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Abstract 

Although humans can hold multiple items in mind simultaneously, the contents of working 

memory (WM) can be selectively prioritized to effectively guide behavior in response to rapidly 

changing exigencies in the environment. Neural evidence for this is seen in studies of dual serial 

retrocuing of two items held concurrently in visual WM, in which evidence in occipital cortex for 

the active neural representation of the cued item increases, and evidence for the uncued item 

decreases, often to levels indistinguishable from empirical baseline. Although this pattern is 

reminiscent of the effects of selective attention on visual perception, the extent to which more 

subtle principles of visual attention may also apply to visual working memory remains uncertain. 

In the present study we explored whether the well-characterized “same-object” benefit in visual 

target detection, attributed to object-based attention (e.g., Duncan, 1984; Egly, Driver, & Rafal, 

1994), may also be observed for information held in visual WM. fMRI data were collected while 

human subjects (male and female) performed a multi-step serial retrocuing task in which they first 

viewed two two-dimensional sample stimuli comprised of colored moving dots. After stimulus 
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offset, an initial relevance cue then indicated whether both dimensions of only the first or only the 

second object, or only the color or only the direction-of-motion of both objects, would be relevant 

for the remainder of the trial, which then proceeded with the standard dual serial retrocuing 

procedure. Thus, on “object-relevant” trials, the ensuing priority cues prompted the selection of 

one from among two features (“color” or “direction”) bound to the same object, whereas on 

“feature-relevant” trials the priority cues prompted the selection of one from among two features 

each belonging to a different object. Results of analyses with multivariate inverted encoding 

models (IEM) revealed a same-object benefit on object-relevant trials: Whereas, on feature-

relevant trials, the first priority cue triggered a strengthening of the neural representation of the 

cued feature and a concomitant weakening-to-baseline of the uncued feature; on object-relevant 

trials the cued item remained active but did not increase in strength, and the uncued item weakened, 

but remained significantly elevated throughout the delay period. Of additional interest, on both 

types of trials the second priority cue prompted an active recoding of the uncued item into a 

different neural representation, perhaps to minimize its ability to interfere with recall of the cued 

item. Finally, although stimulus-specific representation in parietal and frontal cortex was weak 

and uneven, these regions closely tracked the higher-order information of which stimulus category 

was relevant for behavior at all points during the trial, indicating an important role in controlling 

the prioritization of information in visual working memory. 
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INTRODUCTION 

Working memory (WM) is a cognitive function that enables the mental retention of 

information, in the absence of sustained input from the physical world, its manipulation, and its 

use for guiding behavior. Current accounts of sensory WM hold that it relies on attentional 

mechanisms also involved in the prioritization of information perceived in the environment 

(D’Esposito & Postle, 2015; Gazzaley & Nobre, 2012; Kiyonaga & Egner, 2013; Oberauer & 

Hein, 2012). Consistent with this view is that fact that instructing an individual to prioritize a 

subset of information being held in WM with a retrodictive cue (hereafter, “retrocue”) improves 

its subsequent recall at the expense of uncued information, in a manner comparable to the effects 

on visual perception of prospectively cuing a location or a feature in an impending visual scene 

(Griffin & Nobre, 2003; Lepsien & Nobre, 2007; Pertzov, Bays, Joseph, & Husain, 2013; Zokaei, 

Manohar, Husain, & Feredoes, 2013; Sahan, Verguts, Boehler, Pourtois & Fias, 2015). The 

retrocuing technique has also been used to test theories about the capacity and the temporal 

dynamics of the putative focus of attention (or “region of direct access”) in state-based models of 

WM (as reviewed in Larocque, Lewis-Peacock, & Postle (2014)). In one series of studies we have 

used a multistep delayed serial retrocuing (DSR) procedure in which subjects are first presented 

with two sample items to hold in WM, then, after a retention interval, an initial retrocue indicates 

which of the two will be tested by the impending memory probe. Because subjects know, however, 

that this probe will be followed by a second retrocue and a second probe, and because they know 

there is an equal probability that the second retrocue will prioritize either sample item, they cannot 

forget the item not cued by the initial retrocue. This creates a portion of the trial in which two items 

are being held in WM, but only one is a “prioritized memory item” [PMI]). Initially, in studies 

with fMRI (Larocque, Riggall, Emrich, & Postle, 2017; Lewis-Peacock & Postle, 2012) and with 

EEG (LaRocque, Lewis-Peacock, Drysdale, Oberauer, & Postle, 2013; Rose et al., 2016), 

multivariate pattern analyses (MVPA) showed that decoding the neural representation of the PMI 

improved following the initial retrocue, whereas decoding the neural representation of the initially 

uncued (and, therefore, “unprioritized”) memory item (UMI) dropped to baseline levels. More 

recently, there have been reports of multivariate evidence for the UMI, with an item represented 

in a different region (e.g., Christophel, Iamshchinina, Yan, Allefeld, & Haynes, 2018) or in a 

different neural code (e.g., van Loon, Olmos-solis, Fahrenfort, & Olivers, 2018) when a UMI 
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relative to when a PMI. The present study was designed to use a multivariate inverted encoding 

modelling (IEM) approach, which offers advantages over multivariate decoding approaches 

(Serences & Saproo, 2012), to address several questions that arise from these observations: 1) is 

one effect of selection to increase the strength of the neural representation of the PMI? 2) does the 

degradation of MVPA decodability of the UMI truly correspond to a weakening of its neural 

representation? 3) regardless of the answer to (2), is the retrocuing effect on the neural 

representation of the UMI sensitive to its status as a discrete object or as a feature in a 

multidimensional object? The answers to these questions will have implications for broader 

questions, such as whether principles of object- and feature-based attention also apply to WM, and 

whether a complex object is represented in WM as more than the set of features that define it. 

Well-established principles of visual attention, such biased-competition (Desimone & 

Duncan, 1995) and divisive normalization (Carandini & Heeger, 2011), have the potential to 

account the finding that retrocuing leads to a weakening of the UMI.  That is, prioritization of one 

among multiple mnemonic representations could be achieved via top-down signals from 

frontoparietal systems that are important for the endogenous control of attention  (e.g., Nelissen, 

Stokes, Nobre, & Rushworth (2013)). Importantly, the dynamics of biased competition have been 

demonstrated, with MVPA, to influence the population-level representation of objects in a manner 

that would be predicted from single-neuron studies, both in analyses of extracellular recordings 

from neurons in monkey ventral temporal cortex (Zhang, Meyers, Bichot, Serre, Poggio, & 

Desimone (2011)) and in unpublished fMRI data from humans performing a selective attention 

task (Sheldon, Saad, Sahan, Meyering & Postle, 2017). Indeed, it is the effects suggesting the 

operation of object-based attention, in a different previous fMRI study of WM, that motivate the 

present experiment. 

In a DSR study by Lewis-Peacock, Drysdale and Postle (2014), subjects first viewed an 

image of a real-world object (e.g., a baseball), and were then cued as to what dimension of that 

stimulus would be interrogated by a memory probe: its silhouette outline; the phonology of its 

name; or the semantic category to which it belonged. Although the performance of classifiers 

trained independently to discriminate visual from phonological from semantic processing 

strengthened and weakened in a manner congruent with the cues, unlike in studies that required 

WM for two discrete objects, decoding for the uncued stimulus features did not drop to baseline 

levels. One possible account of this observation was that we were observing a neural correlate of 
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an analogue of the “same-object” benefit that is seen in visual selective detection (Driver, 2001; 

Duncan, 1984; Vecera, Behrmann, & McGoldrick, 2000). That is, perhaps the uncued stimulus 

dimensions retained some level of activity because they were an inherent part of the same object 

from which a different stimulus dimension had been selected, and attention therefore spread to all 

components of the selected object. Limitations of that study’s design, however, precluded a strong 

test of this possibility. 

The question of whether multidimensional objects are represented as bound objects in 

visual WM remains contentious in WM research. On one hand, there are several studies  

suggesting that objects defined by a conjunction of two or more features can be maintained just 

as well as can single-feature objects, suggesting that the elementary units of visual WM are 

integrated objects (e.g., Luck & Vogel, 1997; Luria & Vogel, 2011; Woodman & Vogel, 2008). 

Others have argued, however, that the elementary units of visual WM are the features that make 

up complex visual objects, and that the various features of an object are simultaneously stored in 

dimension-specific channels (e.g., Bays, Wu, & Husain, 2011; Wheeler & Treisman, 2002). 

Furthermore, according to these feature-based accounts, feature binding in WM only occurs 

when attention is exerted over the to-be-bound features. For instance, Wheeler and Treisman 

(2002) showed that same-object benefits were observed in visual WM only when subjects were 

not holding competing multi-feature objects in WM, presumably because these would disrupt 

sustained attentional control. The design of the present study may also help to address this 

debate. 

To address more directly whether principles of object-based attention can be observed during 

visual WM, we designed the present study to compare the neural effects of selecting one feature 

from among two 1-dimensional objects being held concurrently in WM, versus those of selecting 

one feature from a single two-dimensional compound object being held in WM. Additionally, for 

the present study we adopted an analytic method that would allow us quantify the effects of 

selection on the strength of WM representations. A limitation of the MVPA decoding approach, 

such as what we have used in many previous DSR studies, is that it does not provide a direct 

measure of neural representations. Thus, for example, although one can observe systematic 

changes in MVPA performance with the manipulation of, say, the number of items being held in 

WM (e.g., Emrich, Riggall, Larocque, & Postle (2013)), the interpretation of such a finding is 

equivocal. Although it could be the strength of the neural representations of items that declines 
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with increasing load, there are equally plausible alternative explanations: Perhaps increasing load 

changes the level of stimulus-nonspecific noise that nonetheless influences the performance of the 

decoder; or perhaps increasing load changes the nature of the neural code, but not of the amplitude 

per se, of stimulus representations. Inverted encoding modeling (IEM), in contrast, entails the 

fitting of data to one or more a priori models that specify the mapping from multiple sensor-level 

signals into a hypothesized population-level representation. This affords the quantification of 

different parameters of the model fit, such that one can estimate, in our case, the extent to which 

selection might strengthen or weaken neural representations in different experimental conditions. 

Additionally, testing the same data with different models can provide evidence for changes to the 

neural code.  

METHODS 

Subjects  

Ten neurologically healthy students from the University of Wisconsin–Madison (3 females, 

18-30 years, M = 22, all right-handed) participated in three 2-hour scanning sessions. One subject 

was excluded from the analyses due to excessive head movement. Another subject was an author 

of this study (A.D.S.). All subjects had normal or corrected-to-normal vision and reported having 

normal color vision. The research complied to the guidelines of the University of Wisconsin–

Madison’s Health Sciences Institutional Review Board, and all subjects gave written informed 

consent.  

Design  

The experiment comprised a 1-item delayed-recall (a.k.a. “delayed-estimation”) task and a 

multiple serial retrocuing task (MSR; Figure 1). The purpose of the delayed-recall task was 

twofold: to serve as a localizer that was independent of the MSR task; and to train feature 

dimension-specific IEMs for testing on the MSR data. Importantly, fits to such an “independent” 

IEM can be used for quantitative comparisons between experimental conditions of interest (e.g., 

the effect of priority status on the neural representation of direction-of-motion in the MSR task). 

The delayed-recall task began with the presentation of a sample stimulus (2 sec), either a patch of 

uniformly colored static dots whose color varied from trial to trial, or a patch of grey dots moving 

with 100% coherence in a direction that varied from trial to trial. Data from this task was used to 

train IEMs to learn the neural bases of perceiving and remembering “color” and “direction of 
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motion”. We note that it is possible that, when moving dots are presented at high contrast within 

a circular aperture, as is the case here, it is possible that the signals that support direction-of-motion 

decoding may not (only) correspond to motion processing, but, perhaps (also) to other factors, 

such as the transients generated by appearance/disappearance of individual dots at the opaque 

boundary of the aperture (e.g., an aperture-inward bias, Wang, Merriam, Freeman, & Heeger, 

(2014)). Importantly, the possible ambiguity about the precise computations underlying the signals 

generated by in this condition are not problematic for interpreting our results, because our interest 

is not in the neural bases of motion perception, per se, but rather in the neural bases of attention to 

either of two visual features that had the subjective properties (for the subject) of being 

categorically different – one reproducible on a color bar, the other with a radial dial -- and the 

objective properties (for the experimenters) of being varied along orthogonal dimensions – values 

in color space for static dots or direction of motion for color-invariant gray dots. For expository 

parsimony, from this point onward we will refer to these feature dimensions as “color” and 

“direction.”  

Each trial of the task of primary experimental interest, the MSR task, began with the serial 

presentation of two 2-dimensional stimuli, each a patch of coherently moving colored dots. Next, 

a “relevance cue” designated what information from the two sample stimuli would be relevant for 

that trial: the color and direction of either the first or the second sample; or the color of both 

samples or the direction of both samples. Thus, a relevance cue indicating “<First>” or 

“<Second>” would designate a trial that would require selection of a feature bound to a 2-D object, 

whereas a relevance cue indicating “<Color>” or “<Direction>” would designate a trial that would 

require selection of the relevant feature of one from among two objects. Following the relevance 

cue, each trial proceeded in the same way as many previous D(ual)SR tasks: a first “prioritization 

cue” indicated which of the two relevant features would be tested by the first recall probe, then a 

second prioritization cue indicated, with a probability of .5, which of the same two relevant 

features would be tested by the second recall probe (Figure 1). For the remainder of this report we 

will refer to trials when the relevance cue designated the “<First>” or “<Second>” sample stimulus 

as “Bound” trials (because they entailed prioritizing a feature that, when perceived in the sample 

display, was bound to another feature as part of a 2-D compound stimulus), and trials when the 

relevance cue designated the “<Color>” or “<Direction>” of the two sample stimuli as “Unbound” 

trials. 
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Experimental Procedure 

Stimuli  

All sample stimuli comprised 400 dots (0.08 in diameter) displayed within an invisible 

circular aperture (7.75° in diameter). Delayed-recall tasks featured 1-dimensional trials: on 

direction trials, gray dots (L=38, a=0, b=0) moved with 100% coherence at a constant speed of 

3.2°/s in a direction that was randomly sampled (without replacement) from a list of 180 vectors 

that spanned the full space of 360˚ in increments of 2˚. The direction recall interface was a dial: a 

white circle (7.75° in diameter) presented centrally with a white radius line (.05° wide) extending 

from the center to the edge of the circle (like the “needle” of an analog speedometer). On each 

trial, the initial angle of the needle was determined randomly, and it could be made to rotate in a 

clockwise or counterclockwise direction by movement of a trackball.  

On color trials, the dots were stationary, and appeared in a color that was randomly sampled 

(without replacement) from of a list of 180 that spanned the full color space of 360˚ in increments 

of 2˚. This color list was generated from an evenly distributed circle on the CIE L*a*b color space, 

centred at L = 80 with radius 60. All colors had an equal luminance and brightness and only varied 

in hue. The color recall interface was a horizontal bar (12.14˚ x 1.55˚) appearing at the centre of 

the screen, its color transitioning smoothly across all possible colors in the color space, and a 

superimposed vertical white line (0.78˚ long, .05° wide; like the analog “tuning bar” on a radio). 

On each trial, the initial position of the tuning bar was determined randomly, and it could be made 

to translate horizontally along the color bar, to the left or to the right, by movement of the trackball.   

Behavioral tasks 

Scanning was performed across three sessions, each on a different day: Day 1 -- 16 15-trial 

scans/blocks of 1-item delayed recall; Day 2 – 8 15-trial scans/blocks of 1-item delayed recall (for 

a total of 360 trials of delayed recall) plus 6 10-trials scans/blocks of MSR; Day 3 -- 10 10-trials 

scans/blocks of MSR (for a total of 160 trials of MSR). Before the start of each scanning session, 

subjects were given instructions, and the tasks were practiced both outside and inside the scanner. 

The task procedures in each phase are described in detail below. 
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Delayed recall  

Each trial started with central presentation of a white fixation cross (0.78˚ width and height) 

against a black background (2 sec), followed by the central presentation of the sample (1 sec). The 

sample was either a patch of coherently moving gray dots or a patch of static dots all presented in 

a uniform color. The white cross returned during the subsequent 9-sec delay period, after which 

recall was prompted during a 3-sec window. On direction trials, subjects were instructed to click 

a response key when they had rotated the needle to an angle that matched their memory of the 

direction of motion of the sample dots. For both trial types, the needle/tuning bar became thicker 

(0.13˚) when the response was registered, and remained at the selected position for the remainder 

of the 3-sec response window, followed by feedback (1 sec; errors £ 15˚ elicited “great”, > 15˚ and 

< 30˚ elicited “good”, and ³  30˚ elicited “poor”), followed by a gray fixation cross displayed 

throughout the 8-sec intertrial interval (ITI). Trial type was randomly interleaved across the whole 

experiment.  

Multiple Serial Retrocuing  

In the MSR task, sample stimuli were 2-D compound objects that combined the features of 

the delayed recall stimuli: patches of moving, colored dots. After two samples were presented, a 

relevance cue indicated what would be the critical to-be-remembered information for that trial: 

cues indicating “<First>” or “<Second>” designated one of the two initially presented stimuli (i.e., 

the “Bound” condition); whereas cues indicating “<Color>” or “<Direction>” designated one of 

the two initially presented features (i.e., the “Unbound” condition). Then, the remainder of all trials 

unfolded with two serially occurring sequences of prioritization cue-delay-probe (Figure 1), with 

each prioritization cue indicating which feature would be tested by the ensuing recall probe. The 

logic was that memory load was equated across both conditions - four feature tokens were initially 

presented, then the relevance cue indicated which two of these four were relevant for the trial, 

presumably reducing the memory load to two feature tokens - and the factor of principal theoretical 

interest was whether the two trial-relevant feature tokens were bound together in the same object 

or were drawn from two discrete objects. (Note that in this design, the factor boundedness is 

confounded with category homogeneity, in that Bound trials always required memory for a color 

and a direction, whereas Unbound trials always required memory for two colors or for two 

directions. However, because previous studies have shown a drop-to-baseline of the MVPA 
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decodability of the UMI regardless of whether the two (unbound) memory items are drawn from 

the same or from different categories (LaRocque et al., 2013; Larocque et al., 2017; Lewis-Peacock 

& Postle, 2012), this confound was deemed unlikely to complicate the interpretation of the results.)  

Whereas relevance cues presented a single word displayed in brackets -- “<First>” or 

“<Second>” for Bound trials; “<Direction>” or “<Color>” for Unbound trials -- priority cues used 

the same four words but without brackets. Note that the same word could never appear as both 

types of cue on the same trial (i.e., after a relevance cue of “<First>” or “<Second>”, the 

subsequent priority cues could only be “Direction” or “Color”, and vice versa). In both conditions, 

priority cue 2 was equally likely to cue the feature token that had or that had not been cued by 

priority cue 1, resulting in 20 “stay” trials -- in which the same feature token was probed twice -- 

and 20 “switch” trials, per cell in our design. The total duration of a trial was 52 seconds, with 

subjects performing 160 trials in randomized order across 16 blocks of 10 trials each. All stimulus 

parameters were the same as in the delayed-recall task unless specified otherwise, and trial timing 

is illustrated in Figure 1. Both feature dimensions were randomly drawn (with replacement) from 

the full 360˚ of their respective feature spaces, in increments of 1˚. The feature orientations of the 

second sample were constrained to a minimum angular separation of 40˚ relative to the first 

sample.  
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Figure 1 (A) Illustration of a trial from each condition of the 1-item delayed recall task. (B) Sample-evoked 

feature-nonselective VOT ROI, and Delay-evoked feature-nonselective frontal ROI, from a representative subject. (C) 

Illustration of a trial from the Bound and a trial from Unbound conditions of the MSR task, together with group-, 

condition-, and trial-averaged BOLD signal from the ROIs illustrated in B. The width of the traces denotes the standard 

error of the mean. 

 

Behavioral Data Analysis 

Performance was assessed using a descriptive approach and a model-fitting approach. For 

both, a continuous measure of error for each response was obtained as the angular distance between 

the reported feature orientation and the true feature orientation. For the descriptive approach, a 

precision measure was then calculated as the reciprocal of the standard deviation of the error 

(calculated with Fischer's formula with a correction for systematic underestimation as outlined in 

Bays, Catalao, & Husain (2009); http://paulbays.com/). The descriptive precision measures for 

each of the two probes were then submitted to a 2 x 2 repeated-measures analysis of variance 

(ANOVA) with category selected by the relevance cue (Bound or Unbound) and feature dimension 

(direction or color) as within-subjects factors. Trials on which no responses were given were 

excluded from the analyses (3%). An alpha level of .05 was applied and Bonferroni correction was 

used on multiple tests to control for false-positives in post-hoc testing. 
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The model-fitting analysis used a mixture model that decomposes the sources of error into a 

mixture of Gaussian variability around the target color (PT), a Gaussian variability around the non-

target (PNT; also referred to as “misbinding” or “swap” errors), and a fixed probability of random 

guessing (PU). This model applied to the current data set can be described as follow: 

𝑝 𝜃 = 1 − 𝛾 − b 𝜙( 𝜃 − 𝜃 + 	𝛾
1

2𝜋
+	b	𝜙( 𝜃 − 𝜃

∗ , 

where 𝜃 is the target feature (probed), 𝜃 the value reported by the subjects, and 𝜙( the von Mises 

distribution (circular analog of the Gaussian) with a mean of zero and concentration parameter k. 

The probability of misremembering the target feature is b with the orientation value of the non-

target feature. The probability of random guessing is captured by 𝛾. Maximum likelihood estimates 

of the parameters k, b, g were separately obtained for each subject in each category and feature 

dimension conditions only for the first probe. The model components were then independently 

subjected to a univariate repeated-measures ANOVA with relevance cue (Bound vs. Unbound) 

and feature dimension (color vs. direction) as a within-subjects factor. Mixture modelling was only 

applied to the data from probe 1 because there was not a sufficient number of trials per condition 

to fit the model to the probe 2 data (due to the additional factor of “stay” vs. “switch”). 

Data Acquisition and Preprocessing 

Whole brain images were acquired with the 3 T MRI scanner (Discovery MR750; GE 

Healthcare) at the Lane Neuroimaging Laboratory at the University of Wisconsin-Madison. High- 

resolution T1-weighted images were acquired for all subjects with an FSPGR sequence (8.132 ms 

time repetition (TR), 3.18 ms time echo (TE), 12° flip angle, 156 axial slices, 256 × 256 in- plane, 

1.0 mm isotropic). Blood oxygen level-dependent (BOLD)-sensitive data were acquired using a 

gradient-echo, echoplanar sequence (2 s TR, 25 ms TE) within a 64 × 64 matrix (39 sagittal slices, 

3.5mm isotropic).  

fMRI data analysis 

fMRI data analysis was performed using the Analysis of Functional NeuroImages (AFNI) 

software package (http://afni.nimh.nih.gov; Cox, 1996). All volumes were spatially realigned to 

the final volume of the final functional run using rigid-body realignment. The processing pipeline 

included slice time correction, detrending, conversion to percent signal change. 



Generation of ROIs 

Regions of interest (ROIs) were generated as a conjunction of anatomically and functionally 

defined voxels.  

First, anatomical ROIs were generated using the Talraich anatomical atlas (TTatlas; 

https://sscc.nimh.nih.gov/afni/doc/misc/afni_ttatlas/index_html0). Coordinates for relevant gyri in 

the TTatlas were used to generate masks for each gyrus, which were then warped into an 

individual’s native space, and aggregated to create three regional masks. The frontal anatomical 

mask comprised the precentral, anterior cingulate, inferior frontal, middle frontal, superior frontal, 

and medial frontal gyri. The parietal anatomical mask was similarly generated and comprised the 

posterior cingulate gyrus, precuneus, inferior parietal and superior parietal lobules. Importantly, 

this included the intraparietal sulcus. The ventral occipitotemporal (VOT) mask comprised the 

lingual, fusiform, inferior occipital, inferior temporal, middle occipital, superior occipital gyri, and 

the cuneus. 

Next, we fit a general linear model (GLM), separately for each subject, to the data from the 

delayed-recall task. Regressors of interest were delta functions placed at the beginning of stimulus 

onset, and a nine second boxcar modeling the delay period, all convolved with a canonical 

hemodynamic response function. Nuisance covariates modelled head motion and block effects. 

From the solution of the GLM we extracted, from each anatomical region, the top 400 voxels with 

the highest positive t-statistic associated with each of several contrasts: [Samplecolor – baseline], 

[Sampledirection – baseline], [Delaycolor – baseline], and [Delaydirection – baseline] to construct 

“feature-selective” ROIs; [(Samplecolor + direction) – baseline] and [(Delaycolor + direction) – baseline] to 

construct “feature-nonselective” ROIs. Of the resultant functionally defined ROIs, different 

instantiations would be most suitable for different analyses. 

Multivariate Inverted Encoding Modeling 

Conceptually, an IEM effects a projection of the data from a large number of individual 

sensors into a single population-level, distributed representation (Brouwer & Heeger, 2009). To 

implement it, we followed the steps laid out in Ester, Sprague and Serences (2015), first, for each 

feature dimension (color and direction), modeling the response of each voxel as a linear sum of 

nine hypothetical information channels which, taken together, spanned the full stimulus space for 



each feature. This relationship can be expressed in the form of the following general linear 

equation: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1 						𝐵8 = 	𝑊𝐶8 

where B1 (v voxels x n trials) is the observed BOLD response in each voxel in each trial, C1 

(k channels x n trials) reflects the expected responses for each information channel on each trial. 

For each feature, a basis set of nine modified von Mises functions (equation 4 below) was 

generated, each centered (by varying the 𝜇 parameter) around one of 9 orientations, each 40 

degrees apart (at 20˚, 60˚, 100˚ through 340˚), so as to cover the full 360-degree feature space. 

Each basis function can be construed a channel in stimulus-representation space. We set the 𝛼, 𝑘, 

and 𝛽 parameters to 1,7, and 0 respectively to best approximate tuning properties of MT neurons 

(Duijnhouwer, Noest, Lankheet, Berg, & Wezel, 2013). To model color, we extracted a circular 

portion of L*A*B color space using the procedure similar to that outlined in Brouwer and Heeger 

(2009). 

The first step in implementing the model (the training phase) is to regress a portion of the 

voxel data 𝐵8 (v voxels x m trials) against the basis set, using ordinary least-squared regression 

(Equation 2), to generate a weight matrix:  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2 						𝑊 = 	𝐵8𝐶8
? 𝐶8𝐶8

? @8 

This weight matrix W (v voxels * k channels) constitutes a mapping from “channel space” to “voxel 

space”. Thus, W represents the relative strength (or weight) of the contribution each channel makes 

to the voxel’s overall response. This set of weights is sometimes referred to as a population 

receptive field or a voxel tuning function. 

In the second step (the testing phase), the weight matrix is inverted, such that it now 

constitutes a mapping from “voxel space” to “channel space”, and applied to the remaining voxel 

data, 𝐵A (v voxels * m trials), in order to generate an estimated representation in channel space, C2 

(k channels * m trials): 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	3 						𝐶A =	 𝑊
?𝑊

@8
𝑊?𝐵A 

As an initial validation step, we implemented a leave-one-run out cross-validation procedure 

where, for each fold, one of the runs from the delayed-recall task was set aside and each time point 



from the remaining runs was used to generate a weight matrix for each feature dimension (color 

and direction) within each ROI. We then inverted the weight matrix and applied it to data from the 

left-out run to generate reconstructions in channel space (also referred to as “channel tuning 

functions” CTFs). Reconstructions from each iteration of the leave-one-run-out procedure were 

then aligned and averaged together to generate reconstructions for the delayed-recall task, which 

we then quantified using the procedure outlined below. These results are shown in Figures 4, 5 

and 6.  

Once the weight matrix was generated from delayed-recall data, data from each time point 

in the MSR task (testing phase) was multiplied by the inverted weight matrix as described in 

Equation 3 to generate a reconstruction time course of direction. Each of these feature-specific 

reconstruction time courses were then circularly shifted to a common center (0˚) and averaged with 

those from like trials. Thus, for example, to generate the “Attended” reconstructions for the 

Unbound condition (Figure 7), channel outputs from trials for which “<Direction>” was relevance-

cued, and for the item that was cued by priority cue 1, were aligned along the priority-cued item’s 

direction and averaged together. In order to generate the smooth, 360-point functions shown in 

Figures 8 and 10, we repeated the IEM analysis a total of 39 times and shifted the centers of the 

direction or color channels by 1˚ on each iteration. 

Reconstructions were then quantified using a bootstrapping procedure similar to Ester et al. 

(2015). In each ROI, for each feature dimension, each time point, and each condition, 

reconstructions from all nine subjects were randomly sampled with replacement nine times to 

generate a 9x360 dimension resampled reconstruction matrix. This resampled matrix was averaged 

across the first dimension (subjects), yielding an averaged reconstruction that was then fit with the 

following von Mises response function: 

(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	4)						𝑓 𝑥 = 	𝛼 𝑒k(IJK L@M @8) + 𝛽 

where x is a vector of 360 channel responses. 𝜇, k, and 𝛽 correspond to the center (i.e., mean), 

concentration (i.e., inverse of width) and baseline (i.e., vertical offset) of the function, respectively, 

and 𝛼 corresponds to the amplitude of the function (i.e., vertical stretching/scaling). Fitting was 

performed using a combination of a gridsearch procedure and ordinary least squares regression. 

The response function (Equation 4) was defined by setting the 𝜇 parameter to 0 (reflecting our 

alignment across trials to a 0˚ centered channel) and the 𝛽 parameter to 1. A range of plausible k 



values was then defined (from 1-30 in increments of 0.1). For each k value, a design matrix was 

then generated containing the response function and a constant term (i.e., a vector of 1s). Fitting 

the reconstructed feature tuning curves yielded estimates of 𝛼	and 𝛽, the regression coefficients 

for the design matrix and constant terms respectively. The best fitting curve that minimized the 

sum of squared errors between response function and data was then selected. 

This procedure was repeated 10,000 times in total, yielding 10,000 bootstrapped estimates 

of amplitude, baseline, and concentration. To test the whether the amplitudes of the PMI and UMI 

representations were significantly above baseline levels, (one-tailed) p-values for the robustness 

of the PMI and UMI feature reconstructions were separately calculated in the Unbound and Bound 

conditions by assessing the percentage of bootstrapped iterations whose amplitude estimates were 

negative. In other words, statistical significance at an alpha level of 0.05 implies that at least 95% 

of resampled reconstructions have a positive amplitude (ppos).  

In order to test whether feature reconstructions of PMIs were stronger than those of UMIs, 

we computed the difference between the bootstrapped amplitudes of the PMI and UMI 

reconstructions, forming a distribution of difference scores. We assessed the percentage of 

bootstrapped iterations whose amplitudes were negative. In other words, statistically significant 

differences (at p<0.05) between the PMI and UMI conditions would indicate that 95% of the 

differences in the resampled amplitude estimates of the PMI and UMI reconstructions were 

positive (ppos). The difference between the PMI and UMI reconstructions were separately 

calculated in the Unbound and Bound conditions. The same principle of statistical testing was 

applied to the baseline parameter. We were particularly interested in the attentional modulations 

of feature representations late in the delay period, namely in the time points 15 and 21 in response 

to priority cue 1 and priority cue 2, respectively. Therefore, the tests in the results sections are 

mainly focused on these time points (see figures 8 and 10). However, reconstructions of the entire 

time courses of the delay periods of both priority cues are presented in supplementary figures along 

with the statistics on the amplitude and baseline differences between PMI and UMI feature 

reconstructions.  

Delay 4, following the presentation of priority cue 2, differed from delay 3 because only in 

the former could the uncued feature be dropped from WM. The results from delay 4, therefore, 

could provide insight about whether the putative “dropping” operation differs as a function of 



boundedness
1
. Because analyses of data from delay 4 could only use half of each subject’s data, 

due to only switch trials affording a comparison of the transition of an item from PMI to 

UMI/”dropped memory item” (DMI) following priority cue 1 vs. priority cue 2, we restricted our 

analyses of delay 4 of MSR trials to TR 21, the final TR expected to reflect delay-period processing 

uncontaminated by the processing of probe 2 (see, e.g., the BOLD time courses in Figure 1), and 

carried out the same analyses on TR 15, to allow for like-to-like comparison of stimulus feature 

representations between delay 3 and delay 4. Over the course of data analysis, we observed that, 

in some conditions, the reconstruction of the UMI produced amplitudes that were negative (c.f., 

(van Loon et al., 2018)). Because these outcomes were not predicted, we evaluated whether these 

“negative reconstructions” differed significantly from 0 by calculating two-tailed p-values: first, 

the probabilities of obtaining a positive (ppos) or a negative (pneg) amplitude among the 10000 

bootstrapped amplitudes were calculated; next, two-tailed p-values were obtained using:  

(Equation 5) p=2*min(ppos, pneg). 

 

Multivariate pattern analyses  

We carried out multivariate pattern analyses (MVPA) to clarify and/or refine the 

interpretation of some of the findings from the IEM analyses, using L2-regularized logistic 

regression (with a lambda penalty term of 25) applied to z-scored BOLD, and implemented with 

the Princeton Multi-Voxel Pattern Analysis toolbox (www.pni.princeton.edu/mvpa/) and custom 

scripts in MATLAB (c.f., Lewis-Peacock et al., 2012). MVPA was carried out on two levels of 

stimulus information: (i) within feature (color and direction labeled as belonging to one of four 

quadrants in their respective 360° stimulus spaces, carried out in feature-selective ROIs); and (ii) 

between feature (color vs. direction), carried out in feature-nonselective ROIs). 

To assess the representation of stimulus-level of information, we trained two classifiers, one 

from color-sensitive voxels and one from motion direction-sensitive voxels as in the IEM analyses, 

separately for each ROI, to classify motion-direction and color values categorized as belonging to 

																																																								

1
 We use scare quotes when referring to a putative “dropping” operation, because our interpretations are agnostic with 

regard to whether no-longer-relevant information is actively removed from WM, or whether it passively decays out 

of WM. 



one of four quadrants (centered at 45°, 135°, 225° and 315°, each spanning a 90° wedge of 

positions within the full 360° range of possible colors and motion directions). Categorizing stimuli 

in this way enabled us to determine whether coarse stimulus information might be decodable in 

the frontal and parietal ROIs for which the IEMs failed to reconstruct exemplar-specific feature 

information. Classifiers were trained on late delay-period data from the delayed-recollection task 

(TR 6), with k-fold cross-validation (train on 23 runs, test on the 24
th

), classification accuracy 

averaged across folds and compared against chance performance with two-tailed t-tests 

(Bonferroni corrected).  

Additionally, to assess the representation of higher-order information about stimulus 

category, we trained classifiers (in feature-nonselective ROIs) to accurately distinguish between 

the categories of color vs. direction on data from the 1-item delayed recall task. MVPA methods 

were the same as described above, with the exception that on two labels were used for training 

(“color,” “direction”), and so to statistical significance was assessed with two-tailed t-tests 

comparing accuracy to chance performance (50%).   

Finally, to assess evidence for cognitive control-related activity, we also applied the 

category-level decoders trained on data from the 1-item delayed-recall task to data from the MSR 

task. Because a hallmark of control is that it should dynamically track changing contingencies 

within individual trials, we carried out these analyses by applying late-delay classifiers from the 

1-item delayed-recall task to every TR of “switch” trials from the Bound condition of the MSR 

task. This would generate classification time courses for MSR trials that featured within-trial 

switches of priority between stimulus category. For this analysis, at each time point of the MSR 

task, and for each category, a measure of pattern similarity was computed between the voxel 

patterns for that TR and the late-delay patterns from the 1-item delayed-recall task. Using logistic 

regression, each category’s pattern similarity score was then converted into “classifier evidence,” 

a value between 0 and 1 that can be interpreted as the extent to which the pattern at the tested TR 

matches the pattern learned by the classifier (i.e., conceptually similar to a correlation coefficient; 

c.f., Lewis-Peacock & Postle, 2012; Polyn, Natu, Cohen, & Norman, 2005). Average classifier 

estimates were computed by sorting trials according to the feature dimension selected by priority 

cue 1 and the feature dimension selected by priority cue 2. Statistical significance of the evidence 



between the feature dimensions as function of the priority cues was computed by pairwise t-tests 

at each time-point (Bonferroni corrected).  

RESULTS 

Behavioral 

Model-free measures 

Analysis of the precision of responses revealed only main effects of feature dimension: probe 

1 [F(1,8) = 10.76, p<.05, hp
2
=.57] with an overall higher precision for direction (M = 2.99, SE = 

.61) than for color (M = 1.44, SE = .19) responses (other effects n.s.); probe 2 [F(1,8) = 7.62, 

p<.05, hp
2
=.49] with an overall higher precision for direction (M = 2.46, SE = .49) than for color 

(M = 1.53, SE = .25) responses (other effects n.s.; Figure 2). 

 

Figure 2 Model-free behavioral results. (A) Probe 1: Recall was less precise for color than for direction trials, 

but insensitive to binding status. (B) Probe 2: Recall was less precise for color than for direction trials, and insensitive 

to binding condition and to “stay”/“switch” status of priority cue 2. 

	

Mixture modeling 

Although inspection of results for k  (Figure 3.A.) suggests qualitatively similar patterns to 

those for precision, ANOVAs indicated, instead, a greater sensitivity to boundedness (main effect 

of relevance cue [F(1,8) = 5.66, p<.05, hp
2
=.41], with k higher in the Bound (M = 20.02, SE = 

2.91) than the Unbound (M = 13.94, SE = 1.4) condition), and the difference between feature 

dimensions no longer meeting the threshold for significance [F(1,8) = 4.84, p=.059, hp
2
=.38] 

A. First Probe Precision

Direction Color

B. Second Probe Precision



(direction trials (M = 21.75, SE = 3.78); color trials (M = 12.22, SE = 1.50)). The interaction 

between boundedness and feature dimension for k did not reach significance (F<1).  

The greater difficulty of color than direction performance, as suggested by the descriptive 

statistics, was captured in the model’s estimates of PT ([F(1,8) = 7.51, p<.05, hp
2
=.48], with a 

higher PT for direction (M = .95, SE =.016) than for color (M = .89, SE = .036) responses (other 

Fs < 1)), and of PNT ([F(1,8) = 8.17, p<.05, hp
2
=.51], with a lower PNT for direction (M = .02, SE 

=.006) than for color (M = .059, SE =.016) (other Fs < 1)). There were no differences in PU (Fs < 

4).  

 

Figure 3 Mixture-model estimates for probe 1 responses: (A) Concentration parameter; (B) probability of 

response to target; (C) swap errors; and (D) guesses. 

 

IEM Reconstructions  

1-item delayed recall  

Sample-evoked ventral occipitotemoral ROI. In the sample-evoked VOT ROI, stimulus 

feature reconstructions were markedly superior for direction than for color. For direction, a model 

that was trained on TR 4 (i.e., the volume collected from 5-6 sec after sample onset, when the 

sample-evoked BOLD response was expected to be maximal (c.f., Figure 1.C.)) yielded a robust 

A. B.

C. D.



reconstruction when tested at that same TR (with leave-one-run-out k-fold cross validation). 

Furthermore, sweeping this model across all 12 TRs of the trial yielded reliable reconstructions 

spanning from the first TR of the delay period through to the second TR after the response window, 

thereby demonstrating robust cross-temporal generalization, and indicating that stimulus direction 

was represented, in part, with a perceptual neural code throughout the trial (Figure 4.A.). The same 

qualitative pattern of reconstruction was observed when this process was repeated with a model 

trained on data from TR 6, which was intended to capture signal primarily attributable to delay-

period processing (Figure 4.B.) Finally, direction reconstruction was achieved at all but the TR 

preceding sample presentation when a model was trained at tested at each TR (i.e., “along the 

diagonal” of a cross-temporal matrix, Figure 4.C.). For color, an IEM could be successfully trained 

at TR 4, but did not generalize to any other TRs (Figure 4.D.), and one trained at TR 6 generalized 

to TRs 5 and 8 (Figure 4.E.). When models were trained and tested at each TR, the reconstruction 

of color information was successful for only a subset of TRs associated with the 

perception/encoding and retention of color information, as well as for TRs during the ITI that 

followed the probe (Figure 4.F). Although one might expect poorer IEM reconstruction for the 

stimulus feature that was remembered less well (i.e., color recall was inferior to direction recall), 

it could also be the case that the reconstruction of neural representations of color would have been 

more robust had we attempted to optimize for IEM the plane of the slice through CIE space that 

we selected to generate our stimuli. Additionally, our method does not allow us to know the extent 

to which verbalization may have contributed to color WM performance, a possibility that would 

not be expected to produce robust IEM in VOT ROI.  

Delay-evoked Parietal and Frontal ROIs. In parietal cortex, successful reconstruction of 

sample direction was restricted to just a few TRs associated with encoding/early delay and with 

recall/response, and no successful reconstructions of sample color (Figure 5). In frontal cortex the 

pattern was similar, with the exception that there were a few successful reconstructions of sample 

color in ITI TRs (Figure 6).  



 

Figure 4 Time courses of IEM reconstructions from the 1-item delayed-recall task, in feature-selective VOT 

ROIs. Rows illustrate results for direction (top, panels (A), (B), and (C)) and color (bottom, panels (D), (E), and (F)), 

and columns the results for three procedures: train on TR 4  (a “perception/encoding” model) and test at every TR 

(left, panels (A) and (D)); train on TR 6  (a “delay” model) and test at every TR (middle, panels (B) and (E)); and train 

and test at each TR (“along the diagonal,” right, panels (C) and (F)). In each panel, channel is arrayed along the 

horizontal axis, from -160° to 160°, time (in TRs) proceeds from top to bottom, and the dependent data are channel 

responses (averaged after aligning each trial to 0°). Significance of the reconstruction at each TR, determined by 

bootstrapping, is indicated by asterisks (* = p<.05; ** = p<.01; *** = p<.001; **** = p<.0001). 
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Figure 5 Time courses of IEM reconstructions from the 1-item delayed-recall task, in feature-selective parietal 

ROI. All display conventions the same as Figure 4. 
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Figure 6 Time courses of IEM reconstructions from the 1-item delayed-recall task, in in feature-selective 

frontal ROIs. All display conventions the same as Figure 4. 

 

 Multiple Serial Retrocuing  

Results from the analyses of the 1-item delayed-recall data indicated that the IEM 

reconstruction of the neural representation of direction was markedly superior than that for color, 

and, furthermore, that the reconstruction of direction was markedly stronger in the VOT than in 

the parietal and frontal ROIs. Therefore, to maximize the sensitivity for addressing our question 

of principal interest, we focused on the representation of direction in the VOT ROI by training a 

“1-item delay” IEM from TR 6 of the delayed-recall task and testing it on data from the MSR task.  
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Unbound condition. On trials of all types, the neural representation of direction in the VOT 

was robust during the delay period prior to the relevance cue (TR 6 in panels A and D of Figures 

7 and 9). Furthermore, on Unbound trials, after the relevance cue indicated “<Direction>”, the 

reconstructions of the direction of the sample that would become the PMI (Figure 7.A.) and of the 

sample that would become the UMI (Figure 7.D.) were both robust during the TRs leading up to 

and immediately following priority cue 1 (TR 11), with statistically comparable reconstructions 

from the data collapsed across TRs 9, 10, and 11 (two-tailed, p=.69).  

Once priority cue 1 designated one item the PMI and one the UMI, the amplitude of the 

reconstructions diverged markedly. IEM of the PMI produced robust delay-period reconstructions 

from TR 12 through TR 15, with the reconstruction strengthening across the delay preceding probe 

1 (slope = .039, p<.05). For IEM of the UMI, in contrast, the amplitude of the 0° channel declined 

significantly from TR 12 to TR 15 (slope =-.069, p<.001), and no reconstructions were reliable 

from TRs 13-16. Indeed, the output of the channels near 0° channel dropped below that of flanking 

channels, although this trend toward a significantly “negative” channel tuning function did not 

achieve significance when the data were collapsed across TRs 13, 14, 15 (two-tailed, p=0.27). 

Finally, statistical comparisons confirmed that reconstructions of the PMI were higher in amplitude 

than those of the UMI (signal from both collapsed across TRs 13 through 15, one-tailed, p < .0001).  

No reconstructions were reliable in the parietal and frontal ROIs. Unexpectedly, however, 

in all ROIs, the overall magnitude of IEM channel outputs increased markedly from Delay 1 (TR 

4 through 6) to Delay 2 (TR 8 through 10), as reflected in significant increases in the values of the 

baseline parameter in the VOT (p<.001, two-tailed) and parietal (p<.01, two-tailed) ROIs; for the 

frontal ROI (p=.11). (Possible interpretations of changes in baseline will be considered in the 

section on Multivariate classification, below.) 

The DMI following priority cue 2. At TR 21, on “stay” trials, neither the PMI nor the DMI 

could be reconstructed (Figure 8.B.). On “switch” trials, however, the IEM reconstruction of the 

newly cued PMI (which had been flat and nonsignificant during the previous delay; Figure 8.A.) 

was robust at the end of delay 4 (TR 21), and that of the DMI trended in the opposite direction: 

that is, the reconstruction displayed minimal channel output along the aligned direction and 

maximal output for channels representing the opposite direction. Because such a “complementary” 

reconstruction (in reference the complementary nature of a cosine wave in relation to a sine wave) 



was not predicted, we assessed its significance with a two-tailed test, which indicated that it missed 

the threshold for significance (p = .06, Figure 8.C., left-hand column). At TR 21 the PMI and DMI 

differed in amplitude (p < .01) and in baseline (p < .05, two-tailed).  

 

Figure 7 Time course of the neural representation of direction during Unbound trials, across the first half of 

the MSR task, as a function of priority status. The top row of panels illustrates the reconstruction of the direction of 

motion was cued by priority cue 1, and the bottom row illustrates the reconstruction of the direction of motion was 

not cued by priority cue 1. All display conventions within each panel are the same as Figure 4. 
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Figure 8. The reconstruction of the neural representation of direction of the PMI (red) and the UMI (blue) 

from individual TRs of Unbound trials, in the feature-selective VOT ROI, at (A) TR 15 (immediately prior to probe 

1), (B) TR 21 (immediately prior to probe 2) on “stay” trials, and (C) TR 21 on “switch” trials. In each plot, channel 

is arrayed along the horizontal axis, and the dependent data are channel responses (averaged after aligning each trial 

to 0°). The width of each reconstruction trace represents the standard error of the mean across subjects, interpolated 

across the 360 discrete data points in the averaged data. Significance of the reconstructions of the PMI and UMI is 

indicated by red and blue asterisks, respectively (* = p<.05: ** = p<.01; *** = p<.001; **** = p<.0001). Significance 

of the difference between the baseline parameter of the of the PMI vs. the UMI reconstruction are indicated with black 

circles (• = p<.05; •• = p<.01). 

 

Interim summary of results from Unbound condition. For trials on which the relevance cue 

indicated “<Direction>”, the subsequent priority cue 1 influenced the representation of both 

features held in WM: the representation of the PMI increased in strength across the subsequent 

delay 3, whereas the representation of the UMI decreased in strength to the point that it could no 

longer be reconstructed by the end of delay 3. This is the pattern of results that would be expected 

if the principles of biased competition apply to the selection of one from among two working-

memory representations of stimuli in the same way that they do for the selection of one from 

among two objects in a visual scene. On trials when priority cue 2 prompted a switch of 

prioritization status, the IEM reconstruction of the newly designated PMI increased over the course 

of delay 4, whereas that of the newly designated DMI decreased over the course of delay 4, from 

being significantly positive at the beginning (Figure 7.A.) to being nonsignificant and bordering 

on complementary to the trained model at the end. Additionally, the baseline parameter of this 

complementary reconstruction of the UMI during delay 4 was higher than that of the PMI.  

Bound condition. After the relevance cue indicated “<First>” or “<Second>”, the 

reconstructions from the VOT ROI of the direction of the sample that would become the PMI 
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(Figure 9.A.) and of the sample that would become the UMI (Figure 9.D.) were robust during the 

TRs leading up to and immediately following priority cue 1 (TR 11), with statistically comparable 

reconstructions from signal collapsed across TR9, TR10, and TR11 (two-tailed, p=.77). Unlike in 

the Unbound condition, however, the designation by priority cue 1 of the PMI and the UMI had 

only a relatively minor effect on the IEM reconstructions. Although the IEMs of the PMI 

reconstructions were sustained across the ensuing delay period, their strength did not increase 

(slope = .026, p = 0.25). Furthermore, although the amplitude of the reconstructions of the UMI 

decreased across this delay period (slope = -.050, p < 0.05), they remained statistically significant 

across the delay period, and only beginning with TR 15 did the reconstruction of the UMI decline 

in amplitude to a point at which it was significantly lower than that of the PMI (p < .05).  

Results from the Bound condition also differed markedly from the Unbound condition in the 

parietal and frontal ROIs, in that representations of the direction of the PMI became significant 

with the onset of priority cue 1 and for a few TRs into the ensuing delay 3 (Figure 9.B. and C., top 

row), as well as, in the frontal ROI, of the UMI for a single TR.  

The overall magnitude of IEM channel outputs increased from Delay 1 to Delay 2, as 

reflected in the values of the baseline parameters, although, as with the Unbound condition, this 

increase only reached significance in the VOT (two-tailed, p<.0001) and parietal (two-tailed, 

p<.05) ROIs.  

 The DMI following priority cue 2. The patterns at late-delay 4 (TR 21) mirrored those from 

the Unbound condition: On “stay” trials neither the PMI nor the DMI could be reconstructed 

(Figure 10.B.); and on “switch” trials, reconstruction of the PMI was significantly positive (p < 

.0001) and that of the DMI was nonsignificant, but trending toward a complementary 

reconstruction (p = .09, two-tailed); and the two differed significantly from each other (p < .0001).  



 

Figure 9 Time course of the neural representation of direction during Bound trials, across the first half of the 

MSR task, as a function of priority status. All display conventions within each panel are the same as Figure 4. The top 

row of panels illustrates trials during which direction became the PMI during delay 3, and the bottom row illustrates 

trials during which direction became the UMI during delay 3. All display conventions within each panel are the same 

as Figure 4. 
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Figure 10 The reconstruction of the neural representation of direction of the PMI (red) and the UMI (blue) 

from individual TRs of Bound trials, in the feature-selective VOT ROI, at (A) TR 15 (immediately prior to probe 1), 

(B) TR 21 (immediately prior to probe 2) on “stay” trials, and (C) TR 21 on “stay” trials. All display conventions the 

same as Figure 8. 

	

Interim summary of results from Bound condition, and comparisons between conditions. 

On trials when “direction” was cued by prioritization cue 1, the IEM reconstruction of the PMI 

remained robust across the ensuing delay period, but it did not increase in strength. On trials when 

“color” was cued by prioritization cue 1, although the amplitude of the neural representation of 

the UMI declined across the ensuing delay period, it nonetheless remained significantly elevated 

throughout the delay (Figure 9). Together, these results are consistent with the idea that a cardinal 

principle of object-based attention may apply to visual WM in a manner similar to visual 

perception: When one feature of an object is selected, the benefits of attention extend to all features 

of that object (e.g., Duncan, 1984; Egly et al., 1994). Although we cannot rule out the possibility 

that the UMI may have also benefited from the allocation of spatial attention to the stimulus of 

which it was a part, this possibility seems unlikely because, by this account, spatial attention would 

also be expected to boost the strength of the DMI, but this was not observed: Following 

prioritization cue 2, the representation of the PMI at TR 21 was positive, and the representation of 

the DMI was nonsignificant (and, indeed, trending in a direction opposite to what a spatial attention 

account would predict). Because this pattern mirrored what was observed in the Unbound 

condition, the implication is that the dynamics of “dropping” a no-longer-needed feature from WM 

may be similar across these two conditions.  

To quantify comparisons across conditions, we first established that the amplitudes of the 

reconstructions of direction that would become the PMI during delay 3 (i.e., at TRs 12-15) were 
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comparable during the time immediately preceding priority cue 1 (i.e., at TRs 9-11, p = .31; n.s.). 

Next, comparison of the change in PMI amplitudes across delay 3 indicated that the strengthening 

of the PMI that was observed in the Unbound condition did not differ significantly from the flat 

slope of the amplitude of the PMI in the Bound condition (slope difference = .01; two-tailed, p = 

.74). Finally, at TR 15, the amplitudes of the PMI did not differ between Bound and Unbound the 

conditions (two-tailed, p = .52). Turning to the UMI, we first established that the amplitudes of the 

representations of direction that would become the UMI during delay 3 were comparable during 

the time immediately preceding priority cue 1 (i.e., at TRs 9-11: two-tailed, p = .62; n.s.). Next, 

comparison of the slopes of the decline in the strength of the UMI across delay 3 indicated that the 

weakening of the UMI across delay 3 was not significantly different in the two conditions (slope 

difference = -.019, p = .55). At TR 15, however, the amplitudes of the UMI differed between 

Bound and Unbound conditions (two-tailed, p < .05).  For delay 4, on “switch” trials, in both the 

Bound and the Unbound conditions the reconstructions at TR 21 were significantly positive for the 

PMI and trending toward complementary for the UMI. In summary, although many of the patterns 

observed during the Bound vs. the Unbound conditions did not differ statistically from each other, 

the difference in the amplitude of the UMI at the end of delay 3 confirmed the theoretically 

important observation that the processing of the UMI is dependent on the effects of object-based 

attention.   

Multivariate pattern classification 

Delayed-recall task  

In the VOT ROI, successful decoding of direction (t(8) = 3.45, p<.05; Figure 11.A.) 

validated the logic of decoding stimulus identity by binning specific items into arbitrarily defined 

quadrants. It also argued against the possibility that the failure to successfully reconstruct direction 

in parietal and frontal ROIs (ts < 1.36), as well as the failure to reconstruct color in any of the ROIs 

(ts < 1.03; Figure 11), might be attributable to the method, per se. Indeed, these null decoding 

findings were broadly in line with the results of the IEM analyses. In contrast to these null findings, 

successful decoding of trial type (color vs. direction) in parietal (t(8)=10.61, p<.001) and frontal 

(t(8)=8.4, p<.001) regions, (as well as in VOT cortex (t(8)=6.72, p<.001); Figure 11.B.) indicated 

that these regions tracked higher-order task-related information. 

  



 

Figure 11 MVPA decoding of stimulus feature information from the late delay period of the 1-item delayed-

recall task. (A) Performance of classifiers trained on data labeled according to post hoc-defined quadrants in 360° 

stimulus space. (B) Performance of classifiers trained on data labeled according to feature category (i.e., color vs. 

direction). Statistically reliable classification is denoted by asterisks (* = p<.05: ** = p<.01; *** = p<.001; **** = 

p<.0001). 

	

Multiple serial retrocuing task  

MVPA of stimulus category. Although parietal and frontal cortex are generally associated 

with the control of WM (e.g., Brincat, Siegel, Nicolai, & Miller, 2017; Pribram et al., 1964), for 

the successful decoding of trial type (e.g., Figure 11.B.) to be interpreted as reflecting control-

related activity, one would want to see that it dynamically tracks changing contingencies within 

individual trials. We assessed this possibility by applying late-delay classifiers from the 1-item 

delayed-recall task to every TR of “switch” trials from the Bound condition of the MSR task, so 

as to generate classification time courses. (Note that only the Bound condition included within-

trial switches between stimulus category.) These analyses, carried out in feature-nonselective ROIs 

in parietal and frontal cortex, revealed that information about color and direction were represented, 

to the same extent, from the beginning of the trial until TR 11 (the onset of prioritization cue 1). 

At this point in the trial, classifier evidence for the cued feature increased steeply and evidence for 

the uncued feature decreased steeply. At TR 17 (the onset of prioritization cue 2, a “switch” cue 

in these analyses), these patterns reversed, with evidence for the newly prioritized feature rising 

precipitously, and evidence for the newly unprioritized falling precipitously (Figure 12.A.). Such 

patterns of event-locked shifts of category representation are consistent with a role for parietal and 

frontal regions in the control of stimulus representation and of behavior on this task. 
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Timecourse of the baseline parameter from IEM mirrors MVPA of stimulus category. 

Inspection of the IEM timecourses of the first half of the MSR trials (Figures 7 and 9), as well as 

the late-delay reconstructions from delay 4 (Figures 8 and 10) reveals considerable variation in the 

baseline parameter of IEMs. By definition, this parameter does not relate directly to stimulus 

representation. To explore the possibility that these patterns of variation may index control-related 

activity, we plotted the values of the baseline parameter from tests of the late-delay IEM of 1-item 

delayed recall on each TR of the trials of the MSR task featured in Figure 12.A. As illustrated in 

Figure 12.B, the fluctuations of the baseline parameter closely followed those of the MVPA of 

feature category. 

 

 

Figure 12 The time-course of model performance on “switch” trials from the Bound condition of the MSR 

task. (A) Trial-averaged time courses of MVPA evidence for the representation of direction of motion, on trials when 

motion was cued by priority cue 1 (red) vs. trials when color was cued by priority cue 1 (blue). (B) Trial-averaged 

time courses of the value of the baseline parameter from IEM of the same trials from panel A. Asterisks indicate TRs 

for which values from the two trial types differ significantly; the width of each trace represents the standard error of 

the mean across subjects. 

A. Timecourse MVPA in bound – switch trials

Parietal ROI Frontal ROI

B. Timecourse IEM baseline reconstructions in bound – switch trials
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Interim summary of MVPA results 

The results of MVPA of delayed-recall data binned post hoc into quadrants in stimulus-

feature space were broadly consistent with the IEM results, in that evidence for stimulus-level 

representation of sample information was only reliably found for the dimension of direction-of-

motion, and only in the VOT ROI. This reinforces the idea that stimulus-specific direction 

information was most prominently represented in VOT cortex. Classification at the more abstract 

level of stimulus category (i.e., color vs. direction), however, was reliable in all three ROIs. 

Furthermore, when the late-delay delayed-recall decoder was swept across data from the MSR 

task, it revealed that the representation of stimulus category in all ROIs was priority dependent, 

and with a time course that was tightly coupled to the structure of the task: MVPA evidence for 

both categories was comparable at the beginning of the trial, prior to item prioritization, and closely 

tracked prioritization once prioritization cuing began. Coupled with the weak and uneven evidence 

for stimulus-level representation in frontal and parietal ROIs, these results are consistent with the 

idea that frontal and parietal networks were preferentially involved in controlling the maintenance 

of and changing of the priority of VOT-supported stimulus representations. Finally, the post hoc 

comparison of these MVPA time courses with the time courses of fluctuations in the baseline 

parameter of IEM suggest that the latter, too, may provide an index of the control of representations 

in visual WM. 

Dropping information from WM 

 Results from the final delay period of the MSR task indicated that IEMs of the DMI, in 

both conditions, yielded nonsignificant reconstructions with numerically negative amplitudes. 

Prompted by these trends, we undertook an exploratory analysis of the effect of the initial 

relevance cue on the neural representation of direction, because these retrocues also prompted the 

dropping of information from WM -- of a stimulus dimension (on Unbound trials); or of an entire 

stimulus (on Bound trials). On Unbound trials, on trials when the relevance cue indicated that 

“<Color>” was to be tested, the reconstruction of the two directions of motion returned to baseline 

levels (ps > .27; two-tailed; Figure 13B). However, on trials when the relevance cue indicated 

“<First>” or “<Second>” (i.e., Bound trials), the reconstruction of the direction of motion of the 



uncued (and, therefore, dropped) stimulus was significantly complementary to the trained model 

by the end of the ensuing delay (p < .01; two-tailed; Figure 13C).  

 

	

Figure 13 The effects of relevance cued “dropping” of direction information from WM. (A) Reconstructions 

of direction at TR 7, the time of onset of the relevance cue. (B) The reconstruction of direction, at TR 10, on trials 

when the relevance cue had specified "<Color>", and so the direction associated with both objects could be dropped. 

(C) The reconstruction of direction, at TR 10, on trials when the relevance cue had specified "<First>" or "<Second>," 

as a function of relevance cued status (i.e., belonging to the cued object (red), or belonging to the uncued object 

(blue)). All display conventions are the same as Figure 8. 

 

DISCUSSION 

The results from our study of a multiple serial retrocuing (MSR) task yielded three novel 

sets of empirical observations, each with important implications for our understanding of the 

mechanisms underlying visual working memory. The first relates to the effects of prioritization 

cue 1 on stimulus representations. When two pieces of remembered information are drawn from 

separate objects, IEM indicates that the prioritization of one results in the strengthening of its 

neural representation, and in the weakening, to baseline levels, of the active neural representation 

of the unprioritized item (even though this UMI must be retained in working memory). When these 

two pieces of remembered information are drawn from the same object, in contrast, the effects of 

prioritization are markedly different: The active representation of the PMI is sustained, but does 

not increase in strength, and the strength of the active representation of the UMI declines, but 

nonetheless remains significantly above baseline. The second novel observation arises from 

contrasting the weak and uneven representation of stimulus identity in parietal and frontal cortex, 
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whether assessed by IEM or MVPA, with the robust cue-locked dynamics of MVPA decoding of 

stimulus category in these two regions. The third set of novel observations relates to the removal 

of information from visual WM when it is no longer relevant for behavior, and provides 

preliminary evidence for an active “dropping” mechanism.  

Object-based attention in visual working memory 

The differential pattern of results in the Unbound vs. the Bound conditions suggest that key 

principles governing object-based attentional prioritization in visual perception also apply to visual 

working memory. When the two remembered items belonged to separate objects (Unbound), the 

biasing of their competition for representation (Desimone & Duncan, 1995) resulted in the 

strengthening of the neural representation of the PMI at the expense of the strength of the UMI. 

When, however, the two remembered items belonged to the same object (Bound), the neural 

representation of the UMI remained elevated, consistent with an automatic spread of object-based 

attention to all elements of the remembered object. The theoretical implications of this finding are 

twofold. First, by illustrating object-based attention-like effects in visual working memory, they 

extend the boundary conditions for which it can be said that visual working memory appears to 

arise from “nothing more” than attention allocated to neural representations of objects not currently 

accessible to the eyes (c.f., Cowan, 1995; Chun, 2011; Myers, Stokes, & Nobre, 2017; Postle, 

2006). Second, they support the idea that multidimensional objects are represented in visual 

working memory as bound objects, not as a collection of unbound features (e.g., Luck & Vogel, 

1997; Luria & Vogel, 2011; Woodman & Vogel, 2008; Bays, Wu, & Husain, 2011; Wheeler & 

Treisman, 2002).  

Controlling priority in visual working memory 

 Stimulus representation in parietal and frontal cortex was markedly weaker than in the 

VOT ROI, whether assessed by IEM or by MVPA. There was, however, clear evidence that these 

two regions tracked the higher-order information of which stimulus category was prioritized 

during each epoch of the trial, and they did so with a high degree of temporal precision. This is 

consistent with the idea that cue-driven changes in priority were implemented in working memory 

via activity in frontoparietal circuits, whose representation of the prioritized category may have 

acted as a source of top-down bias on high-fidelity representations of stimulus features in VOT 

cortex. 



Evidence for the active removal of information from working memory 

 There are, in principle, two ways that information can exit working memory: its links to 

trial-specific context can decay after attention has been shifted away from it, or it can be actively 

removed, via suppression, recoding, or some other mechanism. Our results provide suggestive 

evidence for an active mechanism: In three instances when a retrocue indicated that the uncued 

information was no longer relevant for behavior, its neural representation transitioned from a 

robust “positive” reconstruction to one that approached (after priority cue 2) or achieved (after the 

relevance cue) a state that was “complementary” to the IEM of that item when it had been in the 

focus of attention. Although we cannot know from these data what mechanism(s) would have 

effected this change in representation (e.g., inhibition, recoding), we can postulate that they may 

only be engaged when task demands require the active removal of information from WM. In the 

1-item delayed-recall task, in contrast, the neural representation of the sample item seems to just 

“fade away” at the end of the trial.  

A mechanistically noncommittal interpretation of the retrocue-triggered transformation of 

DMIs  is to suggest that once the identity of the information that will be relevant for the remainder 

of the  MSR trial is known, the resultant DMI is processed in a manner that makes it least likely 

that it will  interfere with performance on the remainder of the trial. A similar phenomenon has 

been observed in a different variant of the MSR task (with fMRI, Yu & Postle, 2018), in a 2-back 

task (with EEG, Wan, Cai & Postle, 2018) and in a dual serial visual search task (van Loon et al., 

2018). It could be that recoding unprioritized information is a general mechanism for preventing 

that information from interfering with performance that needs to be guided by a PMI. By this 

account, removing an item from working memory would be accomplished in a two-step process: 

First, recode it so that it is less likely to interfere with the PMI; second, let the recoded 

representation decay. 
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Supplementary Figures 

 

Supplementary Figure 1. Individual time point plots for unbound trials in VOT of delay period of the priority 

cue 1 (A). Channel response is plotted on the Y-axis for individual time points, and the specific motion direction 

channel is plotted on the x-axis, centered around 0°. Each row is a set of reconstructions from a single time point 

starting with the priority cue 1 onset (TR 11) and ending with the probe onset (TR 15). Red traces represent 

reconstructions of directions on trials when direction was cued (prioritized reconstructions) and blue traces represent 

reconstructions of direction on trials when direction was uncued (unprioritized reconstructions). Individual time point 

plots for unbound "stay" and "switch" trials in VOT of delay period of the priority cue 2 (B). Each row is a set of 

reconstructions from a single time point starting with the priority cue 2 onset (TR 17) and ending with the probe onset 

(TR 21). Significant differences between the prioritized and unprioritized motion directions for the amplitude (one-

tailed bootstrap tested) and baseline (two-tailed bootstrap tested) estimates are indicated by the asterisks and dots 

respectively (* = p<.05: ** = p <.01; *** = p <.001; **** = p <.0001). 
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Supplementary Figure 2. Individual time point plots for bound trials in VOT of delay period of the priority cue 

1 (A) and priority cue 2 (B).  Conventions are the same as in Supplementary Figure 1. 
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