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An important question regards how we use environmental boundaries to anchor spatial representations
during navigation. Behavioral and neurophysiological models appear to provide conflicting predictions,
and this question has been difficult to answer because of technical challenges with testing navigation in
novel, large-scale, realistic spatial environments. We conducted an experiment in which participants
freely ambulated on an omnidirectional treadmill while viewing novel, town-sized environments in
virtual reality on a head-mounted display. Participants performed interspersed judgments of relative
direction (JRD) to assay their spatial knowledge and to determine when during learning they employed
environmental boundaries to anchor their spatial representations. We designed JRD questions that
assayed directions aligned and misaligned with the axes of the surrounding rectangular boundaries and
employed structural equation modeling to better understand the learning-dependent dynamics for aligned
versus misaligned pointing. Pointing accuracy showed no initial directional bias to boundaries, although
such “alignment effects” did emerge after the fourth block of learning. Preexposure to a map in
Experiment 2 led to similar overall findings. A control experiment in which participants studied a map
but did not navigate the environment, however, demonstrated alignment effects after a brief, initial
learning experience. Our results help to bridge the gap between neurophysiological models of location-
specific firing in rodents and human behavioral models of spatial navigation by emphasizing the
experience-dependent accumulation of route-specific knowledge. In particular, our results suggest that
the use of spatial boundaries as an organizing schema during navigation of large-scale space occurs in
an experience-dependent fashion.
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Representations of spatial information from our surrounding
environment are critical for accomplishing everyday cognitive
operations, such as navigating our neighborhood or an unfamiliar
town we are visiting, yet what factors influence how we encode
and retrieve this information remains debated. During navigation,
the human brain receives optic flow from the visual system as well
as body-based cues, including head-direction representations from
the vestibular system and proprioceptive and somatosensory input
regarding gait and other aspects of movement. Previous studies of

human learning and memory in large-scale (town-sized) environ-
ments have utilized desktop-computer-based virtual reality (VR)
interfaces comprised of a visual display monitor and joystick or
controller (Chan, Baumann, Bellgrove, & Mattingley, 2013;
Zhang, Zherdeva, & Ekstrom, 2014). A growing body of literature,
however, suggests that such “desktop VR” interfaces may not
accurately emulate real-world experiences because of a lack of
vestibular information or, more importantly, proprioceptive infor-
mation (Chrastil & Warren, 2012, 2013, 2014; Ruddle & Lessels,
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2006, 2009; Ruddle, Payne, & Jones, 1999; Taube, Valerio, &
Yoder, 2013; Waller, Hunt, & Knapp, 1998). Thus, exactly how we
form spatial representations in novel, large-scale spatial environments
during free navigation, which involves using body-based cues, re-
mains unclear. To address these issues in studying large-scale, city-
sized virtual navigation, we used a novel, immersive VR interface that
incorporates vestibular information via a head-mounted display
(HMD) as well as proprioceptive and body-based rotational informa-
tion via an omnidirectional treadmill.

One frequently reported finding from studies in small-scale
spaces is that participants recall information faster and more ac-
curately about relative locations of objects in an environment when
aligned with its surrounding spatial geometry, termed alignment
effects. Specifically, when participants are parallel to the axes of
the boundaries of the room (e.g., a rectangle), they point to the
relative positions of objects more accurately than when misaligned
(Mou & McNamara, 2002; Rieser, 1989; Rump & McNamara,
2013; Shelton & McNamara, 2001). Thus, alignment effects ap-
pear to be a fundamental component of even nascent spatial
representations and spatial memory (Waller, Montello, Richard-
son, & Hegarty, 2002). One important consideration when inter-
preting these results from small-scale “vista spaces,” in which the
entire layout is visible from one viewpoint, involves whether
alignment effects would be present immediately in large-scale
“environmental spaces,” in which the geometric axes may not be
as evident (Ekstrom & Isham, 2017; Meilinger, Strickrodt, &
Bülthoff, 2016; Montello, 1993; Wolbers & Wiener, 2014).

Alignment effects are often thought to manifest based from two
different components: relative to an observer’s physical body
position and rotation (i.e., to my right, left, front, or back), or based
on imagined perspectives relative to the geometry, namely, the
salient axes, of an environment. Mou, McNamara, Valiquette, and
Rump (2004) showed that, in small-scale vista spaces, alignment
effects were stronger when aligned not only with learning view-
points but also when the body was oriented in the same direction
as the proposed, imagined heading. Although this was observed
even in circular rooms (i.e., no obvious primary axes), a later
experiment showed that the bias for better performance when
imagined and physical body headings were identical was abolished
when testing occurred in a different, adjacent room (Kelly, Avra-
amides, & Loomis, 2007). That is to say, when testing occurred in
the same room as learning, there was a benefit to being physically
aligned with the salient axes of the room, whereas when testing
occurred in a different room, participants performed equally well
when physically aligned or misaligned with the salient axes of a
geometrically identical, but novel, environment. Upon returning to
the learning room, this “body-based” alignment benefit returned.
Conversely, when participants were asked to always imagine
themselves at the center of the testing room with the heading
object directly in front of them, a “memory-based” alignment
effect was present regardless of whether participants were tested in
the same or a novel environment. This was interpreted as evidence
for two forms alignment effects within a learned space: sensori-
motor alignment effects, which are sensitive to body orientation,
and memory alignment effects, which are sensitive to the salient
geometry or primary axes of the learned environment, a distinction
subsequently validated in numerous other studies (Kelly et al.,
2007; Mou et al., 2004) and occur with conceptual changes in
environment, based on verbal instructions, even in the absence of

a physical room change (Shelton & Marchette, 2010). Such salient
axes can be defined in environmental spaces by not only the
geometry but even by streets (Werner & Schmidt, 1999) or land-
marks (Marchette, Yerramsetti, Burns, & Shelton, 2011). Although
both environmental (allocentric) and viewpoint-dependent (ego-
centric) information play a role in the formation of alignment
effects, our focus in this particular study is on environmental
(allocentric) alignment effects, given the theoretical interest in this
topic in large-scale spaces, which we outline in more detail shortly.

Although there is compelling evidence that environmental align-
ment effects exist for both familiar (Frankenstein, Mohler, Bül-
thoff, & Meilinger, 2012; Werner & Schmidt, 1999) and recently
learned (Iachini & Logie, 2003; McNamara, Rump, & Werner,
2003) large-scale spaces, these studies typically have not investi-
gated alignment effects early in learning, in other words, after
initial, brief exposure to an environment (e.g., walking around
several blocks of an unfamiliar city only once). Specifically, these
studies focused on assaying environmental alignment effects after
participants had attained some criterion of familiarity within an
environment, even if the criterion was low. However, it is also
difficult to rule out that these participants may have had some
exposure to the environment via maps or other sources that could
have influenced their memory for the environmental boundaries.
For example, Iachini and Logie (2003) showed alignment effects
in college students who reported being totally or partially unfa-
miliar with the environment, although even the totally unfamiliar
respondents had spent at least 1 and as many as 6 days in the
environment. Indeed, even in the absence of any direct exposure,
it is not uncommon to explore a map prior to visiting an unfamiliar
university, city, park, etc. Thus, although there is clear evidence to
support the notion that large-scale representations are, ultimately,
not orientation-free, and that environmental alignment effects are
detectable even in recently learned spaces, exactly when during
exposure to a novel environment these alignment effects first
manifest remains unaddressed.

Motivating their importance as a topic of further study, envi-
ronmental alignment effects can be classified as a specific kind of
mnemonic device for spatial cognition and memory, similar to
“rules of thumb” such as estimating the sum of angles in a
triangular spatial representation to be greater than the metrically
true sum of 180° (Moar & Bower, 1983), biasing recall for spatial
locations within a circle based on imagined vertical and horizontal
(rather than diagonal) boundaries (Huttenlocher, Hedges, Corri-
gan, & Crawford, 2004), and believing that San Diego is West of
Reno (it is not; Stevens & Coupe, 1978; for a recent review, see
Ekstrom, Huffman, & Starrett, 2017). Identifying boundary con-
ditions under which such mnemonic devices have weak or no
effects on cognition until sufficient spatial information is encoded
and integrated would provide a potential new line of study into the
mechanisms underlying such cognitive phenomena and provide a
better understanding of the integration of spatial information with
environment-specific details (Ekstrom et al., 2017). The focus of
the present research was thus specifically on environmental align-
ment effects in large-scale space, with VR affording the ability to
more readily control testing intervals in large, realistic environ-
ments.

Under conditions in which environments are not immediately en-
coded with reference to evident geometric axes or by stereotyped,
orthogonal paths, it is possible that there is a “critical period” for the

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

498 STARRETT, STOKES, HUFFMAN, FERRER, AND EKSTROM



development and application of alignment effects for acquiring spatial
knowledge, such as using the spatial boundaries to anchor one’s
representation of the environment. This would be consistent with
human and rodent electrophysiological research into the neural sub-
strates of spatial learning and memory showing that place cells often
display little directional coding initially, particularly for unconstrained
navigation in two-dimensional environments (Ekstrom et al., 2003;
Markus et al., 1995; McNaughton, Barnes, & O’Keefe, 1983; Muller,
Bostock, Taube, & Kubie, 1994; O’Keefe, 1976; M. A. Wilson &
McNaughton, 1993). For constrained navigation (running on a track),
however, directionality increases with repeated traversals of the same
place fields during learning (Abbott & Blum, 1996; Ekstrom, Meltzer,
McNaughton, & Barnes, 2001; Mehta, Barnes, & McNaughton, 1997;
Mehta, Quirk, & Wilson, 2000). Indeed, place cells have been detailed
during both encoding and retrieval of spatial and episodic memories
(Miller et al., 2013), and may integrate information across learning
and retrieval by interacting with head-direction, grid, and boundary
vector cells (Taube et al., 2013). Thus, several studies in the place-cell
literature, in contrast to behavioral findings on alignment effects,
suggest that neural representations for space initially do not show
direction dependence, but when they do, these may emerge as a
function of experience (Abbott & Blum, 1996; Ekstrom et al., 2001;
Mehta et al., 1997, 2000).

One issue when considering rodent studies of navigation is that
it is challenging to port such findings to human behavior. and
exactly how place cells manifest during the JRD task is unclear
(although they are present during retrieval of spatial memories;
e.g., Miller et al., 2013). Models of human spatial navigation and
its neural underpinnings, however, would similarly predict a tem-
poral dynamic in the emergence of alignment effects. Specifically,
several models of human spatial cognition and navigation posit
that a network of associated brain areas across the medial temporal
lobe and parietal cortex may integrate information and translate
between self- or viewpoint-based egocentric reference frames and
allocentric reference frames, and vice versa (Byrne, Becker, &
Burgess, 2007; Ekstrom et al., 2017; Epstein, 2008; Wang, 2017;
Zhang & Ekstrom, 2013). These models also suggest the impor-
tance of temporal dynamics for the binding of spatial representa-
tions with aspects of the environment, such as the integrating of
route-specific trajectories and the surrounding boundaries of the
environment (e.g., egocentric to allocentric translation).

The goal of the present research, therefore, was to behaviorally
identify a temporal window in which participants first employ
spatial boundaries for encoding and retrieval of spatial represen-
tations during navigation of a novel, large-scale environment.
Employing an omnidirectional treadmill coupled with an HMD
was particularly advantageous because it allowed us to track body
position and head direction in detail while continuously interspers-
ing the JRD task during navigation. Three experiments investi-
gated environmental alignment effects for spatial representations
of such an environment by assessing spatial memory during re-
peated learning using judgments of relative direction (JRDs), in
which participants inferred the location of a target based on an
imagined heading comprised of two other landmark targets (“Im-
aging standing at A, facing B; point to C”). Each experiment
varied the modality of learning, as route and map learning have
been shown to have differential learning effects on spatial repre-
sentations and the JRD task specifically (Thorndyke & Hayes-
Roth, 1982; Zhang et al., 2014).

In Experiment 1, participants learned a virtual environment
(VE) by freely navigating. In Experiment 2, initial navigation was
preceded by map learning. In Experiment 3, participants learned
using only maps. Consistent with the idea that navigation involves
a dynamic integration of route-specific information with environ-
mental geometry (like the environmental boundaries) during nav-
igation, we hypothesized that alignment effects would not be
present initially but would emerge after several learning experi-
ences. This would support the idea that in large, complex envi-
ronments like those that humans must learn and navigate daily,
salient geometric axes must be integrated into evolving spatial
representations. Alternatively, if alignment effects are present ini-
tially, it may be that they are employed very early on in the
processing and integration of spatial information and thus are
fundamental to representation of space. Here, we employed struc-
tural equation modeling (SEM), specifically, latent growth curve
(LGC) modeling, because it allows us to deal with potential
violations of the assumptions in an analysis of variance (ANOVA)
when comparing learning curves and provides a principled method
for comparing models involving a change in slope (i.e., no imme-
diate alignment effects) versus a change in intercept (immediate
alignment effects; Ferrer, Hamagami, & McArdle, 2004; Ferrer &
McArdle, 2003; Jöreskog, 1971; Judd, McClelland, & Culhane,
1995; McArdle, 2009; West, Taylor, & Wu, 2012). Nonetheless,
we report the results of analyses with conventional ANOVAs in
the online supplemental materials, which are nonetheless consis-
tent with our overall findings.

Experiment 1

We hypothesized that alignment effects would be weak or not
detectible on the first block but would emerge later, after repeated
learning. Alternatively, if alignment effects are an obligatory aspect of
encoding a spatial representation during navigation, we might expect
its emergence on the very first block. To test these ideas, we employed
repeated navigation with interspersed pointing on the JRD task. Par-
ticipants freely navigated a large-scale VR environment with an HMD
on an omnidirectional treadmill; following one round of deliveries to
each of the eight different stores in the environment, participants
performed the JRD task for aligned and misaligned headings. We then
repeated this navigation-JRD pointing procedure to determine when
alignment effects might first emerge.

Method

Participants. We determined, based on previous research on the
effects of spatial geometry on pointing accuracy in large-scale space
using 24 participants (McNamara et al., 2003), that approximately
such a sample size would be adequate to detect environment align-
ment effects using the JRD task. We note that subsequent studies have
replicated this same basic finding of environmental alignment effects
using comparable or smaller sample sizes (e.g., Mou & McNamara,
2002; Rieser, 1989; Rump & McNamara, 2013). A total of 43 par-
ticipants were recruited from the University of California, Davis and
the surrounding community. Each participant provided written in-
formed consent prior to any study procedures, all of which were
approved by the University of California, Davis Institutional Review
Board. Participants were either paid or received extra credit in a
psychology course. The experimenter withdrew two participants who
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did not fit in the treadmill, four because of computer issues, one who
did not meet inclusion criteria, 12 because of VR sickness, and one
who failed to perform better than chance as assessed via a permutation
test (for more information, see the section on data analyses). Data
from 23 participants (nine female) with a mean age of 22.87 years
were used in subsequent analyses.

Materials. The environment (Figure 1a) and experimental
tasks (see Figure 2) were built in Unity 3D (Unity Technologies
ApS, San Francisco, CA) using a modified version of the Land-
marks v1.0 asset pack (developed by our laboratory in conjunction
with BrickOvenGames; http://humanspatialcognitionlab.org/soft
ware/). The VE was approximately 226.71 � 309.01 m in size. In
addition to various buildings and streets, the environment con-
tained eight unique shops, which were the targets for navigation
and the basis for the JRD questions.

Stimuli were viewed through an Oculus DK2 HMD (Oculus VR
LLC, Menlo Park, CA) at a resolution of 960 � 1080 pixels per
eye, 75 Hz refresh rate, and 100° (nominal) field of view. The tasks
were run on an ABS Commander (ABS Computer Technologies
Inc., Industry, CA) with an NVIDIA GeForce GTX 970 graphics
card (NVIDIA Corp., Santa Clara, CA). Participants used a Cy-
berith Virtualizer omnidirectional treadmill (Cyberith GmbH, Her-
zogenburg, Austria) as the controller of their movement, with head
turns rendered through the HMD (Figure 1b and Supplemental
Video S1 in the online supplemental materials).

Procedure. Each participant received instructions and prac-
ticed until walking proficiently on the treadmill prior to testing (for
more information, see the online Supplemental Methods section).
Participants completed six alternating blocks of a navigation task
(Figure 2a) and the JRD pointing task (Figure 2b). The resulting
design was fully counterbalanced within subjects, resulting in a
repeated measures design with 12 conditions, one for each align-
ment condition (aligned, misaligned) across each encoding/re-
trieval cycle (Block 1 through Block 6).

Navigation task. Participants were familiarized with the tar-
gets by viewing each of the target stores in a random order
(repeated twice) and saying the names aloud prior to beginning the
experiment. Participants then began each navigation block from
one of six randomized starting locations. Each trial began with text
indicating a navigation goal (10 s; Figure 2a, upper). Participants
freely navigated the environment until the target store was found
(Figure 2a, lower). This procedure was repeated for each store in
a randomized order. After arriving at the final goal, JRD task
instructions were presented.

JRD pointing task. Participants were given an Xbox 360 wireless
controller (Microsoft Corporation, Redmond, WA) to respond to JRD
questions. Questions were presented in the upper half of the display
(“Imagine standing in Store A, facing Store B; point to Store C”).
Participants rotated a virtual compass arrow clockwise (right trigger)
or counterclockwise (left trigger) and submitted their response via a
button press when they were confident in their pointing angle. There
was no time limit, so if participants were unsure, they were required
to guess. Participants were told to prioritize accuracy over speed. On
each block, participants completed 28 JRD trials, half of which,
randomly, were aligned parallel with the rectangular boundaries of the
environment (aligned) and half of which were not (misaligned). Thus,
we operationalized “aligned” to indicate headings of 0°, 90°, 180°,
and 270° relative to the primary axes of the environmental boundaries.
Consistent with past approaches (e.g., McNamara et al., 2003), all
other headings were considered misaligned. After each block, partic-
ipants were prompted to remove the HMD and take a short break.
Example trials for the misaligned and aligned trials are shown in
Figure 2b, and illustrations are shown overlaid on the VE in Figure 1a.

Data analyses. Data processing and analyses were completed
in MATLAB 2016a (MathWorks Inc., Natick, MA) and RStudio
(R Development Core Team, 2016; RStudio Team, 2015). Struc-
tural equation modeling analyses were conducted using Mplus
(Version 8 Demo; Muthén & Muthén, 1998–2010).

Bakery

Florist
Ice Cream

Shop

Fast Food
Restaurant

Gym

Costume
Shop

Book StoreCamera Store

ba

Figure 1. Aerial view of the virtual environment (VE) with (a) metric illustrations of misaligned trials (red
[darker] lines) and aligned trials (blue [lighter] lines), and (b) the virtual reality interface, comprised of a
head-mounted display worn by the user and an omnidirectional treadmill. The low-friction surface of the
treadmill allowed participants to ambulate while remaining in place during navigating of the VE, which was
much larger than the testing space. See the online article for the color version of this figure.
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Permutation tests. Participants whose average performance
on the JRD task was not significantly better than chance, based on
a permutation test that accounted for potential biases in both the
initial position of the compass arrow (zero degrees/forward) and
the distribution of the answers (i.e., not drawn from a uniform
distribution around the compass) in the JRD task, were excluded
from analyses (Huffman & Ekstrom, 2018; Huffman & Stark,
2017). Briefly, within each participant, the vector of responses was
randomly shuffled and the median error was calculated. This
procedure was repeated 10,000 times to generate a subject-specific
null distribution. Participants were excluded if their empirical error
was not in the lower 5% of the resultant null distribution (i.e., a
one-tailed test). Note that this only resulted in one participant
excluded for Experiment 1 and none for Experiment 2; we address
this issue in more depth for Experiment 3.

Outlier trials. Responses of zero degrees (i.e., the compass
arrow was not rotated before inputting a response) were excluded
from further analyses. Given that the compass always started at or
reset to zero (directly forward) and no pointing target was ever
located directly in front of the imagined heading, these were
treated as accidental button presses, resulting in only 11 of the total
trials across all participants (0.27%) being removed. In subsequent
Experiments, a 3-s delay was implemented on each trial before
subjects could submit their JRD response, and as a result, there
were no such trials in Experiment 2 or Experiment 3, supporting
the idea that these trials were likely a result of accidental button
presses. Additionally, mean performance across all trials and par-
ticipants was calculated for each block. Trials greater than two
standard deviations from the grand mean pointing error on each
block (across trials and participants) were excluded as outliers,
similar to Zhang et al. (2014).

LGC modeling. Because we expected that performance across
learning blocks would not follow a linear trajectory, potentially
violating assumptions of sphericity and homogeneity important to
ANOVAs, we employed LGC models in structural equation mod-
eling to better characterize the shape of aligned versus misaligned
learning curves. Standard general linear modeling analysis tech-
niques may also lack the power to detect effects such as the

hypothesized interaction between aligned and misaligned perfor-
mance, particularly when one of the factors has more than two
levels (Judd et al., 1995), such as the block factor in our experi-
ment. Using LGC models within the SEM framework thus pro-
vides additional power to detect these intergroup (for LGC mod-
eling, we operationalize group[s] to refer to the within-subject
conditions of alignment: aligned and misaligned) dynamics be-
cause of the ability to compare models with various parameters
fixed to be equal or free to vary based on the hypothesized
relationships between variables (McArdle, 2009). Nonetheless,
results using ANOVA are included in the online supplemental
materials, with the caveat that these will be sensitive to violations
of linearity assumptions, an issue when looking for differences as
a function of learning (i.e., an interaction effect).

The LGC model in our analyses is shown in Figure 3. The model
included latent factors representing an intercept and a slope (rep-
resented as “i” and “s,” respectively, in Figure 3), as well as
variance components for each factor and their covariance (double-
headed arrows in Figure 3). Performance for each block (Y[n]

denoting mean performance on the nth block) loaded on both latent
factors (the regressions for these factor loadings are represented by
single-headed arrows in Figure 3). The intercept factor loadings
were fixed, and the slope factor loadings were estimated. In
particular, a latent growth model was employed in order to esti-
mate a model with the best-fitting trajectory to the data, consistent
with past approach using LGC (Ferrer & McArdle, 2003; West et
al., 2012). For this, we fixed the factor loadings for the first and
last block to 0 and –1, respectively, to represent the total change
across learning. The remaining slope loadings—for Blocks 2
through 5—were estimated by the model, allowing for nonlinear
change (Ferrer et al., 2004). Given that error variability was
expected to decrease across learning, the model residuals (e[n] with
double-headed arrow denoting the residual variance on the nth
block that was not explained by the model; Figure 3) were allowed
to differ for each block.

To evaluate differences in the model among the various align-
ment conditions, we used a multigroup approach (note the identi-
cally structured models in Figure 3 representing the aligned/mis-

Figure 2. Route-learning task showing (a) a first-person viewpoint of an example trial goal instruction (top)
and prospective target (bottom) for navigation; (b) judgment of relative directions task illustrating example
misaligned and aligned questions with red (darker) and blue (lighter) borders, respectively, as in Figure 1; and
(c) map-learning task showing the study phase (upper), in which the cursor is positioned above the “Gym,”
causing the text to appear, and the test phase (lower), showing hypothetical cursor movements to drop stores onto
the map. See the online article for the color version of this figure.
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aligned comparison). Here, an initial model was tested in which all
parameters for the two groups were fixed to be invariant (i.e.,
complete factorial invariance). This is to indicate that the initial
model assumes that performance in aligned and misaligned con-
ditions is identical across all six blocks of testing. Next, various
parameters were freed to vary between model groups to identify
the model that best illustrates differences between the model
groups (Jöreskog, 1971). First, based on hypothesized outcomes
and possible alternatives, factorial invariance was relaxed across
model groups for the slope mean, the intercept mean, or both.
Subsequently, the covariance structure of the latent variables,
shape of the curves across model groups as indicated by the slope
loadings for Blocks 2 through 5, and the residuals were freed
between model groups. The models for each group and the relax-
ation of factorial invariance constraints described in the LGC
modeling section of the Experiment 1 methods are illustrated in
Figure 3. To evaluate model fit and determine the most parsimo-
nious model explaining the data, consistent with past approaches
that have also done so, we used several fit indices including the chi
square (�2), Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC), comparative fit index (CFI), and root mean
square error of approximation (RMSEA) to select the best-fitting
model (West et al., 2012).

To quantify evidence in favor of the potential initial absence of
alignment effects, JZS Bayes factors (BFs) were calculated for the

misaligned–aligned pointing errors on the first block of each experi-
ment (Rouder, Speckman, Sun, Morey, & Iverson, 2009) using the
BayesFactors package for MATLAB (https://sampendu.wordpress
.com/bayes-factors/). This test serves to provide information about the
relative probability of obtaining the data under the null hypothesis (no
alignment effects) as opposed to the alternative hypothesis (alignment
effects present; i.e., how many times more likely were the data to be
obtained under the null relative to the alternative?).

Comparison of absolute pointing error for each aligned versus
misaligned block. Performance on the JRD task was quantified by
absolute (unsigned) pointing error, calculated as the absolute value of
the difference between the actual angle between heading and pointing
vectors and the participant’s estimate of that angle. To evaluate the
specific emergence, or point at which alignment effects could be
detected, t tests were conducted separately on each of the six blocks
to compare misaligned and aligned absolute pointing error. We addi-
tionally checked to see whether performance was significantly better
for a single arbitrarily defined cardinal direction (North, East, South,
West) based on the primary axes of the environment (Gagnon et al.,
2014). Although informative, the cardinal direction comparisons
should be interpreted with some caution, as there were a somewhat
limited number of the 14 aligned trials on each block that were facing
each cardinal direction.

Additional analyses. Details for additional analyses, including
JRD response latency, excess navigation path length, and head
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Figure 3. Path diagrams for structural equation models and manipulations of factorial invariance. The models
for the misaligned (left, darker) and aligned (right, lighter) groups are identical in structure, but some parameters
always remained fixed across the two group models, whereas others were systematically freed to vary, either
individually or with other parameters based on theoretical hypotheses. Triangles represent constants, circles
represent latent variables (i for intercept, s for slope, and e for residuals), and squares represent manifest
variables (i.e., Y[3] on either side represents average pointing error for the third block of that condition group).
Single-headed arrows indicate factor loadings/regression, and double-headed arrows indicate variance/
covariance. See the online article for the color version of this figure.
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direction during navigation are provided in the online supplemen-
tal materials.

Results

Latent growth curve modeling. A total of 5.90% of trials were
excluded from further analyses as outliers or accidental button
presses, as described in the Data Analysis in the Method section. Of
the models tested, the model in which only the latent slope means
were free to differ between model groups was selected as the best
predictor of the actual data (shown as dotted lines in Figure 4a). The
path diagram for the selected “slope mean” model is shown in Figure
4b. As shown in Figure 4a, the model predicts actual performance
quite well (solid and dotted lines for actual data and model predic-
tions, respectively), and predicted outcomes on the first block fall
within the confidence intervals of the aligned and misaligned errors.
Both the data and model also clearly show a difference in overall
change between model groups. Fit indices for all models tested are
shown in Table 1. The selected model fit significantly better than the
complete invariance model, �diff

2 (1) � 12.64, p � .001. The next step
in relaxing factorial invariance, freeing both the latent slope
mean and the latent intercept mean, did not significantly im-
prove LGC model fit, �diff

2 (1) � 0.04, p � .250; therefore,
further difference tests on more saturated models were not
conducted. The “intercept mean” model with the same degrees

of freedom as the “slope mean” model also fit significantly
better than the complete invariance model, �diff

2 (1) � 11.68, p �
.001. Consistent with past approaches, we thus selected the
“slope mean” model over the “intercept mean” model, as it
performed numerically better (see Table 1) across all calculated fit
indices (West et al., 2012). This model predicted the absence of an
alignment effect on the first block (Figure 4a, dotted lines), mean-
ing that aligned and misaligned performance will be equivalent on
the first block, but the total average improvement in pointing
performance across learning will be greater for aligned trials.
Given that this experiment was designed explicitly to detect early
changes in the presence and strength of alignment effects, the
“slope mean” model provided predictions that were compatible
with hypothesized dynamics of alignment effects (Ferrer &
McArdle, 2003). The BF calculated for the difference scores for
Block 1 also weakly suggested that these results were most likely
obtained under the hypothesis that there was no misaligned–
aligned difference in pointing error (BF01 � 1.60). Although not
definitive, this result is in agreement with the selected model for
predicting the data in which overall change is different but initial
performance on misaligned and aligned trials is equal.

Comparison of absolute pointing error for each aligned
versus misaligned block. Based on our a priori hypotheses,
two-tailed paired t tests were conducted to evaluate differences in
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Figure 4. Experiment 1 (a) performance on the judgment of relative directions in each alignment condition for
each block (solid lines) and model predictions for these same data (dotted lines), based on the selected latent
growth modeling model as well as (b) the path diagram for the selected model, including all estimated
parameters, both fixed (solid lines) and freed (dotted lines). Error bars represent 95% confidence intervals that
have been visually adjusted to remove between-subjects variability (Cousineau, 2005). For model parameters
freed across groups, misaligned parameter estimates are shown in red (dark gray) and aligned parameters
estimates are shown in blue (light gray). Asterisks indicate significant differences between misaligned and
aligned conditions on a given block. � p � .05. �� p � .01. ��� p � .001. See the online article for the color
version of this figure.
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pointing error for misaligned versus aligned trials across each
learning block. There were no significant differences between
misaligned and aligned pointing on the first, second, or third block.
Significant alignment effects emerged on the fourth retrieval block
and were stable throughout the remaining blocks—Blocks 5 and 6.
Descriptive statistics and comparisons for misaligned and aligned
conditions across all six blocks are reported in Table 2. The
increasing effect size and ability to detect statistically significant
alignment effects only on later blocks lent further theoretical
justification for a “slope mean” model to predict the data (Ferrer &
McArdle, 2003). Group-averaged absolute pointing errors for mis-
aligned and aligned conditions across learning are shown in Figure
4a. Wilcoxon’s signed-rank sum tests revealed the same pattern in
the response latency data, although we stress the untimed nature of
our task and emphasis on accuracy over speed in the instructions.
More information on latencies can be found in the online supple-
mental materials and online Figure S1. Performance was not
significantly different between imagined headings facing in cardi-
nal directions except for on the fourth block, in which headings

facing South were significantly better than those facing North,
although this difference did not exist on any other testing block.
Performance for each cardinal-facing direction across testing
blocks is shown in online Figure S7.

Additional analyses. The routes traveled during navigation
(one representative participant’s routes are shown for each block
of navigation in online Figure S2) were used to calculate excess
path traveled relative to the shortest possible distance from the
start location to the target. Excess path consistently decreased over
blocks, suggesting that participants navigated the routes more
efficiency as a function of exposure (excess path analyses are
detailed in the online supplemental material and Figure S3a).
There was no correlation between the difference in misaligned and
aligned pointing error and excess path length, suggesting that
navigational accuracy was unrelated to aligned versus misaligned
differences (Figure S4a). The proportion of time that participants
spent orienting their head in various directions during navigation is
shown in Figure S5a, and a comparison of cardinal (i.e., N, S, E,
W) versus intercardinal (NE, SE, SW, NW) orienting time is

Table 1
Models Tested and Corresponding Fit Indices for Experiment 1

Parameter(s) free �2 df p AIC BIC CFI RMSEA

Complete invariance 49.87 39 .114 1,933.39 1,960.82 .921 .110
Slope mean 37.23 38 .505 1,922.75 1,952.00 1 0
Intercept mean 38.19 38 .461 1,923.71 1,952.97 .999 .015
Slope and intercept mean 37.19 37 .461 1,924.70 1,955.79 .999 .015
Variance/covariance 36.49 34 .354 1,930.00 1,966.58 .982 .056
Curvature (Betas 2–5) 29.89 30 .471 1,931.41 1,975.30 1 0
Residuals 22.97 24 .521 1,936.49 1,991.35 1 0

Note. Models are described in the left column in order of decreasing factorial invariance between the
misaligned and aligned group models. Subsequent columns indicate the value for fit indices used for model
selection. The bolded row indicates the selected model. df � degrees of freedom; AIC � Akaike information
criterion; BIC � Bayesian information criterion; CFI � comparative fit index; RMSEA � root mean square
error of approximation.

Table 2
Comparison of Aligned and Misaligned Pointing Conditions Across Retrieval Blocks in
Experiment 1

Retrieval block M SD Mdiff df t p d 95% CI

Block 1
Misaligned 50.5 20.24 5.61 22 1.56 .134 .32 [�1.87, 13.08]
Aligned 44.89 18.41

Block 2
Misaligned 30.46 10.39 1.79 22 1.06 �.250 .22 [�1.71, 5.30]
Aligned 28.67 12.99

Block 3
Misaligned 25.38 11.05 3.68 22 3.25 .093 .37 [�.66, 8.01]
Aligned 21.7 9.89

Block 4
Misaligned 22.8 6.46 4.93 22 3.25 .004 .68 [1.78, 8.06]
Aligned 17.87 8.13

Block 5
Misaligned 22.18 7.34 5.41 22 3.8 .001 .79 [2.46, 8.35]
Aligned 16.77 8.19

Block 6
Misaligned 22.49 6.39 7.34 22 6.5 �.001 1.36 [5.00, 9.68]
Aligned 15.15 5.79

Note. df � degrees of freedom; CI � confidence interval.
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shown in Figure S5b. Participants spent more time facing the
cardinal directions starting on Block 1, suggesting that facing
direction during navigation was not directly related to the emer-
gence of alignment effects during the JRD task. There was no
evidence that the initial or final head orientation on the navigation
blocks had any effect on biasing the imagined headings in the JRD
trials (Figure S6).

Discussion

Participants freely navigated a large-scale VE with vestibular,
proprioceptive, and somatosensory information available. Consis-
tent with our hypothesis, the best-fitting model for the data predicts
no alignment effects initially, with these effects emerging later
because of greater improvements on aligned pointing compared
with misaligned. Specifically, for the best-fitting model, the only
parameter that differed between aligned and misaligned trials in
this analysis was the slope mean, suggesting that misaligned error
decreased at a slower rate than aligned error. The difference in
slope means, rather than intercept means, indicates that aligned
and misaligned pointing errors are the same initially but diverge
over time. These findings are bolstered by the Bayesian analysis
and planned comparisons. Thus, the findings from Experiment 1
suggest that alignment effects are an experience-dependent phe-
nomenon when exploring a novel spatial environment and do not
emerge until approximately four blocks of exposure to a spatial
environment.

One potential concern with these results was that the limited
exposure prior to the first block of JRDs may have resulted in
participants’ absolute pointing error being too high or too variable
to detect differences between aligned and misaligned conditions.
In other words, on the first blocks of learning, when participants
had the least knowledge about the environment, their pointing
variability was likely highest (qualitatively shown in Figure 4a).
This increased variability, in principle, could have accounted for
the lack of any significant differences in Experiment 1. We rea-
soned that if participants were preexposed to a map of the envi-
ronment, this would likely reduce their initial pointing error and
variability, allowing us to evaluate the extent to which relatively
worse performance on early JRD blocks may have prevented us
from detecting alignment effects if they were in fact present in
Block 1 of Experiment 1 but occluded by “noise” (i.e., Type II
error). In addition, preexposure to a map would provide partici-
pants with knowledge of the shape of the environmental boundar-
ies prior to exposure to the environment via navigation. Thus,
based on the idea that alignment effects are an experience-
dependent phenomenon, we might expect them to emerge earlier
when participants are exposed to a map and navigation before
initial testing.

Experiment 2

To test the effect of brief, prior exposure to the salient axes of
the environment, participants completed a map-learning task prior
to navigational learning. We hypothesized that this relatively low-
effort prior map learning task would provide additional informa-
tion that could elicit earlier alignment effects than in Experiment 1,
while also reducing mean pointing error and variability on early
blocks, which may also have affected the ability to detect align-

ment effects on these early JRD blocks in Experiment 1. Alterna-
tively, if alignment effects are present after initial map and route
learning, this would provide evidence for the importance of map
learning in utilizing alignment effects, or at least suggest that the
combination of map and route information is necessary to utilize
the axes of the environment initially.

Method

Participants. A total of 43 participants, who had not partici-
pated in Experiment 1, were recruited following the same proce-
dures as Experiment 1. The experimenter withdrew one participant
because of fatigue, two because of computer issues, two who did
not meet inclusion criteria, 13 because of VR sickness, and one
who was unable to use the treadmill proficiently. Data from 24
participants (11 female; mean age � 22.13 years) were used for
subsequent analyses.

Procedure. The procedure for Experiment 2 was identical to
Experiment 1, with the addition of a map-learning task on an
external computer monitor between training and the first naviga-
tion block (Figure 2c). This yielded an otherwise identical exper-
imental design to Experiment 1.

In the map-learning task, participants were given unlimited time
to study an aerial view of the VE and learn the names and locations
of the eight stores (Figure 2c, “STUDY”). Participants learned
store names and locations by moving the cursor over the top of a
given store, at which point the name of the store was displayed in
text adjacent to the store on the map. After participants were
confident they knew the locations of all stores, they began the testing
phase. For this phase, stores were moved from within the VE to
outside the boundary wall of the VE, and participants had to drag and
drop them in the correct location (Figure 2c, “TEST”). Participants
repeated “study” and “test” until they reached criterion (100% cor-
rect). Note that they were already familiarized with the names and
images of the stores prior to map learning, which they experienced
during the familiarization phase (for a description, see Experiment 1).

Results

Latent growth curve modeling. In total, 5.93% of trials were
excluded as outliers based on the same criteria used in Experiment
1. As in Experiment 1, the LGC results favored a model in which
only the latent slope means were free to vary between aligned and
misaligned model groups for predicting performance from Exper-
iment 2 (Figure 5a, dotted lines), supporting the conclusion that
alignment effects were not present on the first block (Figure 5b).
Qualitatively, model predictions fit well with actual pointing error
outcomes, and the discrepancy in overall change between aligned
versus misaligned conditions is clear, even more so than in Ex-
periment 1 (Figure 5a). The fit indices for all models tested are
shown in Table 3. The selected model fit significantly better than the
complete invariance model, �diff

2 (1) � 22.08, p � .001. The next step
in relaxing factorial invariance, freeing both the latent slope mean and
the latent intercept mean, did not significantly improve LGC model
fit, �diff

2 (1) � 0.01, p � .250; therefore, further difference tests on
more saturated models were not conducted. The “intercept mean”
model with the same degrees of freedom as the “slope mean” model
also fit significantly better than the complete invariance model,
�diff

2 (1) � 20.23, p � .001. Again, we selected the “slope mean”
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model, as it had numerically better fit indices on all calculated indices
(see Table 3; Ferrer & McArdle, 2003; West et al., 2012). The BF for
Block 1 misaligned–aligned pointing difference provided sufficient
evidence that these data were more likely obtained under the null
hypothesis (BF01 � 4.47). This is compatible with the LGC modeling
results suggesting identical intercept means in the learning curves for
performance aligned versus misaligned JRD trials, consistent with

Experiment 1 but with additional evidence for the stronger likelihood
of a null result on the first block using the ratio for the BF.

Comparison of absolute pointing error for each aligned versus
misaligned block. Planned comparisons again revealed no align-
ment effects detected on the first or second block. Significant
alignment effects were detected on all of the remaining blocks,
Blocks 3 through 6. Descriptive statistics and comparisons for
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Figure 5. Experiment 2 (a) performance on the judgment of relative directions in each alignment condition for
each block (solid lines) and model predictions for these same data (dotted lines), based on the selected latent
growth modeling model as well as (b) the path diagram for the selected model, including all estimated
parameters, both fixed (solid lines) and freed (dotted lines). Error bars represent 95% confidence intervals that
have been visually adjusted to remove between-subjects variability (Cousineau, 2005). For model parameters
freed across groups, misaligned parameter estimates are shown in red (dark gray) and aligned parameters
estimates are shown in blue (light gray). Asterisks indicate significant differences between misaligned and
aligned conditions on a given block. � p � .05. �� p � .01. ��� p � .001. See the online article for the color
version of this figure.

Table 3
Models Tested and Corresponding Fit Indices for Experiment 2

Parameter(s) free �2 df p AIC BIC CFI RMSEA

Complete invariance 59.50 39 .019 1,958.84 1,986.90 .895 .148
Slope mean 37.42 38 .496 1,938.75 1,968.69 1 0
Intercept mean 39.27 38 .413 1,940.61 1,970.54 .994 .037
Slope and intercept mean 37.41 37 .450 1,940.75 1,972.56 .998 .022
Variance/covariance 34.79 34 .430 1,944.12 1,981.54 .996 .031
Curvature (Betas 2–5) 31.02 30 .414 1,948.36 1,993.26 .995 .038
Residuals 20.58 24 .663 1,949.92 2,006.05 1 0

Note. Models are described in the left column in order of decreasing factorial invariance between the
misaligned and aligned group models. Subsequent columns indicate the value for fit indices used for model
selection. The bolded row indicates the selected model. df � degrees of freedom; AIC � Akaike information
criterion; BIC � Bayesian information criterion; CFI � comparative fit index; RMSEA � root mean square
error of approximation.
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misaligned and aligned conditions across all six blocks are re-
ported in Table 4. Group-averaged absolute pointing errors for
misaligned and aligned conditions across learning are shown in
Figure 5a. The same overall pattern of alignment effects was also
present in the response latency data (Figure S1 of the online
supplemental materials). Performance was not significantly differ-
ent between imagined headings facing “North” and any other
headings in cardinal directions (Figure S7).

We compared the first block of JRD pointing in Experiment 1 with
Experiment 2 to confirm that pointing error decreased as a result of
map exposure. This was indeed the case. We entered the data from the
first and second blocks of Experiments 1 and 2 into a 2 (experiment:
1, 2) � 2 (block: 1, 2) mixed ANOVA. By using only two time points
(Blocks 1 and 2), this “restricted” data set should thus provide more
reliable results from linear modeling approaches, like ANOVA, com-
pared with using the entire data set that follows a nonlinear trajectory
across blocks. There were main effects of experiment, F(1, 45) �
6.48, p � .014, and block, F(1, 45) � 63.09, p � .001, as well as a
significant Experiment � Block interaction, F(1, 45) � 17.45, p �
.001. These findings bolstered the idea that preexposure to the map
significantly reduced pointing error in Experiment 2. A Welch’s t test
indicated overall error on the first block in Experiment 2 (M � 31.19,
SD � 17.41) was significantly lower than in Experiment 1 (M �
47.69, SD � 19.34), t(90.04) � 4.34, p � .001, d � 0.90, 95%
confidence interval [CI] [8.95, 24.05]. Pointing error, however, was
not significantly lower on the second block in Experiment 2 (M �
25.47, SD � 14.28) compared with Experiment 1 (M � 29.56, SD �
11.67), t(89.77) � 1.52, p � .250, d � 0.31, 95% CI [�1.24, 9.43].
Although there was a significant improvement in performance across
the first two blocks in Experiment 1, t(73.93) � 5.44, p � .001, d �
1.14, 95% CI [11.49, 24.76], this was not true for Experiment 2,
t(90.55) � 1.76, p � .250, d � 0.36, 95% CI [�0.73, 12.18],
evidenced by the interaction effect in the 2 � 2 ANOVA. The
p values for these post hoc tests were Bonferroni corrected for
multiple (four) comparisons. We also directly compared the degree of

variability in pointing error on Blocks 1 and 2 using Bartlett’s test to
determine whether these differed as a function of blocks for Experi-
ment 1 versus 2. Although there was a significant difference in
variance for pointing error between the first and second block in
Experiment 1 (SD1 � 17.48, SD2 � 11.03), �diff

2 (1) � 4.41, p � .036,
this difference in variance was not significant in Experiment 2 (SD1 �
16.39, SD2 � 13.48), �diff

2 (1) � 4.41, p � .250. These additional
analyses suggest that although there was greater variability in pointing
error on the first block than on the second in Experiment 1, preexpo-
sure to a map in Experiment 2 resulted in more stable variability early
in learning. Thus, it is unlikely that poor performance on early blocks
of Experiment 1 prevented us from detecting actual alignment effects.

Additional analyses. Excess path results are shown in Figure
S3b (in the online supplemental materials), again demonstrating
improved route efficiency over navigation blocks, although excess
path was lower on Block 1 in Experiment 2 than Experiment 1,
consistent with the effects of preexposure to the map on JRD
pointing error. The correlation between excess path and the dif-
ference between misaligned and aligned pointing difference again
failed to reach significance (Figure S4b). Results from head ori-
entation analyses for Experiment 2 are shown in Figures S5a, S5b,
and S6; just as in Experiment 1, participants faced the cardinal
directions more often than the noncardinal directions beginning on
Block 1, again suggesting that facing direction during navigation
could not directly account for the later emergence of alignment
effects during the JRD task. Consistent with Experiment 1, initial
and final heading during navigation did not account for variance in
JRD pointing error.

Discussion

In Experiment 2, we exposed participants to the same learning
procedure as Experiment 1, with the addition of prior map learning
before navigation. Consistent with only navigation learning in
Experiment 1, the LGC models for Experiment 2 data favored a

Table 4
Comparison of Aligned and Misaligned Pointing Conditions Across Retrieval Blocks in
Experiment 2

Retrieval block M SD Mdiff df t p d 95% CI

Block 1
Misaligned 30.82 14.52 �.74 23 �.3 �.250 �.06 [�5.88, 4.39]
Aligned 31.56 20.20

Block 2
Misaligned 27.39 14.29 3.84 23 1.82 .082 .37 [�.52, 8.21]
Aligned 23.55 14.32

Block 3
Misaligned 23.14 7.93 5.72 23 4.35 �.001 .89 [3.00, 8.45]
Aligned 17.42 8.66

Block 4
Misaligned 21.34 7.53 3.41 23 2.56 .018 .52 [.65, 6.17]
Aligned 17.93 8.12

Block 5
Misaligned 21.02 7.50 4.96 23 3.49 �.001 .80 [2.36, 7.56]
Aligned 16.06 7.10

Block 6
Misaligned 20.67 5.81 6.10 23 5.14 �.001 1.05 [3.64, 8.55]
Aligned 14.57 6.05

Note. df � degrees of freedom; CI � confidence interval.
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model predicting a different total change across learning, with
misaligned pointing error decreasing less overall, as the only
variable component of the model across groups. Again, the differ-
ence in slope means, rather than intercept means, suggests that
aligned and misaligned pointing error started at the same level but
diverged over time. As predicted, the additional information prior
to the first retrieval block resulted in lower absolute pointing error,
with participants performing better on the first retrieval block of
Experiment 2 compared with Experiment 1. In Experiment 2, there
was also no decrease in variance from the first to second block that
would have added noise to the data and decreased the ability to
detect alignment effects if they were present. Importantly in Ex-
periment 2, although we did see alignment effects one block
earlier, the difference between aligned and misaligned was not
significant on the first or second block using t tests, further
supported by the Bayes null finding of 4.47. These results further
support a model by which alignment effects are not encoded
initially, but rather manifest via underlying cognitive and neural
mechanisms during repeated learning. To better understand the
specific impact of cartographic knowledge on alignment effects
and the interaction between studying a map versus route learning,
we conducted a third experiment in which learning only occurred
via maps.

Experiment 3

Participants in Experiment 3 learned the environment using the
map task from Experiment 2 as the only form of learning across
repeated experience. Thus, Experiment 3 served as the “aerial
view” learning analog to the “first-person view” learning in Ex-
periment 1, in which only route learning was employed. Based on
Experiments 1 and 2 not showing initial alignment effects, we
hypothesized that alignment effects would once again not manifest
until after sufficient exposure, because participants in Experiment
2 had both map and navigation information available to be inte-
grated for spatial memory. Alternatively, it is possible that route
learning after map learning introduced retroactive interference on
map-based spatial representations, which would instead suggest
that direct perception of the environmental geometry via a carto-
graphic map may facilitate the formation of alignment effects. If
the latter is true, then we may see alignment effects as early as the
first block when the interference of route information is removed.
This would be consistent with the often-reported finding of align-
ment effects in small-scale spaces (Mou & McNamara, 2002;
Rieser, 1989; Rump & McNamara, 2013; Shelton & McNamara,
2001).

Method

Participants. A total of 64 participants were recruited follow-
ing the same procedures used in Experiments 1 and 2. One par-
ticipant withdrew from the study. The experimenter withdrew four
participants who did not finish in the allotted time, one who did not
follow the task instructions, two because of computer errors, and
nine that failed to perform significantly better than chance. Data
from 47 participants (25 female; mean age � 20.93 years) were
used for subsequent analyses. None of these participants had
participated in the past experiments. The reasons for the differ-
ences in sample size are as follows: We collected an initial sample

of 24 participants (see the online supplemental materials for more
information on this subset of the final sample), finding significant
alignment effects on all blocks except the second. Because of large
qualitative difference between the p values for the t tests on the
first two blocks and a failure for one of the tested LGC models to
converge, we added an additional 23 subjects from a pilot study
with an identical design to Experiment 3 to the initial sample and
included them for further analysis (i.e., we approximately doubled
the sample size). The results from the large (n � 47) and small
(n � 24) samples are largely identical (see the online supplemental
materials), and thus subsequent results are reported based on the
larger sample that allowed us to run the LGC models. Note, again,
that the smaller sample size, which was consistent with Experi-
ments 1 and 2, yielded essentially identical results, with exception
of the convergence of the LGC, and is described in detail in the
online supplemental materials.

Procedure. The procedure for Experiment 3 was identical to
Experiment 1, except that the map-learning task, completed on
either a 21.5-in. or 27-in. iMac computer (Apple Inc., Cupertino,
CA), replaced the navigation task on each block as the only
modality for learning. The map task was identical to the one used
in Experiment 2; the familiarization and JRD tasks were identical
to the ones used in Experiments 1 and 2. This yielded a structurally
identical experimental design to Experiments 1 and 2.

Results

Latent growth curve modeling. A total of 5.69% of trials were
excluded as outliers from further analysis based on the same criteria
as in previous experiments. The LGC model used in the first two
experiments was modified to account for the fact that little to no
change occurred after Block 2 in Experiment 3; otherwise, the models
did not converge. Specifically, the slope factor loadings on Blocks 3
through 5, in addition to Block 6, were all fixed to negative one and
the residuals for Blocks 3 through 6 were fixed to be equal, predicting
no change in performance or variability after Block 2. Because most
of the models contained a nonsignificant negative residual variance
for the first block, this value was fixed to zero, which had no impact
on model selection, while rectifying this issue in the variance-
covariance matrix of the model. Compared with the models used in
Experiments 1 and 2 (in which the curvature was estimated for each
block), this model (in which curvature was only estimated on Block
2, with no change from Blocks 3 through 6) fit the data from
Experiment 3 best. Modifications to the model are illustrated in Figure
6b. Across all models, only the model with the latent intercept free
and the complete invariance model did not differ significantly from
the observed data (all other ps � .05; see Table 5). Although the
complete invariance model performed better on several fit indices (see
Table 5), it estimated several additional parameters, which is reflected
in the BIC index and the fact that it did not fit significantly better than
the intercept-only model, �diff

2 (7) � 11.38, p � .123. Thus, the model
best describing the data from Experiment 3 (Figure 6a, dotted lines)
was one in which only the latent intercept means, and not the latent
slope means, were free to vary between model groups. This model
predicts that aligned and misaligned trials will be significantly differ-
ent on the first block and will change identically over time. The BF for
Block 1 misaligned–aligned pointing difference provided weak evi-
dence that the data was obtained under the alternative hypothesis (i.e.,
a model in which an alignment effect exists on the first block),

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

508 STARRETT, STOKES, HUFFMAN, FERRER, AND EKSTROM

http://dx.doi.org/10.1037/xlm0000597.supp
http://dx.doi.org/10.1037/xlm0000597.supp
http://dx.doi.org/10.1037/xlm0000597.supp
http://dx.doi.org/10.1037/xlm0000597.supp


BF01 � 0.90. This provides further support for the LGC results, as the
BF is consistent with modeling results in all three experiments,
including the likelihood favoring initial alignment effects here, in
Experiment 3.

Comparison of absolute pointing error for each aligned
versus misaligned block. Group-averaged absolute pointing er-
rors for misaligned and aligned conditions across the six testing
blocks are shown in Figure 6a. Planned comparisons revealed a
significant difference between misaligned and aligned perfor-

mance on Block 1. This effect was marginally significant for Block
2 and significant for the remaining blocks—Blocks 3 through 6.
Descriptive statistics and comparisons for misaligned and aligned
conditions across all six blocks are reported in Table 6.

For the first testing block, absolute pointing error for imagined
headings facing North (M � 20.10, SD � 17.55) was significantly
lower than for headings facing East (M � 28.84, SD � 21.22),
t(45) � �2.65, p � .034, 95% CI [�14.71, �1.99], or West (M � 27.84,
SD � 19.94), t(45) � �2.89, p � .018, 95% CI [�13.48, �2.42], but

Table 5
Models Tested and Corresponding Fit Indices for Experiment 3

Parameter(s) free �2 df p AIC BIC CFI RMSEA

Complete invariance 67.63 45 .016 3,939.86 3,962.75 .900 .103
Slope mean 61.33 44 .043 3,935.56 3,961.00 .924 .092
Intercept mean 60.05 44 .054 3,934.28 3,959.71 .929 .088
Slope and intercept mean 59.95 43 .045 3,936.18 3,964.15 .925 .092
Variance/covariance 59.69 40 .023 3,941.92 3,977.53 .913 .102
Curvature (Beta 2) 59.58 39 .019 3,943.81 3,981.96 .909 .106
Residuals 48.67 37 .095 3,936.90 3,980.14 .949 .082

Note. Models are described in the left column in order of decreasing factorial invariance between the
misaligned and aligned group models. Subsequent columns indicate the value for fit indices used for model
selection. The bolded row indicates the selected model. df � degrees of freedom; AIC � Akaike information
criterion; BIC � Bayesian information criterion; CFI � comparative fit index; RMSEA � root mean square
error of approximation.
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Figure 6. Experiment 3 (a) performance on the judgment of relative directions in each alignment condition for
each block (solid lines) and model predictions for these same data (dotted lines), based on the selected latent
growth modeling model as well as (b) the path diagram for the selected model, including all estimated
parameters, both fixed (solid lines) and freed (dotted lines). Error bars represent 95% confidence intervals that
have been visually adjusted to remove between-subjects variability (Cousineau, 2005). For model parameters
freed across groups, misaligned parameter estimates are shown in red (dark gray) and aligned parameters
estimates are shown in blue (light gray). Asterisks indicate significant differences between misaligned and
aligned conditions on a given block. � p � .05. �� p � .01. ��� p � .001. See the online article for the color
version of this figure.
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were not significantly different from headings facing South (M � 25.33,
SD � 18.20), t(39) � �2.13, p � .120, 95% CI [�14.48, �0.36], along
the same axis; all p values were Bonferroni corrected for three
comparisons on each block (North vs. East, North vs. South, North
vs. West). North-facing headings were not significantly different
from other imagined cardinal headings on any subsequent testing
blocks. Performance for each cardinal facing direction across
testing blocks is shown in Figure S7 (in the online supplemental
materials). There was no statistical difference between learning on
Block 1 in Experiment 2 (M � 31.19, SD � 17.41) versus
Experiment 3 (M � 28.30, SD � 13.56), t(26.89) � �1.00, p �
.250, 95% CI [�8.82, 2.84].

Additional analyses. As there was no navigation component
to Experiment 3, no additional analyses related to excess path or
head direction could be conducted.

Discussion

Participants learned maps of a VE, interspersed with JRDs.
Alignment effects were detected on the first block when only maps
were used for learning. This suggests that route learning, which
has been shown to produce slower improvements in JRD relative
to maps (Zhang et al., 2014), may interfere with the ability to
utilize alignment effects obtained from a map. Participants may
prefer the use of a reference frame based on the first learning
modality, maps, in Experiment 2, with some degradation in mem-
ory for that reference frame related to time spent in navigation.
Another possibility is that the use of an initial or salient reference
frame during navigation may have interfered with alignment ef-
fects but not performance (see Figure S6 in the online supplemen-
tal materials), particularly if the “map” and “navigation” reference
frames were initially inconsistent (Gagnon et al., 2014), that is, the
one selected during navigation was geometrically incorrect be-
cause participants were still attempting to encode the shape of
boundaries during navigation. This would also be consistent with
findings from recent work by Meilinger, Frankenstein, Watanabe,

Bülthoff, and Hölscher (2015), which found that participants se-
lected reference frames based on learning order despite utility of
the information provided from that learning modality for subse-
quent memory goals. Interestingly, any interference in reference
frame may be specific to the formation of alignment effects here,
as absolute pointing error on the first block was not different
between Experiments 2 and 3. That is to say, our learning manip-
ulation across experiments on the first block (map, then naviga-
tion, before JRD in Experiment 2 versus only map before JRD in
Experiment 3) had an effect on whether or not alignment effects
were employed but not on overall memory precision on the JRD
task.

General Discussion

In Experiment 1, participants freely ambulated in an immersive
VR interface using an omnidirectional treadmill to navigate to
target landmarks. Then, they performed the JRD task with head-
ings that were either aligned or misaligned with the salient geom-
etry of the environment, repeating this process of navigation and
JRD pointing six times total. Based on LGC, Bayes null, and post
hoc tests, we found no evidence for differential performance on
aligned versus misaligned JRD trials initially. In fact, the LGC
results supported a model for Experiment 1, in which the intercept
means were the same but the slope means differed for aligned
versus misaligned pointing. Thus, Experiment 1 supported the idea
that alignment effects are emergent, experience-dependent phe-
nomena in novel environments.

It could be argued, however, that large-scale, real-world envi-
ronments are rarely learned by direct exploration alone. If partic-
ipants were aware of the rectangular structure of the surrounding
geometry, they might be more likely to show alignment effects, as
argued in past work (Frankenstein et al., 2012; Marchette et al.,
2011). Additionally, it may have been that we did not observe
alignment effects in Experiment 1 because absolute pointing error
and variance were high on the first blocks because participants

Table 6
Comparison of Aligned and Misaligned Pointing Conditions Across Retrieval Blocks in
Experiment 3

Retrieval block M SD Mdiff df t p d 95% CI

Block 1
Misaligned 30.00 12.72 3.39 46 2.07 .044 .30 [.10, 6.69]
Aligned 26.61 14.28

Block 2
Misaligned 22.53 10.01 2.04 46 1.86 .069 .27 [�.17, 4.26]
Aligned 20.49 9.03

Block 3
Misaligned 21.85 7.60 4.42 46 4.81 �.001 .70 [2.57, 6.23]
Aligned 17.43 7.21

Block 4
Misaligned 22.59 8.16 4.07 46 3.65 �.001 .53 [1.83, 6.31]
Aligned 18.52 8.61

Block 5
Misaligned 22.72 8.07 5.05 46 4.48 �.001 .65 [2.78, 7.33]
Aligned 17.67 8.85

Block 6
Misaligned 22.59 8.73 3.96 46 2.97 .005 .43 [1.28, 6.65]
Aligned 18.63 11.47

Note. df � degrees of freedom; CI � confidence interval.
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lacked familiarity with the environment. By preexposing partici-
pants to maps in Experiment 2, we thus directly tested whether
knowledge of the surrounding spatial geometry via exposure to
maps prior to exploration of a novel environment would produce
more immediate alignment effects. Despite preexposure to a map
before navigating, we still did not find alignment effects initially,
again supported by our LGC, Bayes null, and post hoc tests.
Specifically, the LGC results again supported a model in which the
intercept means were the same but the slope means varied. These
findings again support the idea that alignment effects are an
experience-dependent, emergent phenomenon in novel environ-
ments.

Experiment 3 used the same procedures as Experiment 1 but
employed only map learning instead of navigation learning. Some-
what surprisingly, alignment effects were present on the first
block, supported by LGC, Bayes null, and post hoc tests. Specif-
ically, LGC results supported the conclusion that, in this case, the
model in which the intercept means differed, but not the slope
means (total change across learning), was most parsimonious in
explaining the findings. Notably, the presence of alignment effects
on the first block during map learning was also true for a matched
sample size (N � 24) using post hoc tests. Overall performance on
the first block of Experiment 3 was not different from that of
Experiment 2, ruling out the possibility that poor performance
could account for the lack of an alignment effect on the first block
of Experiment 2.

An important question then regards why we observed alignment
effects on the first block of Experiment 3, which involved studying
a map, but not until Block 3 in Experiment 2, which involved
studying a map and then navigating. There are several possibilities.
The interference introduced by route-based information following
map learning in Experiment 2 may have been selective to the
ability to apply useful geometric-based reference frames to spatial
memories formed during navigation but not on the memories more
generally, as indicated by the fact that participants did show
alignment affects when studying the map only. It could also be that
alignment effects are simply more salient in spaces of certain
scales, consistent with findings of differences between vista versus
environmental spaces (Meilinger et al., 2016). It is also worth
noting that maps can be considered a form of configural space
(Montello, 1993), given that the actual distances are smaller and
that in many situations with maps, such as our map task, all
relevant items can be seen from one perspective.

Although the issues of environmental scale and alignment ef-
fects have been tested, to some extent, previously by varying
display sizes or imagined size of the observer (Presson, DeLange,
& Hazelrigg, 1989; Roskos-Ewoldsen, McNamara, Shelton, &
Carr, 1998), the specific differences between vista space versus
environmental space versus configural space have not been di-
rectly addressed using novel environments which participants
freely navigate. The difference observed in our study may prove
useful in further understanding spatial learning and additional
conditions that may directly affect alignment effect formation, and
although earlier studies have argued that scale may not have an
impact on alignment effects (P. N. Wilson, Tlauka, & Wildbur,
1999), others have emphasized the importance in spatial scale as it
relates to the neural mechanisms, neural systems, and cognitive
processes engaged in the brain (Ekstrom et al., 2017; Wolbers &
Wiener, 2014). Thus, although we cannot be sure why alignment

effects emerged during map studying but not route learning, nor
during route learning preceded by map learning, overall, our
findings are consistent with the idea that spatial representation may
differ as a function of scale of space.

Our findings, taken together, provide evidence for situations in
which spatial boundaries, as an organizing schema for initial
spatial knowledge, are either not yet behaviorally relevant or are
suppressed by interfering information. A novel affordance of our
VR interface, compared with real-world studies, is the ability to
measure behavior between learning exposures and record detailed
information about movement, body position, and head direction.
This provided us with a sensitive metric of how spatial represen-
tations were formed and how they changed over time. Extensive
learning of more complex environments, such as the city of Tübin-
gen used by Frankenstein et al. (2012), may provide further insight
as to how these representations change as participants become
experts of an environment. This and other research posit that map
learning may play a critical role in orienting spatial alignments to
a geometric reference frame (Richardson, Montello, & Hegarty,
1999). Building on previous studies using pointing error metrics
(Zhang et al., 2014), future studies might further examine the
effects of various learning conditions (e.g., routes vs. maps) on the
emergence of alignment effects and how various reference frames
contribute to detecting these effects in more egocentric or allocen-
tric tasks (e.g., Gramann et al., 2010).

Our study used a primarily allocentric pointing task, the JRD,
rather than a more egocentric task like the scene- and
orientation-dependent pointing task, with the JRD task benefit-
ing more from map learning than route learning (Thorndyke &
Hayes-Roth, 1982; Zhang et al., 2014). A remaining question is
whether or not route learning is actually beneficial for primarily
allocentric spatial memory when a map is available. This would
be consistent with findings that suggest humans generally rely
on allocentric strategies, unless high-fidelity allocentric infor-
mation is not available, in which case egocentric reference
frames are primarily utilized (Mou, McNamara, Rump, & Xiao,
2006; Newman et al., 2007). Further investigation into the
cognitive and neural mechanisms involved in reference frame
switching may provide useful insights in addition to electro-
physiological and neuroimaging studies of spatial representa-
tion formation (Ekstrom, 2010; Ekstrom, Arnold, & Iaria, 2014;
Ekstrom et al., 2017; Ishikawa & Montello, 2006).

Studies that have explicitly investigated the dynamics of
place-cell firing over repeated exposure to the environment on
a single day suggest that neural coding for position does not
initially show a strong direction bias but instead emerges based
on experience (Ekstrom et al., 2001; Mehta et al., 1997, 2000).
These studies, though, were physiological, conducted in ro-
dents, and did not investigate binding to the surrounding ge-
ometry of the environment or specific viewpoints (the latter of
which would be challenging to address in rats because of their
limited vision). Although rodent electrophysiology studies also
suggest the importance of spatial boundaries to location-coding
mechanisms more generally (Barry et al., 2006; Hartley, Lever,
Burgess, & O’Keefe, 2014), our findings shed new light on when
we incorporate spatial boundaries into environment-specific represen-
tations during navigation. Particularly, our findings add to the spatial
navigation literature by suggesting that alignment effects emerge later
in novel spatial environments following sufficient exposure, particu-
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larly that which allows egocentric to allocentric conversion between
the surrounding environment and specific viewpoints and trajectories
(Gramann, Müller, Eick, & Schönebeck, 2005; Zhang et al., 2014). To
our knowledge, such findings have yet to be shown in rodents,
suggesting a potential novel line of research, for example, whether
place cells show differences in firing rate as a function of alignment
of trajectories to the surrounding spatial geometry. This could also
help better inform the factors influencing development of unidirec-
tional versus omnidirectional place cells, a topic of current debate in
the field (Buzsáki & Moser, 2013).

One potential consideration when interpreting the results of
our navigation-based experiments (Experiments 1 and 2) is the
lack of distal landmarks, like mountains. Could these, poten-
tially, have served to more rapidly anchor representations
formed during navigation to a primary axis? Despite the ab-
sence of distal landmarks, a feature also not included in many
small-scale studies showing environmental alignment effects
(Kelly et al., 2007; Mou & McNamara, 2002; Mou et al., 2004;
Rump & McNamara, 2013; Shelton & McNamara, 2001), par-
ticipants nonetheless establish a primary reference axis even in
the absence of salient, orthogonal, distal landmarks (Han &
Becker, 2014). The question of how distal landmarks can be
utilized to anchor representations for space or how the same
distal landmark may differentially anchor representations for
separately represented compartments of adjacent spaces is an
important one but is outside the scope of the present work,
which followed up on past studies showing that the shape of the
spatial boundaries results in environmental alignment effects
during the JRD task. Thus, we do not believe that the lack of
distal landmarks should limit the interpretation of these find-
ings.

In conclusion, our three experiments highlight the dynamic
formation of spatial representations throughout the learning of
novel, large-scale, realistic environments involving free ambu-
lation. We demonstrate conditions under which alignment ef-
fects are and are not present in initial JRD pointing perfor-
mance, with these effects emerging after repeated learning, be
it from route-learning either in isolation or preceded by map-
learning. To be clear, our findings do not refute the presence of
alignment effects during navigation of large-scale space, as
these were clearly present in later blocks of learning. Rather,
the goal of this research was to identify conditions that may
lead us to better understand the putative cognitive processes
that underlie spatial representation formation and when geo-
metric axes are effectively integrated into those representations
for behavioral goals. We also speculate on the potential dy-
namic effects route and map learning have on one another when
both are present early in learning and how this might relate to
the issue of scale of space. The findings provide a foundation
for the future study of spatial cognition in large-scale, realistic
spatial environments using a novel VR interface that provides,
to our knowledge, the closest experience to real-world naviga-
tion of large-scale, city-sized environments to date. This is
because our interface incorporates optic flow, as well as ves-
tibular, proprioceptive, and somatosensory information, and the
ability to freely ambulate in large-scale VEs. We thus provide
a novel means, and novel data, regarding how spatial represen-
tations evolve during learning.
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