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Abstract   
A novel metric, called Perturbational Complexity Index (PCI), was recently introduced to assess the capacity of 
thalamocortical circuits to engage in complex patterns of causal interactions. Once validated and calibrated in a large 
benchmark, PCI showed high accuracy in detecting consciousness in brain injured patients. In its original 
formulation, the index was computed by stimulating the brain with transcranial magnetic stimulation (TMS) and 
using the Lempel-Ziv algorithm to quantify the spatiotemporal complexity of cortical responses, as derived by the 
inverse solution of high-density EEG (hd-EEG). Despite its accuracy in assessing consciousness, the original 
formulation of PCI was limited by its reliance on source estimation, which not only renders its calculation time-
consuming, dependent on elaborate experimental setups and offline processing, but also restricts its extension to 
other types of brain signals beyond TMS/hd-EEG recordings. Here, we address these limitations and introduce 
PCIST, a fast and simple method for estimating perturbational complexity of any given brain response signal. Our 
approach combines dimensionality reduction with a novel metric of complexity derived from recurrence 
quantification analysis, in which state transitions (ST) present in the signal’s principal components are quantified in 
order to estimate spatiotemporal complexity directly at the sensors level. PCIST was tested on a large dataset of 
TMS/hd-EEG recordings obtained from 108 healthy subjects and 108 patients with brain injuries, and also applied to 
sparse intracranial recordings of 9 patients undergoing intra-cerebral single-pulse electrical stimulation. The new 
method performs with the same accuracy as the original formulation, but the index can be computed in less than a 
second, requires a simpler setup and can be generalized to sparse intracranial recordings. PCIST advances towards 
the development of a clinical bedside index of consciousness and can be used as a general tool to study the brain’s 
complexity across scales, experimental models and species. 
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Introduction  
     

Measures of brain complexity have recently begun to move from the realm of theoretical 

neuroscience [1-6] into the field of experimental neurophysiology to study differences between 

global brain states, from wakefulness to sleep and anesthesia [7-10]. Further, measures of brain 

complexity have been considered as useful paraclinical indices to assess consciousness at the 

bedside of brain-injured patients [11-15].  In this spirit, a novel strategy based on quantifying the 

global effects of direct cortical perturbations was recently introduced [16]. This approach is 

motivated by the general theoretical principle that a brain’s capacity for conscious experience 

relies on its ability to integrate information [5]. In this view, a key mechanism of consciousness 

is the ability of different neural elements to engage in complex patterns of causal interactions 

such that the whole system generates information over and above its parts. 

Practically, in order to estimate the amount of causal, irreducible information that a 

system can generate, a general procedure was implemented based on two steps: (i) locally 

perturbing the system in a controlled and reproducible way to trigger a cause-effect chain and (ii) 

quantifying the spatiotemporal complexity of the ensuing deterministic response to estimate 

information. The original implementation of this perturb-and-measure approach [16] involved (i) 

stimulating the brain with transcranial magnetic stimulation (TMS) and (ii) computing the 

algorithmic (Lempel-Ziv) complexity of the resulting patterns of activations at the level of 

cortical sources derived from the inverse solution of high-density electroencephalographic (hd-

EEG) responses; this metric will be henceforth referred to as Lempel-Ziv Perturbational 

Complexity Index (PCILZ). 

Albeit macroscopic and coarse, PCILZ provided maximum (100%) accuracy in detecting 

consciousness in a large (n=150) benchmark population of subjects who could confirm the 
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presence or absence of conscious experience through immediate or delayed reports. PCILZ was 

lower in all unresponsive subjects who did not report any conscious experience upon awakening 

from non-rapid eye movement  (NREM) sleep or midazolam, xenon, and propofol anesthesia, 

and was invariably higher in conditions in which consciousness was present, including awake 

controls, conscious brain-damaged patients and subjects who were disconnected and 

unresponsive during dreaming and ketamine anesthesia but retrospectively reported having had 

vivid conscious experiences upon awakening [17, 18]. Once calibrated on the gold-standard of 

subjective reports, PCILZ measurements performed at the bedside of non-communicating subjects 

with brain injuries offered high sensitivity (94%) in detecting minimally conscious patients and 

allowed identifying a significant percentage (about 20%) of vegetative state/unresponsive 

wakefulness syndrome (UWS) cases with high brain complexity, who had a higher chance of 

eventually recovering consciousness [17].  

While PCILZ performs with unprecedented accuracy, it also has practical drawbacks and 

limitations. First, PCILZ can only be computed on spatiotemporal matrices of cortical activations 

that are obtained after an intensive processing of TMS/hd-EEG data, including forward modeling 

[19], source estimation [20] and permutation-based statistics at the single-trial level. All these 

steps imply a complicated and lengthy off-line analysis pipeline that hinders the dissemination of 

the method and its application as a routine clinical bedside tool. Clearly, the possibility of 

estimating perturbational complexity directly at the level of EEG sensors, may have critical 

advantages: not only it would render the analysis process faster (ideally, on-line), easier to 

standardize and immune to the technical caveats of source modeling, but it would also allow the 

use of simplified and cheaper set-ups (i.e. not requiring hd-EEG and subject-specific MRI scans). 
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A second important drawback of PCILZ is its limited application to signals other than 

TMS/hd-EEG evoked potentials. Intracranial stimulations/recordings in humans [21, 22] and in 

animal models[23-26] as well as intra and extracellular responses recorded from cortical slices 

[27, 28] offer an unprecedented range of opportunities to elucidate the relationships between 

neuronal dynamics, network complexity and consciousness [29]. However, because PCILZ relies 

on EEG source estimation, its extension to other types of recordings, such as sparse matrices of 

intra-cerebral stereo EEG recordings and in vivo/in vitro local field potentials, is not 

straightforward [27].  

Here we propose a novel measure of perturbational complexity that bears conceptual 

similarities with PCILZ but is much faster to compute and in principle generalizable to any type 

of brain signal evoked by perturbations or event related. Conceptually, we started from the 

notion that the binary sequences of activation and deactivations which are compressed by PCILZ 

can be considered as sequences of transitions between different states: a “response state” and a 

“non-response” or “baseline state”. Thus, one should expect to find high values of perturbational 

complexity in systems that react to the initial perturbation by exhibiting multiple and irreducible 

patterns of transitions between response and non-response states. Following this intuition, we 

here introduce PCIST, an index that combines dimensionality reduction and a novel metric of 

recurrence quantification analysis (RQA) to empirically quantify perturbational complexity as 

the overall number of non-redundant state transitions (ST) caused by the perturbation.  

We validated PCIST on a large dataset of 719 TMS/hd-EEG sessions recorded from 108 

healthy subjects during wakefulness, NREM sleep and anesthesia (propofol, midazolam and 

xenon) as well as 108 brain-injured patients with disorders of consciousness (DOC). 

Furthermore, we applied the same index to 84 stereotactic EEG recordings (SEEG) obtained in 9 
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epileptic patients undergoing intra-cerebral single-pulse electrical stimulation (SPES) during 

both wakefulness and sleep for clinical evaluation. The index was able to approximate the 

performance of PCILZ in healthy subjects and patients, while improving on the previous method 

by dispensing with both source estimation and permutation statistics, being computed in less than 

a second; further, its application generalizes from the scalp EEG to sparse intracranial recordings 

thus potentially enabling the exploration of the complexity of the brain’s causal structure across 

scales, experimental models and species. 

 

Results  

Overview of the method 

In the original formulation [16], perturbational complexity was calculated by binarizing 

TMS-evoked potentials (TEPs) at the EEG sources level using a fixed threshold derived from 

non-parametric statistics with respect to the baseline (pre-stimulus) and subsequently 

compressing the binary spatiotemporal patterns with the Lempel-Ziv algorithm. An underlying 

assumption of this binarization strategy is that complex activations engaged by the perturbation 

appear on the evoked signals as patterns of oscillations around a fixed amplitude scale. Although 

proven successful when applied to the sources level, this approach is less sensitive in detecting 

complexity when calculated directly at the EEG-scalp level, where fast oscillations can appear 

riding on top of larger and slower envelopes as result of volume conduction and signal mixing 

(S1 Fig). Furthermore, complex neuronal oscillations occurring in amplitude scales that are not 

determined by a fixed threshold can also be observed in microscopic and mesoscopic recordings 

due to cross-frequency couplings [30-34], and a binarized measure applied to such scales would 

have limited applicability to detect complex physiological activations. 
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Aiming at a general index of perturbational complexity that can be fast and efficiently 

calculated directly at the EEG-sensors level, we here took a non-binary, geometrical approach 

and tried to quantify the spatiotemporal complexity of evoked potentials by exploring multiple 

amplitude fluctuations present in the response. At the scalp level, TEPs appear as time-varying 

voltage configurations, with local maxima shifting over time across different EEG sensors [16]. 

When voltages of all electrodes are put together in a vector space, TEPs can be geometrically 

represented by a trajectory in the so called EEG space [35]. Fig 1 depicts examples of these 

trajectories for 60-channels TEPs recorded during alert wakefulness and NREM sleep, after 

projecting the data in a lower dimensional space spanned by the first three principal components 

(PCs) of the evoked response. Contrary to the trajectories observed during NREM sleep, which 

are either local and short-lasting (Fig 1B) or widespread and non-recurrent (Fig 1C), complex 

TEPs recorded during wakefulness appeared in the principal components’ space as entangled, 

interlaced paths (Fig 1A). In this geometrical approach, estimating perturbational complexity 

becomes a matter of quantifying the complexity of these trajectories. 

The state transition based perturbational complexity index (PCIST) estimates complexity 

by quantifying transitions between states within the trajectory spanned by the system’s response 

to a perturbation. In the following, we summarize the steps involved in calculating PCIST (see 

Materials and Methods for further details). Starting from trial-averaged signals recorded in 

response to a perturbation, principal component analysis (PCA) of the response is performed in 

order to effectively reduce the dimension of the data (Fig 2A). The complexity of each resulting 

principal component is then evaluated by quantifying what we call state transitions, using a 

method derived from RQA[36, 37]. In order to do so, distance matrices, defined by the voltage-

amplitude distances between all time-points of the signal, are calculated separately for pre-
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stimulus and post-stimulus samples (Fig 2B). These 2D distance matrices provide a summary of 

the geometrical relationships of the baseline and the response signals. By thresholding both 

distances matrices (baseline and response, Fig 2C) at a given scale ε, we obtain a contour plot, 

called the transition matrix, that depicts the temporal transitions between states – roughly, the 

ups and downs in the signal –, for both the baseline and the response (Fig 2D). By varying the 

threshold ε and comparing the number of state transitions (NST) in the matrices of the response 

with that of the baseline, we can look for the scales at which there are state transitions in the 

signal’s response over and above transitions present in the baseline activity (Fig 2E). The 

complexity of each component (red dot in Fig 2E) thus becomes the weighted difference of NST 

(ΔNST) between baseline and response signals calculated at the threshold ε* where this value is 

maximum. Finally, PCIST is defined as the sum of these maximized significant state transitions 

across all principal components of the evoked signal. 

By its definition, PCIST is high when there are multiple linearly independent components 

in a spatially distributed response (spatial complexity), each one of them contributing with 

significant amounts of state transitions (temporal complexity). Conversely, PCIST is expected to 

be low either if the perturbation evokes a strongly correlated response across different spatial 

recordings or if the independent components carry few temporal transitions in the response as 

compared to the baseline. 

 

PCIST is reliable and fast in benchmark conditions  

PCIST was calculated on a benchmark of 382 TEPs obtained in a group of 108 subjects 

during conscious (alert wakefulness) and unconscious (NREM sleep and anesthesia) conditions 

(Fig 3A). The wakefulness group presented significantly higher and more variable PCIST
  values 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/445882doi: bioRxiv preprint first posted online Oct. 21, 2018; 

http://dx.doi.org/10.1101/445882


8 

(mean ± SD, 47.89 ± 12.65) than the NREM sleep/anesthesia group (mean ± SD, 14.19 ± 5.26, p 

= 4.7x10-40, Wilcoxon-ranksum test). In terms of classification performance between conscious 

and unconscious conditions, PCIST showed a high classification power that was equivalent to the 

performance of the original version of PCI in this same dataset [17] (area under the curve (AUC) 

of the receiver-operator characteristics (ROC) for PCIST =0.998, AUC for PCILZ = 0.995). 

Indeed, when values for each TMS/hd-EEG session were compared, we found a significant 

linear correlation between the metrics (r = 0.82, p<10-95, Fig 3B). On the other hand, because 

PCIST estimates perturbational complexity without employing source localization and surrogate 

techniques, a key difference found was that PCIST computation on the whole benchmark dataset 

was approximately 380 times faster than with PCILZ. While PCILZ took about 300 seconds per 

session to compute (mean ± std, 270s ± 99), PCIST
 was calculated in less than one second (mean 

± std, 0.71 ± 0.20, p< 10-127) (Fig 3C). 

 

PCIST captures spatiotemporal complexity as the joint presence of spatial independence 

and temporal complexity  

PCIST is the product between the number of selected principal components (NC) of the 

evoked response and the average number of state transitions across all its components (NST ). 

The first quantity can be regarded as a measure of the underlying dimensionality of the data and 

is calculated as the number of linearly independent components that span most of the evoked 

response in terms of its square amplitude and signal-to-noise ratio. In the case of the TMS/hd-

EEG signals, NC is high when different EEG sensors record different evoked potentials and, 

therefore, it can be viewed as a measure of the spatial differentiation of the brain’s response to 

the perturbation. The second quantity,NST , corresponds to the average temporal complexity 
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present in the individual principal components as measured by the quantification of state 

transitions. Thus, NST  is high when the signal’s response displays a variety of patterns of 

activations across time over and above the patterns occurring before the stimulation onset. 

At the group level, TEPs recorded during alert wakefulness presented both significantly 

higher number of principal components NC (mean ± SD, 7.16 ± 1.41 vs 4.04 ± 0.94, p = 4.20 x 

10-36) and NST  values (mean ± SD, 6.69 ± 1.21 vs 3.47 ± 0.89, p = 4.20 x 10-38) than the TEPs 

in unconscious conditions (Fig 4A). Taken separately, the metrics displayed a higher overlap 

between the conscious and unconscious distributions (NC: AUC=0.966, FDR = 3.40; NST : 

AUC=0.985, FDR = 4.60) than when combining them through their product (PCIST:  

AUC=0.998, FDR = 6.07 , Fig 3A).  

Each nth principal component contributes to PCIST with its correspondent ΔNSTn value. 

Fig 4B shows the ΔNSTn distributions for conscious and unconscious conditions, ordered by 

eigenvalues of the selected components. Importantly, ΔNSTn showed no positive bias toward 

lower eigenvalue components as could be expected by the higher frequency content of these 

components. In fact, ΔNSTn in consciousness remained relatively stable across all components. 

Notably, for each single component, ΔNSTn values in signals from conscious individuals were, 

on average, significantly higher than the correspondent values in the unconscious condition: 

wilcoxon-ranksum comparisons between conscious and unconscious conditions across the first 5 

components resulted in p-values always lower than 10-9.  
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PCIST dependence on sampling frequency, number of EEG channels and number of TMS 

trials 

We next tested the influence of TMS/hd-EEG recording parameters on PCIST values. 

Sampling Frequency.  To determine the dependence of PCIST on the sampling 

frequency, TEPs were resampled from the original 725Hz down to 200Hz, which is above the 

Nyquist rate of the signals, and the index was calculated accordingly. Classification power and 

distance between conscious and unconscious distributions were stable across different sampling 

frequencies (AUC =0.998 and FDR ranging between 6.02 and 6.32, Fig 5A, top). Notably, there 

were no significant effects of sampling frequency on average values of PCIST, which remained 

stable in both conscious and unconscious conditions (Fig 5A, bottom).  

Number of EEG trials. Next, we evaluated the dependence of PCIST on the number of 

trials employed to construct the TEPs. PCIST was tested on surrogate TEPs generated with 

different numbers of selected trials (nt) from the original data. As the TMS/hd-EEG sessions had 

varying numbers of trials, only those sessions that have at least 200 TMS stimulation trials were 

selected from the benchmark dataset totalizing 117 sessions from 67 subjects. Then, for a given 

nt considered, 25 surrogates of each session’s TEP were generated by averaging nt randomly 

selected trials; PCIST was then calculated on all surrogates and the average value across all 

surrogates was used as the metric for the given session. 

Repeated measures ANOVA showed significant effects of the number of trials (F6,107 = 

60.42, p = 3.9 x 10-35) and a significant interaction with the level of consciousness (F6,107 = 21.31, 

p=2.5 x 10-16). The addition of trials amplified stimulus-locked potentials that are present during 

wakefulness but absent in NREM sleep and anesthesia: PCIST remained almost constant 

regardless of the number of trials used for the evoked potentials in unconscious conditions but 
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increased sharply with the number of trials in wakefulness (Fig 5B). The estimation of the 

marginal means indicated a significant growth across successive steps of 25 trials in wakefulness 

up to 150 trials (95% confidence interval).    

From the classification perspective, although the FDR of the PCIST distributions for the 

benchmark dataset increased steadily with the number of trials, the classification power 

measured by AUC saturated early at 125 trials (AUC=0.999, FDR = 7.26) (Fig 5B). 

Number of EEG channels. From a practical perspective, the minimum number of scalp 

electrodes required to adequately estimate the spatiotemporal complexity of brain EEG responses 

is a most relevant factor. The use of hd-EEG, besides entailing more expensive hardware, 

involves a cumbersome and lengthy preparation, resulting in limited applicability, especially in 

the clinical set-up. While PCILZ necessarily demands hd-EEG systems so as to accurately 

perform source localization, PCIST can in principle be calculated on a reduced number of 

channels. We thus compared the performance of the index calculated on the original hd-EEG 

system (60 channels) to reduced setups containing 19 and 8 electrodes. 

 Notably, PCIST revealed an equivalent performance to discriminate conscious from 

unconscious conditions in the benchmark when calculated on 19-channels distributed 

accordingly to a standard 10-20 EEG system as compared to the high-density setup (linear 

correlation r = 0.962, p = 6.4 x 10-216; AUC=0.997, FDR=6.11, Fig 5C-top). Still, repeated 

measures ANOVA indicated that the reduced 19 channels dataset yielded consistently lower 

values of PCIST (F1,379 =94.00, p = 5 x 10-20). This reduction was more pronounced for the 

wakefulness group, as shown by the significant interaction with the state of consciousness (F1,379 

=47.32, p = 2.4 x 10-11), suggesting that, in spite of an accurate discrimination, the reduced 10-20 

set-up may fail to capture part of the structure of complex responses.  

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/445882doi: bioRxiv preprint first posted online Oct. 21, 2018; 

http://dx.doi.org/10.1101/445882


12 

These effects were more prominent when PCIST was calculated on a subset of the 10-20 

EEG system containing only 8 channels (Fig 5C-bottom). In this case, the simpler setup resulted 

in average loss of complexity for the wakefulness group of 27.8% with respect to the values 

obtained using the original hd-EEG system (repeated measures: F1,379 = 280.63, p = 1x10-47; 

interaction with the condition of consciousness F1,379 = 144.83 p = 2x10-28) and, yet with just a 

slightly lower classification accuracy (AUC = 0.992, FDR = 5.92).  

 

PCIST allows a simple and fast set-up at the bedside of patients 

After ascertaining the effectiveness of PCIST to discriminate consciousness from 

unconsciousness in healthy subjects while dispensing both source estimation and hd-EEG, we 

tested the performance of the novel index in 108 brain-injured patients with disorders of 

consciousness (DOC). For each EEG setup (60, 19 and 8 channels, Figure 5C), thresholds 

discriminating consciousness from unconsciousness were extracted from the PCIST values of the 

benchmark population using a linear classifier [38] (see Materials and Methods and S2 Fig). 

These empirical cutoffs were then compared to PCIST values obtained from a group of brain-

injured patients who had recovered from coma and evolved toward various clinical conditions: 

Unresponsive Wakefulness Syndrome (UWS, N=43), Minimally Conscious State (MCS, N=49), 

patients who had emerged from Minimally Conscious State (EMCS, N=11) and conscious 

subjects affected by the Locked-In Syndrome (LIS, N=5). As the patient’s capacity for 

consciousness is the crucial question of clinical relevance in this population, we followed the 

previous approach [17] and classified each patient using his maximum PCIST value (PCIST
Max) 

obtained across all recorded sessions. 
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 When calculated on the original high-density setup, the sensitivity of PCIST in detecting 

signs of consciousness in brain-injured patients was comparable to PCILZ [17] (Fig 6A, top): 

PCIST made no erroneous classifications on conscious (LIS/EMCS) brain-injured patients and 

achieved 91.9% sensitivity among minimally conscious individuals, correctly detecting signs of 

consciousness in 45 from 49 MCS patients (see S3 Fig for individual values of PCIST). Notably 

the performance of the index diminished only slightly with the use of the standard 10-20 EEG 

system (19 channels), yielding sensitivities of 100% and 89.8% (44/49) for EMCS/LIS and MCS 

respectively (Fig 6A, middle). Finally, the simpler 8-channels setup resulted in reduced 

sensitivity scores on both EMCS/LIS (94%) and MCS (84%) patients (Fig 6A, bottom).   

In UWS patients, the absence of behavioral signs of consciousness per se cannot be 

considered a proof of the absence of consciousness. Thus, brain-based measures that do not 

require subject’s interaction with the external environment can be useful to detect a covert 

capacity for consciousness. In a previous study, PCILZ detected conscious-like complexity in 

20.9% (9/43) of UWS patients, who also had a higher chance of recovery at 6 months [17]. Here, 

we evaluated whether these patients could also be identified by PCIST. The novel index 

calculated on both high-density and standard 10-20 EEG setups detected all (n=9) the patients 

with high PCILZ, whereas more than 82% of patients classified as low-complexity by PCILZ were 

also below threshold for PCIST (hd-EEG: 88.2%, 10-20 setup: 82.3%, Fig 6B-top and middle). 

The simpler 8-channels setup detected 8 out of 9 (88.9%) high-complexity patients and 29 out of 

34 (85.3%) low-complexity patients (Fig 6B, bottom).   
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PCIST can be generalized to intracranial responses  

Given that PCIST estimates perturbational complexity directly at the level of sensors, its 

extension to other types of recordings is straightforward. As a proof of concept, we calculated 

PCIST on sparse intracranial SEEG recordings in 9 patients undergoing presurgical mapping for 

epilepsy. In each patient, SEEG responses evoked by single-pulse electrical stimulation (SPES) 

of different contacts were recorded both during wakefulness and NREM sleep, resulting in a total 

of 84 sessions (see S1 Table). 

Fig 7 illustrates the results obtained for two stimulation sessions in a representative 

subject and shows how PCIST can quantify changes of spatiotemporal complexity in SPES/SEEG 

responses across brain states. Specifically, during wakefulness, the composite set of waves 

elicited by SPES appeared as a large number of components characterized by recurrent waves of 

activity in the principal components space, which resulted in high PCIST values. On the other 

hand, during NREM sleep, when SPES evoked a stereotypical wave, a small number of 

components were enough to span most of the response. In addition, the few components that 

survived dimensionality reduction in NREM sleep showed less state transitions than the ones in 

wakefulness and accounted for a reduced PCIST value.  

These findings were reproducible across stimulation sites and consistent at population 

level (Fig 8). PCIST during NREM sleep was lower than in wakefulness for each one of the 42 

different stimulation sites (Fig 8A-I). Overall, compared to wakefulness, PCIST was reduced 

during NREM sleep on average by 46.5% (Fig 8J) and significant at the group level (p = 4.7 x 

10-7, Wilcoxon-ranksum). 
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Discussion  

In this paper we have developed and tested a new method of estimating pertubational 

complexity based on dimensionality reduction and state-transitions quantification. The novel 

index, called PCIST, represents a fundamental advancement towards the implementation of a 

reliable and fast clinical tool as well as a general measure than can be employed to explore the 

neuronal mechanisms of loss/recovery of brain complexity across scales and models.  

PCI combines a “perturb and measure” approach with a complexity metric in order to 

empirically estimate the amount of irreducible information generated through causal interactions 

within a system [16, 39]. This approach is unique because it permits, at least in principle, to 

explore the structure of causal interactions from the intrinsic perspective of the system under 

study, above and beyond the patterns of correlations that can be appreciated by a purely 

extrinsic, observational perspective [5, 40]. Further, by measuring the average response evoked 

by repeated stimulations of the same cortical target, only the effects causally related to the 

perturbation are amplified, whereas unrelated patterns of activity are averaged out. In this way, it 

is possible to explore effective interactions while minimizing the effect of noise, common drivers 

and elements that are causally segregated. Finally, to estimate the complexity of intrinsic causal 

interactions, only the irreducible (i.e. non-redundant) patterns of spatiotemporal significant 

activity are considered. Perturbational complexity is both spatial and temporal in nature 

inasmuch as it is only produced when different elements interact causally in an integrated and 

differentiated manner. In practice, perturbational complexity is high only when a perturbation 

propagates reliably over a set of integrated elements that react differently, giving rise to a 

transient response encompassing a variety of irreducible spatiotemporal patterns of activation. 
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In the case of PCIST, this transient response is interpreted as a trajectory in the 

multidimensional space spanned by the sensors. For example, the TMS-evoked trajectory rests in 

the sensor space defined by the EEG channels (Fig 1). Mutanen et al. [35] has recently studied 

the ability of TMS to modulate brain activity by considering single-trial EEG responses to TMS 

as trajectories in the EEG signal space. Here we extended this geometrical approach and looked 

at the trajectories spanned by the evoked (trial-averaged) potentials in the rotated basis defined 

by the principal components of the response (Fig 1). PCIST quantifies perturbational complexity 

by estimating the spatiotemporal complexity of these evoked trajectories. 

As a first step in this procedure, singular value decomposition (SVD) is used to rotate the 

trajectories into an orthonormal basis and optimally project them onto a space of lower 

dimension. This approach is similar to the concept of spatial PCA [41, 42], a data-driven 

technique that has been widely applied to evoked potentials [43-49] and that can be used to 

estimate the dimensionality of the trajectories in the EEG space in terms of the number of 

principal components accounting for the variance of the evoked response [50]. However, 

dimensionality reduction as operationalized in PCIST differs from spatial PCA in two important 

ways: (i) PCIST calculates SVD exclusively from the post-stimulus signals; (ii) the projection is 

based not on the covariance but on the correlation across sensors. This procedure guarantees that 

the principal components, onto which the evoked trajectories are projected, optimally explain the 

data in terms of the strength (mean field power) of the responses to the perturbation. As 

expected, when projected onto the space spanned by the components that accounts for most of 

the response strength, TEPs recorded from healthy awake subjects, which invariably present high 

value of perturbational complexity as assessed by PCILZ, were found to have significantly 
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higher-dimensional trajectories as compared to responses obtained in unconscious conditions 

(Fig 3).  

While the number of selected principal components captures the spatial linear 

independence present in the response, the estimation of spatiotemporal complexity must also 

take into account the temporal information content present in each component. Since the 

complexity metric employed in the Lempel-Ziv formulation of perturbational complexity was 

based on binarizing temporal patterns with respect to a fixed significance threshold, PCILZ shows 

a reduced performance when calculated in the absence of source modeling, such as in scalp EEG, 

when fluctuations of different frequencies relying on distinct neural mechanisms may appear 

linked due to volume conduction. In this case, complex patterns riding on top of larger and 

slower components may be easily missed (see S1 Fig). Crucially, sensitivity to cross-frequency 

patterns of fast oscillations that are modulated by slower envelopes are particularly important 

because they have been reported at multiple levels, from microscopic to macroscopic recordings 

[30-34, 51], and because they may serve as the mechanism to coordinate neural dynamics and 

transfer information across spatial and temporal scales [52-55].  

One way to explore the multiple amplitude scales of the activations in a time-series is by 

calculating its distance matrix [36, 56], which provides a summary of the geometrical 

relationships of the signal, not only in respect to the baseline but to every time point of the 

signal. Here, we proposed to quantify temporal complexity by binarizing not the original time-

series but its corresponding distance matrix: a technique known as recurrence quantification 

analysis [36, 37]. Recurrences are typically present in complex dynamical systems [57]: 

eventually every system will return to a state which is sufficiently close to a previous one and 

quantifying these recurrent states have been shown to be an effective way to detect rhythms and 
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state changes within complex, possibly non-stationary, time-series [58-63]. Although inferring 

recurrences in the “true” state space of a dynamical system from a given time-series depends on 

properly choosing the embedding parameters to reconstruct the system’s dynamical attractors 

[64] (see Materials and Methods), recurrence techniques are employed in calculating PCIST 

simply to quantify patterns in the time-series, without assuming that the underlying attractors are 

faithfully reconstructed. Indeed, it has been shown that, when applied to experimental data, 

recurrence plots and the measures derived from them are able to quantify patterns in the 

dynamics even if no embedding is performed [65]. In the case of PCIST, independence on 

embedding dimension has been substantiated by the fact that the performance of the method in 

discriminating between brain states was found to be stable across different embedding 

parameters (see S4 Fig). 

In the context of RQA, several metrics were proposed to quantify the complexity of the 

dynamics [36], such as the diagonal-line based entropy [63], the recurrence probability density 

entropy [66] or the Kolmogorov-Sinai entropy [67]. Although detecting recurrent states does not 

require signals to be stationary, these metrics are based on statistical properties of densities of 

recurrent states and may be unreliable in estimating complexity of very short and highly non-

stationary time series, such as those evoked by a perturbation. We here took a different 

perspective by simply counting the number of transitions between recurrent and non-recurrent 

states (NST) in the principal components space as a measure of the information content of the 

response to a perturbation. Notably, as this approach might be sensitive to patterns with a regular 

temporal structure that do not contribute to complexity as measured by compression-based 

metrics, PCIST can be expected to accurately estimate complexity only when applied to transient 

short-lasting signals, such as evoked potentials, in which regular patterns repeating over a long 
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time are unlikely to occur. Future studies in simulated dynamical systems [68, 69] and brain 

network models [2, 70, 71] should investigate to which extent counting state transitions with 

PCIST is enough to capture the complexity of the causal structure of a system.   

Empirically, PCIST performed well in the case of the brain, which generates large-scale 

complex activations in response to a local perturbation in the form of short and transient 

oscillations with highly non-stationary frequencies. Indeed, PCIST was strongly correlated to 

PCILZ and reliably discriminated consciousness from unconsciousness in the large benchmark 

population of healthy individuals (Fig 3). Furthermore, and similarly to PCILZ, the absolute 

values of PCIST could be used to compare healthy subjects to brain-injured patients who emerged 

from coma. When applying the threshold derived from the benchmark population to individual 

brain-injured patients, PCIST exhibited high sensitivity in detecting consciousness (Fig 6), with a 

performance comparable to PCILZ. 

This performance was achieved by dispensing with source estimation, forward modeling 

and non-parametric statistics, thus entailing several practical advantages. First and foremost, 

PCIST calculation takes less than one second per session (Fig 3), thus being more than three 

hundred times faster than PCILZ. Further, PCIST can afford an accurate estimation of 

perturbational complexity even on a reduced (standard 10-20) EEG set-up in both the healthy 

and brain-injured populations (Figs 5 and 6). Taken together, these advances pave the way to the 

implementation of a practical, fast and potentially online method to be applied at the bedside in 

the routine clinical setting. 

Beside these practical applications, estimating perturbational complexity based on state 

transitions enables the exploration of the brain’s causal structure across different recordings 

scales, from macroscopic EEG signals, to mesoscopic local field potentials and, in principle, to 
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microscopic multisite electrophysiological/optical recordings. In the present study we 

investigated this possibility at the mesoscale level by computing PCIST on intracranial SPES-

evoked potentials. This novel metrics was able to detect systematic relative differences in brain 

complexity between wakefulness and sleep despite the substantial differences between the 

intracranial (SPES/SEEG) and non-invasive (TMS/EEG) recordings. First, the type of 

perturbation essentially differs from TMS in that bipolar intracranial SPES not only activates 

superficial fibers but also deep white matter as well as cell bodies [72] and it does so at a scale of 

millimeters. Second, the spatial distribution of the recording SEEG electrodes is sparse rather 

than arranged along a regular spatial matrix. Third, the local field potentials recorded by SEEG 

electrodes reflect the activity of neuronal assemblies than are substantially smaller than the ones 

sampled by scalp electrodes [73, 74]. Finally, SEEG can reach deep structures, such as 

hippocampus, amygdala and cingulate cortex [75] that cannot be directly accessed with 

TMS/EEG experiments. 

In addition to the differences listed above, SPES presents key advantage over TMS in 

that the first is not associated with concurrent auditory and/or somatosensory stimulation [76].  

Indeed, when not appropriately controlled for, these additional peripheral inputs induced by TMS 

may add to the EEG response, thus confounding the genuine effects of direct cortical stimulation 

[77, 78]. In this respect, the present intracranial results serve as a definite confirmation of the 

fundamental interpretation of perturbational complexity, as originally assessed through TMS/hd-

EEG recordings. As shown in Fig 7, direct intracortical stimulation elicited significant transitions 

contributing to the build-up of PCIST that occurred both at short and long latencies, beyond 300 

milliseconds and that were specific for the stimulation site. Thus, the differences in PCIST 
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between wakefulness and sleep reflect genuine changes in the intrinsic causal properties of 

thalamocortical circuits, unconfounded by the effects of state-dependent sensory input gating.  

Most important, PCIST allows the exploration of the mechanisms of brain complexity at 

the finer scale of circuits and neuronal mechanisms. For example, at the level of the intracranial 

stimulation/recordings considered here, we observed substantial within-subject differences in the 

absolute values of PCIST depending on the stimulation site. These results suggest the presence of 

local differences in the ability of brain circuits to engage in complex patterns of causal 

interactions. Whether this is mainly due to the intrinsic properties of the stimulated node, or 

rather to the specific connectivity of the network sampled by the SEEG implantation, is an 

interesting question that can be addressed in future studies by adding a global measurement. In 

this regard, the possibility of calculating and comparing PCIST on both local field potentials and 

simultaneous global EEG recordings after SPES at different sites would offer a clear advantage. 

Finally, mesoscale assessment of perturbational complexity is in an ideal position to link 

microscale explorations at the bench to the macroscale measurements performed at the bedside 

of brain-injured patients. This connection is fundamental as experiments in both cortical slices 

[27] and unresponsiveness wakefulness syndrome patients [79] suggest that the fundamental 

mechanism of loss of complexity is the tendency of neurons to enter a silent period upon an 

initial activation (OFF-period). 

In conclusion, PCIST, a novel brain complexity index based on dimensionality reduction 

and the quantification of state transitions, may not only provide a reliable, fast and potentially 

online option for the assessment of consciousness in the clinical setting, but also serve as a 

general translational tool for exploring the mechanisms of loss and recovery of brain complexity 

across species, scales, and models. 
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Materials and methods  

Participants 

Healthy subjects. The benchmark dataset consisted of 382 TMS/hd-EEG sessions 

reported in previous works [16, 17, 79] . Data were recorded from 108 healthy subjects (female, 

n = 63; age range = 18–80 years) in two conditions: (1) while they were unresponsive and did 

not provide any subjective report upon awakening (NREM sleep, n = 19; midazolam sedation at 

anesthetic concentrations, n = 6; anesthesia with xenon, n = 6; anesthesia with propofol, n = 6) 

and (2) while they were awake and able to provide an immediate subjective report (n = 103, 

including 32 subjects also recorded in the previously described unresponsive conditions). The 

experimental protocols applied during sleep and anesthesia have been detailed elsewhere [16, 

17]. In short, healthy volunteers with history or presence of major medical/neurological disorders 

and of drug/alcohol abuse were excluded. All participants underwent neurological screening to 

exclude those at risk of potential adverse effects of TMS. Protocols and informed consents were 

approved by the local ethical committees (Ospedale “L. Sacco” in Milan, Italy; University of 

Wisconsin, Madison; Medical School of the University of Liège, Belgium). 

Brain-injured patients. TMS/hd-EEG data were also obtained in a population of 108 

brain-injured patients (95 reported in a previous work [17]) with newly acquired data recorded 

following the same previously reported protocol [17]. Besides screening for potential adverse 

effects of TMS, exclusion criteria were medical instability, refractory generalized seizures, and 

history of neurodegenerative or psychiatric disease. Sixteen brain-injured patients were 

conscious and encompassed 5 individuals affected by locked-in syndrome (LIS) and 11 

individuals who emerged from minimally conscious state (EMCS) by recovering functional 

communication and/or functional use of objects after a previous DOC.  The remaining 92 brain-
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injured patients had a severe disorder of consciousness (DOC) and were repeatedly evaluated 

with the Coma Recovery Scale-Revised (CRS-R) for a period of 1 week (4 times, every other 

day). Patients showing only reflexive behavior across all evaluations were considered as being 

unresponsive (Unresponsive Wakefulness Syndrome UWS, formerly known as vegetative state, 

43 patients), whereas patients showing signs of nonreflexive behaviors in at least one evaluation 

were considered as minimally conscious (MCS, 49 patients). Protocols and informed consents 

were approved by the local ethical committees (Milan, Italy: Istituto di Ricovero e Cura a 

Carattere Scientifico Fondazione Don Gnocchi Onlus, Azienda Socio-Sanitaria Territoriale, 

Grande Ospedale Metropolitano Niguarda Cà Granda, and Fondazione Europea per la Ricerca 

Biomedica; Liège, Belgium: Medical School of the University of Liège). Written informed 

consent was obtained from healthy subjects, from communicative patients, and from legal 

surrogates of DOC patients.  

Epileptic patients. Data included in the present study derived from a dataset collected 

during the pre-surgical evaluation of nine (eight previously reported [22]) neurosurgical patients 

with a history of drug-resistant, focal epilepsy. All subjects were candidates for surgical removal 

of the epileptic focus. During the pre-surgical evaluation all patients underwent individual 

investigation with SPES and simultaneous SEEG recordings for mapping eloquent areas and for 

precisely identifying the epileptogenic cortical network [75]. The investigated hemisphere, the 

duration of implantation and the location and number of stimulation sites were determined based 

on the non-invasive clinical assessment. The stimulation, recording and data treatment 

procedures were approved by the local ethical committee (Niguarda Hospital, Milan, Italy). All 

patients provided written informed consent. 
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TMS-EEG measurements and data analysis  

Specific protocols for acquiring TMS/hd-EEG potentials were described in [16] and [17]. 

In brief, data were recorded with a 60-channel TMS-compatible EEG amplifier and MRI-guided 

TMS pulses were delivered with a focal biphasic stimulator. In each subject, multiple sessions of 

200 stimuli were collected with TMS targeted to different areas at different intensities 

accordingly to the specific protocol. Precision and reproducibility of stimulation were controlled 

using a Navigated Brain Stimulation (NBS) system (Nexstim Ltd., Finland). The maximum 

electrical field at the cortex varied within the range of 80 to 160 V/m and targets were selected 

based on the individual anatomical MRI from within the middle-caudal portion of the superior 

frontal gyrus, superior parietal gyrus, superior occipital gyrus, and the midline sensorimotor 

cortex. In brain-injured patients, the stimulation of targets affected by cortical lesions identified 

on individual magnetic resonance images was deliberately avoided because the EEG response of 

these areas may be absent or unreliable.  

Data was analyzed as previously described [17]. EEG responses to TMS were visually 

inspected to reject single trials and channels with bad signal quality. Independent component 

analysis was applied to remove residual artifactual components resulting from eye movements 

and muscle activations. Bad channels were then interpolated using spherical interpolation and 

data were bandpass filtered (0.1-45Hz), downsampled to 725 Hz, segmented between -400 and 

400ms, re-referenced to the average, baseline corrected (-400 to -5 ms) and averaged across 

trials.  
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Intra-cerebral measurements and data analysis 

The procedures for SEEG data acquisition are described in [22]. Briefly, intracerebral 

activity was recorded from platinum–iridium semiflexible multi-contact intracerebral electrodes, 

with a diameter of 0.8 mm, a contact length of 2 mm, an inter-contact distance of 1.5 mm and a 

maximum of 18 contacts per electrode (Dixi Medical, Besancon France - Fig 1A-B). SEEG 

signals were recorded using a 192-channel recording system (NIHON-KOHDEN NEUROFAX-

110) with a sampling rate of 1000 Hz. Data were recorded and exported in EEG Nihon-Kohden 

format. Recordings were referenced to a contact located entirely in the white matter. Electrical 

stimulation was applied through one pair of adjacent contacts (amplitude 5 mA, frequency=1 Hz, 

# of stimuli per session=30), while SEEG activity was simultaneously recorded from all other 

bipolar contacts. The stimulation, recording and data treatment procedures were approved by the 

local Ethical Committee (protocol number: ID 939, Niguarda Hospital, Milan, Italy). All patients 

provided written informed consent. SEEG data recorded during both wakefulness and NREM 

were imported from EEG Nihon Kohden format into Matlab and converted using a customized 

Matlab-based script. Data were subjected to linear detrend and bandpass filtering (0.5 – 300 Hz), 

using a third order Butterworth filter. Bipolar montages were calculated by subtracting the 

signals from adjacent contacts of the same depth-electrode to minimize common electrical noise 

and to maximize spatial resolution [80, 81]. Single trials were obtained by using a digital trigger 

simultaneous to each SPES delivery. Stimulation artifact was reduced by applying a Tukey-

windowed median filtering, as in [82], between -5 and 5 ms. Finally, trials and contacts showing 

pathological activity [83] were detected by visual inspection excluded from the analysis.  
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Perturbational complexity index based on state transitions 

The state transition based perturbational complexity index (PCIST) is composed of two 

steps: dimensionality reduction and transition quantification. In the first step, singular value 

decomposition (SVD) of the response is performed in order to effectively reduce the dimension 

of the data. More specifically, let X be the N T  matrix containing trial-averaged signals

 1( ) ( ), , ( ), ( )n n n k n Tx t x t x t x t    of a response to a perturbation recorded from 1n N 

different spatial locations and 1k T   time samples. X can be represented by a trajectory ( )tX  

in the ܰ–dimensional space spanned by the spatial locations en: 
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Let ݐ ൌ 0 be the instant of perturbation and  ( ) ( ) | 0RES t t t X X  be the response signal. 

Then let an be the normalized eigenvectors of the autocorrelation matrix A calculated from the 

response signal, 
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In the new orthogonal basis,  na , X can be represented by a rotated trajectory ( )tY : 
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The N T matrix Y is thus composed by projecting the data X in the space spanned by 

the principal components (PC) obtained from SVD of the response signal. The PCs are then 

selected in terms of the eigenvalues of A sorted in decreasing order, so as to account for at least 

99% of the response strength measured in terms of the square mean field power, 2

,
( )n kn k

y t . 
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Next, components with low signal-to-noise ratio (SNR ≤ 1.1) are removed, and the remaining NC 

responsive principal components are used for transition quantification in the following (Fig 2A).  

As the resulting components are linearly independent, we regard each component ( )ny t  

separately and consider its time-delayed embedded form given by: 

( ) ( ), ( ), , ( )n n n nt y t y t y t L      y   (4) 

where L and   are the dimension and the delay of the embedding, respectively and 1 Cn N  . 

Given an embedded time-series yn(t), its distance matrix Dn is then defined as the Euclidean 

distance between all timepoints of the signal (Fig 2B): 

( , ) ( ) ( )n n ni j i jt t t t D y y  (5) 

Both matrices are then thresholded at several scales (Fig 2C): for each threshold  we 

calculate the transition matrix defined as the contour plot of the correspondent distance matrix at 

the scale  (Fig 2D): 
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The transition matrix can be thought as the unidirectional derivative of the recurrence matrix Rn, 

also known as recurrence plot [56]: 
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Transition matrices can thus be interpreted as measuring not recurrent states, but transitions 

between states – between recurrent states, Rn(,ti,tj)=1, and non-recurrent states, Rn(,ti,tj)=0.  

Next, we simply cumulate the transition matrix across TC time samples and calculate the 

mean number of state transitions (NST) for a component n at a given threshold  as 
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2
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The NST quantifies the average amount of state transitions in a time-series at a given scale ε. 

Transitions are averaged separately for both TC = TB 
baseline samples (t<0), NSTn

base and TC = 

TR 
 
response samples (t>0), NSTn

res. 

The threshold   represents a crucial amplitude scale through which information is 

encoded in the signal in terms of distance crossings. For very small scales (threshold ’ in Fig 

2D), most transitions occur in the baseline and the structures appearing in the Transition matrices 

at these scales are likely not caused by the perturbation. By increasing the value of , transitions 

start to appear mostly in the response to the stimulus and are, therefore, likely due to the 

perturbation. Thus, in order to measure the amount of temporal information encoded in the 

response over and above the amount encoded in the baseline, we search for the scale in which the 

weighted difference between NSTn
res  and NSTn

bases  is maximized (threshold *  in Fig 2D):  

* ( ) ( )argmax NST NSTres base
n n nk       (9) 

The parameter k is introduced to control the relative weight between pre and post-

stimulus state transitions. By setting the value of k, the crucial scale n*  becomes a data-driven 

parameter determined by the pre-post comparison for each principal component. Therefore, the 

temporal complexity of the nth component (ΔNSTn) is the maximized weighted difference at the 

optimal scale n*  scaled by the number of response samples (TR) (Fig 2E). The scaling factor 

yields a quantity that is extensive with the length of the signal’s response and largely 

independent on the sampling rate (Fig 5): 

( *) ( *)NST NST NSTres base
R n nn n nkT        (10) 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/445882doi: bioRxiv preprint first posted online Oct. 21, 2018; 

http://dx.doi.org/10.1101/445882


29 

Finally, the State Transitions Perturbational Complexity Index is defined as the sum of 

the temporal complexity measured by ΔNSTn taken across all the NC selected principal 

components of the signal: 

ST
n

1
PCI NST

CN

n
   (11) 

Calculating PCIST 

PCIST was calculated on TMS/EEG signals and SPES/SEEG recordings. In both cases, a 

crucial step in calculating PCIST is to control for stationary baseline-like activations that are 

likely not caused by the perturbation. This is done in two ways: (i) by removing principal 

components with low signal-to-noise ratio and (ii) by comparing between pre and post-stimulus 

transitions in the remaining components and selecting an amplitude scale that maximizes the 

information content of the response, over and above the content of the baseline. In this work, 

minimum SNR of the components accounting for 99% of the response strength was set to 1.1 

and the k parameter controlling the relative weight between pre and post-stimulus state 

transitions in the remaining components was set to 1.2, value at which there is maximum 

separation between conscious and unconscious conditions (see S4 Fig).  Since results were 

largely independent on the delay and embedding dimension (S4 Fig), distance matrices of the 

principal components were calculated for the simplest case of L = 1.  

PCIST was calculated on TMS/EEG signals using three different EEG setups: hd-EEG (all 

60 channels), 10-20 system (channels numbered 1, 2, 3, 7, 9, 11, 13, 19, 25, 27, 29, 31, 33, 45, 

47, 49, 51, 53, 57, 59) and a reduced setup with 8 channels (numbered 9, 11, 27, 29, 31, 49, 57, 

59). For each setup, signals were referenced to the corresponding common average reference.  
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Finally the baseline and response interval were respectively defined as (-400ms, -50ms) 

and (0ms, 300ms) for TMS/EEG sessions [16, 17], and as (-250ms, -50ms) and (10ms, 600ms) 

for SPES/SEEG sessions [22] – 0ms being the onset of the stimulation.  

 

Statistical analysis 

Statistical analysis was performed with IBM SPSS v.22.0. Data are presented as mean ± 

standard deviation (SD), and p-values less than 0.01 were considered significant. Normality of 

data was checked with the Shapiro-Wilk test and nonparametric testing was employed if data 

were not normally distributed. Wilcoxon-ranksum test was used for evaluating the discrimination 

between conscious and unconscious conditions as well as average effects of sampling frequency 

on the absolute value of PCIST. Univariate ANOVA for repeated measurements followed by 

Bonferroni post hoc test was used for testing the effects of number of channels and trials.  

A linear support vector classifier [38], independently trained on all TMS/EEG sessions of 

the benchmark dataset, was employed to predict the level of consciousness of brain-injured 

patients who had recovered from coma (see S2 Fig for computational details). The classification 

power of discriminating different levels of consciousness was quantified by the area under the 

receiver operating characteristic curve (AUC). The Fisher’s Discriminant Ratio (FDR) – 

calculated as the square of the difference between the means of the distributions divided by the 

sum of their variances – was used as a class separability criterion between conscious and 

unconscious conditions.  
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Fig 2. Calculating the Perturbational complexity index based on state transitions (PCIST) from 

TMS/hd-EEG evoked potentials (TEP). PCIST is calculated by performing several steps: A) TEPs 

(butterfly plot, top) are decomposed in NC principal components (PC) based on the singular value 

decomposition of the response to the perturbation. B) For each single component (PCn, highlighted) 

amplitude distances are calculated between every baseline samples (black trace in A) and between every 

response sample (blue trace in A), resulting in a baseline and a response distance matrix, respectively. C) 

These matrices are then thresholded at several scales. Two scale values are depicted in the figure: a lower 

threshold (’) and a higher threshold (*).  D) At each scale, the corresponding transition matrices are 

computed for both baseline and response. These matrices are used to calculate the average number of 

state transitions (NST) in the baseline NSTbase and in the response NSTres (see Methods for further 

details). E) The complexity of the selected component is defined as the maximum weighted difference 

between the number of state transitions in the response and in the baseline (ΔNSTn). The final measure 

PCIST is calculated by summing the ΔNSTn values across all NC principal components. 
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panels (B and E) as the superposition of the averaged SPES-evoked potentials recorded from all SEEG 

contacts during wakefulness (red traces) and NREM sleep (grey traces). Lower panels (C and F) depict 

the correspondent PCIST values and the SPES-evoked responses decomposed in principal components 

after dimensionality reduction.  
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are depicted over brain surfaces reconstructed from the individual’s brain (left). Numbers and arrows 

indicate the stimulation sites and the correspondent PCIST values (red traces, right). Panel J: shown are the 

percentage losses of complexity across all subjects and stimulation sites (left) and boxplots of PCIST 

values (right) at the group level for wakefulness (red box) and NREM sleep (grey box). Red asterisk 

indicate significant comparison (p = 4.7 x 10-7). 
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