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Brain dynamics are generated by the activity of diverse and 
massive populations of interconnected neurons distributed 
across the nervous system. Complete system-wide recordings 

of neuronal population activity at the cellular scale would provide 
the ideal basis for analyzing brain dynamics. Unfortunately, tools 
to directly study the mapping from activity to dynamics at the cel-
lular scale remain out of reach, especially in humans. Fortunately, 
neuronal dynamics are redundant and correlated. As a result, we 
can investigate brain dynamics by analyzing the spatiotemporal sig-
nals generated by populations of neurons that take the form of field 
potentials1. Field potentials encompass a range of signals including 
local field potentials (LFP), electrocorticography (ECoG), intracra-
nial stereotactic electroencephalography (stereo-EEG), scalp elec-
troencephalography (EEG) and magnetoencephalography (MEG; 
Fig. 1). All field potential recordings have good temporal preci-
sion in the millisecond range and are available in both humans and 
nonhuman animals. The techniques differ primarily in their spatial 
resolution, their coverage, and their degree of invasiveness.

Understanding how field potentials measure particular patterns 
of neuronal activity depends on a forward model and an inverse 
model. Forward models describe how the recorded potentials are 
generated by neuronal activity. Inverse models are used to analyze 
the recorded potentials and infer the underlying neuronal sources. 
The ingredients to both the forward and inverse model are conser-
vation of charge and Maxwell’s equations2,3, electrical properties 
of brain and head tissues, as well as the physics and geometry of 
the neural source, anatomy and recording sensor. Forward models 

can, in principle, be used to precisely compute the recorded poten-
tials. Inverse models, however, cannot in general compute the cel-
lular patterns of activity from recorded potentials. This is because 
the problem is ill-posed and different patterns of neuronal activity 
can generate the same field potential measurements. Even with an 
accurate inverse model, we cannot reconstruct the exact pattern of 
cellular sources that generates the measurement.

Several aspects of field potential research have been previously 
reviewed4–9. The goal of the current Review is to guide advanced, 
but not expert, researchers in the analysis and interpretation of 
large-scale brain dynamics using field potential recordings. As 
we will demonstrate, there are many benefits to analyzing field 
potential recordings to study large-scale brain dynamics. The prin-
cipal risks stem from the lack of a well-posed inverse problem. 
In “Modeling,” we outline field potential research and highlight 
some areas of recent controversy. This is supplemented by Box 1, 
“Biophysics of extracellular potentials.” “Analyses and interpreta-
tions” forms our main focus and centers on the appropriate use of 
the forward model. For this section, we adopt a didactic approach 
and present clear guidelines for best practices in analysis and inter-
pretation of field potential recordings. We organize the material 
into four sections: Activation, Correlation, Communication and 
Coding. For some issues, we can point to solutions, such as how 
to detect correlations between different neuronal signals and how 
to decode information present in neuronal activity. Other topics, 
such as how to disentangle local activity from activity in synaptic 
inputs from remote sources and how to infer causal influences, are 
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more complex and merit detailed study in Box 2, “Interpreting local 
and remote sources.” A Supplementary Note provides the interested 
reader with more detailed supporting information and discussion.

Modeling
All extracellular potentials stem from summed contributions of 
transmembrane currents across the surfaces of neurons (and in 
principle also glia cells; see Box 1)4,5,10. In this sense, the biophysi-
cal forward model of field potential recordings is similar to that of 
spike recordings. However, field potentials differ from single-neu-
ron recordings in important ways. Single-neuron spike recordings  
have a single source—a neuron that generates action potentials at 

discrete events in time. The single-unit measurement is a classifica-
tion: we want to determine whether the neuron has generated an 
action potential. Distant sources can only contribute to the noise 
floor above which single-neuron activity must be discriminated. In 
contrast, field potentials are continuous signals that do not have a 
single source5. A field potential measurement has contributions from 
different sources weighted according to the measurement modal-
ity—LFP, ECoG, EEG or MEG. Of the various potential sources, 
the largest cellular contribution comes from neurons that gener-
ate the largest current dipoles, those with extended, oriented den-
dritic arbors (see Fig. 2a). Temporally correlated synaptic inputs at 
restricted dendritic sites also contribute strongly to field potentials. 
Distant sources can contribute directly to field potentials owing to 
volume conduction or, for MEG, field spread. Volume conduction 
occurs because electromagnetic fields propagate through biological 
tissues6,11. Consequently, field potentials reflect the organization of 
large-scale brain dynamics.

While biophysical forward-modeling schemes for field potential 
signals are well established6,10,12, several issues remain controversial. 
One controversy concerns the frequency dependence of the elec-
trical conductivity of the extracellular space; i.e., whether volume 
conduction biases LFP and EEG recordings toward certain frequen-
cies13. Field potential power has been observed to decay in power-
law-like way (1/fa) for higher frequencies. Establishing a power law 
is challenging because the range of frequencies is limited, typically 
only spanning two or three orders of magnitude. While the reason 
for any power law remains unclear, potential explanations include 
scale-free dynamics, the capacitive effects of neuronal membranes, 
and noise from evenly distributed ion channels across dendrites14–16. 
Early experiments found very little frequency dependence in the 
frequency range of interest for neuronal recordings17,18, implying 
that the extracellular medium is essentially resistive—i.e., ohmic 
with a negligible capacitive component. Subsequent observations 
showed a strongly reduced electrical conductivity for frequencies 
below 100 Hz19 suggesting a strong low-pass filtering of the LFP and 
EEG from the extracellular medium20. A series of further studies, 
however, using a variety of measurement setups, have confirmed 
the early findings and found only weak frequency dependencies21–25. 
Thus, on balance the experimental observations seem to point to a 
largely resistive extracellular medium.

The contribution of spiking events to field potentials is some-
what controversial. In cortex and hippocampus, the high-frequency 
part of the extracellular potential—i.e., above some hundred 
hertz—is thought to be dominated by spiking activity. Likewise, the 
low-frequency part—i.e., below some tens of hertz—is thought to be 
dominated by the subthreshold extracellular signatures of synaptic 
activation4,5, although spikes also contribute26. Spikes are far more 
likely to contribute to intracortical microelectrode LFPs than to the 
EEG recorded from a scalp electrode. The crossover frequency—
i.e., the frequency above which the spike contributions start to 
dominate—depends on the competition between subthreshold and 
spiking signal contributions. The result depends on brain area and 
brain state: in hippocampus, spikes contribute to the extracellular 
signal for frequencies down to 100 Hz27,28; in monkey visual cortex, 
extracellular signal frequencies as low as ~50 Hz have been associ-
ated with spiking29. In general, the contribution of spiking events 
depends on the shape and amplitude of the action potential wave-
form and the firing rate30.

Inverse modeling to infer neuronal sources also presents con-
troversies. Inferring neuronal sources from MEG or EEG is called 
source reconstruction. Direct validation has been performed with 
electrical stimulation of an implanted electrode31,32, and expected 
results have been obtained, for example, in the case of activity in 
early sensory cortices33–35 and in the case of dipole sources for epi-
lepsy36. However, in general, more information is always required 
in addition to the recorded potentials or fields; sources may be dis-
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Fig. 1 | Field potential recording modalities. a, EEG and MEG signals 
are measured noninvasively. EEG involves electrodes ~10 mm in size 
placed at the scalp across the head. MEG is measured using sensitive 
sensors (superconducting quantum interference devices, or SQUIDS) 
placed just outside the head10. ECoG is measured invasively and involves 
placing electrodes either epidurally, on the dura that protects the brain, 
or subdurally, directly on the pia at the surface of the brain. ECoG can be 
performed in humans in the relatively rare case of epilepsy surgery and is 
otherwise mainly used in animal models. ECoG electrodes are smaller than 
EEG electrodes and range in size from 1 to several millimeters in size135. 
All dimensions are in millimeters. b, Invasive recordings can also be made 
at finer spatial scales. Micro-ECoG involves 20–200 μ​m contacts placed 
on the pia136,137. Coverage can extend to many square centimeters at sites 
across the brain. LFP is the most invasive procedure and involves inserting 
electrodes into the brain. As a result, LFP recordings are made with even 
smaller recording contacts than ECoG, extending to microelectrodes and 
thin-film electrodes that can also record the activity of individual neurons. 
All dimensions are in micrometers.
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Box 1 | Biophysics of extracellular potentials

Extracellular potential biophysics. a, Application of cable theory in a multicompartmental model. In cable theory, we simplify the three-dimensional 
complexity of the long, thin dendrites and axons to a one-dimensional core conductor along the long axis. This is the axis along which the membrane 
potential will vary the most. In this example, an apical dendritic branch, assumed to be purely passive with only capacitive and leak membrane 
currents, is divided into a set of compartments indexed by n. The circuit diagram shows the equivalent electric circuit of the compartment. The net 
transmembrane current In(t) is, in this case, the sum over the capacitive and leak membrane currents in compartment n. In(t) is then used in forward-
modeling schemes, such as is implemented in LFPy12, to calculate extracellular potentials. Two elements in the equivalent electric circuit represent 
intracellular resistive currents between compartment n and the neighboring compartments n +​ 1 and n −​ 1. Other elements represent currents due 
to capacitive properties of the cell membrane and various other membrane processes, such as passive and active intrinsic ion channels and synaptic 
inputs. If we assume point current sources, the extracellular potential ϕ(r,t) recorded at position r due to each of the transmembrane currents I0(t) at 
position r0 is given by ϕ(r,t) =​ I0(t) / 4π​σ​|r – r0|. σ​ is the extracellular conductivity, assumed to be real, scalar and homogeneous. Note that the simplest 
model producing an extracellular potential is a two-compartment model wherein a transmembrane current entering the neuron at one compartment 
leaves at the other compartment, forming a current dipole. Reproduced with permission from Linden et al.12. b, Field potential amplitude depends 
on neuronal morphology. Top: simulations illustrating the dependence of population LFP on the ‘pyramidalness’ of the neurons—i.e., on the distance 
between cylinders containing the basal and apical dendrites (apical cylinder marked with blue shading). When the two cylinders are completely 
superimposed (left), the structure corresponds to a stellate cell. When the two cylinders are positioned immediately on top of each other (center), 
the morphology roughly corresponds to a layer 2/3 pyramidal cell. When the boundaries of the two cylinders are separated by 250 μ​m (right), 
the cell morphology resembles a layer 5 pyramidal cell. In all cases, GABA synapses were distributed only on dendrites in the lower cylinder, while 
AMPA synapses were distributed over the entire dendritic tree (see “Reference” distribution in c). Bottom: average absolute amplitude (s.d.) of LFP 
fluctuations as a function of distance between cylinders. The LFP value corresponds to the LFP amplitude averaged across depths along the axis of the 
cylinders. Adapted with permission from Mazzoni et al.146. c, Field potential amplitude depends on the distribution of synaptic inputs. Top: simulations 
for different synaptic distributions. Left, homogeneous: both AMPA and GABA synapse distributed over the entire surface of the cell. Center, reference: 
GABA synapses distributed only in the lower cylinder, with AMPA synapses distributed over the entire cell. Right, separate: GABA synapses distributed 
only in the lower cylinder and AMPA synapses only in the upper cylinder. Bottom: average LFP absolute amplitude versus dipole moment (s.d. over 
time) for the different synaptic distributions (homogeneous, black; reference, red; separate, green). Adapted with permission from Mazzoni et al.146.
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tributed with many dipoles and/or higher order multipoles, and 
reconstruction depends on information that is often unavailable37,38. 
Inferring neuronal sources from LFPs has typically involved current 
source density (CSD) analysis. Direct empirical validation of CSD 
analysis has also proven challenging37. Although the assumption of 
charge conservation is well established3, it can be difficult in prac-
tice to determine exactly where the currents flow.

Finally, the ability to read out, or decode, information processing 
from the brain underlies the development of brain–machine inter-
faces and neural prostheses and depends on the choice of neuronal 
signal (spiking, LFP, ECoG, EEG, MEG). Field potential decoding 
analyses depend on how field potentials measure selectivity of the 
underlying neuronal sources, as well as the spatiotemporal organi-
zation of the source selectivity. We can summarize these factors in a 
functional variant of the biophysical forward model. The functional 
forward model describes how neuronal activity varies as result 
of different task conditions and how this generates selective field 
potential responses (Fig. 2b). This model involves the biophysical 
model, along with how populations of neurons encode behavioral 
or task-relevant variables. The functional forward model predicts 
that field potentials are more selective for field potential modalities 
in which the measurement projection is spatially confined, at sites 

where the weighted sources encode similar variables, and for task 
variables that change the spatial-temporal activity correlations to 
which field potentials are sensitive.

Relatively little work has investigated field potential selectivity in 
terms of the forward model, and the nature of field potential selec-
tivity remains controversial. An early view was that LFP selectivity 
differed from spiking recordings and was similar to EEG selectivity. 
However, empirical studies show LFPs contain more sensory and 
movement information than EEG and are more comparable to the 
information available in the spiking activity of single neurons39–45. 
Information about reach, grasp and speech actions are also present 
in human ECoG recordings46,47. While more work is needed, in cor-
tex, the presence of field potential selectivity comparable to single 
neuron selectivity may reflect the underlying columnar organization 
of cortex39,41,44,45. Since field potential recordings are easier to obtain 
than recordings of spiking activity, these and other studies suggest 
that ECoG and/or LFP signals, in addition to spiking, may serve as 
a basis for a high-performance brain–machine interface48. For MEG 
and EEG, multivariate classification approaches also reveal neuronal 
encoding of various forms of sensory and cognitive information49–52. 
MEG and EEG selectivity is also shaped by volume conduction in 
a process called spatial filtering6,53. If many sources with different 

Transmembrane currents generate the electrical and magnetic 
signals recorded from the brain71. These currents pass through 
the membranes of neurons and glial cells as a result of active 
mechanisms, as well as passive mechanisms involving capacitive 
coupling between conductive elements. Volume-conductor 
theory explains how signals propagate from their sources in 
cells through brain tissue to the electrode6,10. Volume-conductor 
theory provides the biophysical basis for recorded extracellular 
signals. For example, it allows us to generate extracellular signals 
from transmembrane currents by simulating the dynamics of 
biophysically detailed neuron or neuronal network models 
using biophysically detailed multicompartment neuron models 
based on cable theory (see panel a)5,146,150,151. The cable theory of 
neurons further implies that the sum of the transmembrane ionic 
and capacitive currents across the entire cellular surface must be 
zero152. As a result, currents enter the cell and are balanced by 
currents that leave at other locations. Note, though, that even in 
the absence of transmembrane current there may be extracellular 
potentials set up by diffusion of ions153.

Volume-conductor theory and cable theory allow us, in general 
terms, to calculate single-neuron currents from morphologically 
and biophysically detailed neuron models (panel a)139. We can 
then determine how much each neuron contributes to the relevant 
field potential signal—LFP12, EEG and MEG6,10. According to the 
theory, field potentials sum activity from all electrically active 
membranes and transmembrane current generators in space 
and time, from axon terminals to soma, from action potentials 
to very slow conductances. The precise contribution of a given 
cell depends on geometric factors such as cell morphology and 
the anatomical distribution of active conductances and synaptic 
inputs to the cell26. For recordings far from the neuronal source, 
such as MEG and EEG, we can represent the current sources using 
the dipole approximation. The dipole approximation summarizes 
the summed contribution of all microcurrent sources within a 
tissue volume by an effective dipole moment per unit volume6. 
Consequently, the forward model depends on the relative 
orientation and separation of the underlying neuronal sources.

While the strength of the effective dipole moment generally 
increases with the strength of synaptic microsources, geometric 

factors often dominate. If the microsources are symmetrically 
distributed in space, the strength of the resulting mesosource will 
tend to be small because the dipoles will cancel each other. This 
is true even when there are relatively large microsources and is 
known as a ‘closed field’154. In contrast, if the positive and negative 
sources are spatially separated, relatively large mesosources can 
form even if the underlying microsource magnitudes are relatively 
small. This is known as an ‘open field’. Pyramidal neurons, the 
most numerous neurons in the hippocampus and cortex, have 
extended dendritic arbors and open fields.

While many sources are known to contribute to the field 
potential, in general, the measurement projection made by a 
given field potential recording preferentially weights postsynaptic 
potentials in neurons and brain systems with an open-field 
geometry and spatially organized synaptic inputs. Synaptic 
inputs onto either the basal or apical dendrites that are correlated 
in time will set up the largest extracellular potentials (panels 
b and c). If synaptic inputs are evenly distributed, the resulting 
transmembrane currents will tend to cancel and the generated 
extracellular potential will be small155,156. When receiving spatially 
uniform synaptic input, stellate cells, basket cells and other neurons 
with symmetric dendritic arbors form closed fields and contribute 
relatively little. Myelinated axonal fibers, nonmyelinated axon 
compartments and presynaptic terminals are also expected to 
contribute relatively little to LFPs as they have small membrane 
areas151. If synaptic inputs are spatially separated, appreciable 
current dipoles will form155. For example, stellate cells can function 
as open-field generators when they receive asymmetric synaptic 
input139,157.

Summation effects extend beyond the individual neuron. Small-
amplitude current sources that are arranged into particular spatial 
configurations across neurons—a sheet, for example—can give rise 
to large-amplitude signals. Interference by return currents in other 
neurons can also cancel input-related active synaptic currents 
and reduce signal amplitude. Conversely, constructive alignment 
of opposite polarities of coherently active dipoles amplifies the 
juxtaposed pole. In rodent, this can be seen in dentate gyrus, with 
its opposing granular layer blades158, and likely in other cases, such 
as bilateral dipoles of the medial cortical areas.

Box 1 | Biophysics of extracellular potentials (continued)
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Box 2 | Local and remote sources

A basic question is how much field potentials reflect local popula-
tion activity as opposed to the activity of remote sources. Setting 
aside for a moment the issue of volume conduction (see above and 
Supplementary Note), the currents that contribute substantially to 
the LFP are postsynaptic potentials in nearby neurons (see Box 1). 
Consistent with this, the LFP correlates closely with nearby intra-
cellular membrane potential recordings159,160.

What remains unstated, however, is whether the synaptic 
currents generating the LFP originate from local or remote 
neuronal firing. Postsynaptic potentials that generate local current 
dipoles will result from the firing of nearby neurons forming local, 
recurrent connections as well as the firing of remote neurons 
with afferent inputs into a region. Distinguishing afferent inputs 
and local activity in general may not be possible. In most cases 
a mixture of the two should be assumed to contribute to the LFP 
signal. In addition to recording neurons locally and analyzing 
SFC, we also need to analyze the postsynaptic consequences of the 
inputs and the location and properties of our recording contacts. 
Importantly, both inhibitory and excitatory postsynaptic currents 
can contribute to LFP signals4,161. Perisomatic inhibition can set up 
a dipole in pyramidal cells, and the contributions of GABAergic 

interneurons to the LFP may be boosted by their high synchrony 
and divergent projections onto pyramidal cells, causing correlated 
inhibitory postsynaptic currents in many pyramidal cells156. 
Distinct classes of GABAergic populations project specifically to 
soma or dendrites and so generate different current dipoles.

Source–sink locations contain important information about 
whether activity is mostly locally generated. For example, cortical 
L2/3 source–sink pairs argue against a contribution of afferents 
to granular (for example, thalamic) and infragranular layers. In 
contrast, L4 source–sink pairs tend to indicate input through 
a feedforward projection from the thalamus148,162,163, though 
contribution from the local recurrent afferents cannot be excluded. 
Another strategy for resolving local from distal contributions is to 
record the major afferent systems together with the local activity162 
or to perturb local spiking activity using pharmacological and 
optogenetic manipulations.

The extent to which afferents and local recurrent activity 
contribute to field potentials may depend on the brain area, the 
species, the state of the animal (for example, wakefulness vs. 
anesthesia) and the behavioral task. In the cat and the primate, 
there is abundant evidence showing that visually induced gamma-
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dynamics occur in dipole layers of different sizes, the measured 
MEG and EEG signal is dominated by the temporal dynamics of 
those source components that are synchronized more broadly over 
the cortical surface5,37. Consistent with these observations, MEG and 
EEG signals appear to be less selective than ECoG signals, which in 
turn appear to be less selective than LFP signals39,54,55.

Analyses and interpretations
Field potential recordings are time series—a series of measure-
ments ordered in time—that reflect neuronal dynamics. As a result, 
time series analysis tools that measure dynamics, such as spectral 
analysis56, are often used to characterize field potentials57,58. The 
first three sections present time series analysis and interpretations 
that depend on the biophysical forward model. In “Activation,” we 
discuss how to assess the signal characteristics at a given site and 
their changes with experimental conditions. In “Correlations,” we 
discuss how to characterize correlations in activity between sites. In 
“Communication,” we detail tests for directed influences that may 
reflect neuronal communication. The fourth section, “Coding,” 
considers the functional aspects of the forward model. We discuss 
neuronal coding and how information in the underlying neuronal 
activity can be decoded from field potentials. In each section, we 
discuss the associated analyses and interpretations.

Activation. We first focus on estimating the magnitude of the activ-
ity and testing for differences, before turning to interpreting spec-
tral features and oscillations.

Statistical estimation. Two classic measures of time series are the 
autocorrelation or autocovariance and the power spectral density 
function, which we will refer to as the spectrum (Fig. 3). The auto-
correlation measures how much activity is correlated at two points 
separated in time, τ​ =​ t2 – t1, also called lag. The spectrum mea-
sures how much power the activity contains at each frequency f. The  
spectrum and autocorrelation function provide complementary  
information but are not equivalent measures of activity. The spec-
trum reveals spectral peaks (that may correspond to physical 
sources) that can be difficult to distinguish in the autocorrelation 
function. Conversely, the autocorrelation function reveals how rap-
idly a signal tends to become uncorrelated over time, which is not 
directly evident from the spectrum itself.

Spectrum and correlation function estimates assume that neu-
ronal activity is stationary. Stationarity means the signal statistics, 
power and correlations remain constant over time. Strictly speaking, 
stationarity is never satisfied. Nonstationarities occur with transient 
events. The most extreme example is the nonstationarity of activity 
around the time of stimulus onset. However, even in the absence 
of changes in sensory input, brain activity displays transient events 
that can wax and wane, such as beta activity in the frontal cortices 
and ripples in the hippocampus. Nonstationarities can also occur 
across different time scales, such as fluctuations in high-frequency 
synchronization following low-frequency excitability changes59, and 
can occur when activity appears stationary—for example, sustained 
stimulus-induced gamma oscillations in visual cortex or sustained 
theta oscillations in rodent hippocampus during walking. Changes 
also occur spontaneously—for example, as one spontaneously drifts 
back and forth from an aroused to an unaroused state60,61. In each 
case, the spectrum and autocorrelation averaged across these fluc-
tuations will not be a good descriptor of the data.

If the changes occur relatively slowly or the changes can be 
detected, we can select or detect periods in which the signal is locally 
stationary. We can then compute the spectrum for these periods. 
Appropriately selecting time periods depends on understanding a 
fundamental time–frequency uncertainty relationship: the product 
of the time resolution of the spectral estimate, T, and the frequency 
resolution of the estimate, W, is always greater than 1 (Fig. 3a). With 
a time window of duration T, the lowest resolvable frequency is 1/T. 
Deciding how to trade off time and frequency resolution is com-
plex, as there may be no single best answer. Resolving signals at low 
frequencies, such as below 10 Hz, requires frequency resolution on 
the order of 1 Hz. Time resolution is, at best, 1 s. Conversely, resolv-
ing signals that change during behavior requires time resolution of,  
say, 200 ms. Frequency resolution is then 5 Hz or more. Many spec-
tral estimators are available, each with different statistical proper-
ties of bias and variance that vary with the desired time–frequency 
resolution (Fig. 3b,c). The Supplementary Note discusses spectral 
estimation with guidelines for best practices.

Interpreting spectral power. In general, field potential power decays 
in a power-law-like way (1/fa), especially for higher frequencies. 
The 1/f shape of the spectrum can generally be sensitive to the 
overall firing rate of the underlying population or the number of 

band synchronization arises from recurrent activity within 
layer 2/3 and layer 4B162,164,165 (see panel a). However, activity in 
frequency bands below ~30 Hz, including alpha and beta, displays 
long-range SFC and may not be locally generated.

Interpreting local vs. remote attributions is difficult when 
area X sends strong feedforward synaptic connections to area Y 
and when area Y has local recurrent connectivity. Under both 
conditions, LFPs in area Y can reflect the impact of synaptic input 
from area X. Area X input may or may not drive spiking in Y 
owing to the effect of frequency-dependent dendritic filtering4. 
The presence of signals from area X on LFPs in area Y depends 
only on area X having strong anatomical projections to area Y and 
synchronized neuronal firing in X projecting to Y. The effect of 
such afferent inputs can be seen clearly in how thalamic spiking 
causes a response in layer 4/6 in rabbit166 (panel b) and cat167, and 
how the field response in a single whisker column layer 4 reflect 
synchronization in the matching thalamic barelloid148,149 (panel c).

Anatomical projections with highly correlated signals 
preferentially contribute to field potential recordings156. For 
example, hippocampal CA3 neuron gamma frequency output 
causes postsynaptic currents in the CA1 stratum radiatum, a 

projection region of CA3168,169. Thus, the field potential in area Y is 
influenced by both the local activity in Y and the delayed copy of 
activity in area X. The presence of field coherence between X and Y 
is not a sufficient evidence for neural population coupling. Further 
evidence that neurons in area Y change their firing in response to 
input from X is needed. This caveat also applies to Granger causal 
influences. Conversely, absence of field coherence between X and 
Y is not a sufficient evidence for the lack of neuronal population 
coupling. The forward model given connections between X and Y 
may predict a small contribution of X inputs to the LFP in Y and 
so generate little coherence.

In general, therefore, simple rules cannot be provided. The 
contribution of local vs. remote depends on the area, species and 
the spectral band. CSD analysis cannot resolve the issue, as it 
merely distinguishes between volume-conducted activity and local 
dipoles. SFC offers important constraints. The absence of local SFC 
in a particular frequency band can be used as evidence against local 
origin. The presence of SFC within area Y is evidence in support 
of but not proof of X →​ Y communication. Recordings from the 
anatomically projecting afferent systems along with manipulations 
of local cell activity are needed to provide direct confirmation.

Box 2 | Local and remote sources (continued)
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active neurons, with linear offsets in power resulting from an over-
all change in the firing rate15. Neuronal spike waveforms can also 
appear in the LFP, especially if the amplitude of spike waveforms 
in an LFP recording is large. The LFP spectrum at frequencies 
above 50 Hz can be especially sensitive to changes in firing rate30. 
LFP power is highly sensitive to the synchrony of the underlying 
local and afferent-remote populations, so the overall shape of the  
spectrum may reflect a heterogeneous mixture of temporally struc-
tured signals that spanning a range of frequencies. The steepness of 
the 1/fa curve can also change as a result of changes in the membrane 
time constant. Membrane time constants can depend on the over-
all level of activation in the circuit62, as well as on the activation of 
NMDA receptors because these have much slower excitatory post-
synaptic potentials than AMPA receptors15,63. Another contributing  

factor is noise. Activity at high and very low frequencies often has 
poor signal-to-noise ratio—for example, EMG noise (high frequen-
cies) or electrode or cable movement (low frequencies) may attenu-
ate observed changes in the underlying signal.

Interpreting oscillations. In addition to the 1/f trend, transient, 
phasic changes in spectral power can be observed to come and 
go. Detecting a candidate ‘oscillatory’ event depends on setting a 
threshold. Interpreting these events as changes in a neuronal source 
is of great importance. In particular, observations of spectral peaks 
in activity at particular frequencies are often referred to as oscil-
lations. Oscillations are often depicted in the theoretical literature 
as narrow-band, periodic, sometimes even sinusoidal phenomena. 
However, theoretical oscillators, like a pendulum, generate features 
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Fig. 2 | Forward models. a, The biophysical forward model predicts that the amplitude of field potentials generated by populations of neurons will depend 
on the dendritic morphology of local neurons, as well as the somato-dendritic location of the incoming synaptic inputs, and will not depend on the axonal 
morphology of local neurons. Box 1 discusses other contributions. Left: layer (L) 4 stellate neurons have restricted and symmetric dendritic arbors (blue) 
with extended axonal distributions that ramify locally (red). L5 pyramidal neurons have the most extended dendritic arbors and relatively sparse axonal 
distributions. Image adapted with permission from Shepherd et al.138, Springer Nature. Synaptic input to a population of neurons generates a current dipole 
that gives rise to the extracellular field potential signal according to the biophysical forward model. Center: populations of L5 pyramidal neurons can 
receive synaptic input to the apical or basal dendrites and generate large-amplitude field potentials in each case. Right: populations of L4 stellate neurons 
can receive synaptic input near the cell body and generate relatively small amplitude field potentials. Note that this is a simplification. The size of the 
generated potentials will depend on how displaced the return currents are from the synaptic input currents and spatial distribution of the return currents. 
The return currents depend on several other factors, including the thickness and branching of the dendrites. For example, in some cases about half of the 
current injected into the apical dendrite of a L5 neuron will return through the soma, and even less in neurons with a thinner apical dendrite139. Density and 
strength of synaptic inputs, membrane potential, and membrane conductance of the postsynaptic population will also contribute to the magnitude of the 
generated potentials140. b, Functional variant of the biophysical forward model. The functional variant predicts that information can be decoded from field 
potentials depending on the measurement projection given by the biophysical forward model and the spatiotemporal distribution of source selectivity 
in the brain. Left: the measurement projection underlying a field potential recording pools information across a volume (shaded). Spatial aspects are 
illustrated here, but note that the measurement projection also depends on temporal correlations (see Box 1). The selectivity of the underlying neuronal 
sources can be expressed as a directional arrow. Center: field potentials will exhibit strong selectivity if the spatial distribution of the underlying source 
selectivity is organized so that the measurement projection pools one or several sources with similar selectivity. Right: field potentials will exhibit weak or 
no selectivity if the spatial distribution of the underlying source selectivity is disordered and if the measurement projection pools several or many sources. 
Note that even if the spatial distribution of the underlying source selectivity is organized, weak selectivity can arise if the measurement projection pools 
over a much larger spatial extent.
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at particular frequencies and do not contain multicomponent or 
broadband features. In comparison, physiological neuronal ‘oscil-
lations’ often have a clear broadband or band-limited character64,65 
and change quickly66,67.

This caveat notwithstanding, we often want to know whether 
an increase in spectral power indicates an increase in the num-
ber of active neurons or an increase in temporally structured or  

synchronized neuronal activity. The absence of a spectral peak does 
not necessarily mean that there is no synchronized activity in the 
underlying neuronal activity. If there is an underlying oscillatory 
pattern, a peak in the spike–field coherence (SFC) may be present 
even without any peak in the LFP spectrum68. Thus, if spiking is 
coherent with a field potential, temporally structured spiking exists 
and a local source contributes to the field potential39,69, and this 
source may be said to reflect oscillatory activity. The Supplementary 
Note presents measures that go beyond second-order correlations 
to capture correlations between different frequencies and phase–
amplitude coupling.

Interpreting cellular sources. Interpreting field potential recordings 
in terms of cellular sources is limited by the ill-posed nature of the 
inverse model. Clear interpretations are sometimes available when a 
local neuronal population generates the currents measured by field 
potential recordings, such as for the hippocampal theta rhythm70. 
Defining local current generators is called current-source density 
(CSD) analysis. According to Maxwell’s equations and Ohm’s law for 
the extracellular medium, the local current generators are given by 
a second spatial derivative of the LFP signals in all three directions, 
called the Laplacian6. Therefore, CSD analysis requires invasive 
recordings with electrode arrays with high contact density, typically 
50–200 μ​m intercontact spacing or less (Fig. 4a)2,5,71. CSD analysis 
yields the net volume current density that enters (source) or leaves 
(sink) the extracellular medium through cell membranes (Fig. 4b). 
Consequently, CSD analysis is a more local measure than the LFP 
and is easier to interpret in terms of neuronal activity.

Traditional CSD analysis assumes that there is no variation of the 
neuronal activity in the horizontal directions. Thus, CSD is given by 
the double spatial derivative in the depth direction. This approxi-
mation can be problematic as, in primary sensory systems, inputs 
to cortex can be quite focal and significant tangential currents can 
exist as a result of tissue curvature (Fig. 4c), but new CSD estimation 
methods can account for this. Traditional CSD analysis also assumes 
that the electrodes adequately sample the currents within the vol-
ume. Ideally, three-dimensional sampling of the volume would be 
preferred to reduce CSD estimation error using the second spa-
tial derivative method6. In general, interpreting current sources in 
terms of cellular sources, such as whether a sink or source is active 
(for example, due to synaptic current) or passive (a return current), 
depends on additional information about the anatomical connec-
tivity of presynaptic input-generating populations and geometry of 
postsynaptic populations. Box 2 and the Supplementary Note pres-
ent a more detailed discussion.

Correlation. Networks of neurons generate brain dynamics, and 
correlated patterns of activity are ubiquitous. There are many ways 
to capture dependencies between neuronal signals. Here, we will 
focus on linear measures of coupling, correlations that are well 
understood in statistical terms and are in widespread use.

Correlation and coherency. The cross-correlation function measures 
correlation in the time domain. In the frequency domain, we can use 
the spectral coherence function, which is defined as the cross-spec-
trum between signals normalized by the spectrum of each signal. 
Coherency is the correlation coefficient that measures the strength 
of linear association as a complex-valued regression coefficient. The 
magnitude of the coherence is proportional to the strength of linear 
association. The phase of the coherence reflects the relative timing 
but not necessarily a time delay (see Supplementary Note).

Like the spectrum and the autocorrelation function, the coher-
ency and the cross-correlation function offer complementary 
information. An important advantage of the coherency is that it  
is normalized by power at each frequency. The cross-correlation 
function is normalized by total variance of each signal, which is the 
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Fig. 3 | Time series and spectral estimation. a, Left: the sampling rate 
of a time series, Fs, is inversely related to the sampling interval, dt. The 
maximum frequency that can be resolved in a time series, called the 
Nyquist frequency, is determined by the sampling interval and equals Fs /2.  
The bandwidth W is the lowest frequency that can be resolved in a time 
series, also called the Rayleigh resolution. It is inversely related to the 
duration of the observation window and equals 1/T. Right: time–frequency 
plane. The Rayleigh resolution is an example of the time–frequency 
uncertainty principle, which states that the product of the resolution  
in time, T, and resolution in frequency, 2W, must be equal or greater  
than 1; i.e., 2WT ≥​ 1. We can increase the time ×​ bandwidth product by 
increasing the analysis interval T, and hence smoothing more in time,  
or by increasing bandwidth W, and hence smoothing more in frequency.  
In each case, we effectively assume that the properties of neuronal activity 
are constant within the chosen time and frequency resolution that leads  
to a smoother, less variable estimate. Image reproduced with permission 
from Pesaran (2008)57, copyright 2008, Society for Neuroscience.  
b, Spectrum of LFP activity in macaque posterior parietal cortex. Left, 
single-trial, 500-ms periodogram spectrum estimate. Right, single-
trial, 500-ms, 10-Hz multitaper spectrum estimate. Image reproduced 
with permission from Pesaran (2008)57, copyright 2008, Society for 
Neuroscience. c, Spectrogram of LFP activity in macaque posterior parietal 
cortex averaged across nine trials. Each trial is aligned to the presentation 
of a spatial cue, which occurs at 0 s. Saccade and reach are made at around 
1.2 s. Left: multitaper estimate with duration of 500 ms and bandwidth of 
10 Hz. Right: multitaper estimate with duration of 200 ms and bandwidth 
25 Hz. White rectangle shows the time–frequency resolution of each 
spectrogram. The color bar shows the spectral power on a log scale in 
arbitrary units. Image reproduced with permission from Pesaran (2008)57, 
copyright 2008, Society for Neuroscience.
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an upward current flow between the source and sink. The resulting field potentials extend beyond the generating current source. Thus, CSD has higher 
spatial resolution than field potentials. Adapted with permission from Nicholson and Freeman2, The American Physiological Society. b, Laminar patterns 
of auditory responses in the auditory cortex. Line plots show the LFP responses recorded using a linear array multielectrode with 100-µ​m intercontact 
spacing (schematic on left). Color plot (center) shows the corresponding laminar LFP profile, with negative deflections in red and positive deflections in 
blue. CSD profile (right) is estimated using the second spatial derivative of the field potential profile. Red depicts extracellular current sinks associated 
with net local inward transmembrane current flow. Blue depicts extracellular current sources associated with net local outward transmembrane current 
flow. Selected multiunit activity (MUA) responses are superimposed on the CSD plot. Vertical thin lines indicate stimulus onset. Here, the peak of 
multiunit activity corresponds to the peak negativity of the LFP and the current sink (CSD) at the response onset in layer 4. Asterisk indicates a superficial 
sink that produced the N50 feature in the LFP measured in superficial sites. Image adapted with permission from Kajikawa and Schroeder141, Elsevier. 
c, Limitations of traditional CSD estimation method. Simulated one-dimensional recordings for simplified CSD profile in a. Estimated (est.) CSDs for 
increasing diameter-to-height ratios, as indicated by the number and inset in the lower left of each panel. Diameter refers to the diameter of the source. 
All estimates are based on the second spatial derivative formula of the traditional CSD method. Arbitrary units, negative values to the left and positive to 
the right. Spurious sources and sinks are inferred for small diameter activity. Estimation error stems from the incorrect assumption of an infinite activity 
diameter perpendicular to the laminar electrode. To avoid spurious source and sink inferences, a full three-dimensional CSD analysis is needed. Such 
an analysis can be achieved by making measurements of field potentials in all three spatial directions142 and using second spatial derivative methods. 
Alternatively, spurious source and sink inferences can also be avoided by using prior constraints or assumptions as is done in the iCSD143 and kCSD144 
methods. Image reproduced with permission from Pettersen et al.145, Cambridge University Press.
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integrated power over all frequencies. As a result, the coherency can 
often detect frequency-localized effects better than the cross-corre-
lation function can. The latter is typically dominated by frequencies 
with more signal power, which are often at lower frequencies.

Estimating coherency depends on similar factors as estimating 
the spectrum. In general, coherence estimates typically require 
more degrees of freedom than spectrum estimates. In effect, 
coherence measures the correlation present in a scatterplot of 
points, where there is one point for each pair of degrees of free-
dom. Unlike the spectrum, the distribution of spectral estima-
tors for the coherence is, in general, complicated and depends on  
the strength of coherence. Several strategies exist to address  
these issues, and statistical tests should be based on appropriate 
permutation tests72,73.

Two processes that do not interact can appear to be coherent by 
virtue of being nonstationary74. Estimating coherency and cross-
correlation in locally stationary time intervals to give time-varying 
coherence spectra, called coherograms, is therefore critical. Since 
coherence estimates with few degrees of freedom are positively 
biased, particular care should be taken when interpreting coherence 
over short time periods using few degrees of freedom.

Spike–field coherence. Whenever possible, interpreting field poten-
tials in terms of cellular sources is best done directly, using simul-
taneous measurements of spiking activity. The spectral analysis of 
spike–field relations largely matches that of field potentials. This is 
because point processes admit a spectral representation like that of 
other time series. As a result, SFC is an important tool for under-
standing the relationships between LFPs and underlying spiking 
activity58. SFC is the correlation coefficient of a regression, analo-
gous to the coherence between two field potentials75, that quanti-
fies how predictable LFP activity is as a linear function of the spike 
times. SFC specifically measures how neurons tend to fire spikes at 
particular phases of LFP activity. The spike-triggered LFP measures 
spike–field relationships in the time domain and is useful for resolv-
ing time delays between spiking and events in the LFP. Statistical 
considerations mean that the SFC is preferred over the spike-trig-
gered average (see Supplementary Note).

SFC sensitively reveals the locking of neurons to synchronized 
synaptic inputs, which also lead to postsynaptic currents and 
thereby the LFP signal. The broad-band properties of the LFP spec-
trum itself may mask spectral peaks. However, if there is an under-
lying oscillatory pattern, a peak in the SFC may be present even 
without any peak in the LFP spectrum76–78.

Contamination of the LFP by action potentials is a major con-
cern when analyzing phase correlations and SFC. Attenuation of 
neuronal spike contamination in LFPs can be attempted by remov-
ing spikes from the LFP signal79. However, residual spike contami-
nation effects may remain. In general, best practice is to use spike 
and LFP recordings from different electrodes separated by several 
hundred micrometers.

Signal-to-noise ratio confound. A critical issue when interpreting 
correlation and coherence is that both measures are influenced by 
the relative weight of neuronal signals (signal components) versus 
other signals (noise components). This leads to an important con-
found: a change in the signal-to-noise ratio (SNR) will change the 
measured correlations without a change in the underlying neuro-
nal interaction or functional connectivity. If signal components are 
more correlated than noise components—for example, because of a 
specific interaction between neuronal populations of interest—an 
increase in signal amplitude or a decrease of noise amplitude can 
also increase observed correlations. If noise components are more 
correlated than signal components—for example, because of field 
spread from remote neuronal sources to two signals—an increase 
in noise or a decrease in signal amplitude can increase observed 
correlations. Correspondingly, changes in noise can also lead to 
decreases in observed correlations without changes in the underly-
ing neuronal interaction. The Supplementary Note illustrates these 
effects mathematically.
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Fig. 5 | Granger-causal inferences. a, Schema of multivariate 
autoregressive models. Each time series is modeled as a linear combination 
of its own past, the past of the other time series, and an innovation term. 
These signals are corrupted by measurement noise that can be either 
correlated or uncorrelated. b, Cross-correlation function example, showing 
that cross-correlation methods are not appropriate for detecting causal 
relationships. In this case, the cross-correlation function tells us that future 
(lagging) but not past (leading) values of y(t) are strongly correlated with 
x(t). Despite this, the Granger-causal influence from y(t) to x(t) is stronger 
than the influence from x(t) to y(t). c, Application of reversed GC testing to 
LFP data from monkey primary visual cortex (V1) and V4. Interaction in the 
gamma band shows full reversal with time series reversal and is therefore 
robust. This behavior is shown across V1–V4 pairs. In the beta range, GC 
causality does not reverse with time series reversal, indicating a potential 
influence of correlated noise.
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Fig. 6 | Phase-dependent neuronal coding. a, Place information encoded by the phase of hippocampal LFP activity. Left panels: feature-tuned field 
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extent and spacing of different FFPs is largely homogeneous across the track (middle). FFPs exhibit phase precession with respect to the first principal 
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running in a T-maze. Waiting area is enclosed in a red box. Far right shows close-up of activations in waiting area, separated by direction of entry. 
Asterisks mark activations that are entry-direction selective. Each point represents a time bin where FFP activation exceeded a threshold, its size 
indicating the magnitude of activation. Hues are assigned to distinguish neighbors. Image reproduced with permission from Agarwal et al.113, AAAS.  
b, Object information in PFC spiking during a working memory task depends on LFP phase. PFC neuron spiking encodes the identity of two sequentially 
presented objects during a delay interval. Spikes carry the most information about the memorized objects at specific phases of the local 32-Hz LFP. 
Left: optimal encoding of the first presented object is significantly earlier on the falling flank of the 32-Hz cycle. Right: encoding of the second presented 
object occurs later (permutation test, P =​ 0.007). Error bars denote s.e.m. Phase dependence induced by stimulus-locked responses was discounted. 
Image reproduced with permission from Siegel et al.114. c, Choice information in PPC spiking depends on beta and gamma LFP phases. Top left: average 
phase-dependent histogram of spike count for the beta frequency range. Coloring of the phase bins in all histograms corresponds to the schematic 
phase binning shown in the center. The spike-preferred phase (dark green) is depicted as a trough in the schematic to capture the tendency of spiking 
to occur at or near the troughs of LFP activity. The green bin at 0° corresponds to the average spike-preferred phase in the 200–1,000 ms epoch after 
target onset, when the choice can be made. The radial distance for each phase bin indicates the difference in spike count from random phases.  
Error bars depict 95% confidence intervals. The radial black line depicts the trigonometric moment of the histogram, with its 95% confidence interval 
indicated at the end of the line. Top right: as before but for mutual information about choice (choice-MI). Same data as before at each phase bin.  
Fully colored circles indicate choice-MI significantly different from the average choice-MI across all phase bins (permutation test, P <​ 0.05). Bottom 
row: as in the top row but for the gamma frequency range. Image reproduced with permission from Hawellek et al.117. d, Orientation information in  
V1 spiking depends on gamma LFP phases. Match between stimulus orientation and neuronal orientation preference determines spike phase in the 
gamma cycle. Data from one example V1 neuron. Left: firing rate as a function of stimulus orientation. Right: the black sine wave at the top and the 
sinusoidal gray shading in the background illustrate the LFP gamma phase. The colored lines show spike densities as a function of phase in the gamma 
cycle. The colors correspond to those in the panel at left. All spike density curves are probability densities, normalized such that the mean value of  
each curve is 1/2 (bottom left calibration bar applies to all curves, and curves are offset along the y axis to correspond to the panel at left). Reproduced 
with permission from Vinck et al.118, Society for Neuroscience.
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One strategy to limit concern is to check for changes in signal ampli-
tude that may reflect a potential change in SNR and to only focus on 
changes in dependencies between signals that either are not paralleled 
by changes in signal amplitude80 or cannot otherwise be accounted 
for by changes of SNR. Another strategy is to stratify the activity by 
amplitude. Similarly, the power or SNR of the signal of interest can be 
binned and correlations can be computed within each bin.

SNR confounds also affect the interpretation of SFC. Enhanced 
spike–LFP coupling when LFP power increases could reflect 
greater contribution of spike-locked neuronal sources to the LFP 
instead of stronger spike-locking of these sources. Differences in 
mean spiking rates across conditions can also affect the corre-
sponding SFC estimates without requiring true changes in func-
tional connectivity80. To mitigate these effects on SFC, spike trains 
can be decimated to equalize the mean rates across conditions. 
This involves randomly deleting spike events to match the total 
number of spikes across conditions. Spike events that are deleted 
randomly will not alter the underlying spike–field coupling81. 
A complementary parametric approach to SFC based on point 
process, generalized linear models (GLMs)82 can also be used to 
separate the contribution of changes in firing rates and changes 
in phase coupling to LFP oscillations when assessing spike–field 
relationships across different tasks or conditions83,84. Finally, SFC 
quantification based on the pairwise phase consistency (PPC) met-
ric avoids spike rate and spike count biases85. With this approach, 
the synchronization between spikes and LFP is determined by first 
estimating the LFP phase at the time of each individual spike and 
then quantifying the similarity of pairs of spike phases.

Volume conduction. Coherence is particularly sensitive to volume 
conduction and common modes due to distant sources. Volume 
conduction is of particular concern in the rodent brain. In the 
rodent, theta and beta frequency range potentials generated by the 
hippocampal formation can be measured across the neocortical 
and subcortical neuropil, which makes it difficult to perform valid 
coherence analysis between brain areas86,87.

One effective strategy assumes a forward model in which the 
impedance of brain tissue is resistive and not capacitive21. Field 
spread due to volume conduction is then effectively instantaneous 
and does not alter the imaginary component of the cross-spectral 
density. This yields several measures such as the imaginary part of 
coherency88, phase lag index (PLI)89 and weighted phase lag index 
(WPLI)90 (see Supplementary Note). Best practice is to analyze 
activity at each site to assess the presence of volume conduction 
before interpreting the correlated activity patterns.

Correlations due to volume conduction can survive source 
reconstruction91,92 and rereferencing procedures. The widely used 
common-average reference averages all recorded signals and 
thereby introduces artifacts to which correlations are particularly 
sensitive. While careful selection of a reference electrode can help 
suppress shared signals (see Supplementary Note), care should be 
taken to assess whether the rereferencing actually removes the com-
mon reference. We can also perform spatial filtering to suppress vol-
ume conduction by making use of a bipolar reference, computing 
the CSD or Laplacian and applying source reconstruction or beam-
forming techniques described above. The CSD or Laplacian method 
removes very large-scale, regional or global coherence, as well as 
volume conduction.

Communication. Given evidence of correlations between two sites 
in a network, X and Y, we can ask whether the correlations reflect 
putatively causal interactions with a particular directionality: for 
example, X drives Y, or X →​ Y. Many causal inference procedures 
exist. Here, we focus on the analysis of Granger causality (GC) 
because it is relatively simple and well understood, derives from 
spectral analysis and is in widespread use.

We should first make clear that, in general, no statistical pro-
cedure can accurately recover causal influences if unobserved 
nodes in the network, or hidden nodes, generate the main interac-
tion effects. This is true for spiking and field potential recordings. 
Consider a three-node network with common input: if X →​ Y and X 
→​ Z with a longer delay, unless X is measured, statistical inferences 
will likely report Y →​ Z. Consider another network X →​ Y →​ Z. In 
this case, unless Y is measured, the influence may be incorrectly 
estimated as X →​ Z. Field potentials reflect subthreshold currents, 
but the transfer of those currents to spike output can vary from case 
to case, complicating causal inferences. Thus, an influence of field 
potentials recorded in X on field potentials recorded in Y suggests 
that spike output of neurons in X influences current flows in neu-
rons in Y because only spikes travel from X to Y; yet this does not 
necessarily mean that spike output in Y is influenced. Box 2 analyzes 
this topic.

Statistical estimation. Since estimating time delays from correlation 
or coherence functions can be confounded, additional measures 
are needed to infer causality and directed influences. Measures 
based on GC93,94 assess the direction of influence or causality in 
terms of temporal prediction among stochastic processes (Fig. 
5). Informally stated, a stochastic process X is said to ‘Granger-
cause’ or drive a stochastic process Y if the history of X adds to 
the prediction of Y beyond what can be predicted based only on 
the history of Y itself95,96. GC can be statistically assessed in terms 
of likelihood ratio tests97,98 and can be computed in both the time 
and frequency domains. In addition, if multiple neuronal groups 
have been recorded simultaneously, the conditional GC can distin-
guish (i) between direct versus indirect interactions—i.e., X →​ Z vs.  
X →​ Y →​ Z, corresponding, for example, to mono- vs. polysynaptic 
interactions—or (ii) between common inputs with different delays 
vs. direct interaction—i.e., between X →​ Y and X →​ Z with a longer 
delay vs. the direct interaction Y →​ Z. Software packages to com-
pute GC measures are publicly available98.

Since GC measures typically depend on parametric models, 
model mismatch is a concern99. While GC measures using non-
parametric spectral estimates have been proposed100, a parametric 
model derived from the nonparametric estimates is still needed. 
Nonparametric estimates are preferred because they have improved 
bias and variance properties compared with parametric estimates 
(see Supplementary Note). The GC influence measure is also sub-
ject to a SNR concern because the GC influence assumes there is no 
measurement noise (see Supplementary Note). GC estimates also 
tend to be strongly positively biased by sample size, and re-estimat-
ing the GC after shuffling the time series may be needed to control 
for sample size bias.

Like other spectral analyses, GC analyses can be extended to 
address slow nonstationarity by using a moving window. Causal 
inferences depend on model fitting, and nonstationarity can lead 
to model fitting and interpretation problems for causal inferences. 
For example, the evoked or event-related potential averaged across 
trials is subtracted from each trial to ensure stationarity or, assum-
ing a linear additive model, to separate the signal from ongoing 
background activity. However, if slow across-trial nonstationarities 
are present as a result of changes in neuronal excitability, attention 
or fatigue, the evoked response can show trial-to-trial changes in 
amplitude, latency and waveform (see Supplementary Note). This 
nonstationarity will affect the interpretation of GC, as well as other 
spectral measures such as power and coherence101–105. Amplitude 
changes can be effectively suppressed by fitting the evoked response 
per trial101,106. Latency and waveform changes are more compli-
cated to model, and removal of trial-to-trial variability due to these 
changes should be performed with caution.

Causal inferences ultimately require empirical validation using 
interventions. This said, inferences based on interventions also 
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require caution. Interventions often shift the system out of the nor-
mal physiological range. Since the intended and achieved manipu-
lations can differ, interventions can also lack validity. Electrical 
microstimulation preferentially stimulates axons, not cell bodies107. 
Optogenetic stimulation affects illuminated neurons simultane-
ously, potentially changing phase delays across layers108. In general, 
experiments should use small perturbations to avoid driving the 
system out of range. Experimental designs should also parametri-
cally vary manipulation conditions, instead of simply comparing 
manipulation and no-manipulation conditions, to more directly 
infer the underlying causal mechanisms.

Coding. Understanding nervous system function depends on the 
functional forward model—how information is present in activity, 
what form it takes, and whether and how it can support behavior. 
Coding implies the presence of correlations between a neuronal sig-
nal and external events, such as stimulus onset, and internal events, 
such as the spike of a neuron or the phase of another neuronal  
signal. Neural decoding quantifies the information present in  
those correlations.

Information about the task-relevant variables can be decoded 
from field potential amplitude109, power39,42, coherency magnitude110 
and phase77, and phase-amplitude coupling111. Information can also 
be decoded using the phase relations between spikes and the sur-
rounding LFP, SFC, as well as by using GLMs that relate spiking 
probability to the amplitude and phase of LFP oscillations84. In the 
hippocampus, the SFC is strong in the theta range, and its phase car-
ries information about the position of the animal112. Phase relations 
between LFPs carry similar information (Fig. 6a)113. During short-
term memory, SFC in the beta band (~30 Hz) underlies phase-
dependent coding of short-term memory information in prefrontal 
cortex114. Different memory items are preferentially encoded at dif-
ferent 30-Hz phases (Fig. 6b). Posterior parietal and frontal neurons 
that display coherent phase relations, termed coherent neurons, 
encode information about behaviorally relevant processes such as 
decision making and coordination more accurately than neurons 
that do not fire spikes coherently69,115,116. Information about move-
ment choice is also modulated by LFP phase117 (Fig. 6c). In visual 
cortex during visual stimulation, SFC is strong in the gamma band, 
and its phase depends systematically on stimulus orientation118. 
Spikes occur earlier in the gamma cycle for stimuli close to the pre-
ferred orientation of the spiking neuron than for nonpreferred stim-
uli (Fig. 6d). In general, phase relations in the gamma frequency 
band are diverse and change with stimulation and also, for example, 
with selective attention77.

Neuronal decoding analyses explicitly test whether our certainty 
about the value of a random variable is altered by knowledge of 
another signal. Modern tools for statistical inference, also called 
machine learning, are increasingly able to detect subtle patterns 
in large volumes of data49,50,52,119,120. Overfitting can inadvertently 
occur when parameters and other features in the model, often 
called hyperparameters or metaparameters, are selected across the 
dataset119. Cross-validation is the basic technique to address over-
estimation of decoding performance due to overfitting. Problems 
arise when the statistical model is very flexible and involves mak-
ing many decisions during model fitting. Strictly speaking, no part 
of the data available during any stage of fitting should be used to 
estimate generalization performance. A good practice in decoding 
analyses is to divide the data into three subsets: a training set to fit 
a decoding model, a validation set to compare different choices of 
hyperparameters or model type, and a test set to assess the decoding 
performance of the model that has been optimized on the training 
and validation sets.

Another common issue when estimating neuronal decoding 
performance is to use features that have been estimated with insuf-
ficient statistical degrees of freedom. The resulting estimation noise 

degrades signal coding. In addition, since single-trial measures 
contain few degrees of freedom, measures of power, correlation 
and other aspects of brain dynamics are averaged, typically, across 
multiple trials. This makes it difficult to measure neuronal coding 
and how coherence changes trial by trial with, for example, reac-
tion times, attention or choice115,121,122. One approach is to perform 
decoding on the relative phase between signals instead, or derive 
single-trial pseudo-estimates of coherence through jackknifing122. 
The jackknife is more sensitive and accurate than approaches based 
on sorting and binning of trials123. Another strategy is to use a clas-
sification approach and decode activity on groups of trials with 
similar single trial performance as if they were simultaneously 
recorded115.

The analysis of neuronal coding in field potentials should not 
be conflated with the mechanisms by which neurons process infor-
mation and compute. Field potentials can in some cases influence 
neuronal information processing owing to ephaptic coupling124,125. 
However, analyses to decode field potentials neither imply nor 
depend on whether ephaptic coupling comprises the underlying 
mechanism. The ability to decode information from field potentials 
can have mechanistic implications.

Phase relations in field potentials may reflect levels of neuronal 
excitability, may carry behaviorally relevant information and may 
influence neuronal communication. Theoretical studies suggest 
that the phase-leading neuronal activity exerts a stronger influence 
over the lagging one than vice versa126. Experimentally, the phase-
leading recording site shows a transfer entropy to the phase-lagging 
site127. Naturally, care is needed when making causal inferences. 
Phase precession, whereby the position of the rodent and phase of 
firing of a place cell correlates with theta LFP activity, is an impor-
tant link between population coding and oscillatory dynamics. 
However, information in spiking about spatial position according 
to theta phase does not necessarily mean the signal has a causal or 
mechanistic role in the underlying computation. Coding may sim-
ply reflect correlation with a latent cause. This concern is a general 
one, and it also applies to inferring a mechanistic role for coding by 
single neurons where none may be present128,129.

Conclusion
We have discussed strategies for analyzing and interpreting a range 
of field potential recording modalities spanning microns to centi-
meters. The forward model is the central construction. Biophysics, 
geometry and anatomical connectivity of neuronal populations are 
the principal ingredients. Several obstacles hinder future progress. 
One important direction is to simulate virtual experiments using 
computational models. In these experiments, the ‘ground truth’ is 
known and the measurement projection from activity space can be 
defined. Data from virtual experiments can generate model-based 
benchmarking data. Such benchmarks can test the effects of elec-
trode placement and signal processing, and guide inferences such as 
directed interactions. The virtual experimental paradigm has been 
pursued to test blind source separation algorithms with promis-
ing results130,131. Tools to compute field potentials from structured 
point-neuron networks, such as the hybrid LFPy package131, can 
help perform such experiments. Another important direction is to 
strengthen the forward model by more precisely measuring bio-
logical ground truth. For example, genetic tools and microscopy 
can increasingly reconstruct anatomical information either in vivo 
during an experiment132 or ex vivo following the experiment133,134. 
Inverse models that are sufficiently constrained by ground-truth 
benchmarking data, and empirical observations will permit increas-
ingly rigorous inferences from field potential recordings.

How to validate causal inferences is another recurring theme. 
Valid causal inferences are powerful because when experimentally 
controlling a variable, x(t), we can exclude the possibility that cor-
relations between x(t) and an effect, y(t), are explained by a third 
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variable that drives fluctuations in both signals. Simply silencing or 
lesioning a population of neurons offers a relatively crude picture of 
causal influences between brain regions. Silencing x(t) may reduce 
power in another area y(t), but a deeper understanding is masked by 
the absence of x(t). A more fruitful avenue is to apply relatively small 
perturbations that allow one to make comparisons with a model fit 
based on experimental observations. A detailed network-based for-
ward model to design of network control experiments of this kind 
will be particularly useful for inferring causal mechanisms.

More accurate forward models and analyses informed by inverse 
models will lead to greater understanding of large-scale brain func-
tions, the design of better electrode arrays and other sensors, and 
more precise and effective clinical treatments. We hope to have 
provided a framework that will guide current and future work by 
researchers who will contribute to these important goals.
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