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Abstract  
 
Sensory stimuli arrive in a continuous stream.  By learning statistical regularities in the 
sequence of stimuli, the brain can predict future stimuli (Xu et al. 2012; Gavornik and Bear 
2014; Maniscalco et al. 2018; J. Fiser and Aslin 2002).  Such learning requires associating 
immediate sensory information with the memory of recently encountered stimuli (Ostojic and 
Fusi 2013; Kiyonaga et al. 2017).  However, new sensory information can also interfere with 
short-term memories (Parthasarathy et al. 2017).  How the brain prevents such interference is 
unknown.  Here, we show that sensory representations rotate in neural space over time, to form 
an independent memory representation, thus reducing interference with future sensory inputs. 
We used an implicit learning paradigm in mice to study how statistical regularities in a sequence 
of stimuli are learned and represented in primary auditory cortex. Mice experienced both 
common sequences of stimuli (e.g. ABCD) and uncommon sequences (e.g. XYCD).  Over four 
days of learning, the neural population representation of commonly associated stimuli (e.g. A 
and C) converged. This facilitated the prediction of upcoming stimuli, but also led unexpected 
sensory inputs to overwrite the sensory representation of previous stimuli (postdiction).  
Surprisingly, we found the memory of previous stimuli persisted in a second, orthogonal 
dimension.  Unsupervised clustering of functional cell types revealed that the emergence of this 
second memory dimension is supported by two separate types of neurons; a ‘stable’ population 
that maintained its selectivity throughout the sequence and a ‘switching’ population that 
dynamically inverted its selectivity.  This combination of sustained and dynamic representations 
produces a rotation of the encoding dimension in the neural population.  This rotational dynamic 
may be a general principle, by which the cortex protects memories of prior events from 
interference by incoming stimuli. 
 
Main Text 
 
Predictions are a key neural computation; they improve stimulus processing (de Lange, 
Heilbron, and Kok 2018; Brandman and Peelen 2017; A. Fiser et al. 2016) and speed 
behavioral responses (Jaramillo and Zador 2011; Chun and Jiang 1998; Dehaene et al. 2015).  
Predictions are based on experience: we use previously learned cross-temporal associations to 
anticipate future stimuli (Ostojic and Fusi 2013). These associations can be learned from 
statistical regularities in a sequence of stimuli, without supervision or an explicit task (Gavornik 
and Bear 2014; Li and DiCarlo 2008, 2012; Maheu, Dehaene, and Meyniel 2019; Kim et al. 
2009). Yet, despite its importance, the neural mechanisms underlying both the learning and 
representation of predictions is largely unknown. In particular, it is unknown how the brain 
simultaneously represents both current and previous sensory inputs to allow associations to be 
learned across time (Kiyonaga et al. 2017).  
  
To address this, we recorded from auditory cortex in mice, while they gained experience with 
sequences of four chords (Fig. 1A, see Supporting Information, SI). Statistical regularities in the 
transitions between chords created learnable predictions within the sequences (Fig. 1B). 
Specifically, sequences began with one of two contextual chord pairs, either an ‘A’ and ‘B’ 
stimulus pair (the AB context) or an ‘X’ and ‘Y’ stimulus pair (the XY context).  These contexts 
predicted what chord would follow: on 68% of trials, the AB context was followed by a C chord 
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and the XY context was followed by a C* chord. All sequences ended with a D chord.  However, 
on a subset of trials (20%), the animals unexpectedly heard the other stimulus (i.e. rare 
sequences: ABC*D and XYCD; the remaining 12% of trials were ambiguous stimuli, not 
analyzed here). The overall likelihood of each sensory stimulus was balanced across 
conditions.  Therefore, at the start of each sequence, the animal had no a priori expectation as 
to what chords it would experience.  Only after the presentation of the contextual stimuli 
(AB/XY) could the animal predict the upcoming C/C* stimulus. Beginning naïve, the animals 
experienced 1500 sequences of stimuli per day, for 4 consecutive days (no behavioral response 
was required; see SI). 
 
To track how expectation shaped neural responses, we recorded 522 neurons from the auditory 
cortex of 7 mice, over the 4 days of sequence experience (see SI). Although all recordings were 
chronic, individual neurons were not tracked across recording sessions. Individual neurons 
showed selectivity to both context chords (A vs. X and B vs. Y) and the predicted stimulus (C vs. 
C*; see Fig. 1C). To measure the stimulus representation in the neural population on each day, 
we defined an encoding axis for each chord in the sequence. The encoding axis was defined as 
the vector normal to the hyperplane that best classified the population response to each 
stimulus pair (Fig. 1D, classifier was a linear SVM trained on average activity from 10-110 ms 
after stimulus onset, see SI for details and Fig. S2 for classifier performance). To ensure an 
unbiased classifier, trial types were balanced (i.e. an equal number of ABCD, ABC*D, XYCD, 
and XYC*D trials) and all analyses were performed on withheld data. To measure population 
encoding of each stimulus, we projected neural activity onto the encoding axis (Fig. 1D). These 
signed projections represent the relative encoding strength of each stimulus (e.g. X is positive 
and A is negative along the A/X axis, as seen in Fig. 1E).  
 
Figure 1E shows the temporal evolution of A/X sensory encoding. As expected, the population 
strongly encoded the A/X stimulus during its presentation (Fig. 1E, orange shaded region; 
average encoding during presentation, D1=0.37, D4=0.32, p<1/5000, bootstrap test, Fig. 1F). 
However, this information quickly decayed after the sensory stimulus. The A/X sensory classifier 
only weakly decoded the B/Y stimulus (Fig. S4), suggesting the encoding of A/X sensory 
information is independent from B/Y representations.  
 
C/C* stimuli were also strongly represented during their presentation (Fig. 1H, blue shaded 
region). Similar to previous studies examining responses to rare stimuli (Kurkela et al. 2018; 
Chen, Helmchen, and Lütcke 2015; Natan et al. 2015), unexpected C/C* stimuli were more 
strongly encoded than expected stimuli on day 1 (Fig. 1I; D1 difference=0.079 p=0.033, 
permutation test). Importantly, because our paradigm was balanced, the difference between the 
expected and unexpected responses could not be attributed to the stimulus, but solely to its 
contextually-defined expectation within the sequence. Consistent with adaptation (F. P. de 
Lange, Heilbron, and Kok 2018; Kato, Gillet, and Isaacson 2015), encoding strength of both 
expected and unexpected trials decreased over days (Fig. 1K; expected D4-D1 = -0.092, 
p=0.016; unexpected D4-D1 = -0.17, p=0.0002, permutation test).  

In addition, there was predictive encoding of the expected C/C* stimulus during the presentation 
of A/X: when A or X was presented, the neural population began to encode C or C*, respectively 
(Fig. 1H, black box, and Fig. 1J; D1 = 0.13, p<1/5000; D4 = 0.19, p<1/5000, permutation test). 
This effect grew with experience (D4-D1 = 0.056, p= 0.038, permutation test). Indeed, by day 4, 
the predicted response of C/C* during A/X was nearly as strong as the sensory response to 
C/C* stimuli themselves.   
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To directly demonstrate the relationship between associated stimuli, we plotted the population 
activity in a 2D state space defined by the A/X sensory and C/C* sensory encoding 
axes.  These axes are independent (but not necessarily orthogonal as we show below) and so 
this space allows us to track the evolution of both A/X sensory and C/C* sensory information 
during the sequence.  On day 1, neural activity, during the presentation of the A/X stimulus, 
evolved along the A/X axis, reflecting the encoding of A/X sensory information in the neural 
population (Fig. 2A, left). However, by day 4, the neural activity evoked by the A/X stimulus 
evolved along a rotated axis (Fig. 2A, right). Now, the A/X stimulus induced encoding of their 
predicted stimuli (C and C* for A and X, respectively).  Predictions increased with experience, 
reflected in the increased angle of the first principle component (PC) of the neural trajectory 
over days (Fig. 2A, insets, and Fig. 2B, D1=19 deg, D4=31 deg. D4-D1=12 deg, p≤1/5000, 
permutation test, see SI for details). Predictions were also observed immediately before the 
onset of the C/C* stimulus on day 4 (Fig. 2D, square points are before onset of C/C*; distance 
along C/C* axis from 300-350 ms was -0.028 on D1, p=0.29, and 0.059 on D4, p=0.024, 
bootstrap; effect increased with experience, D4-D1=0.088, p=0.0084, permutation test). 
 
These results suggest a simple mechanism for making predictions: the neural representations 
for A/X and C/C* become aligned through experience.  This alignment would mean that a 
sensory input, which moves neural activity along the A/X sensory axis, would also induce 
movement along the C/C* sensory axis (as seen in Figs. 2A and 2D).  To test this, we measured 
the angle between the A/X sensory axis and the C/C* sensory axis.  On Day 1, the angle was 
94 degrees, which suggests different stimuli are initially represented by independent, orthogonal 
representations in auditory cortex. Yet, after experience, the angle significantly decreased, 
aligning the two representational axes (Fig. 2C; 77 degrees on D4, D4-D1 = -17, p=0.032, 
permutation test; or with a slope of -4.7 degrees per day, p=0.034, permutation regression test, 
across days; see SI).  These results are consistent with experience forming a common 
representation for the associated stimuli.   
 
While the alignment of the A/X and C/C* representations facilitates prediction, there is no 
inherent temporal causality in this mechanism. Therefore, one might expect the C/C* stimulus to 
also induce a representation of the associated A/X stimulus.  Indeed, the C/C* stimulus drove 
neural activity along the A/X sensory axis (Fig. 1E, black box, and Fig. 1G; D1 = 0.077, p = 
0.0008, and D4 = 0.16, p<1/5000, bootstrap test).  Again, this effect grew across days (Fig. 1G, 
D4-D1 = 0.086, p=0.003, permutation test). As with the response to A/X stimulus, the C/C* 
stimulus also drove neural activity along an angle in the two-dimensional A/X-C/C* state space, 
encoding the A-C/X-C* association (Fig. 2D).  This effect also grew with experience: the angle 
of trajectories rotated over days, away from primarily encoding C/C* to reflecting the A-C/X-C* 
association (Fig. 2E, D4-D1 = -20.07 degrees, p=0.0002, permutation test). 
 
This is a postdiction: the representation of a past event is influenced by new incoming 
information.  Postdiction is a common psychological phenomenon thought to facilitate 
perception; as more information is gathered, our previous beliefs about the world are updated 
(Eagleman 2000; Vaughn and Eagleman 2013; Aru, Tulver, and Bachmann 2018; Choi and 
Scholl 2006).  Our results suggest prediction and postdiction reflect the same underlying 
mechanism: they are both explained by alignment of the neural representations underlying 
associated stimuli. Indeed, the dimensionality of neural activity projected into the A/X-C/C* 
sensory state space (Fig. 2D) decreased with experience, suggesting there was only a single 
latent variable (Fig. 3F, during C/C* period, the first PC explained 95% and 98% of the variance 
in the evoked responses on D1 and D4, both p≤1/5000 against chance by permutation test; D4-
D1=3%, p=0.011, permutation test).  The formation of a common representation could be due to 
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changes in single neuron selectivity (Sakai and Miyashita 1991) or due to interactions between 
populations (Fig. S3, see SI). 
 
Yet, because of postdiction, A/X information is lost. Specifically, during unexpected sequences 
(ABC*D and XYCD), postdiction causes the A/X encoding to reverse, crossing to encode the 
incorrect context (Fig. 2D, pink and green lines). The impact of postdiction on unexpected 
stimuli increased with experience (Fig. 2F, A/X unexpected encoding on D1 = -0.022, p = 0.57, 
bootstrap test; D4 = -0.16, p < 1/5000, bootstrap test; D4-D1 = -0.13, p = 0.003, permutation 
test; across all days, slope =-0.08, p = 0.007, permutation test). Thus, while sensory axis 
alignment facilitates prediction (and postdiction), it can also distort the history of sensory 
representations.  
 
However, it is still important to keep an accurate account of stimulus history.  Indeed, short-term 
memory of recent events is necessary for learning predictions, as it allows for associations 
across time (Kiyonaga et al. 2017; Summerfield and de Lange 2014).  So, we tested whether 
auditory cortex still maintained A/X information during the C/C* stimulus. Using neural activity 
during C/C*, we trained a classifier to distinguish the A/X context (Figs. 3A and S2).  This 
defined an ‘A/X memory’ axis, which represented the memory of the A/X context but, 
surprisingly, did not represent the A/X stimulus itself (Fig. 3B and S4).  This suggests the 
sensory and memory representations were independent.  Importantly, A/X information was no 
longer overwritten by the incoming C/C* stimulus in the two-dimensional A/X memory - C/C* 
state space (Fig. 3B, C). This was because the A/X memory axis was orthogonal to the C/C* 
sensory axis (Fig. 3D and 3E; angle=94 degrees on day 4, with a slight, non-significant, 
decrease towards orthogonality over days, slope = -3.95, p=0.052, permutation regression, D4-
D1 = -9.8, p=0.12, permutation test).  Furthermore, unlike the A/X – C/C* sensory state space, 
the dimensionality of the A/X memory – C/C* state space increased with experience (Fig. 3F, 
explained variance of PC1 during C/C* period on D4-D1 = -10%, p=0.013, permutation test).  
Together, these results provide evidence for an independent memory representation of context, 
which avoids interference from the C/C* stimulus. 
 
The importance of both the sensory and memory representations of A/X is reflected by their 
impact on the representation of C/C* stimuli. On a trial-by-trial basis, the strength of A/X 
memory encoding (taken 50 ms prior to C/C* onset) was positively correlated with the response 
to an unexpected C/C* (Fig. S5; on day 4, slope = 0.11, p = 0.01; and non-significantly 
negatively correlated with expected C/C* encoding strength, slope = -0.03, p = 0.21, 
bootstrapped linear regression).  This is consistent with previous work on predictions that has 
shown responses to unexpected stimuli are enhanced (while expected are reduced, Fig. 1K, 
(Dehaene et al. 2015; Kaposvari, Kumar, and Vogels 2018)).  Interestingly, we found the 
opposite relationship between A/X sensory and C/C* encoding, suggesting the two different A/X 
representations may play different roles in sensory predictions (Fig. S5; expected trials: slope = 
0.09, p=0.02, unexpected trials: slope=-0.19, p≤1/5000, bootstrapped linear regression).    
 
Next, we were interested in understanding how A/X context information is transformed from the 
sensory representation to the memory representation during the sequence.  This transformation 
allows the A/X sensory representation to align with the C/C* representation in order to facilitate 
prediction, while still maintaining an independent A/X memory axis that is orthogonal to C/C*, 
and therefore resistant to interference. Two general mechanisms could support this 
transformation.  First, the sensory and memory representations may be represented by 
independent populations of neurons.  This would allow the neurons representing a stimulus to 
form associations without disrupting the memory representation.  Alternatively, the A/X sensory 
and memory representations may use the same neural population, but change over the course 
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of the sequence, such that the A/X memory and C/C* representations are orthogonal.  To 
distinguish between these hypotheses, we examined how individual neurons encoded the A/X 
context over time. 
 
Our results show individual neurons in auditory cortex have diverse dynamics.  Some neurons 
maintain their preference for the A/X context throughout the entire trial (Fig. 4A, top) while 
others change their preference during the trial (Fig. 4A, bottom).  To quantify these temporal 
dynamics across the entire population, we used an unsupervised clustering algorithm 
(Phenograph, (Levine et al. 2015; Nicosia et al. 2009), see SI). Clustering revealed two broad 
functional clusters of neurons (see Fig. S6 for d-prime post-hoc clustering validation and cell 
types along recording arrays).  First, ‘stable’ cells maintained their contextual preference across 
the sequence (Fig. 4B, green and yellow).  Second, ‘switching’ neurons switched their A/X 
contextual preference during the sequence (Fig. 4B, red and blue).  Surprisingly, these two 
broad groups captured the majority of single cell dynamics in auditory cortex (Fig. 4C).  Note 
that the temporal dynamics were not due to neurons having a random preference for the first 
and second chord in the sequence. The number of stable and switching neurons was greater 
than would be expected by cells having independent selectivity to each stimulus (Fig. S8, see 
SI). 
 
Next, we examined how the stable and switching neuron types contributed to the sensory and 
memory representations of context.  To this end, we examined each cell type’s contribution to 
each axis (i.e. their classifier weights).  Both the stable and switching neurons significantly 
contributed to the A/X sensory axis (Fig. 4D, orange).  Specifically, the A/X sensory axis 
positively weighted the activity of stable and switching neurons towards their initially preferred 
stimulus (preference was defined during the presentation of the A or X chord; average weight 
combined across days for stable neurons = 0.18, for switching = 0.14, both p ≤ 1/5000, 
bootstrap test).  In other words, during the A/X period, both stable and switching neurons 
increase their activity to their (initially) preferred chord, thereby creating the A/X sensory axis 
(Fig. 4E).   
 
Similarly, the A/X memory axis relied on the activity of both stable and switching neurons (Fig. 
4D, blue).  However, while the stable neurons had positive weights (average classifier weight = 
0.17, p ≤ 1/5000, bootstrap test), the switching neurons now had negative weights (-0.12, 
p≤1/5000, bootstrap test; significantly lower than A/X sensory weights, difference = 0.27, p ≤ 
1/5000, permutation test).  The negative weights of switching neurons reflect their changing 
preference over the course of the sequence.  This makes sense, the neurons’ preference 
switched over time; thus, the memory axis reflects this new preference (Fig. 4E).   
 
The relationship between the weights of the sensory and memory axes was also evident for 
individual neurons. The weights of stable neurons were positively correlated across the sensory 
and memory classifiers (Fig. 4F, green, neurons combined across days slope = 0.5, p<1/5000, 
bootstrap regression), while the weights of switching neurons were negatively correlated (Fig. 
4F, red, slope = -0.42, p<1/5000, bootstrap regression). The difference between stable and 
switching was significant on all days (D1 = 0.41, p = 0.047; D2 = 1.08, p = 0.0006; D3 = 1.18, 
p=0.0006; D4 = 1.1, p=0.0004, permutation test). Experience increased the correlations of 
weights across days (Fig. 4G; D4-D1 slope of stable weights = 0.47, p=0.018; switching = -0.22, 
p=0.19, permutation test) and increased the difference in weights between the populations (D4-
D1 = 0.68, p=0.015, permutation test).  Together, these results show both the sensory and 
memory representations depended on the entire population, arguing against the hypothesis that 
independent populations represented sensory and memory information. 
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Our results demonstrate how a combination of stable and switching cell types cause the A/X 
representation to rotate, away from the sensory representation, to a nearly orthogonal memory 
representation (Fig. 4E).  Thus, the memory representation is orthogonal to the C/C* sensory 
axis.  Now, new stimulus inputs (C/C*), which drive neural activity along the associated A/X 
sensory axis, do not induce movement along this orthogonal A/X memory axis (Fig. 3C).  The 
dynamics of neural responses we observed in short-term memory representations in mouse 
auditory cortex are similar to the dynamics found in working memory representations observed 
in primates (Fig. S4).  Indeed, both stable and dynamic representations are seen in monkeys 
(Murray et al. 2017; Stokes et al. 2013) and their relative contributions to working memory have 
been debated (Postle 2015; Chaudhuri and Fiete 2016).  Our results show how the combination 
of both response types can transform the sensory representation to a memory representation in 
a way that reduces interference with future stimuli. 
 
In sum, we have shown a simple neural mechanism underlies prediction: associated 
representations become aligned over time, such that a contextual stimulus evokes the predicted 
stimulus representation. This mechanism also leads to postdiction, where previous events are 
updated based on new stimulus inputs.  Finally, we show the neuronal population preserves an 
accurate history of events by dynamically rotating the information into an orthogonal axis.  This 
dynamic rotation is the result of a combination of stable and dynamic representations at the 
single neuron level.  
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Figures 

 
Figure 1. Neural Encoding of Statistical Regularities in Sensory Inputs.  (A) Schematic 
of implicit sequence learning paradigm. Animals heard 1500 sequences of auditory chords 
every day. Statistical regularities were embedded in the sequences: 68% expected trials 
(ABCD, XYC*D), 20% unexpected (ABC*D, XYCD), 12% mixed stimuli (not analyzed here; 
see SI for details). (B) Silicon probes were chronically implanted in right auditory cortex.  
Animals experienced sequences over 4 days.  All mice were initially naïve to sequences. 
Legend of four trial types (colors maintained throughout the manuscript). (C) Response of two 
example neurons to auditory sequences preferring AB context (top) or C stimulus (bottom). 
Gray bars indicate stimulus periods. (D) Schematic of N-Dimensional firing rate activity 
projected onto encoding axis. Axis is defined as normal to trained classifiers (see SI for 
details). (E) Population encoding of A/X information across the trial on Day 1 (left) and Day 4 
(right). Firing rate activity was projected onto the A/X sensory axis of each individual animal 
(training period outlined in orange), z-scored and combined across animals. Mean and s.e.m 
of projections shown across time for all four trial types. Positive projections and negative 
projections indicate X (green) and A (purple) encoding, respectively. Light and dark grey bars 
mark significant differences for AB vs XY and C vs. C*, respectively (p ≤ 0.001, t-test, 
Bonferroni corrected). (F) Encoding of A/X stimulus along the A/X sensory axis (orange box in 
E). Mean and s.e.m. of absolute distance along axis combined across trials. Absolute 
distance allows conditions to be combined as negatively encoded conditions are flipped. 
Thus, positive values indicate correct encoding strength. (G) A/X postdiction in response to 
C/C* stimulus (C/C* period marked by black box in E). For example, C* trials were coded as X 
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on A/X sensory axis. (H) Population encoding of C/C* information across the trial on Day 1 
and 4 (as in D).  Blue box marks training period of C/C* sensory axis. Positive projections and 
negative projections indicate C* (light blue) and C (dark blue) encoding. (I) C/C* encoding 
along the C/C* sensory axis (as in F). Trials were divided by expected (ABCD, XYC*D) and 
unexpected (ABC*D, XYCD). (J) C/C* prediction in response to A/X stimulus (A/X period 
marked by black box in H). For example, X trials were coded as C* on C/C* sensory axis. For 
all panels, p-values: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001 
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Figure 2. Alignment between A/X and C/C* Representations Facilitates Prediction and 
Postdiction.  (A) Neural activity projected into A/X-C/C* state space for Day 1 (left) and Day 
4 (right). The x-axis is the magnitude of neural activity projected onto A/X sensory axis; the y-
axis is the same neural activity projected onto C/C* sensory axis.  Activity is shown from A/X 
period (-10 to 170 ms). Marker saturation increases with time (key along top). Inset shows 
PCs of neural trajectories in grey, black arrow size matches percentage of explained variance 
per PC (plotted in Fig. 3F). (B) Increase of first PC angle during A/X period across days 1 and 
4. Circular mean and standard deviation of bootstrapped angle shown per day. (C) Angle 
between A/X and C/C* sensory axes decreased across days. Bootstrapped angle shown by 
violin (stars indicate significant difference from 90 degrees). Horizontal bar marks D4-D1 
difference. (D) Neural activity during the C/C* stimulus period (340 to 520 ms) projected into 
A/X-C/C* state space (as in A).  (E) Decrease of first PC angle during C/C* period across 
days 1 and 4. (F) A/X encoding during C/C* period (360-460 ms). Positive values indicate 
correct A/X encoding. Expected and unexpected trials are shown in black and grey 
respectively. Note negative A/X values indicate postdiction. For all panels, p-values: * ≤ 0.05, 
** ≤ 0.01, *** ≤ 0.001 
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Figure 3. Memory Representations are Orthogonal to Sensory Representations.  (A) 
Schematic of training of A/X memory axis. Training used average neural activity taken during 
C/C* (360-460 ms). Trial types were divided by A/X: (ABCD, ABC*D) vs. (XYCD, XYC*D). (B) 
Neural population encoding of A/X memory information on Day 4.  Training period marked by 
blue box.  Positive projections and negative projections indicate XY (green) and AB (purple) 
memory encoding.  Significant differences between AB and XY trials shown by grey bar 
(p≤0.001, t-test, Bonferroni corrected for multiple comparisons). (C) Neural activity projected 
into A/X memory - C/C* sensory state space on day 4. As in Fig. 2D, but now x-axis is the 
magnitude of neural activity projected onto A/X memory axis. Activity is shown around C/C* 
period (340 to 520 ms). (D) Angle between A/X memory and C/C* sensory axes. Differences 
from 90 degrees indicated by stars. (E) Schematic showing the angles between the three 
axes of interest: A/X sensory, C/C* sensory and A/X memory (shown from Day 4). Dashed 
arrow indicates rotation from the A/X sensory axis to the A/X memory axis. (F) Dimensionality 
of state space around C/C* presentation (340-520 ms).  Dimensionality is measured by the 
percent explained variance (PEV) of the first PC of the neural activity in the A/X sensory – 
C/C* state space (grey, Fig. 2D) and A/X memory - C/C* state space (orange, Fig. 3C). Violin 
plots show distribution of bootstrapped PEV. Differences between dimensionality within each 
state space (grey and yellow) are significant on all days (p≤1/5000, permutation test). For all 
panels, p-values: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001 
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Figure 4. Stable and Switching Neurons Rotate Context Representation from Sensory 
to Memory.  (A) A/X selectivity over time for two example neurons.  Left column shows the 
average firing rate in response to A (purple: ABCD, ABC*D) and X (green: XYCD, XYC*D). 
Right column shows the selectivity of neurons over time, defined as the z-scored firing rate 
difference of responses to A and X trials (trial types were balanced). (B) Unsupervised 
clustering of selectivity found four clusters.  Average selectivity response is shown for each 
cluster (mean and s.e.m. shown). Purple and pink are switching (32% of neurons; 35% and 
65% of which initially preferring AB and XY, respectively, before switching to preferring XY 
and AB); green and yellow are stable (68% of cells; 42% and 58% preferring AB and XY, 
respectively). (C) Selectivity profiles of the total population (N=522), grouped by cluster. Color 
saturation indicates z-scored firing rate difference (XY-AB). Colors along y-axis match cluster 
groups in B. (D) Stable and switching cells contribute to both A/X sensory and memory axes. 
Classifier weights were re-oriented such that positive values indicate a match with preference 
during A/X period. Cells without significant selectivity at any time (p≤0.025 Bonferroni 
corrected) were post-hoc removed from clusters (labeled as none), leaving 40% of all neurons 
in the stable cluster and 13% switching. (E) Schematic of how combination of stable and 
switching cells lead to a rotation of the A/X sensory axis to the A/X memory axis. Stable cells 
have the same firing rate response to A/X stimuli, during both the A/X and C/C* period (see 
match between sensory and memory axes). Switching cells reverse their firing rate 
preference by the memory period. The combination leads to a rotation of encoding space. (F) 
Classifier weights for A/X sensory axis (x-axis) and A/X memory axis (y-axis) for all cells. The 
lines show the mean and std. of bootstrapped linear regressions for each cell type. (G) 
Experience increases the correlation between the weights of neurons contributing to A/X 
sensory and memory axes. Slopes (illustrated in F) change across days. For all panels, p-
values: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001 
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Supplementary Information  
Implicit Learning Paradigm 

Mice learned to make predictions in an implicit sequence learning paradigm. On each day, mice 
were head-fixed and listened to 1500 sequences of four chords (e.g. ABCD); they began naïve 
to all chords and sequences. Recordings lasted about an hour and were done at the same time 
each morning (± 1.5 hours). 
 
Within a sequence, each chord lasted 100 ms, and was separated by a 75 ms inter-sound 
interval (ISI). Inter-trial intervals (ITI) lasted between 500 and 1000 ms (random uniform 
distribution). Each chord was a combination of 2 frequencies (7/12 of octave apart). Sound 
waveforms were created in Matlab, with a sample rate of 140 kHz. The frequencies making the 
chords were drawn from between 10 kHz and 65 kHz. A, B, X, and Y sounds were lower in 
frequency than C and C* chords. The frequency of D fell between context and C/C* chords. If 
the frequency of A was less than B, then the frequency of X was greater than Y, and vice versa 
(8/12 of octave). We used MF1-S speakers (range - 1kHz to 65kHz, Tucker Davis Technologies, 
Alachua, FL /USA) calibrated with a CM16 microphone (Avisoft-Bioacoustics, Glienicke, 
Germany) and an Ultramic USB microphone (Dodotronic, Castel Gandolfo RM, Italy). Sound 
intensity was set to a sound pressure level (SPL) of 70 dB. Sounds were played to left ear. The 
frequencies and chords were varied across mice. 
 
Each sequence began with a sequence of two sounds, defining one of two contexts. In one 
context, the A chord was always followed by the B chord (the ‘AB’ context). In the second 
context, the X chord was always followed by the Y chord (the ‘XY’ context). Context AB was 
most frequently followed by C (rarely by C*), while context XY was most frequently followed by 
C* (rarely by C). Expected trials accounted for 68% of trials (e.g. ABCD, XYC*D). Trial counts of 
ABCD always equaled trial counts of XYC*D. Unexpected trials accounted for 20% of trials (e.g. 
ABC*D, XYCD). Trial counts of ABC*D always equaled trial counts of XYCD. Importantly, both 
contexts AB and XY occurred equally per day, as did both predicted stimuli (C and C*). This 
prevented any a priori expectation of any stimulus. The remaining 12% of trials contained an 
‘ambiguous’ third stimulus, which was created by combining the frequencies making up the C 
and C* chords. These trials are not analyzed here. Trial types occurred randomly during the 
1500 trials on a given day, according to their probabilities and ensuring equal numbers of trial 
types, as noted above.  
 
Prior to and after the block of 1500 sequence trials, the C and C* chords were played in 
isolation for 300 trials in order to measure the stability of representations. As during the 
sequence, the chords were played for 100 ms. There was a random 500-1000 ms delay 
between chords. 
 
 
Neuronal Recordings 

Animal Subjects 
All animal procedures were approved by the Princeton IACUC and carried out in accordance 
with National Institute of Health standards. Seven adult male PV cre+/- C57BL6 mice were used 
for recording and passive learning experiments. Mice were between 13 and 19 weeks old at 
date of first recording. Animals had free access to food and water and were housed in a reverse 
light cycle. Experiments were conducted in a sound proofed behavioral chamber.  
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Neural Recordings 
Neural activity was recorded at 30kHz using the Intan RHD2000 system (Intan Technologies, 
Los Angeles, CA). Signals were amplified and digitized on a 32 channel amplifier board 
(headstage) before being sent (via SPI interface cable) to the USB interface board. Analog 
signals for speaker were also routed to the interface board, for later alignment of sound timing 
with neural activity. The Intan recording system software was used to save all data (i.e. sound 
timing and neural activity).  
 
Implant Surgery 
While under anesthesia, 32 channel silicon recording arrays (NeuroNexus, Fairfield, CT) were 
implanted into auditory cortex. Six mice were implanted with a four shank probe (8 electrodes 
per shank), inserted along the A/P axis. One mouse was implanted with a one shank probe (32 
electrodes total). All electrode probes were implanted in right auditory cortex (stereotaxic 
coordinates from bregma: -2.7 AP and 4.8 ML). Probes were lowered between 970-1400 um in 
order to target primary auditory cortex (see Fig. S6B for approximate cell locations), although 
dorsal contacts may have also recorded from secondary auditory cortex. To insert the probe, a 
dental drill was used to make a small cranial window (typically 3 mm x 3 mm) above the desired 
coordinates. The silicon probe was lowered slowly, avoiding blood vessels. KwikSil (World 
Precision Instruments, Sarasota, FL) was used to protect the brain and stabilize the exposed 
probe. Three screws (miniature self-tapping screws made from #303 stainless steel; J.I. Morris, 
Oxford, MA) were used to keep the headpost (3D printed at Midwest Prototyping, Blue Mounds, 
WI) and electrode stable. Ground wires were wrapped around the screw on the opposite side of 
the brain. Metabond (Parkell, Edgewood, NY) was used to fix all implants to skull. 
 
After surgery, mice were given several days to recover and pain killers (buprenorphine) were 
given during recovery. Prior to recording sessions, mice were acclimated to handling by the 
experimenter and head fixation in increments of 15 minutes. Location of silicon probe was 
confirmed using histology (see Fig. S1C for example electrode placement from one animal). 
Lesions from electrodes were determined by labeling for astrocytes (GFAP - green).  
 
Analysis of Neural Activity 
Single units were isolated from the raw 30 kHz signal using Plexon Offline Sorter. Raw data was 
imported into Plexon Offline Sorter, and filtered using a 350 Hz highpass, 4-pole filter. Next, we 
applied a common average reference to all channels. Using these traces, we identified clusters 
of spikes. Animals were excluded from future analysis if they have fewer than 5 single units. We 
recorded from 10 animals, but only 7 had sufficient single unit activity to be included. From the 
remaining animals, we found 522 single units across the 4 days of recording. 
 
Firing Rate Calculation 
The instantaneous firing rate of neurons was estimated at each time point by inverting the inter-
spike interval. This trace was smoothed, with a one ms boxcar, and then down sampled to 1000 
Hz. Data was then segmented by trial start and end times. For sequence data, trials were taken 
from 70 ms prior to the A/X chord to 355 ms after the end of the D chord. For the C/C* chord 
alone, trials were taken to start 70 ms prior to chord onset and end 280 ms after the chord 
ended. Data was smoothed again with a 20 ms boxcar. All time labels in figures indicate the 
leading edge of any time frame or window (i.e. including data up to that labeled point). 
Preprocessing of firing rate data (segmentation and smoothing) was performed in Matlab 2016 
(Mathworks, Natick, MA). Also, we computed the z-scored firing rate difference and phenograph 
clustering in Matlab 2016. All other analyses were performed in Python 3.5.5. For the python 
analyses (jupyter notebook (Perez and Granger 2007)), we utilized the scipy (Millman and 
Aivazis 2011; Oliphant 2007), sklearn (Pedregosa et al., n.d.), numpy (Walt, Colbert, and 
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Varoquaux 2011) and pandas (McKinney 2010) packages (specific functions referenced below). 
All plotting was completed using matplotlib (Hunter 2007).   
 
 
Encoding Axis (Classifier) Training  
 
All classifiers were trained using the same procedure. The only difference between classifiers 
were training period and condition groupings. For a given comparison, we trained one classifier 
for each mouse, on a given day.  
 
Feature Selection 
The feature vector for each trial was the averaged firing rate response during sound 
presentation periods, shifted forward by 10 ms to account for onset time of sensory response 
(i.e. 10 to 110ms after stimulus onset). For the cross temporal decoding, we trained multiple 
classifiers across time, in a sliding window fashion. For these sets of classifiers, we used 
average firing rates in 25 ms time bins, moved by 10 ms across the sequence.  
 
Classifier Training Labels 
The classifiers were trained to distinguish between groups of conditions (e.g. AB trials, labeled 
as 0, versus XY trials, labeled as 1). All classifiers trained, and their respective comparisons, 
are listed below. Generally, classifiers fell into one of two categories: sensory classifiers 
distinguished the two possible sounds at the time that they occurred within the sequence and 
the memory classifier distinguished the two possible contexts during the latter part of the trial, 
after the chords had occurred.  
 
List of Classifiers Trained 
 
*(conditions balanced in both training and testing) 
 

Axis Name Conditions Used Feature Space 

A/X Sensory Label 0: ABCD, ABC*D 
Label 1: XYCD, XYC*D  

Average firing rate in 100 ms block 
during A/X stimulus: 10 – 110 ms  

C/C* Sensory Label 0: ABCD, XYCD   
Label 1: ABC*D, XYC*D 

Average firing rate in 100 ms block 
during C/C* stimulus: 360 – 460 ms  

A/X Memory Label 0: ABCD, ABC*D 
Label 1: XYCD, XYC*D 

Average firing rate in 100 ms block 
during C/C* stimulus: 360 - 460 ms  

 
 
Classifier Type 
The classifier was a linear classifier trained via stochastic gradient descent with a hinge loss 
function, which is equivalent to a standard SVM (support vector machine). To train the classifier 
we used the stochastic gradient descent SGDClassifier function in the sklearn.linear_model 
package (sklearn version 0.19)(Pedregosa et al., n.d.) for Python3 (version 3.5.5). 
 
Classifier Regularization  
To minimize overfitting of the classifiers, we used an elastic net regularization to increase 
sparsity of the weight vector and to minimize the number of non-zero weights. Parameters were 
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the same for all classifiers: L1 ratio (the elastic net parameter specifying the ratio of L1 to L2 
penalties) was set to 0.65, alpha (the regularization amount) was set to 0.01, the learning rate 
was set to 0.00001, and the number of iterations was set to 1000. See the SGDClassifier 
function for details. 
 
Cross-Validated Testing of the Classifier 
Prior to training, 10% of trials were withheld as a test set to allow for cross-validated testing of 
the classifier. All figures using classifiers were created only with this withheld test data. Both the 
training and test dataset contained equal counts of all conditions, regardless of how conditions 
were combined for a given classification. For example, for classifying AB vs. XY trials, there 
were equal counts of ABCD, ABC*D, XYCD and XYC*D in the dataset (note: this is different 
from what the animal experienced but avoids bias in the classifier). For each comparison, 100 
shuffles of the training data were performed to ensure all trials were included in training the 
classifier. The classifier was calculated by taking the mean (intercept and weights) of these 100 
trained classifiers.  
 
Classification Accuracy of the Classifiers 
Once trained, the classifier defines a hyperplane in feature space (firing rate of neurons). The 
distance of population activity from this hyperplane may be used to label each sample as a 
member of one condition or another (e.g. context AB or XY). The label maybe be correct (True 
positive or True negative) or incorrect (False positive or False negative). To determine classifier 
accuracy, we calculated the area under the curve (AUC) of the receiver operator characteristic 
(ROC) of the true positive rate verses the false positive rate as the decision boundary is varied 
(Fig. S2). To do this, we used the roc_curve and auc functions in the sklearn.metrics package.  
 
 
Projection onto Encoding Axis 
 
Projection onto 1D Encoding Axis Defined by a Classifier 
Once trained, a linear classifier is defined by a vector, normal to the separating hyperplane and 
an intercept. The distance of a given sample from that hyperplane is the dot product of that 
vector with the sample (e.g. a trial firing rate across N neurons), plus the intercept. Thus, the 
classifier may be used as a 1D encoding axis, by which the N-Dimensional neural activity may 
be projected to determine its encoding of a given condition on a given trial (Fig. 1D). The 
sample’s distance from hyperplane reflects its similarity with each label used to train the 
classifier.  
 
To calculate population encoding, we took data from each mouse, and projected the full neural 
population activity onto the 1D axis defined by the trained classifier for that mouse. Specifically, 
for each trial, at each time point (25 ms bin), we took the vector of firing rates across all neurons 
and projected it onto the encoding axis of interest. This value was then z-scored across 
conditions (i.e. subtracted mean and divided by standard deviation, calculated from all 
conditions). This z-score captures the relative separation between conditions across time and 
ignores any absolute drift in firing rates occurring over time (essentially allowing the intercept of 
the classifier to change over time, which is important to capture relative changes in the firing 
rate across the population). Furthermore, the z-score allows us to combine responses across 
mice. The projection is signed such that a positive value indicates strong encoding of the 
positively labeled condition; likewise, negative values indicate strong encoding of the negatively 
labeled condition. For example, for the classifier trained to distinguish AB trials (label 0) from XY 
trials (label 1), if the population activity had a positive distance from the hyperplane, then it is 
representing the context XY. In contrast, a negative distance from the A/X hyperplane would 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/641159doi: bioRxiv preprint first posted online May. 17, 2019; 

http://dx.doi.org/10.1101/641159


represent context AB. Figure 1E shows the A/X population encoding over the sequence on days 
1 and 4. Figure 1H shows the C/C* population encoding over the sequence on days 1 and 4. To 
examine how encoding of context (AB vs. XY) and C/C* stimulus changes over time, we 
performed t-tests (function: ttest_ind from scipy.stats package) on each time bin. The neural 
population was said to be carrying significant information about a stimulus (or memory) if the 
associated p-value was less than or equal to 0.001, bonferroni corrected for multiple 
comparisons across time (note: all tests were done on withheld test data, as described above). 
 
Distance from Axis: Encoding Strength / Accuracy  
We also tested encoding accuracy during a given time frame (e.g. Fig. 1F, G, I, J, Fig. 2F, and 
Fig. S4). To calculate absolute encoding strength (i.e. combined across conditions), we flipped 
the sign of trials with a negative label and calculated the mean distance across trials.  For 
example, when testing A/X encoding (Fig. 1F, J), we flipped the sign of trials of A conditions: 
ABCD and ABC*D. Likewise, when testing C/C* encoding (Fig. 1G, I), we flipped the sign of 
trials of C conditions: ABCD and XYCD. Then we combined across all trials and reported the 
average distance from the hyperplane. 
 
To test significance of encoding strength during a time period, we estimated the distribution of 
the mean encoding strength with a bootstrap procedure (5000 samples). The bootstrap sampled 
randomly from the distribution of observed values (with replacement, (Manly 1997). The 
resulting distribution allowed us to estimate the probability of observing an average encoding 
value less than or equal to zero (this is reported as our p-value). Furthermore, variability in the 
linear regression (function: linregress from package scipy.stats) across days was estimated 
using these bootstrapped values. To test for pairwise differences in encoding strength across 
days, we performed a permutation test on the difference of mean encoding on each day (Manly 
1997). We shuffled the day labels 4999 times (adding the original observation to make 5000 
permutations), generating a null distribution of differences across days. Comparing the 
observed difference to this null distribution allowed us to estimate the p-value. 
 
 
Prediction prior to onset of C/C* Stimulus 
 
As described in the main text, we found evidence of A-C and X-C* associations along the 
respective A/X and C/C* sensory axes during each stimulus presentation (A/X period Fig. 1J, 
and C/C* period Fig. 1G). In addition, we found evidence for predictions prior to the onset of the 
C/C* stimulus (Fig 1; Fig 2D). In the 50 ms before the onset of the C/C* stimulus, the A/X 
sensory axis carried the memory of the A/X stimulus (D1=0.092, p=0.0008, bootstrap; 
D4=0.077, p=0.004, bootstrap test). On day 4, the C/C* sensory axis already encoded the 
predicted stimulus (Fig. 2D, right). If the animal previously heard A (pink and orange lines) then, 
prior to the onset of C/C*, neural activity was biased in the C direction (and vice-versa for X and 
C*; AC/XC* prediction = 0.059 on D4, p=0.024, bootstrap). Again, experience increased this 
prediction; it was not significant on Day 1 (-0.028, p=0.29, bootstrap) and increased over days 
(D4-D1=0.088, p=0.0084, permutation test).   
 
 
 
 
Calculation of Angle between Axes (Trained Hyperplanes)  

To examine how experience influences representations, we measured the angle between 
encoding axes. Classifier weights were normalized to a length of 1 for each animal and then 
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concatenated across animals to form a single vector. We calculated the angle between a pair of 
hyperplanes by inverting the dot product of each hyperplane’s normal vector: 
 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝐴𝐴 ∙ 𝐵𝐵
‖𝐴𝐴‖‖𝐵𝐵‖

� 

 
 
 
Neural Mechanism Aligning A/X and C/C* Sensory Representations 
 
Our results show the A/X sensory and C/C* sensory representations become aligned with 
experience.  This likely happens due to changes in the selectivity of individual neurons, such 
that neurons become responsive to both associated stimuli (e.g. neurons, selectively responsive 
to A, become responsive to C as well). There are multiple mechanisms inducing these changes 
in selectivity (schematized in Fig. S3). First, the connectivity of inputs to auditory cortex could 
change such that A/X and C/C* neurons respond to the presentation of either stimulus (Fig. 
S3A). Second, unidirectional lateral connections could facilitate a transformation from the A/X 
representation to the C/C* representation (Fig. S3B). If A/X neurons increase their connection to 
C/C* cells, then the onset of the A/X stimulus will lead to an initial response from the A/X 
neurons, followed by a delayed response of the C/C* neurons. Third, bidirectional lateral 
connections could facilitate a transformation either from the A/X representation to the C/C* 
representation, during the presentation of A/X, or from the C/C* representation to the A/X 
representation, during the presentation of C/C* (Fig. S3C).  
 
Importantly, all three potential mechanisms would lead to a conjoined representation within 
auditory cortex. This would confuse the information available to downstream brain regions. By 
training linear classifiers, we captured how a simple, linear downstream neuron would decode 
information from the representation in auditory cortex. As we show in the main manuscript, the 
conjoining of representations leads to both prediction (Fig. 1J) and postdiction (Fig. 1G, Fig. 2F).  
 
One way to discriminate these three models is to examine how A/X and C/C* information 
evolves in response to the A/X and C/C* stimulus. If the selectivity of individual neurons is 
changing (the first hypothesis, Fig. S3A), then there should be no timing difference between the 
A/X and C/C* responses to either the A/X or C/C* stimulus. In contrast, if unidirectional lateral 
connections form between A/X and C/C* neurons (second hypothesis, Fig. S3B), then C/C* 
representations should follow the A/X representations during the presentation of A/X alone (due 
to the asymmetric connection from A/X to C/C*). Finally, if bidirectional lateral connections are 
strengthened between A/X and C/C* neurons (third hypothesis, Fig. S3C), then there should be 
a timing delay between the A/X representation and the C/C* representation, during both A/X and 
C/C* stimulus presentations.  
 
To examine the timing of A/X sensory and C/C* sensory encoding, we calculated the time to 
reach significant sensory encoding during each time period (A/X and C/C*) along each axis. For 
a given window of interest (e.g. around presentation of the A/X stimulus, Day 1 shown in Fig. 
S3D, Day 4 shown in Fig. S3F), we estimated the encoding strength over time (interpolating to 
get higher temporal precision). Significance was taken as the time to reach statistical threshold 
(p ≤ .001, Bonferroni corrected). On day 1 and 4, we found that during A/X period, information is 
first represented along the A/X axis (D1=17 ms, D4=24 ms) and then on the C/C* axis (D1, Fig. 
S3D, 44 ms, lag=26.5 ms, p≤1/5000, D4, Fig. S3F, 42 ms, lag=17.8 ms, p=0.0002). In contrast, 
during the C/C*period, information is first represented along the C/C* axis and then along the 
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A/X axis (Fig. S3E, D1=354 ms and 406 ms for C/C* and A/X respectively, lag = 51.4 ms, 
p=0.0002; Fig. S3G; D4=377 ms and 396 ms for C/C* and A/X, respectively; lag=18.9ms, 
p=0.0056). These timing results suggest A/X and C/C* representations became more similar 
through learning in bidirectional lateral connections (Fig. S3C).  
 
Furthermore, we tested if there were significant differences in the percentages of cells in the A/X 
and C/C* sensory axes. We combined classifiers across animals by normalizing the weight 
vector for each animal and then concatenating the vectors. To measure whether classifiers 
relied on the same proportion of neurons, we systematically varied the weight threshold for a 
neuron to be defined as ‘contributing’ to a classifier. For each threshold, we calculated the 
percent of neurons with classifier weights above this threshold for both the A/X and C/C* 
sensory axes. Plotting these against each other yields a ROC-like curve (Fig. S3H). If one 
classifier utilized a higher percentage of cells than the other, the area under the curve (AUC) 
would be significantly different than .5. Across all four days, using a bootstrap (subsampling 
neurons 5000 times), we failed to find AUCs significantly different than .5, suggesting an equal 
portion of cells were involved in each sensory classifier (Fig. S3I, D1 p=0.13, D2 p=0.35, D3 
p=0.46, D4 p=0.30).   
 
These results argue against a unidirectional learning effect (which would lead to more neurons 
involved in the A/X representation than the C/C* representation). Altogether, these results 
suggest there is a recurrent dynamic between both sensory encodings, which may underlie the 
alignment between representations.  
 
 
Dimensionality and Angle of Neural Activity in 2D State Spaces 
 
Calculation of Principal Components and their Explained Variance 
To understand the dimensionality of the temporal trajectories, we calculated the principle 
components (PCs) of neural activity in the 2D state spaces using the PCA function in the 
sklearn.decomposition package (Fig. 2A (inset), 2B, 2D (inset), E, and 3C (inset)). The two-
dimensional state spaces are created by combining the individual encoding axes. Neural activity 
from every 25 ms was projected onto both encoding axes and averaged across trials. Data was 
combined from all four conditions (ABCD, ABC*D, XYC*D, XYCD) and the PCs were calculated. 
In this way, the PCs capture the direction of neural activity dynamics within the state space.  
 
The angle of the first PC in the state space captures the information represented by neural 
activity. Specifically, if the neural activity moves only horizontal or vertical than the neural 
activity is only encoding that one type of information. To capture the increase in encoding along 
both the A/X and C/C* sensory axes, we calculated the PC angle during both the A/X period and 
C/C* period. During the A/X period, over days of experience, the PC angle increases from 
horizontal (i.e. only A/X encoding) to diagonal (i.e. both A/X and C/C* encoding; Fig. 2B). This 
indicates an increase in the A-C/X-C* association during A/X. Similarly, during the C/C* period, 
over days of experience, the PC angle decreased from vertical, also demonstrating the 
association (Fig. 2E).   
 
The ratio of the percent of variance captured by each PC is proportional to the dimensionality of 
the representation. For example, if activity flows along a single dimension, such as in the A/X-
C/C* sensory state space (Fig. 2D), then the first PC will explain nearly all of the variance in the 
neural activity over time. In contrast, if this ratio decreases such that the first two PCs explain 
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similar amounts of variance (e.g. in the A/X memory – C/C* sensory state space, Fig. 3C), then 
this would indicate neural activity explores the full two-dimensional space.  
 
Bootstrapped Distributions  
We used a bootstrap process to estimate the distribution of PC angle and the ratio of explained 
variance of the PCs. The trials used to estimate each timepoint of neural activity were sampled 
randomly (with replacement) and PCs were recalculated. This process was repeated 5000 times 
to estimate the distribution of each variable. These distributions were then used for plotting or 
for calculating linear regressions on the data across days. When used for linear regression, a 
line was fit to a single sample drawn from the bootstrap on each day (resulting in 5000 fits). This 
process allowed us to estimate the distribution of slopes and intercepts. 
 
Permutation Tests 
In order to determine if the observed dimensionality was lower than expected by chance (Fig. 
3F), we created a null distribution of projections into the 2D state space by randomly permuting 
the time labels of each point, separately in both the x and y dimensions. In this way, we kept the 
distribution of raw activity values, but broke their temporal association. We recalculated the PCs 
and the ratio of explained variance for each permuted data set. This process was repeated 4999 
times (the 5000th data point is the unpermutated, observed data) in order to estimate the 
probability of observing the original percent explained variance ratio by chance. 
 
To calculate differences across state spaces (across days or state spaces), we shuffled points 
between the two state spaces in order to maintain the distribution of activity, but break the 
association to a specific state space. For example, to compare the neural trajectories between 
days 1 and 4, we shuffled the day labels on each data point, and then calculated the difference 
in PCs, angles, and percent explained variance. We performed 4999 shuffles (5000th point is 
unpermutated data) and used this distribution to calculate the probability of observing our 
original data.  
 
 

A/X Memory Axis Compared to A/X Sensory Axis  

As described in the main manuscript, A/X information is lost along the A/X sensory axis when an 
unexpected C/C* stimulus is presented (Fig. 2). To test if A/X information persisted during the 
C/C* stimulus, we trained a classifier during the C/C* period (360 to 460 ms) on distinguishing A 
trials (ABCD, ABC*D) from X trials (XYCD, XYC*D; Fig. 3A). Thus, the main difference between 
the A/X sensory and memory classifier was the time period of neural activity used for training 
(A/X sensory=10 to 110 ms, i.e. during the presentation of A/X, A/X memory=360 to 460ms, i.e. 
during the presentation of C/C*). The A/X memory classifier performed above chance (Fig. 
S2D). To examine how A/X memory information evolved over the course of the sequence, we 
projected neural population firing activity (as described above) on day 1 and day 4. Again, there 
were significant differences between A/X context trials around the presentation of C/C* (Fig. 
S4A and B, grey bars p ≤ .001, Bonferroni corrected t-test). In the A/X memory - C/C* sensory 
state space the memory of A/X stimuli is preserved during the presentation of C/C* on both day 
1 and day 4 (Fig. S4, C and D, respectively). This is reflected by the fact that the dimensionality 
of activity in the A/X memory - C/C* sensory state space was significantly greater than the A/X 
sensory - C/C* sensory state space (Fig. 3F; note: the neural activity is the same in both cases, 
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just projected differently, D1 diff = 18%, D2 diff = 40%, D3 diff = 38%, D4 diff = 31%, p≤1/5000 
for all days).  

To understand how A/X encoding evolved over time, we compared A/X encoding along both 
sensory and memory axes at each stimulus period in the sequence (A/X, B/Y, and C/C* in Fig. 
S4E, F and G respectively). During A/X presentation, A/X encoding was stronger on the A/X 
sensory axis. During the B/Y presentation, A/X encoding was weak along both sensory and 
memory axes. Lastly, during the C/C* presentation, A/X encoding was stronger on the A/X 
memory axis, compared to the A/X sensory axis. In order to gain a full picture of the evolving 
A/X axis, we performed cross temporal classification. We trained classifiers on 25 ms time bins 
throughout the sequence to distinguish between A and X conditions (Fig. S4H). The A/X 
classifiers performed well around the time of training, but only generalized locally in time. These 
results suggest a dynamic population coding of A/X information that evolves over time. As 
detailed in the main manuscript, we find that individual neurons show similar dynamics – some 
have a stable preference for A/X stimuli across time, while others switch their preference during 
the sequence. The combination of both stable and switching representations is what determines 
how the population representation evolves during the sequence.  

     

The Strength of A/X Sensory and Memory Encoding Impacts C/C* Encoding 
 
To test the impact of context (A/X) encoding on perception, we tested, on a trial by trial basis, 
whether the strength of context was correlated with the strength of C/C* stimulus encoding. 
Based on previous work, we anticipated contextual information would impact sensory 
processing in one of two different ways. First, in the predictive coding framework (Rao and 
Ballard 1999), contextual information could set an expectation for the upcoming stimulus. In this 
framework, unexpected stimuli evoke a stronger response (due to a prediction error). This is 
consistent with our observations (Fig. 1H, I). Therefore, one might expect that stronger 
contextual information on a given trial could lead to a stronger response to unexpected stimuli 
on that trial. In other words, there should be a positive correlation between context and 
unexpected stimuli. Second, the representation of contextual information could predict future 
stimuli, such that the expected stimulus is enhanced (i.e. it would facilitate the sensory 
response). In this case, one would predict a positive correlation between the strength of context 
encoding and the strength of the representation of the expected stimulus. 

To test these two hypotheses, we examined the correlation between the strength of A/X context 
encoding on a given trial with the strength of the representation of either expected or 
unexpected C/C* stimuli on day 4. For each trial, neural activity was averaged from the 50 ms 
before the onset of the C/C* stimulus (300-350 ms after the onset of the A stimulus). This 
activity was then projected onto either the A/X sensory axis or A/X memory axis (as described 
above). Encoding strength was taken as the magnitude of activity in the correct direction along 
the axis (i.e. positive values indicate correct encoding and negative values indicate incorrect 
encoding). To examine expected and unexpected stimuli independently, trials were sorted by 
whether the stimuli were expected for the given context (i.e. ABCD and XYC*D trials were 
expected while ABC*D and XYCD trials were unexpected). The strength of context and C/C* 
representation was then correlated by linear regression (function: linregress from package 
scipy.stats). As with other analyses, we bootstrapped the linear regression fit by sampling trial 
data with replacement (5000 repetitions).  
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We found encoding along the two A/X axes, sensory and memory, had opposing influences on 
C/C* representation. First, the strength of the A/X sensory representation had a facilitating 
effect. On expected trials A/X sensory encoding strength was positively correlated with C/C* 
sensory encoding strength across trials (Fig. S5A, slope=0.086, p=0.019, bootstrapped linear 
regression). On unexpected trials, A/X sensory encoding strength was negatively correlated with 
C/C* sensory encoding strength (Fig. S5B, slope=-0.19, p<1/5000, bootstrapped linear 
regression). These results are consistent with the alignment of A/X sensory and C/C* sensory 
representation: A/X sensory representations facilitate the predicted response, while also 
interfering with the unexpected response.  

Second, the A/X memory representation had the opposite effect on the C/C* response. On 
unexpected trials, the strength of A/X memory encoding was positively correlated with C/C* 
sensory encoding strength across trials (Fig. S5D, slope=0.11, p=0.011, bootstrapped linear 
regression). On expected trials, the strength of A/X memory encoding was weakly (non-
significantly) negatively correlated with C/C* sensory encoding (Fig. S5C slope=-0.033, p=0.2). 
These results are consistent with a predictive coding framework, which hypothesizes the 
response to expected stimuli should be reduced (as they are explained away), while unexpected 
stimuli should be enhanced (as there is a prediction error). Taken together, these results 
suggest that both A/X sensory and memory axes significantly impact sensory processing, but 
may play different roles in facilitating sensory responses or making predictions. 

 

Temporal Selectivity Profiles  
 
As described in the main manuscript, we found the population encoding of A/X sensory and 
memory representations were largely independent. To understand how these different 
representations evolved during the trial, we examined how contextual information was 
represented by individual neurons. To this end, we calculated how each neuron represented 
context over time. Selectivity was measured as the difference in firing rate for the AB context 
and the XY context. As before, the trial counts for each sequence were balanced, ensuring the 
neurons were not responding to the C/C* stimulus. The difference in firing rate between 
contexts was calculated in 25 ms time bins, shifted by 10 ms over the entire trial (from -160 ms 
to 790 ms, relative to the onset of the A/X stimulus). To normalize the firing rate difference, we 
z-scored the observed difference in firing rate by a null distribution, which was created by 
randomly permuting the trial labels (i.e. shuffling the responses to AB and XY contexts). Using 
these shuffles, we z-scored the firing rate difference using the following equation.  

𝑧𝑧𝑧𝑧𝑧𝑧 =
𝑧𝑧𝑧𝑧 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 (𝑧𝑧𝑧𝑧 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎ℎ𝑢𝑢𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎)

𝑎𝑎𝑠𝑠𝑑𝑑(𝑧𝑧𝑧𝑧 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎ℎ𝑢𝑢𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎)  

This resulted in a z-scored measure of contextual selectivity for each neuron across the entire 
time period of the trial (examples in Fig. 4A). 

 
 
Clustering of Neuron Selectivity into Functional Cell Types 
 
Phenograph 
To test whether the timecourse of selectivity of neurons were clustered, we used the 
unsupervised ‘Phenograph’ clustering algorithm (Nicosia et al. 2009) to cluster the z-scored 
selectivity profiles (created as above). Briefly, the Phenograph algorithm works by constructing 
a directed graph of data points, where a given data point is connected to its k closest neighbors. 
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Distance between data points was measured as their Euclidean distance in the 96 dimensional 
space of the full temporal profile of selectivity. Following previous work (Levine et al. 2015), we 
used k = 40. Once this directed graph is constructed, Phenograph uses the Louvain clustering 
algorithm to cluster data points into groups (Blondel et al. 2008). Note that this algorithm is 
unsupervised; the only parameter set is the number of local connections (k), although the 
algorithm is robust to changes in this parameter (Levine et al. 2015). The Phenograph algorithm 
identified 4 clusters of temporal selectivity (Fig. 4B).  

Phenograph Validation: D-prime 
To validate the resulting clusters (outside the Phenograph algorithm), we calculated a sensitivity 
index between each pair of clusters (Figure S6A). The sensitivity index, often referred to as d-
prime, measures the distance between clusters. For each cluster being compared, the distance 
between cluster means is calculated (using Euclidean distance in the full 96-dimensional 
space). This is divided by the square root of the average of the variances within each cluster: 

𝑑𝑑′ =  
𝜇𝜇1 + 𝜇𝜇2

�1
2 (𝜎𝜎12 + 𝜎𝜎22)

 

Where 𝜎𝜎12 and 𝜎𝜎22 are the variances and 𝜇𝜇1 and 𝜇𝜇2 are the means of the two clusters being 
compared. To test whether the observed d-primes were significantly greater than expected by 
chance, we performed permutation tests on each paired d-prime calculation. For each pairwise 
cluster comparison, we shuffled the labels of each cluster (999 permutations), recalculated d-
prime and added the unpermutated d-prime calculation to distribution. Using this null 
distribution, we calculated the probability of each observed d-prime. All pairwise cluster 
comparisons were significantly separated (p≤1/1000; Figure S6A). 

Spatial Clustering of Functional Clusters 
To test whether there was anatomical clustering of the observed functional clusters, we 
estimated each neuron’s anatomical location based on the location of the implanted electrodes. 
We did not see clear spatial clustering of the functional clusters of neurons (Fig. S6B). The 
functional clusters were intermingled, suggesting that the different neuron types were not due to 
differences in recording location.  

Estimating the Classifier Weights for each Functional Cluster Type 
Next, we were interested in understanding the relationship between the functionally-defined cell 
types from our clustering and the population representations of context. Specifically, we wanted 
to test if both functional neuron types (stable, switching) were involved in both the A/X sensory 
and memory axes (Fig. 4). First, to mitigate noise, we post-hoc identified a ‘none’ cluster, in 
which the selectivity failed to reach statistical significance over the sequence time course 
(p<=.025, Bonferroni corrected). Then, we averaged the classifier weights for a given encoding 
axis (e.g. A/X sensory) for each functional cluster (Fig. 4D). Each functional cluster (stable and 
switching) has two subgroups: neurons that initially preferred the A stimulus (i.e. the yellow and 
purple lines in Fig. 4B) and those that initially preferred the X stimulus (i.e. the pink and green 
lines in Fig. 4B). In order to combine weights from both A-preferring and X-preferring neurons, 
the weights of all neurons that initially preferred the A stimulus were flipped by multiplying by -1. 
Therefore, the weights presented in Figure 4B are measured with respect to the neuron’s initial 
preferred direction. As before, classifier weights were length normalized within each animal 
before combining across animals, to avoid over-weighting animals with more neurons. Then, all 
weights were averaged together for each of the two resulting functional cell types (stable and 
switching neurons from all days). The resulting average weights, for each A/X axis (sensory and 
memory), are shown in Figure 4D. Initially, for the A/X sensory axis, both stable and switching 
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neurons represent their preferred stimulus (either A or X). This is by definition: by flipping the 
weights of A-preferring neurons, we ensure all weights are positive during the beginning of the 
sequence (the A/X presentation). Importantly, the classifier weights for the A/X memory axis 
were positive for the stable neurons, but reversed for the switching neurons (to negative 
weights). This is consistent with the switching neurons changing their selectivity during the 
sequence.  

It is important to note that the combination of stable and switching neurons is what changes the 
representation of A/X during the sequence. If all the neuron were stable, the sensory and 
memory axes would be the same. Likewise, if all the neurons switched their selectivity, the 
sensory and memory axes would just reverse the direction of the encoding axis. Instead, as 
seen in Figure 4E, it is the combination of both stable and switching neurons that allows the 
memory encoding axes to rotate away from the sensory encoding axes.  

Estimating the Classifier Weights for Individual Neurons 
Next, we tested whether the classifier weights of individual neurons changed between the 
sensory and memory encoding. To test this, we measured the correlation between an individual 
neuron’s contribution to the A/X sensory classifier and its contribution to the A/X memory 
classifier (i.e. the correlation between classifier weights). Similar to above, we labeled each 
neuron by its functional cluster (stable, switching, or none) and length-normalized the weight 
vector within each animal, before combining across all animals and all days. We plotted each 
neurons weight in the context sensory and memory axes, organized by their functionally-defined 
cluster (Fig 4F; x-axis: A/X sensory axis, y-axis: A/X memory axis). We quantified the 
relationship by calculating linear regressions for each functional cluster. Statistical significance 
of each linear regression (scipy.stats.linregress) was determined by using a bootstrap. We 
subsampled the population of neurons (for each function cluster) 5000 times, each time fitting 
the linear regression. The fitted lines and the standard deviation of the bootstrap can be viewed 
in Fig. 4F. As with the full population, the weights of individual ‘stable’ neurons were positively 
correlated across the sensory and memory classifiers, suggesting they maintain their role (and 
that strongly encoding neurons contributed well to both). In contrast, the weights of ‘switching’ 
neurons were negatively correlated between the classifiers, suggesting individual neurons 
dynamically change their contribution to the sensory and memory representations. 

Classifier Weights Change with Experience 
To test how experience impacted the correlation of classifier weights, we recalculated these 
regressions on each day. The distribution of slopes per day are illustrated by violin plots in 
Figure 4G. On each day, using the bootstrapped slopes, we also tested if stable and switching 
cells had positive and negative slopes respectively (Fig. 4G, stars indicated significance). To 
test if experience changed the correlation between day 1 and day 4, we took the difference of 
the slopes calculated on each day. To estimate the likelihood of observing this difference, we 
compared the observed difference in slope to the difference in slope when the day labels were 
randomly shuffled (4999 shuffles, where the 5000th was calculated using unpermutated data). 
We found a positive correlation in stable cell contribution to A/X sensory axes on each day 
(D1=0.3, p=0.015, D2=0.44, p=0.002, D3=0.67, p<1/5000, D4=0.59, p=0.0004). This correlation 
increased between day 1 and 4 (Fig. 4 horizontal line, D4-D1=0.47, p=0.013). While the 
negative correlation in switching cell contributions to each axis was not significant on day 1 
(D1=-0.15, p=0.18), it was significantly negative on the rest of days (D2=-0.66, p=0.0004, D3=-
0.63, p=0.018, D4=-0.44, p=0.032). However, the change across days was not significant (D4-
D1=-0.22, p=0.2).  

We also examined if correlations across functional groups were significantly different. To test for 
significant differences, we shuffled functional labels and then recalculated the correlation for 
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each group and the difference between groups (4999 permutations, 5000th was difference of 
unpermutated data). Using this distribution, we determined differences between the slopes of 
switching and stable cells on each day (D1 diff. = 0.41, p=0.046, D2 diff. = 1.08, p=0.0004, D3 
diff. = 1.18, p=0.0018, D4 diff. = 1.1 p=0.0004). This difference significantly changed over days 
(D4-D1 = 0.68, p=0.018). Significance of the change across days was determined with a 
permutation test; we shuffled the day label within each functional group, then calculated the day 
difference, and finally computed the difference across days (4999 permutations, 5000th was 
difference of unpermutated data).  

 

Excluding Alternative Explanations for Changes in Context Preference 
 
As noted above, we observed two functionally-defined classes of neurons: those with stable 
contextual (A/X) preference and those that switch their preference. However, one concern is 
that these functional classes simply reflect the fact that neurons have different patterns of 
selectivity for the A/X and B/Y stimuli. For example, a ‘switching’ neuron could simply prefer A 
over X and then Y over B. To test this hypothesis, we built, fit, and compared models to explain 
the observed cell selectivity in the first two stimulus periods (A/X and B/Y) of the sequence.  
 
Independent Model 
The ‘Independent’ model, assumed cells had random, independent selectivity at each stimulus 
period (Fig. S7A; columns indicate A/X period response; rows indicated B/Y period response). 
More specifically, a cell might have some probability of preferring A or X and then either B or Y. 
In this scenario, where each selectivity preference is independent from the next, the probability 
of a cell preferring A then B, is the product of the two probabilities (𝑝𝑝𝐴𝐴𝐵𝐵 = 𝑝𝑝𝐴𝐴 ∗ 𝑝𝑝𝐵𝐵). Additionally, 
not all cells are necessarily responsive to stimuli. To capture this, the model allowed some 
neurons to be unresponsive (with probability 𝑝𝑝𝑝𝑝𝑧𝑧), while the remaining are responsive (with 
probability 𝑝𝑝𝑧𝑧 =  1 –  𝑝𝑝𝑝𝑝𝑧𝑧). Therefore, altogether, the probability of observing A selectivity, 
followed by B selectivity can be written as: 
 
𝑝𝑝𝐴𝐴𝐵𝐵 =  𝑝𝑝𝑧𝑧𝑝𝑝𝐴𝐴𝑝𝑝𝐵𝐵.  
 
Similar equations can be written for the probability of observing AY (𝑝𝑝𝐴𝐴𝑝𝑝 =  𝑝𝑝𝑧𝑧𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝), XB 
(𝑝𝑝𝑝𝑝𝐵𝐵 =  𝑝𝑝𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝐵𝐵), and XY (𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑝𝑝𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). At any given period, a cell may be responsive 
(𝑝𝑝𝑧𝑧), but not selective for either presented stimulus. For example, a responsive cell may prefer 
neither A or X with some probability (𝑝𝑝01 = 1 − 𝑝𝑝𝐴𝐴 − 𝑝𝑝𝑝𝑝). Given this, we can determine the 
probability of observing no selectivity during the initial period (A/X), followed by B or Y 
selectivity: 
 
𝑝𝑝0𝐵𝐵 =  𝑝𝑝𝑧𝑧 ∗ (1 − 𝑝𝑝𝐴𝐴 − 𝑝𝑝𝑝𝑝) ∗ 𝑝𝑝𝐵𝐵 
 
𝑝𝑝0𝑝𝑝 =  𝑝𝑝𝑧𝑧 ∗ (1 − 𝑝𝑝𝐴𝐴 − 𝑝𝑝𝑝𝑝) ∗ 𝑝𝑝𝑝𝑝  
 
Likewise, we can write the probabilities of observing selectivity, during the initial period (A/X), 
but no selectivity during B/Y (𝑝𝑝02 = 1 − 𝑝𝑝𝐵𝐵 − 𝑝𝑝𝑝𝑝). Here, we can write the probability of 
observing A0 or X0 as: 
 
𝑝𝑝𝐴𝐴0 =  𝑝𝑝𝑧𝑧𝑝𝑝𝐴𝐴 ∗ (1 − 𝑝𝑝𝐵𝐵 − 𝑝𝑝𝑝𝑝) 
 
𝑝𝑝𝑝𝑝0 = 𝑝𝑝𝑧𝑧𝑝𝑝𝑝𝑝 ∗ (1 − 𝑝𝑝𝐵𝐵 − 𝑝𝑝𝑝𝑝)  
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Finally, there are two ways, in which a cell exhibits no response during both the A/X and B/Y 
stimulus (i.e. 00). First, the cell my not be responsive (𝑝𝑝𝑝𝑝𝑧𝑧). Second, the cell may be 
responsive, but selective for none of the stimuli. Combining, we can write the probability of 
observing no selectivity as:  
 
𝑝𝑝00 =  𝑝𝑝𝑝𝑝𝑧𝑧 +  𝑝𝑝𝑧𝑧 ∗ (1 − 𝑝𝑝𝐴𝐴 − 𝑝𝑝𝑝𝑝) ∗ (1 − 𝑝𝑝𝐵𝐵 − 𝑝𝑝𝑝𝑝).  
 
The entire table of probabilities for the independent model is included in Figure S7A. This full 
model assumes the likelihood of selectivity is independent for each stimulus. However, a priori, 
there is no reason why these likelihoods will be different and so we developed a simpler 
alternative model (the ‘Simplified Independent’ model) where 𝑝𝑝𝐴𝐴 = 𝑝𝑝𝐵𝐵 =  𝑝𝑝𝑝𝑝 =  𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝 (Fig. 
S7B).  
 
Stable & Switching Model 
Alternatively, the functional classes may reflect the existence of two groups of cells which have 
stable or switching preferences for the contextual (AB/XY) stimuli. Indeed, this is consistent with 
the observation that many cells have significant preference beyond the B/Y period, as indicated 
by their weights in the A/X memory classifier. To test this against the Independent model, we 
designed a ‘Stable & Switching’ model, in which neurons can have a single preference (AB or 
XY) and either maintain or change this preference over time. To model this, we defined the 
probability of a neuron having a stable preference as 𝑝𝑝𝑝𝑝𝑠𝑠 and the probability of switching 
preferences as 𝑝𝑝𝑝𝑝𝑝𝑝. Remaining cells were not part of either functional class: 𝑝𝑝03  =
 1 –  𝑝𝑝𝑝𝑝𝑠𝑠 –  𝑝𝑝𝑝𝑝𝑝𝑝. 
 
This functional cell property causes cells to either switch or maintain their preference from their 
initial preference (during the A/X presentation). In our model, the stable/switching parameter 
was paramount and so it forced selectivity if a neuron had no response to a stimulus. For 
example, if a stable cell is selective for A or X, but not B or Y (𝑝𝑝02  =  1 –  𝑝𝑝𝐵𝐵 –  𝑝𝑝𝑝𝑝), its response 
will still be selective in both stimulus periods. Note, a cell, that is neither stable or switching, may 
exhibit responses based only on preference (i.e. 𝑝𝑝𝐴𝐴𝑝𝑝𝐵𝐵𝑝𝑝03 would contribute to the 𝑝𝑝𝐴𝐴𝐵𝐵 
response). Also, a cell functional property can align with its preference (i.e. 𝑝𝑝𝐴𝐴𝑝𝑝𝐵𝐵𝑝𝑝𝑝𝑝𝑠𝑠 would 
contribe to the 𝑝𝑝𝐴𝐴𝐵𝐵 response). Thus, under the Stable & Switching model (Fig. S7C), we can 
write the probability to observing an AB response:  
 
𝑝𝑝𝐴𝐴𝐵𝐵 =  𝑝𝑝𝑧𝑧 ∗ (𝑝𝑝𝐴𝐴𝑝𝑝𝐵𝐵𝑝𝑝𝑝𝑝𝑠𝑠 +  𝑝𝑝𝐴𝐴𝑝𝑝𝐵𝐵𝑝𝑝03  +  𝑝𝑝𝐴𝐴𝑝𝑝02𝑝𝑝𝑝𝑝𝑠𝑠)  
 
Note, to keep consistency with the independent model, we add a responsiveness parameter (𝑝𝑝𝑧𝑧 
and 𝑝𝑝𝑝𝑝𝑧𝑧). A similar equation may be written for the other stable response:  
 
𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑝𝑝𝑧𝑧 ∗ ( 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 +  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝03 + 𝑝𝑝𝑝𝑝𝑝𝑝02𝑝𝑝𝑝𝑝𝑠𝑠) 
 
Similar to being stable (𝑝𝑝𝑝𝑝𝑠𝑠), cells may exhibit a switching contextual preference (𝑝𝑝𝑝𝑝𝑝𝑝). As for 
stable neurons, when a cell does not have a preference for the second stimuli (𝑝𝑝02  =  1 –  𝑝𝑝𝐵𝐵 −
 𝑝𝑝𝑝𝑝), the switching property will cause the cell to switch its contextual preference (i.e. AY or XB). 
Therefore, the probability of observing switching responses can be written as:  
 
𝑝𝑝𝐴𝐴𝑝𝑝 =  𝑝𝑝𝑧𝑧 ∗ (𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝03  +  𝑝𝑝𝐴𝐴𝑝𝑝02𝑝𝑝𝑝𝑝𝑝𝑝) 
 
𝑝𝑝𝑝𝑝𝐵𝐵 =  𝑝𝑝𝑧𝑧 ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑝𝑝𝑝𝑝𝑝𝑝𝐵𝐵𝑝𝑝03  +  𝑝𝑝𝑝𝑝𝑝𝑝02𝑝𝑝𝑝𝑝𝑝𝑝)  
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However, it is also possible that the cell’s functional preference does not align with its stimulus 
selectivity. For example, a neuron might prefer A and B, but have a ‘switching’ functional cell-
type. In this case, we assume these properties cancel one another, so no response is observed 
during the second period (i.e. giving an A0 neuron). Finally, a neuron may have no response 
during the second period, if it does not prefer B or Y, and also is not a stable or switching 
neuron. Therefore, the probability of an initial response, followed by no response can be written 
as:  
 
𝑝𝑝𝐴𝐴0 =  𝑝𝑝𝑧𝑧 ∗  (𝑝𝑝𝐴𝐴𝑝𝑝𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 +  𝑝𝑝𝐴𝐴𝑝𝑝02𝑝𝑝03) 
 
𝑝𝑝𝑝𝑝0 =  𝑝𝑝𝑧𝑧 ∗  (𝑝𝑝𝑝𝑝𝑝𝑝𝐵𝐵𝑝𝑝𝑝𝑝𝑠𝑠 +  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑝𝑝𝑝𝑝𝑝𝑝02𝑝𝑝03) 
 
We assume that the functional properties (stable and switching) do not affect response, if the 
cell is not initially selective (as above, captured by 𝑝𝑝01  =  1 –  𝑝𝑝𝐴𝐴 –  𝑝𝑝𝑝𝑝). Thus, the probability of 
no initial response to A/X, followed by a response to B/Y is similar to the independent model. 
 
𝑝𝑝0𝐵𝐵 =  𝑝𝑝𝑧𝑧𝑝𝑝01𝑝𝑝𝐵𝐵 
 
𝑝𝑝0𝑝𝑝 =  𝑝𝑝𝑧𝑧𝑝𝑝01𝑝𝑝𝑝𝑝      
      
Finally, like in the independent model, observing no response in either stimulus period, can 
occur, either because the cell is not responsive, or because the cell does not prefer any of the 
presented stimuli. Again, the functional properties of the cell would not affect the cell’s 
response. Together, this allows us to write the probability of observing no response, across both 
the A/X and B/Y periods, as:  
 
𝑝𝑝00 =  𝑝𝑝𝑝𝑝𝑧𝑧 +  𝑝𝑝𝑧𝑧𝑝𝑝01𝑝𝑝02   
  
As with the Independent model, we created a simplified version of the stable and switching 
model, in which the probability of all stimulus preferences was the same (𝑝𝑝𝐴𝐴 = 𝑝𝑝𝐵𝐵 =  𝑝𝑝𝑝𝑝 =
 𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝). In this model, we also assumed that a cell is either stable or switching (i.e. it cannot 
be neither). Thus, we can write 𝑝𝑝𝑝𝑝𝑝𝑝 =  1 –  𝑝𝑝𝑠𝑠. A summary of both the full ‘Stable & Switching’ 
model and the ‘Simplified Stable & Switching’ model can found in Fig. S7C and D.  
 
Parameter Name Details 

pNR Probability no response  
pR Probability response 𝑝𝑝𝑧𝑧 =  1 −  𝑝𝑝𝑝𝑝𝑧𝑧 
pS Probability of stimuli preference  𝑝𝑝𝑝𝑝 = 𝑝𝑝𝐴𝐴 = 𝑝𝑝𝐵𝐵 = 𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝 
pA Probability of preferring A  
pX Probability of preferring X  
p01 Probability of other preference during A/X period  𝑝𝑝01  =  1 –  𝑝𝑝𝐴𝐴 –  𝑝𝑝𝑝𝑝 
pB Probability of preferring B  
pY Probability of preferring Y   
p02 Probability of other preference during B/Y period 𝑝𝑝02  =  1 −  𝑝𝑝𝐵𝐵 − 𝑝𝑝𝑝𝑝 
pSt Probability of stable preference   

pSw Probability of switching preference  
p03 Probability of neither stable or switching selectivity 𝑝𝑝03 = 1 − 𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑝𝑝 
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To compare these two models (and their associated hypotheses), we fit them to the observed 
response counts across all recorded neurons. We began by determining the selectivity for 
neurons during the A/X (0-100 ms) and B/Y (175-275 ms) time periods. To do this, we tested if 
the z-scored firing rate difference was significant (p-value ≤ .025, Bonferroni corrected) during 
each stimulus presentation period (A/X and B/Y). During the A/X period, cells could be selective 
to A, X or neither (labeled as 0, when not significant). Likewise, during the B/Y period, cells 
could be selective to B, Y, or neither (labeled as 0, when not significant). A cell could therefore 
exhibit one of 9 responses across both time periods (AB, A0, AY, 0B, 00, 0Y, XB, X0, XY; Fig. 
S8A). For fitting, we divided each count by the total number of counts; this allowed us to fit each 
probability parameter described above. 
 
Using the minimize function from the scipy.optimize package, we fit each model by minimizing 
the sum of squared differences across the 9 observed response percentages. For all models, 
we bound all probabilities to be between (0,1) inclusive. When fitting models, in which all 
selectivities were equal, we constrained 𝑝𝑝𝑝𝑝 to (0, 0.5) inclusive (i.e. for the ‘Simplified 
Independent’ and ‘Simplified Stable & Switching’ models). Additionally, when applicable, we 
constrained the sum of probabilities, during a given stimulus period, to be less than or equal to 1 
(i.e. 𝑝𝑝𝐴𝐴 + 𝑝𝑝𝑝𝑝 ≤ 1). Tolerance was set to 1e-100. Other parameters were left to the function’s 
defaults.  
 
To determine how well each model fit the observed data, we calculated the r2 and adjusted r2 

(which accounts for the number of parameters, (Theil 1961)) for each model: 
 

𝑎𝑎2 = 1 −  
𝑝𝑝𝑝𝑝𝑆𝑆
𝑝𝑝𝑝𝑝𝑝𝑝

 
 

𝑎𝑎𝑑𝑑𝑎𝑎𝑢𝑢𝑎𝑎𝑠𝑠𝑎𝑎𝑑𝑑 𝑎𝑎2 = 1 −
𝑎𝑎 − 1

𝑎𝑎 − 𝑝𝑝 − 1
∗ �
𝑝𝑝𝑝𝑝𝑆𝑆
𝑝𝑝𝑝𝑝𝑝𝑝

� 

 
Where, SSE is the sum of squared errors (∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑑𝑑𝑑𝑑𝑠𝑠𝑖𝑖)2𝑛𝑛

𝑖𝑖 ), SST is the sum of squared errors 
across all observations (∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛

𝑖𝑖 ). 𝑦𝑦𝑑𝑑𝑑𝑑𝑠𝑠𝑖𝑖 are selectivity probability fits (e.g. 𝑝𝑝𝐴𝐴𝐵𝐵), 𝑦𝑦𝑖𝑖 are 
observations, 𝑦𝑦� is the mean of observations, 𝑎𝑎 is the number of observations, and 𝑝𝑝 is the 
number of parameters. Figure S8B shows both r2 and adjusted r2.  
 
We found that the Stable & Switching models provided a better fit to the observed cell selectivity 
profiles (Fig. S8A). The adjusted r2 was 0.9988 and 0.9904 for the Stable & Switching and 
Simplified Stable & Switching models, respectively. This was greater than the Independent and 
Simplified Independent models (which had adjusted r2 of 0.92 and 0.94, respectively). These 
results suggest the stable and switching dynamics observed are not a result of combining 
independent selectivities to each chord. Instead, the observed distribution of selectivity across 
neurons support the hypothesis that there are two classes of neurons: one that stably maintains 
their contextual preference over the sequence and one that switches their preference during the 
sequence.  
 
The Likelihood of Stable and Switching Neurons were Significantly Greater than Zero  
Finally, we wanted to test whether the stable (𝑝𝑝𝑝𝑝𝑠𝑠) and switching (𝑝𝑝𝑝𝑝𝑝𝑝) parameters were 
significantly greater than zero. Although the Stable and Switching model fits better than 
alternatives, this does not necessarily mean that both cell populations exist. To test this in the 
model, we compared the observed parameter to a null distribution. The null distribution was 
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created by fixing each parameter of interest (𝑝𝑝𝑝𝑝𝑠𝑠 and 𝑝𝑝𝑝𝑝𝑝𝑝) to zero. Then, using the Stable & 
Switching model, we simulated observations for each cell type in the 3x3 table of cell counts 
(n=999). For each of these “null” cell counts, we refit the full model (no longer holding the 𝑝𝑝𝑝𝑝𝑠𝑠 or 
𝑝𝑝𝑝𝑝𝑝𝑝 terms to zero) . Thus, the refits of the model create a null distribution of the parameter of 
interest (1000th value is original parameter fit). Using this distribution, we determined the 
probability of our observed parameter fit (stars in S8C-F). Importantly, for both the Stable & 
Switching model and the Simplified Stable & Switching model, the estimated probability of being 
a stable or switching neuron was significantly greater than zero (p≤1/1000 for both; Fig. S8E 
and F). 
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A                                                B                                           C 

 
  

 

Figure S1. (A) Schematic of implicit learning paradigm. On each day, 
animals heard 300 chords (C/C* in equal proportion), then 1500 sequences 
(see Fig. 1A for statistics), finishing with 300 chords (C/C*). (B) Schematic of 
electrode location. Silicon probes were implanted in right auditory cortex 
(stereotaxic coordinates from bregma: -2.7 AP and 4.8 ML). (C) Example 
histology of electrode location. Confocal image taken of cortex around 
auditory area as shown in B. The scale bar is 150 µm. Green is GFAP (Glial 
fibrillary acidic protein) immunolabel. Blue is Hoechst stain.  
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 Figure S2. All four classifiers accurately decoded stimulus representations. (A) 

Classifier accuracy for the A/X sensory classifier. Accuracy was measured with AUC (see SI 
for details). A/X training time was 10-110 ms (orange on timeline). The AUC for each mouse 
is shown as individual points. Mean and s.e.m across mice is shown as a line across days. 
Significant differences (p ≤ 0.05) from chance performance (AUC=.5) is indicated with a black 
star (all were significant). (B) Classifier accuracy for the B/Y sensory classifier. B/Y training 
time was 185-285 ms (yellow on timeline). (C) Classifier accuracy for the C/C* sensory 
classifier C/C* training time was 360-460 ms (light blue on timeline). (D) Classifier accuracy 
for the A/X memory classifier. A/X memory training time was 360-460 ms (dark blue on 
timeline). 
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 Figure S3. (A-C) Schematics of three putative mechanisms for aligning the A/X and C/C* 

sensory representations. (A) The inputs to A/X and C/C* selectivity neurons change, such 
that associated stimuli induce similar responses within auditory cortex. Such a mechanism 
does not predict timing differences between A/X and C/C* responses. (B) Unidirectional 
lateral connection from A/X to C/C* representations. This mechanism predicts 1) A/X timing 
should precede C/C* and 2) a larger percentage of cells should be involved in the A/X 
representation, because C/C* become active during the A/X presentation. (C) Bidirectional 
lateral connections between A/X and C/C* representations. This mechanism predicts a 
recurrent timing delay (e.g. A/X precedes C/C* during A/X presentation and vice versa). (D) 
Time to reach significant A/X (orange) and C/C* (blue) encoding during A/X presentation on 
Day 1. Statistical significance of encoding is on y-axis (-log(p-value)). Vertical dashed lines 
indicate time to significance along each encoding axis (p ≤ .001, Bonferroni corrected). Inset 
shows the observed difference in times (the ‘lag’, red vertical line) and their null distribution 
(grey histogram). (E) Time to reach significant A/X (orange) and C/C* (blue) encoding during 
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C/C* presentation. (F) Same as D, but for Day 4. (G) Same as E, but for Day 4 (H) Receiving 
operator characteristic (ROC) of percent of cells in each classifier (A/X and C/C* sensory 
axes). Each day is plotted by a separate line (D1=blue, D2=orange, D3=green, D4=red). (I) 
The percent of cells participating in the A/X and C/C* sensory classifiers on each day were 
not significantly different. Violin plot shows the distribution of AUC, calculated by 
bootstrapping the ROC curves.  
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Figure S4. (A, B) A/X memory encoding for (A) Day 1 and (B) Day 4. Firing rate activity was 
projected onto individual animal A/X memory axes (training period outlined in blue box), z-
scored and combined across animals. Average and s.e.m of projections shown across time. 
Positive projections and negative projections indicate XY (light green) and AB (light purple) 
encoding, respectively. Light and dark grey bars mark significant differences for AB vs XY and 
C vs C* respectively (p ≤ .001, Bonferroni corrected t-test). (C, D) Neural activity projected 
into A/X memory - C/C* state space for (C) Day 1 and (D) Day 4. The x-axis is the projection 
of neural activity onto the A/X memory axis; the y-axis is the projection onto the C/C* sensory 
axis. Activity is shown from around the C/C* stimulus period (340 to 520 ms). Marker 
saturation increases with time. Inset shows PCs of neural trajectories in grey, black arrow size 
matches percentage of explained variance per PC. (E-G) Comparison between A/X sensory 
(orange) and memory (blue) encoding during the three stimulus periods of the sequence. 
Mean and s.e.m. of correct distance along each axis combined across trials. To combine 
across conditions, negatively encoded conditions are flipped. Thus, positive values indicate 
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correct encoding strength. Significant difference between D1 and D4 shown by horizontal 
bars (permutation test). (E) Neural activity from the A/X period (10-110 ms). During the A/X 
period, A/X sensory encoding is stronger than A/X memory encoding on all days (p≤1/5000, 
permutation test). (F) Neural activity from the B/Y period (180-280 ms). During the B/Y period, 
on Day 1 A/X sensory encoding is slightly stronger than A/X memory encoding (p=0.042, 
permutation test), while on subsequent days A/X memory encoding is stronger than A/X 
sensory encoding (D2 p=0.0002, D3 p=0.022, D4 p=0.021, permutation test). (G) Neural 
activity from the C/C* period (360 – 460 ms). During the C/C* period, the A/X memory 
encoding was stronger than A/X sensory encoding on all days (p≤1/5000). (H) Cross-temporal 
performance of A/X classifiers. A series of A/X classifiers were trained across the sequence 
(25 ms windows, shifted by 10 ms steps). Color indicates the encoding strength (withheld 
data only) for all combinations of training times (x-axis) and test times (y-axis). White bars 
indicated timing of A/X, B/Y, C/C* periods (and 75 ms inter stimulus intervals). Note the low 
cross-temporal decoding performance reflects the temporal dynamics of the representation of 
A/X during the sequence. For all panels, p-values: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001 
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Figure S5. The strength of C/C* sensory encoding is correlated with the strength of 
both the A/X sensory and memory encoding. All plots show the relationship between C/C* 
sensory encoding strength (y-axis) and A/X encoding strength (x-axis). Positive and negative 
values indicate encoding along axis in correct and incorrect directions, respectively. A/X 
encoding estimated from the 50 ms prior to C/C* onset (300-350 ms). C/C* encoding is 
estimated from the C/C* period (360-460ms). (A) A/X sensory encoding correlates with C/C* 
encoding accuracy on expected trials (ABCD, XYC*D; bootstrapped linear regression). (B) 
A/X sensory encoding negatively correlates with C/C* encoding accuracy on unexpected 
trials (ABC*D, XYCD). (C) A/X memory encoding accuracy is weakly negatively correlated 
with C/C* encoding on expected trials. (D) A/X memory encoding accuracy is positively 
correlated with C/C* encoding during unexpected trials.  
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 Figure S6. (A) Sensitivity index (d-prime) calculated between clusters. Four clusters of 

neuron temporal selectivity were found using a Phenograph algorithm (Fig. 4, see SI for 
details). The d-prime between all pairs of cluster groups was calculated (red line); grey 
distributions are null d-prime distributions, estimated with a permutation test (1000 shuffles). 
Stable cells were clusters 1 and 3, switching cells were clusters 2 and 4. (B) Estimated 
locations of functional clusters along recording arrays. Switching (red), stable (green), and 
none (grey) cells are plotted according to their estimated electrode location (x-axis – AP, y-
axis – depth (DV) based on implant coordinates; 6 probes had 4 shanks separated by 200 
µm). Small, random jitter in anterior-posterior (AP) direction is added for clarity of presentation 
and do not reflect actual differences. 
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Figure S7. Table of probabilities for each stimulus response pair across A/X and B/Y periods 
for all models. (A) Independent model. (B) Simplified Independent model. (C) Stable & 
Switching model. (D) Simplified Stable & Switching model. 
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Figure S8. (A) Counts of cells with a specific stimulus preference across the A/X and B/Y 
stimulus periods. Columns indicate A/X period preference (A, 0 (none), or X). Rows indicate 
B/Y period preference (B, 0 (none), or Y). Each box contains selectivity label (e.g. AB) and 
corresponding observed cell count (across all days). (B) Model comparison across 
Independent and Stable & Switching models. R2 (grey) and adjusted r2 (black) calculated per 
model. The number above each set of bars / model is adjusted r2. Both Stable & Switching 
models have higher adjusted r2 (0.99, 0.99) compared to the Independent models (0.92, 
0.94). (C, D) Parameter fits for the (C) Independent model and (D) Simplified Independent 
model. Left panel: observed selectivity probabilities (dots) and model fit (lines). X-axis is 
selectivity during A/X period; y-axis is selectivity during B/Y period; z-axis is percent of cells 
with each combined selectivity type. Right panel: parameter fits for each probability. Stars 
indicate the probability of the observed value being greater than zero. (E,F) Same as (C,D) 
but for the (E) Stable & Switching model and the (F) Simplified Stable & Switching model. 
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