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Abstract
In this article, we propose a method to track trial-specific neural dynamics of stimulus processing and decision making with
high temporal precision. By applying this novel method to a perceptual template-matching task, we tracked representational
brain states associated with the cascade of neural processing, from early sensory areas to higher order areas that are involved
in integration and decision making. We address a major limitation of the traditional decoding approach: that it relies on
consistent timing of these processes over trials. Using a TUDA approach, we found that the timing of the cognitive processes
involved in perceptual judgments can vary considerably over trials. This revealed that the sequence of processing states was
consistent for all subjects and trials, even when the timing of these states varied. Furthermore, we found that the specific
timing of states on each trial was related to the quality of performance over trials. Altogether, this work not only highlights
the serious pitfalls and misleading interpretations that result from assuming stimulus processing to be synchronous across
trials but can also open important avenues to investigate learning and quantify plasticity.

Key words: between-trial temporal variability, decoding analysis, representational states, sequential stimulus processing

Introduction
Neural processing of a stimulus and its use in guiding behavior
are highly dynamic. A given stimulus typically elicits a cascade
of activation across the brain, including its multiple parallel as
well as re-entrant pathways, starting with early feature analy-
sis and leading to increasing integration and decision making
(see, e.g., Meyers et al. 2008; Harvey et al. 2012), but, to which
extent is it possible to capture the progressive stages of this
information-processing cascade related to stimulus processing
from non-invasive human brain imaging data?

An influential approach has been to use decoding models
that capture how the current stimulus is represented in the
brain activity (Haynes and Rees 2006; Norman et al. 2006; Tong
and Pratte 2012; Haxby et al. 2014; Grootswagers et al. 2017).
Assuming we have a number of trials or repetitions of a certain
process (e.g., the presentation of a stimulus), the standard
approach for decoding is to separately train one classifier or
regression model (depending on whether the stimulus is cate-
gorical or continuous) at each time point, by pooling together
the data from all trials in the training set and then testing
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for the accuracy of each of these models on a test dataset
(King and Dehaene 2014). This can then be used to interro-
gate the temporal dynamics of the processes evoked by the
stimulus (see, e.g., Meyers et al. 2008; Carlson et al. 2011;
Carlson et al. 2013; Stokes et al. 2013; Isik et al. 2013; King
et al. 2014). However, this approach is, by construction,
based on the assumption that these brain processes are
“synchronous” across trials, that is, the different stages of
information processing start and finish at the same time
within each trial.

Here, we argue that assuming consistent timing over trials
may be too restrictive, ignoring trial-to-trial variability in the
dynamics. Furthermore, it can severely misrepresent the data
by leading to a potentially false conclusion of persistent activ-
ity, artefactually created by the act of averaging across trials
(Latimer et al. 2015; Lundqvist et al. 2016; Stokes and Spaak
2016). Sometimes, this assumption can also induce the impres-
sion of having a high number and relatively rapid succession of
distinct processing states, as a consequence of trial-to-trial var-
iability in the onset and duration of a potentially much smaller
succession of states. Such temporal variability of processing
states could be ubiquitous. For example, different stages of
information processing may start and finish at different time
points in each trial, depending on different levels of arousal or
selective attention at the time of stimulus onset, or as a result
of learning and plasticity.

In this article, we propose a new probabilistic (Bayesian)
framework for identifying representational brain states with
high temporal resolution and with no assumption about the
states having to occur at fixed time points on each trial. We
refer to it as temporally unconstrained decoding analysis
(TUDA). In this approach, as opposed to previous work where
states are purely defined in terms of brain activity patterns
with no information of the stimulus (Vidaurre et al. 2016, 2018;
Vidaurre, Abeysuriya, et al. 2017; Vidaurre, Smith, et al. 2017), a
representational state is defined here as a functional decoding
model that characterizes a relation between brain activity and
the current stimulus (Haynes and Rees 2006). Each state is dis-
tinct from other states not just in their brain activity fingerprint
but, specifically, in describing how and in which regions the
brain represents the stimulus, such that a switch of state indi-
cates that the decoding does not cross-generalize before and
after the switch (i.e., the stimulus-specific pattern of activity
has changed). TUDA thus estimates the decoding weights asso-
ciated to each decoding model and identifies when each decod-
ing model is “active” for each trial. Crucially, this is done
without restricting the model to be active at the same point in
time on each trial.

By applying this approach to magnetoencephalography
(MEG) recordings in a perceptual judgment task, we found
that, when allowing for this temporal flexibility, a reduced
number of decoding models (fewer than six) is sufficient to
explain the between-trial temporal differences in the data.
This compares with standard decoding, which, with one
model per within-trial time point (typically more than 100),
cannot access this information at all. Furthermore, we found
that the temporal dynamics of the decoding models correlate
with behavioral changes over trials, lending additional sup-
port to the physiological relevance of between-trial temporal
variability of the underlying neural processing cascade. To be
able to meaningfully relate this information to behavior is
not only useful but also proves the existence of tangible and
interpretable differences in stimulus processing between
trials.

Methods
Task and Participants

This study used previously published data used for a different
purpose (described in Myers et al. 2015). Ethical approval for
methods and procedures was obtained from the Central
University Research Ethics Committee of the University of
Oxford. In brief, we recorded MEG data while participants per-
formed a template-matching visual task (EEG data were also
simultaneously acquired but were not used in the current
study). Ten right-handed volunteers (age range: 21–27 years, six
females) took part in the study, completing two sessions each,
containing short blocks. In each block, participants were pre-
sented with one orientation template to keep in mind. They
then viewed a stream of oriented gratings and responded when
the presented angle matched the template angle.

The task consisted of eight brief (approximately 6min)
blocks, in which 480 stimuli were presented (resulting in a total
of 3840 stimulus presentations per session). Each block began
with the presentation of a target orientation (drawn at random,
without replacement, from the 16 stimulus orientations), dis-
played centrally as a green line (4° length). The stimulus stream
consisted of randomly oriented Gabor patches, presented cen-
trally for 100ms, at an average rate of 650ms. Stimuli had 16
possible angles (5.625–174.375°, in steps of 11.25°). Participants
were instructed to respond whenever a Gabor patch with a
matching orientation appeared. Since stimuli were drawn uni-
formly from the 16 possible orientations, 1/16 of all stimuli
were targets. The angles were encoded into two covariates
using the sine and cosine functions. Each block was cut into
three shorter segments, giving participants brief rest periods.
During the rest periods, the target orientation was presented
again as a reminder. Participants were instructed to respond as
quickly and accurately as possible.

MEG Data Acquisition and Preprocessing

Neuromagnetic data were acquired using a whole-head VectorView
system (204 planar gradiometers, 102 magnetometers; Elekta
Neuromag). The signals were sampled at a rate of 1000 Hz and
online band-pass filtered between 0.03 and 300 Hz. Data were
preprocessed using the OSL software library (https://ohba-
analysis.github.io/osl-docs, last accessed on 13 November,
2018). The raw MEG data were visually inspected for artefacts, de-
noised and motion-corrected using Maxfilter Signal Space
Separation (Taulu et al. 2004) and downsampled to 250Hz.
Artefacts arising from eye blinks and heartbeats were removed via
independent component analysis. Epochs were generated around
each stimulus onset (from 0 to 0.6 s) and visually inspected to
eliminate any remaining trials with excessive noise.

Standard Decoding Analysis

The standard approach for decoding, illustrated in Figure 1a,
estimates one decoding model at each time point. We will
assume for simplicity that the stimulus is a continuous vari-
able, such that a decoding model is a regression model (in this
study, the stimulus is represented by two continuous variables
or features: sine and cosine of the corresponding angle). For a
categorical variable (e.g., which class of stimulus is being pre-
sented), the equations below can be easily adapted to use, for
instance, logistic regression. Further extensions using more
complex estimation methods (support vector machines, neural
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networks, etc.) are possible if they are formulated within the
Bayesian paradigm.

We now summarize our approach; the notation presented
here and in the next sections is summarized in Table 1. Let t =
1, …, T index time, let Xt be a (trials by channels) matrix con-
taining the data at t and let Yt be a (trials by stimulus features)
vector containing the stimulus. The solution for the decoding
model at t is computed as

ε= + ( )Y X v , 1t t t t

where εt is Gaussian-distributed noise and vt is a (channels by
stimuli) matrix of decoding weights. Therefore, vt represents
the encoding model that predicts the response as a function of
the data, for time point t. Given this, vt is typically obtained by
maximum likelihood as

= ( ′ ) ′ ( )−v X X X Y , 2t t t t t
1

where ′ represents matrix transposition. In this case, we decode
the pair of variables formed by the sine and cosine of the angle
of interest, such that Yt has two columns. In this paper, also,
the data was projected into 48 principal components (explain-
ing on average 96% of the variance in the data) for computa-
tional reasons, such that vt has dimension (48 by 2).

Temporally Unconstrained Decoding Analysis

We introduce a novel probabilistic model leaning on the princi-
ples of the Hidden Markov model (HMM; Rabiner 1989;
Vidaurre, Abeysuriya, et al. 2017; Vidaurre, Smith, et al. 2017;
Vidaurre et al. 2018). The basic principle of the HMM is that it
represents the data using a discrete number of states. Each
state is defined as an instantiation of a certain family of proba-
bility distributions—for example a Gaussian distribution
(Vidaurre, Smith, et al. 2017). Given such a distribution, the

definition of each state is therefore given by a specific set of
parameters: in the case of the Gaussian distribution, a mean
vector and a covariance matrix. Together with these para-
meters, the HMM inference estimates the probability of each
state being active at each time point and also the probability of
transiting from one state to another. These three elements—
state distributions, state probabilities at each time point and
transition probability matrix—are jointly estimated from the
data. The model introduced in this work, TUDA, is based on
these basic principles, with the additional new idea that each
state is a decoding model. Therefore, different states represent
different stages of stimulus processing and the activation and
deactivation of the different states mark the progression of this
processing through the different stages in the neural hierarchy.
We next present the model in detail.

The TUDA model contains each of the decoding models and
the probability of each decoding model to be active at each
time point at any given trial, together with the transition prob-
ability matrix (containing the probability of transitioning from
one decoding model to another within the trials). The differ-
ence with the standard HMM is then that the states explicitly
model the relation between brain activity and the stimulus,
that is, each state is a decoder and what determines a change
in state is “how” the stimulus is decoded from the data. The
difference with the standard decoding approach is that (rather
than assuming synchronicity between trials) TUDA deals with
between-trial temporal variability by allowing decoders to have
specific time courses (i.e., when these become active) for each
trial, therefore having the potential to allow different trials to
be described by different decoders at a given common time
point.

The basic functioning of the TUDA approach is illustrated in
Figure 1b (right) (see Table 1 for a summary of notation). Let us
refer to each decoding model as mk and assume that the data
can be reasonably described with K models. Each decoding

Figure 1. (a) General representation of decoding analysis. (b) A schematic representation of the standard decoding approach (left) versus the TUD (right).
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model mk is parametrized by a (channels by stimulus features)
matrix of decoding weights, denoted as wk. Here, wk has the
same dimensions than vt (see eq. 1), the only difference being
that instead of having a matrix of decoding weights per time
point, we now have a matrix of decoding weights per state. As
before, then, these parameters represent a linear mapping from
the data to the stimulus, that is, they predict the stimulus using
the data. (Again, the data were projected in this particular case
into 48 principal components and the number of stimulus fea-
tures is two, such that wk has in this case dimension 48 by 2.)
Therefore, we are reducing the model complexity from having
T different decoding models to have only K decoding models. In
mathematical terms, given time point t and trial s, let us define
Yst as the (1 by stimulus variables) value of the stimulus and Xst

as the (one by channels or PCA components) data vector. The
top-level model in this case is formulated as

Σ γ ε= ( ) + ( )Y X w , 3st st k stk k st

where γstk = Prst(mk) is the probability of model k being active at
time point t and trial s and εst is the Gaussian-distributed noise
at time point t and trial s (with zero mean and a shared vari-
ance parameter that is not model dependent). Here, the decod-
ing weights vt from equation (1), corresponding to the standard
decoding approach, are replaced by Σk γstk wk. This allows for
the use of a potentially different set of decoding weights wk at
time t in each trial s, in contrast to the standard decoding
approach where the same decoding weights at time t are used
for all trials. Specifically, the between-trial temporal flexibility
is represented by the fact that, as opposed to the standard
decoding approach, the probability of model k being active at
time point t, γstk, is different in each trial; this is illustrated in
the right panel of Figure 1b, where γstk is represented by the
gray boxes (although, note that during the inference, γstk is not
a hard assignment but a probability). Hence, whereas the
decoding weights wk are defined at the group level (i.e., they are
common for all trials), the decoding temporal patterns are, cru-
cially, allowed to be trial specific.

We model the probability of transition between decoding
models as

γ Σ Θ= ( ) = ( ) ( )−Pr m Pr m 4stk st k l l k s t l, , 1

This way, the estimated probability for the decoding model
mk to be active at some time point depends not only on its
decoding performance at each specific time point (eq. 3) but
also on the decoding model that was active in the previous
instant for this trial (eq. 4, which reflects the Markovian prop-
erty of the HMM). Together with the transition probabilities Θl,k,
we also model the initial model probabilities πk, referring to

which is the model active at the start of the trials. As explained
next, all these elements are estimated together from the data.

Inference of the Parameters

Given the data, we need to estimate the decoding weights wk,
the probabilities γstk, the transition probabilities Θl,k and the ini-
tial probabilities πk. After describing the approach conceptually
in the last section, we now describe in detail the estimation
algorithm, which is also illustrated in Supplementary Figure 1.
We perform the estimation in two separate steps: first, the
decoding weights wk (Supplementary Fig. 1a–c) and then the
other parameters (Supplementary Fig. 1d). Although it is possi-
ble to perform the estimation of all parameters simultaneously,
we adopt this strategy so that the results are comparable to the
standard approach (see below).

In order to estimate the state decoding weights wk, we take
a start with the standard decoding approach described above
by estimating one decoding model vt at each time point
(Supplementary Fig. 1a); that is, at this stage we impose
between-trial synchronicity by pooling all trials all pooled
together at each time point. We then compute the error of each
model vt for each time point j as

Σ= ( – ) ( )e X v Y 5tj s sj t sj
2

In words, etj is the across-trials error of model vt evaluated
at time point j. Therefore, for each pair of time points (t,j), a
measure of divergence between the corresponding models vt
and vj can be then obtained as

= + ( )D e e . 6tj tj jt

The resulting matrix D, exemplified in Supplementary
Figure 1b (bottom), is analogous to the across-time generaliza-
tion matrix often used in the field (King and Dehaene 2014).
Based on the matrix D, with elements as defined in equation
(6), we use hierarchical clustering to group the T decoding mod-
els v1, …, vT into K clusters; the representatives of these clusters
constitute our first approximation to the decoding weights wk

(Supplementary Fig. 1b, top). Importantly, these models are
based on the standard approach and are constrained to be syn-
chronous across trials, that is, at a given time point the same
decoding model is active for all trials.

Still keeping the between-trial synchronicity restriction, we
then refined the estimation of wk by using the expectation–
maximization (EM) algorithm (Bishop 2006), where we alterna-
tively estimate wk and the time points when wk is active; the
EM algorithm is initialized with the cluster representatives
from the previous step (Supplementary Fig. 1c). At this stage,
we stress, if wk is active at time point t that means that it is
active for all trials at time point t. In Results, this is what we

Table 1 Notation used for the standard decoding approach and TUDA

Notation Meaning Meaning

T Time points per trial mk kth Decoding model
N Number of trials wk Decoding weights of mk

K Number of decoding models γstk Probability of mk to be active at s and t
s, t and l Indexes for trials, time and sensors Θl,k Prob. of going from state l to k
Yst Stimulus at time point t and trial s πk Initial prob. For state k
Xst Data at time point t and trial s etj Error of model vt at time j
vt Standard approach decoding weights D Between models divergences
εst Gaussian-distributed noise blk Encoding model weights

866 | Cerebral Cortex, 2019, Vol. 29, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article-abstract/29/2/863/5232535 by U

niversity of W
isconsin - M

adison user on 14 January 2019



refer to as “having K instead of T decoding models, while still
restricting the decoding models to be synchronous.” The final
parameters wk correspond to the output of this step, which is
also passed on to the next step.

In the last step, then, we fix the estimation of wk to the pre-
vious estimation and proceed to dispense with the between-
trial synchrony restriction. For this, we use a fully Bayesian
approach, estimating the a posteriori distribution of γstk and Θl,k

using variational inference (Supplementary Fig. 1d; Wainwright
and Jordan 2008). The estimation of the probabilities of each
state k being active at each time point t and trial s (i.e., γstk) is
performed using the HMM forward–backward equations. In
summary, the forward–backward equations, described in detail
elsewhere (Rabiner 1989; Vidaurre et al. 2016), provide a recur-
sive estimation of these probabilities based on how well each
state mk describes the data at time point t, the estimated proba-
bilities at time point t− 1 and the transition probabilities Θl,k. In
contrast, the computation of the transition probabilities Θl,k is
trivial given the current estimation of the probabilities γstk
(Rabiner 1989). These two estimations, of γstk and of Θl,k, are
repeated until convergence.

For the last Bayesian variational inference step (Supplementary
Fig. 1d), we make use of the functions from the HMM–MAR model
(where MAR stands for multivariate autoregressive model;
Vidaurre et al. 2016) implemented in the toolbox (https://github.
com/OHBA-analysis/HMM-MAR). This corresponds to reparameter-
ising the required equation for each decoding model into a mathe-
matically equivalent MAR model.

Predicting Reaction Time

Unlike the information of the stimulus itself, the information
of reaction time (RT) was not included in the model. That
allowed us to use the relation of such model time courses to RT
to add further confidence on the biological relevance of the
estimated models. For this, we used model time courses to pre-
dict RT, discarding trials without a button press. More specifi-
cally, we used principal component analysis to reduce the
regressor dimensionality from T (number of time points) per
trial to 25 principal components. This was done for each decod-
ing model separately. We then used sparse regularized regres-
sion (Vidaurre et al. 2013) where the regularization parameter
was itself chosen using cross-validation.

Encoding Models

As discussed in Weichwald et al. (2015), interpreting the magni-
tude of the decoding weights wk is not straightforward. This is
not specific to TUDA or any other decoding algorithm but
applies to every approach that aims at predicting the stimulus
using brain data. For example, if the regression coefficient of
one sensor has twice as magnitude than another sensor, we
cannot infer that the former’s signal is twice as important for
stimulus processing; or, if the regression coefficient of one sen-
sor is zero (or almost zero), that does not mean that this sensor
is unrelated to how the stimulus is processed. As shown in
detail by Weichwald et al. (2015), causal interpretation of spa-
tial coefficients is only possible for encoding models (i.e., those
that predict each voxel using the stimulus as a regressor).
Therefore, if we wish to examine the spatial extents of the
regions involved in stimulus processing, we need to resort to
encoding models as in (Myers et al. 2015). That is, instead of
using weights that predict the stimulus using the data from the
entire sensor space, we construct spatial maps using the

encoding weights blk that, from the stimulus, predict the data
separately at each sensor l (i.e., the prediction goes in the oppo-
site direction). Fortunately, by using the decoding model time
courses γstk, it is straightforward to associate a set of encoding
weights blk to each decoding weights matrix wk. The encoding
weights are computed as

γ γ= ( ′ ( ) ) ( ′ ( ) ) ( )−b Y diag Y Y diag X , 7lk k k
l1

where Xl represents the concatenated data for sensor l, γk are
the concatenated decoding model time courses for state k and
diag() diagonalises the vector argument into a diagonal matrix.
In this case, blk has two elements because Y has two columns
(sine and cosine of the corresponding angle). We finally use the
blk weights to obtain the explained variance per sensor as
shown in Figure 4.

Cross-Validation

One important question investigated through decoding is when
(and where) the brain is processing the stimulus. This is typi-
cally addressed by using cross-validation, where, for each
cross-validation fold, we estimate a decoding model at each
time point using the training trials and test each of the models
in the held-out trials at each time point. For TUDA, as dis-
cussed earlie, this is problematic because the temporal infor-
mation of the decoding models in the held-out trials is in
principle unknown (it uses the stimulus), so we do not know
which model to use in the held-out data without having the
stimulus. If we are to use cross-validation to compare different
models (for instance, the standard decoding approach and
TUDA), either we cannot use the stimulus information, or else
we need to correct for the bias brought about by using the
model time courses in the held-out trials. Here we do both and
correct the introduced bias by the use of surrogate data, as
detailed next. (Note that these considerations do not apply for
the RT prediction, which was not included into the model in
the first place.)

Cross-validation is then carried out in two different ways:

• In an unbiased way, by using, in each held-out trial, the
decoding model that is most active on average at each time
point in the training trials (therefore losing this temporal
variability).

• In a biased way, by using, in each held-out trial, the best
combination of decoding models found by TUDA at each time
point (this maintains temporal variability but is biased as it is
using the stimulus information for each held-out trial to
determine the best combination of decoding models to use at
each time point).

We generated random samples (surrogates) of the dataset by
permuting the labels (here, the angle values) across trials.
Using the estimated model time courses (which used data and
stimulus), we then run cross-validation on each surrogate data-
set to assess wk. This gave us a measure of accuracy per surro-
gate, which we used to compute the 5% percentile of accuracy
across surrogates. These provided, for each cross-validation
approach, a baseline that we can then subtract from the origi-
nal cross-validation estimates. Since neither the surrogates nor
the original data have an unbiased assessment of accuracy,
this procedure is able to correct for any introduced bias (i.e.,
even if we use the “biased way” for cross-validation above). For
the sake of comparison, we also corrected the unbiased
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estimations of accuracy in this way. We refer to the result as
adjusted CV-R2. Since we are now comparing differences to the
surrogate accuracies, overfitting gets accounted for and we can
then compare between different approaches including the
standard decoding.

Results
We have proposed a new method, TUDA, which finds decoding
models, or states, that specifically characterize how the current
stimulus is represented in the brain at different points in time.
Crucially, TUDA estimates the exact timing of the decoding
models (i.e., at which time points each decoding model acti-
vates) together with the regression weights that constitute
each decoding model. This approach requires many fewer para-
meters to predict the stimulus from the data than the standard
decoding approach, which assumes consistent timing over
trials and fits one model per time point (Fig. 1b). In exchange,
TUDA adds a new degree of freedom: that is, “when” each
decoding model is active in each trial, which is inferred in a
data-driven manner.

First, we demonstrate on synthetic data the interpretation
caveats of the standard decoding approach when neural pro-
cessing across trials is not synchronous. Then, we apply TUDA
to (real) sensor space MEG data collected when subjects were
performing a perceptual judgment task, where we show the
interpretation advantages of TUDA in practice.

Standard Decoding Misrepresents the Data If Trials Are
Not Synchronous

Using the standard approach for decoding, it has often been
observed that the decoding models (e.g., the regression weights)
continuously fluctuate as a function of time. This sometimes
leads to poor decoding generalization across time—that is, a
model trained at one time point has low accuracy when tested
at a different time point (King and Dehaene 2014). If we consider
such regression weights as a proxy of the underlying neural

processes that are relevant to the task, it can be thus inferred
that such brain processes are highly dynamic (see, e.g., Meyers
et al. 2008; Carlson et al. 2011, 2013; Stokes et al. 2013; Isik et al.
2013; King et al. 2014); that is, the brain goes through a large
number of different processing states that are not necessarily
interchangeable. Here, we argue that this can potentially be
caused in an artefactual manner by the temporal variability
between trials. In order to show how standard decoding can
misrepresent the data when stimulus processing is not synchro-
nous across trials, we tested this approach on synthetic data. In
this scenario, we generated synthetic data using five decoding
models or states (each, a linear function mapping data to stimu-
lus) that cycle through during the trial sequentially.

More specifically, we sampled N = 200 trials of two second
duration, assuming sampling frequency of 500 Hz (i.e., 1000
time points per trial). The stimulus is modeled to be a color,
with three features representing Red-Green-Blue (RGB) coordi-
nates. For each trial, the color stimulus was randomly sampled
from a three-dimensional uniform distribution (with values
between zero and one). The data are set to have twenty chan-
nels. We assume there are five “cognitive processes” (or
ground-truth states) underlying stimulus processing. These can
be regarded as the different stages of stimulus processing
across the anatomical hierarchy. Each of these is modeled as a
(three RGB coordinates by 20 channels) matrix of coefficients.
At each time point and trial, the data are generated by multi-
plying the current color (one time point by three RGB coordi-
nates) by the corresponding matrix of coefficients (three RGB
coordinates by 20 channels) and then adding some Gaussian
noise (standard deviation equal to 0.1). We set each of the
ground-truth states to activate or deactivate a different subset
of the channels (four channels per state). More specifically, for
each state, we sample the (three RGB coordinates by four chan-
nels) active coefficients from a uniform distribution and the
rest are set to zero. All trials are set to start in state 1, and tran-
sitions are always from state 1 to state 2, from state 2 to state 3
and from state 3 to state 4 and then to state 5. The average
duration of the state visits is set to be, respectively, for each

Figure 2. Failing to account for between-trial differences can result in a misleading view of stimulus processing. (a) Time-by-trial representation of which decoding

model (of five) is active at each time point as simulated by a synthetic generative model (see Results); underneath, the across-trial average. (b) Cross-validation show-

ing the generalization over time of the standard decoding approach (King and Dehaene 2014) suggests an artificial increasing of neuronal persistency as the trial pro-

gresses. (c) Hierarchical clustering of the estimated decoding models from the standard decoding approach suggests the presence of more than five distinct models

(clustering is based on the correlation between their regression coefficients).

868 | Cerebral Cortex, 2019, Vol. 29, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article-abstract/29/2/863/5232535 by U

niversity of W
isconsin - M

adison user on 14 January 2019



state, 0.2, 0.3, 0.4, 0.5 and 0.6 s. The actual dwell time of each
state visit is modelled using a Gaussian distribution with var-
iances 0.02, 0.05, 0.12, 0.5 and 0.8 s. This is sampled for each
trial separately, so that the time courses of the decoding mod-
els are slightly different across trials. As a result of this, the
between-trial variability, regarding which model is active,
increases as we progress through the trial.

Figure 2a shows the simulated state time courses, where
each color represents a different decoding model. Underneath,
we show the across-trial average activation of each state or
decoding model. Figure 2b,c illustrates the difficulties for the
standard decoding approach in ignoring between-trial variabil-
ity (and by using a larger number of decoding models than it
exists). As is commonly done in the field when applying the
standard decoding approach, Figure 2b shows the (cross-valid-
ated) generalization matrix, where, using cross-validated
explained variance (CV-R2) as the summary statistic, we
assessed the performance of each decoding model on held-out
trials (King and Dehaene 2014). As observed, the trials general-
ize sharply at the beginning of the trials, since decoding model
one is always active at start. Then, the pattern becomes blurrier
and less accurate as a consequence of the increasing between-
trial temporal variability. Standard interpretations of this result
would artefactually suggest that brain activity gains in persis-
tency (generalization) at the end of the trials, when, in reality,
the models’ dwell time is the same across the entire trial. We
also computed the Pearson correlation between sets of regres-
sion coefficients for each pair of models grouped the models
according to their similarity. This is shown in Figure 2c, where
we can see a large fragmentation into several different models,
when, in reality, there are only five.

The Neural Processes Relevant to the Task Are Not
Synchronous across Trials

In this task, subjects were shown an oriented visual grating
stimulus and asked to compare it to a memorized template ori-
entation to detect matches (the difference between these being
referred to as the “relative” angle). The model was estimated
separately for each participant (of which there were ten) and
each session (of which there were two per participant), obtain-
ing a set of decoding models and model time courses indicating
the probability of each model being active at each time point
within each trial. We estimated the model for different num-
bers of decoding models (K = 3, 4, 5 and 6). More details about
the method and the experimental paradigm are presented in
Methods.

Using a model with K = 5 decoding states on the real data
(see Methods), Figure 3a shows when each of the five inferred
decoding models (represented using a different color) is active
as a function of time. This is shown for a subset of the trials
ordered by RT. Note that the decoding is, by necessity, carried
out separately for each session, so here we are presenting the
results for a single participant and session. However, these
results are representative of the results across the whole data-
set (see Supplementary Material). Underneath, Figure 3b shows
the average occupancy (i.e., the mean over all trials) of each
decoding model as a function of time. We next show the extent
of temporal variability of the decoding models for the proposed
approach, that is, when we do not constrain the trials to have
the same decoding dynamics. For this purpose, we chose one of
the decoding models that had a clear peak in the average occu-
pancy time course and took all trials where the model was
active at the time of maximum model occupancy (represented

by the marked peak in the bottom panel). In Figure 3c, histo-
grams for the starting and finishing times of these model
occurrences reveal large temporal variability.

We next investigated the extent to which accounting for
between-trial temporal differences impacts the prediction
accuracy of the model. Normally this would be estimated using
cross-validation. However, TUDA uses both the data and the
stimulus in combination to estimate the decoding model time
courses (see Methods). This means that the stimulus informa-
tion for a held-out trial gets used to estimate the decoding
model time course for that trial (as well as for predicting the
stimulus). We correct for this bias through the use of surrogate
data, to calculate an adjusted CV-R2 measure (see Methods),
allowing us to compare between different TUDA approaches
and standard decoding.

Figure 3d shows adjusted CV-R2 for TUDA when we model
between-trial temporal differences and when we do not, for dif-
ferent numbers of decoding models (K); that is, when no
between-trial temporal differences are considered (four models
on the right), meaning that we are having K instead of T decod-
ing models, while still restricting the decoding models to be
synchronous. As a reference, the horizontal line represents CV-R2

for standard decoding. The accuracy when modeling between-
trial temporal differences is orders of magnitude larger than
when ignoring such differences, highlighting the importance of
these differences, and is also superior to the standard decoding
approach despite using fewer models.

Finally, if between-trial temporal variability is such an
important factor, we argue that, when ignoring this variability,
the TUDA predictions should be significantly worse for those
time points with greater diversity in decoding model allocation.
For K = 5, Supplementary Figure 2a shows, for the same illustra-
tive session used before, CV-R2 as a function of time for the tradi-
tional decoding approach and TUDA. Confirming this hypothesis,
the peaks of accuracy closely correspond to the peaks of activa-
tion of the decoding models as shown underneath (where there
are less between-trials temporal variability). Using all sessions,
Supplementary Figure 2b shows, for each time point (represented
as a dot), trial variability in the assignment of a decoding model
in training (measured as the variance of the model time courses
across trials) versus estimation accuracy in testing (measured
using CV-R2); the Pearson correlation coefficient is 0.47 (P-value
<0.0001, permutation testing).

Sequences of States and Their Relation to Behavior

If between-trial temporal variability has a neural origin, then
we might also expect it to relate to behavior. Here, we show
that this is the case and that the states follow very robust
sequences but with varying dwelling time in each state across
trials.

We analyzed RT data, which were collected for all trials
where the subjects pressed the button (i.e., when participants
judge that the presented angle matched the template angle in
their working memory). We discarded all trials with no button
press. Importantly, we first regressed the absolute relative
angle out of the model time courses and the RTs. This is neces-
sary because RT could have a direct correlation with the rela-
tive angle: smaller relative angles might make participants
more confident, leading to faster responses. Without this pre-
caution, a relation between the model time courses and RT
could be trivially driven by the actual relative angle, instead of
the intrinsic between-trial variability that is the focus of our
work.
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We then estimated, for each decoding model, the correlation
between the corresponding (deconfounded) model time courses
and RT across trials (i.e., the Pearson correlation between the
probability of the state being active and RT). For an example ses-
sion, Figure 4a shows the resulting time-resolved correlations
for each of the decoding models, reflecting a strong relation
between the decoding models’ trial-specific timings and behav-
ior. On these grounds, we next examined how short RT trials
compare to long RT trials, by viewing the temporal profile of
which decoding model best predicts RT at each point in time.
For an example session, Figure 4b shows these temporal profiles
for prototypical “short RT” and “long RT” trials. The temporal
profiles were calculated as follows: at each time point, the
decoding model chosen to be active is the model with the high-
est across-trials correlation (for the short RT trial), or the highest
anticorrelation (for the long RT trial), between the estimated

probability of being active and RT. As can be seen, the same
ordering of decoding models underlies short RT and long RT
trials; however, the timing is very different, with the decoding
models getting active around 0.25 s earlier in the short RT as
compared to the long RT trials. As illustrated in Figure 4c, this
characteristic sequence is also (separately) found in the trans-
ition probability matrix between the decoding models, which
reflects the estimated probability of transitioning between every
pair of decoding models, and is inferred without knowledge of
RT as part of the model inference (see Methods). This strong
sequential order of the decoding models is largely present in all
participants and sessions (Supplementary Fig. 3).

We further evaluated the strength of the relationship
between the model time dynamics and behavior by predicting,
in a cross-validation setting, the trial RT using the model time
courses (after regressing out the absolute relative angle from

Figure 3. Decoding of the relative angle exhibits large temporal variability between trials. (a) Time-by-trial representation of which decoding model is active at each

time point shown for a subset of the trials from a representative session and participant. Models are numbered according to the order in which they tend to arise in

trials, and trials are ordered by RT; only 200 trials are shown. (b) Percentage of trials (taken over all subjects and trials) assigned to each decoding model as a function

of time. (c) For a given decoding model, and this specific session, temporal variability represented as a histogram of starting and finishing times for those trials when

the chosen decoding model is active at time t (t = 0.23 s for presented angle and t = 0.24 s for relative angle). (d) TUDA’s accuracy, measured as adjusted cross-

validated explained variance (adjusted CV-R2, see Methods), when accounting for between-trial variability versus when between-trial differences are ignored, for dif-

ferent number of decoding models (K = 3, 4, 5 and 6). Each gray dot represents one session, the red dots represent the baseline accuracy obtained from surrogate data

(see Methods), and the horizontal line represents (group level) cross-validated accuracy for the standard decoding approach.
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both variables; see Methods for details). The prediction was
done at the group level, that is, using all participants together
(cross-validation folds were constructed such that the entire
set of trials of each subject were assigned to a single fold;
Winkler et al. 2015). Figure 4d shows real versus predicted RT,
where each dot represents a trial. The prediction accuracy is
highly significant (P-value <0.001, permutation testing), con-
firming that the temporal decoding variability effectively
relates to behavior. Note that a similar prediction would not be
possible with the traditional approach, which does not provide
any estimation of between-trial temporal variability.

Decoding Models Are Spatially Localized

We next examine the spatial characteristics of the decoding
states. Interpretation of decoding weights is not straightfor-
ward (Weichwald et al. 2015), so we computed the “encoding”
model that corresponds to each decoding model. For each sen-
sor, decoding model and session, the encoding model is defined
as the regression weights that predict the data for this sensor

as a function of the relative angle, using only the time points
when the decoding model is active (i.e., making use of the
model time courses; see Methods). Figure 5 shows a summary
of the spatial characteristics of the encoding models, which can
be compared for reference with the maps shown in Myers et al.
(2015). The topographic map represents the sum of explained
variances across encoding models. Although there are differ-
ences across models and subjects, the maps indicate that the
relative angle is encoded in motor and frontal sensors.

Discussion
In this article, we use the Hidden Markov Modeling framework
to propose a new approach capable of “time-resolved decod-
ing,” referred to as TUDA. Using TUDA, it is possible to bypass
the highly constraining assumption of consistent timing of
states (or decoding models) across trials as made by the tradi-
tional decoding approach. By making decoding temporally
unconstrained, we are able to gain new insight into the nature,
sequence and temporal variability of neural states that

Figure 4. The precise timing of the decoding models within trials has an intimate relationship with RT. (a) For the same representative session used in Figure 3, the

correlations between RT and each decoding models’ activation probabilities as a function of time, are very high. (b) Prototypical sequences of decoding models for a

“short RT” trial (top) and “long RT” trial (bottom) for the representative session. (c) The transition probability matrix for the representative session, containing the

probability of transitioning between each pair of models, has a strong sequential structure (see Supplementary Fig. 3 for other sessions). (d) Cross-validated prediction

of RT as using the model time courses confirms the strong relationship between the models’ temporal variability and RT (each data point corresponds to one trial,

and color indicates density of points). The plot depicts all sessions, although the prediction was performed session by session.
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contribute to the perceptual judgments made on different
experimental trials.

An increasing number of studies have used time-specific
pattern classification methods to show that stimulus-specific
patterns are highly time specific and do not cross-generalize
across time points. Furthermore, these methods suggest that
neural processing traverses a large number of states in a
smooth, stereotyped cascade (King and Dehaene 2014). This
could occur through transitions from one attractor state to
another within one circuit (Durstewitz et al. 2010; Miller 2016),
or, similarly, through sudden transitions from a null state to a
stimulus-specific state in a downstream brain area (Latimer
et al. 2015). However, this trajectory through neural state space
assumes that trajectories are highly reproducible across trials.
By relaxing this assumption, we found that processing might
possibly have slower dynamics than suggested by the standard
decoding approach. Importantly, we found these dynamics to
be related to behavior, exemplified here as RT.

The advantages of TUDA are best illustrated by comparing
the results we present here to those reported in a previous
analysis of the same dataset (Myers et al. 2015). In this previous
study, we also found reliable and strong time-specific decoding
of the decision variable using the conventional cross-temporal
generalization approach. In addition, while cross-temporal gen-
eralization was weaker than within-time decoding, it was nev-
ertheless highly significant, indicating both dynamic and time-
stable decoding. Using conventional cross-temporal generaliza-
tion, the result was ambiguous and could be explained in vari-
ous ways. For example, such a pattern could be the result of
one neural population encoding the decision variable in a
dynamic code and a second population encoding it in a static
code. The present results suggest instead a simpler interpreta-
tion: a single pattern encoded the decision variable, but tempo-
ral variability in its onset across trials leads to cross-temporal
generalization.

Other studies have found similar patterns of increasingly reli-
able cross-temporal generalization at later time points in a trial,
which have sometimes been interpreted as evidence of time-
stable coding in delay periods after initial stimulus processing is
complete (e.g., Stokes et al. 2013). Again, the current findings sug-
gest that, to some extent, the appearance of temporally stable
patterns could instead be the result of increasing temporal vari-
ability in the onset of the same coding pattern across trials. More

generally, using TUDA to evaluate the temporal variability versus
persistence of states could help resolve an ongoing debate con-
cerning persistent (Constantinidis et al. 2018) versus intermittent
but trial-variable coding (Lundqvist et al. 2018) of working mem-
ory content during maintenance delays.

Furthermore, the finding of highly dynamic coding in our
initial study (Myers et al. 2015) raised a conceptual difficulty:
how could downstream areas make sense of a highly time-
varying code? In order to readout the stimulus encoded in such
a dynamic pattern, the pattern of synaptic strengths onto the
downstream population would need to evolve as dynamically
as the code itself to ensure constant and accurate readout.
Using TUDA, this problem is resolved by the finding that only a
small number of time-variable states explain the data: since
decoding patterns are stable for the duration of each state,
downstream areas will only need a single set of weights to read
out the stimulus encoded during that state. Therefore, there is
no need to resort to dynamically changing synapses.

Finally, TUDA explicitly models the onset times of states on
each trial, making it possible to link neural timing to behavioral
timing (e.g., RTs). Testing for such a brain–behavior correlation
is not straightforward using the conventional decoding frame-
work. Using TUDA, the estimated between-trial temporal differ-
ences can be further related to changes in attention and also
learning and plasticity.

Alternative Decoding Models

Here, we have used the instantaneous (raw) sensor-space MEG
signal to predict the stimulus, in analogy to the study from
Myers et al. (2015) based on the same dataset. Both Myers and
colleagues’ approach and ours use information about the rela-
tive magnitude between sensors in order to decode and disre-
gard other information. Given that the stimulus at time point t
is predicted using only data at time point t, this approach is, for
example, blind to the oscillations that encompass the instanta-
neous signal used for the prediction.

More powerful (or interpretable) extensions, where the
phase of ongoing oscillations is used for the prediction, are
straightforward to implement under the proposed HMM-based
framework. For instance, similar to Vidaurre et al. (2018), the
signal can be “embedded” such that a window around t (and
not only t) is used to predict the stimulus at time t, effectively
incorporating phase information into the estimation. Other
possibilities are to use information of phase only (Cabral et al.
2017) or power only (Baker et al. 2014). Unlike the embedded
approach, which uses the raw signal without the need of any
mathematical transformation, these alternatives are based on
the Hilbert transform and the use of filtering, for which an ad
hoc selection of the frequency bands of interest is required.
Besides the decision of which features of the data will consti-
tute the base for the prediction, another possible extension is
to replace the simple, linear regression model by more power-
ful prediction algorithms such as support vector machines or
neural networks (Hastie et al. 2001) as far as these are formu-
lated within the Bayesian framework. This scenario, where the
decoding models may have a much larger number of para-
meters, can easily be handled with the proposed framework
(where there are only K models) but is less manageable for the
standard approach (where there are T models), especially if the
number of trials is not very large.

Figure 5. Topographical map in sensor space reflecting the (averaged) spatial

activation associated to the estimated decoding models. This is expressed as

the sum of explained variance (CV-R2) of the corresponding encoding models

(see Methods).
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Decoding with fMRI

In this work, we found temporal variability between trials in
the range of hundreds of milliseconds. Although this is a signif-
icant amount of time when considering electrophysiological
data, fMRI has much lower temporal resolution and the tempo-
ral uncertainty brought about by the hemodynamic response
further hampers the benefits of our approach for probing tasks
with fast cognitive mechanisms (attention, perception, etc.).
There are however tasks with meaningful variability at the
fMRI scale (seconds rather than milliseconds): difficult decision
making, mind-wandering, tasks with components that fluctu-
ate slowly such as arousal and tasks with delayed activity such
as those related to working memory. In these types of tasks,
the proposed method has the potential to excel at discovering
temporal variability, up to the limit imposed by the modality’s
inherent temporal resolution and its haemodynamics.

Localized Decoders

Here, we applied the model to whole-brain sensor space data,
in line with previous work (Myers et al. 2015). Finer spatial and
temporal information can be obtained from applying this
method to source-localized data, possibly running the model
on one group of regions at a time. This approach can give us
insight on the different temporal dynamics of various regions
in encoding the stimulus by examining and post hoc comparing
the model time courses between regions. This strategy would
be comparable to the analyses performed by Baldassano et al.
(2017) with an unsupervised HMM (i.e., trained with no infor-
mation of the task), where sequences of states where estimated
from different brain regions while subjects watched movie-
based stimuli. This study revealed that higher order regions fol-
low state segmentations that match the movie structure more
closely than those followed by sensory regions. By including
the stimulus (or certain aspects of it) into the model, we can
however target more specific aspects of cognition and will ben-
efit from higher sensitivity.

Null States

The HMM is a general framework that has been used previously
to describe brain activity in an unsupervised fashion (see, e.g.,
Baker et al. 2014; Engel et al. 2016; Baldassano et al. 2017;
Vidaurre et al. 2016, 2018; Vidaurre, Abeysuriya, et al. 2017;
Vidaurre, Smith, et al. 2017). Here, we draw from this general
framework to handle the supervised setting, where each HMM
state corresponds to a certain particular relationship between
bran activity and the stimuli, but what happens for these time
points where there is no relationship between brain activity
and the stimulus at all (for instance, because the brain has not
yet encoded the information in any way)? In an unsupervised
setting, because the brain is never silent, all states are always
meaningful (they always represent something, because there is
brain activity in all time points). In a supervised setting, how-
ever, it is useful to detect when there is “nothing” to represent.
In the current implementation, the proposed model can
express this circumstance by using a “null” state (where the
decoding weights are close to zero), or, instead, by using some
random mixture of (otherwise meaningful) states such that, at
these “empty” time points, the decoding error is higher than
when these states are faithfully representing the stimulus. Post
hoc analyses would be required to detect this situation. A
potentially more useful strategy would be to fix one decoding
state to be the null state (i.e., having fixed, zeroed decoding

weights), such that it will become active when the examined
regions are unaware of the stimulus. In the data used in this
article, nevertheless, this would likely be of little use given the
short inter-stimuli intervals.

Conclusion
In this article, we proposed a novel method for neural decod-
ing, referred to as TUDA, where we dispense altogether with
the assumption that neural processing is timed consistently
across trials. Our results, on a simple perceptual decision-
making task, indeed suggest that the assumption of consistent
timing over trials made by a traditional decoding approach is
not always justified and can lead to misinterpretations of the
dynamics of the cognitive mechanisms underpinning the pro-
cessing of the stimulus. Although we have focused on a rela-
tively simple stimulus, the technique can straightforwardly be
applied to more complex cognitive tasks including volitional
behavior. Our approach also makes it possible to analyze the
between-trial temporal variability, which, as shown earlier, can
hold a significant relationship to behavior and could corre-
spond to changes in attention or to plasticity.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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