are weights mapping input u(t) to cortical activity x(t), and 3) A which are cortical

dynamics weights determining rules of how cortical activity evolves as a function of its past. For illustration, we introduce a two-neuron population

with depicted initial dynamics. Each axis is one neuron’s firing rate. A is represented by blue flow fields, B is represented by green arrows; dark

green arrow shows the strong input direction, and the light green arrow shows the weak input direction. The primary axes of the gray covariance

ellipse indicate the directions where activity is easy and hard to reach. (b) We introduce an illustrative motor task, where one dimensional behavior

y(t) triggers reinforcement. In Block 1, Target 1 (T1) is rewarded, and in Block 2, Target 2 (T2) is rewarded. One example trajectory from Block

1 and Block 2 are shown. In early learning, an error trial to T1 performed in block 2 is shown. In late learning, behavior is more successful, less

www.sciencedirect.com Current Opinion in Neurobiology 2020, 60:145–154
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captures activity dimensions which neural dynamics

preferentially occupies, than patterns outside. This

mathematically defined hypothesis was translated into a

BMI learning experiment where some decoders were

designed to align with neural covariance and others to

misalign. Subjects could readily learn within a day decoders

aligned with neural covariance but not misaligned decoders

(Figure 3b,c), providing compelling evidence for their

hypothesis, suggesting that if the brain has pre-existing

cortical population dynamics (A; B) that are relevant to

solve a task, it is faster to learn to control those dynamics

(w) than to modify the dynamics.

This study focused on BMI-experienced subjects learn-

ing within one day. However, we discussed that the brain

can learn to control difficult decoders, that is, re-enter

difficult patterns, over many days [25,27,58] (Figure 3d).

In early learning, indirect neurons were modulated along

with direct neurons [27–29], suggesting that the brain

initially learns by re-entering dynamics of a population

larger than the direct neurons. Gradual credit assignment

to direct neurons implied the brain is able to reinforce

the variation direct neurons exhibit which is largely

independent of other neurons and leads to reward

[27–29]. To study the balance of shared and individual

(independent) neural variance during neural

re-entrance, we analyzed neural covariance during long

term de novo BMI learning [26�,45�]. In this setting, the

neural population exhibited very little shared variance in

early learning (Figure 3e). With training, large initial

trial-to-trial variability of individual neurons and the

cursor decreased. Low-dimensional shared variance

increased, and the subspace of shared variance rotated

and stabilized, aligning to the decoder and making

shared variation more efficient in driving the cursor

(Figure 3f). Finally, consistent neural trajectories within

the shared subspace emerged which produced skillful

control (Figure 3f). Crucially, we found this same

evolution of individual and shared variance in mice

learning to re-enter specific cortical patterns in order

to receive optogenetic VTA self-stimulation [45�], estab-

lishing a role for dopamine and the basal ganglia in the

reinforcement of cortical dynamics. Reinforcement of

high dimensional neural exploration permits learning

novel neural patterns, as found in recent work studying

long-term learning of difficult decoders misaligned with

initial neural covariance [58].
(Figure 2 Legend Continued) variable, faster, and more direct. (c) We show

by the difference of the two neurons’ activity y(t) = x2(t) � x1(t), as shown by

dark orange line results in behavior y(t). The orange target rectangles dema

target behavior. The dotted orange line is the axis that produces behavior y

to re-enter and control useful neural dynamics. This results in goal-specific 

specific arrows in neural activity space. Inputs must still propagate with dyn

A, B, which refines neural dynamics. Learning A changes the flow fields wh

blocks. Note that the flow fields make sample-by-sample predictions about

general with just two trials. Learning B changes the directions on which inp

neural covariance. In contrast, learning w without learning A, B merely selec

Current Opinion in Neurobiology 2020, 60:145–154 
These studies support the hypothesis that learning control

of cortical dynamics is faster while modifying cortical

population dynamics is slower (Figure 3a,d). Future BMI

experiments can further test the relationship between

neural dynamics and reinforcement. One relevant study

paved the way for designing BMI experiments to test

properties of neural dynamics [53�] and demonstrated

the power of single trial predictions of neural dynamics

models by designing a high-performance closed-loop BMI.

Cortico-basal ganglia circuits for neural
reinforcement through re-entrance and
refinement of cortical population dynamics
We propose that the cortico-basal ganglia circuit is crucial for

neural reinforcement by i) initially facilitating re-entering of

the right cortical population dynamics and ii) gradually

facilitating the refinement of cortical dynamics to achieve

target activity more directly and reliably (Figure 4).

i) Re-entrance of cortical population dynamics

When cortex first enters target activity, midbrain dopamine

neurons send a reward prediction error signal which

projects to striatum, tagging the preceding neural activity

as special, and triggering the process of plasticity crucial for

reinforcement. The set of cortical neurons which underlie

the first success are a subset of a target population whose

dynamics and output connections make it natural for

generating target activity. Further, many different

population activity patterns compose the target activity

set, as previously discussed. Thus, the brain must find one

of many inputs controlling the target population to re-enter

target activity. How can the brain do this?

The cortico-basal ganglia circuit is topographically

organized in re-entrant loops [59,60], such that the basal

ganglia can produce outputs which feedback to a targeted

population in cortex. In particular, when dopamine rein-

forces synapses from the ‘initial success cortical neurons’

to striatum, the basal ganglia is organized such that

activity propagating from synaptically modified striatum

neurons through the basal ganglia and thalamus will

re-enter a population of cortical neurons containing the

‘initial successful cortical neurons’.

Weproposethebasalganglia selects task-relevantdimensions

within the target population’s pre-existing covariance, by

learning low-dimensional common inputs to the target
 the neural activity producing the behavior in B). Behavior is produced

 the dark orange line. Visually, the projection of neural activity onto the

rcate target activity which neural trajectories must enter to achieve

 = 0. (d) The brain can learn w to produce u(t), which allows the brain

inputs to the target neural population, which can be visualized as goal-

amics parameters A, B as shown in panel C). (e) The brain can learn

ich facilitates entering target neural activity and generalizes across

 how neural activity transitions in time, and can’t be estimated in

uts can move activity. The combination of learning A, B can rotate

ts activity from covariance permitted by A, B.
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Figure 3
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Interpretation of BMI studies for reinforcement of neural dynamics.

(a) BMI learning experiments have revealed principles of how neural activity is learned. Reference [56�] designed BMI experiments where decoders

are either aligned or misaligned with motor cortex covariance, and found that the brain more easily learns motor cortex patterns within its pre-

existing covariance. The study supports the idea that the brain performs initial reinforcement by re-entering and controlling pre-existing neural

dynamics. (b) Early learning activity is explored using pre-existing neural dynamics, which lies prominently in the covariance space or ‘intrinsic

manifold’. We predict this covariance would extend to other connected neurons in the cortical network which are not decoded for the BMI. (c)

Late learning results in re-entrance and control of beneficial, pre-existing neural dynamics, which corresponds to selection of neural activity from

cortical covariance. We predict connected indirect neurons continue to co-modulate with the task. (d) Other BMI experiments found that with

long-term training, neural covariance can be modified [26,45�], and behavior-driving neurons are assigned credit with learning [27–29]. We interpret

these results to mean that cortical dynamics can be refined with long-term training. This process depends on direct neurons varying independently

from indirect neurons. (e) Subjects learn a decoder which is misaligned to initial cortex covariance. In early learning, direct and indirect neurons

modulate to the task, but neurons show prominent individual variation which explores activity beyond pre-existing dynamics. (f) In late learning

over days of training, direct neurons modulate to achieve target activity while indirect neurons reduce modulation, revealing credit assignment to

direct neurons. Within the direct neuron population, covariance rotates to align with the decoder axis, making achieving target neural activity more

efficient. Consistent neural trajectories emerge producing skillful behavior. Likely, network connections are modified to refine neural dynamics,

constructing improved flow fields for generating target activity.
population via thalamus. Dopamine-dependent cortico-

striatal plasticity permits the striatum to rapidly learn task-

relevant patterns in cortex which lead to reward [35�,36], and

propagate them through basal ganglia output down to the

brainstem, but also back to the cortex via thalamus. The basal

gangliaconstitutesasignificantanatomicalbottleneckfromits

cortical inputs to its GPi/SNr outputs [61]. In the rat, �20

million cortical neurons (nearly all of cortex) projects to dorsal

striatum [62], while SNr has �25 000 neurons [63], and

interconnectivity of output neurons reduces the dimension-

ality of its activity [64]. This low-dimensional output from

GPi/SNr has a reduced parameter space compared to the
www.sciencedirect.com 
activity space of the initial cortical pattern and projects to

brainstem to disinhibit wanted movements/patterns, but also

to thalamus and then to cortex. Computationally, these

anatomical constraints may place the basal ganglia as a natural

learner of the low-dimensional task-relevant dynamics in the

cortex, and a selector of the appropriate input back to the

cortex to re-enter these dynamics. Notably, this re-entrance

does not require plasticity within the cortex.

ii) Refinement of cortical population dynamics

As the brain re-enters cortical population dynamics to

produce variable but successful activity, cortical dynamics
Current Opinion in Neurobiology 2020, 60:145–154
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Cortico -basal ganglia circuit for neural reinforcement through re-

entrance and refinement of neural population dynamics. We highlight

two properties. 1) The basal ganglia is positioned to learn low-

dimensional inputs to cortex due to anatomical dimensionality

reduction from striatum input to GPi/SNr output. 2) The basal ganglia

can reinforce activity in particular cortical populations because it has

parallel, re-entrant loops which feedback to particular neural

populations. Illustrated is the particular loop which feeds back to a

neural population containing neurons responsible for the target

behavior. When cortex first enters target activity, VTA fires a

dopaminergic reward prediction error signal, which strongly projects to

cortico-striatal synapses and plays an important role in reinforcement.

We hypothesize that learning w, a mapping from high-dimensional

cortical activity and behavioral signals to low-dimensional cortical

input u(t), may be responsible for initial reinforcement which re-enters

pre-existing cortical dynamics. Gradually, cortical dynamics are

refined: thalamocortical synapses can be learned to map input to

cortical activity (B matrix), and cortical synapses can be learned to

modify cortical dynamics (A matrix) and enable desired neural

trajectories to be produced on-demand.
are gradually refined. Less task-relevant neurons and

trajectories are entered less often while task-relevant

activity is optimized to more directly achieve an outcome

and is triggered more reliably. We propose that this

process involves Hebbian-like, dopamine-dependent

plasticity at cortico-striatal synapses [38], which continues

to refine with continued learning [10] but also requires

plasticity in the cortex [13,65–67] and depends on sleep

[28,68]. In this scenario, basal ganglia reinforces inputs

to the motor cortex which could lead to the repeated

co-activation of particular cortical cells in lieu of others,

leading to the refinement of connectivity and dynamics

via Hebbian plasticity in the cortex. Refining

dynamics depends on reinforcement acting on variation
Current Opinion in Neurobiology 2020, 60:145–154 
of task-relevant neurons which is independent of less

task-relevant neurons[26�,45�]. Modeling work has shown

that with cortical neurons exhibiting uncorrelated

variance and a three-factor dopamine-dependent STDP

learning rule, credit assignment is possible to BMI direct

neurons [69]. This plasticity in the cortex could

potentially be mediated by direct dopaminergic inputs

to the cortex [70,71]. Dynamics refinement is likely also

mediated by thalamocortical plasticity which has shown

specificity to learning-related cortical cells [72].

These refined neural dynamics [48] will enable the neural

population to reliably produce neural trajectories [13,26�]
which directly achieve the target behavior and the desired

outcome. We also consider that in subsequent phases of

training, where extensive training lead to consolidated

cortical dynamics and to asymptotic refinement, basal

ganglia plasticity and activity may no longer be required

for skillful re-entrance of specific cortical patterns [47,73].

Conclusion
In conclusion, we propose a framework, in which reinforce-

ment learning operates on neural dynamics, and show that

such a framework can lead to hypotheses of how the brain

learns to re-enter desired neural activity at different

timescales, likely involving different forms of plasticity

at different nodes of the basal ganglia-thalamo-cortical

circuitry, consequential for motor behavior as well as

abstract thought. Future experiments will be needed to

test further predictions about how neural population

dynamics facilitate and constrain learning of activity and

behavior.
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