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Abstract
Posterior parietal cortex (PPC) is thought to encode and represent the number of objects in a visual scene (i.e., numerosity).
Whether this representation is shared for simultaneous and sequential stimuli (i.e., mode independency) is debated. We
tested the existence of a common neural substrate for the encoding of these modes using fMRI. While both modes elicited
overlapping BOLD response in occipital areas, only simultaneous numerosities significantly activated PPC. Unique activation
for sequential numerosities was found in bilateral temporal areas. Multivoxel pattern analysis revealed numerosity
selectivity in PPC only for simultaneous numerosities and revealed differential encoding of presentation modes. Voxel-wise
numerosity tuning functions for simultaneous numerosities in occipital and parietal ROIs revealed increasing numerosity
selectivity along an occipito-to-parietal gradient. Our results suggest that the parietal cortex is involved in the extraction of
spatial but not temporal numerosity and question the idea of commonly used cortical circuits for a mode-independent
numerosity representation.
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Humans as well as other animals are endowed with a system
that allows them to approximately estimate the number of
items in a visual scene (i.e., the numerosity). In humans, the
horizontal portion of the intraparietal sulcus (hIPS) in posterior
parietal cortex (PPC) is claimed to be the neural substrate of
this approximate number system (Dehaene et al. 2004). Yet,
whether numerical information from different formats (e.g.,
Arabic numerals vs. nonsymbolic dot arrays), modes (simulta-
neous: items spread in space or sequential: items spread in
time), or modalities (e.g., visual or auditory) converge on a uni-
tary, abstract representation in hIPS is debated (Cohen Kadosh
and Walsh 2009).

Evidence from behavioral and neuroimaging studies in
humans comes together with monkey neurophysiology find-
ings in support of an abstract number representation. Human
imaging studies repeatedly revealed BOLD increase in bilateral

hIPS in numerical tasks employing different presentation for-
mats (Piazza et al. 2007; Eger et al. 2009), modes (Castelli et al.
2006; Piazza et al. 2006; Dormal et al. 2010) and modalities (Eger
et al. 2003). Electrophysiology studies reported number-
selective neurons in the ventral intraparietal sulcus (VIP)—the
putative IPS homolog—of nonhuman primates (NHP) that code
for numerosities from 1 to 5 independent of presentation mode
(Nieder et al. 2006) and modality (Nieder 2012). Behaviorally,
numerosity adaptation across modalities in humans supports
the idea of a generalized sense of numbers (Arrighi et al. 2014).

On the other hand, several findings question the idea that
identical PPC circuits integrate numerosity information both
across space and time, as suggested by Dehaene and Changeux
(1993). First, being part of the dorsal stream, PPC plays a pivotal
role in the processing of spatial information (Kravitz et al.
2011). In line with this, 2 studies (Shafritz et al. 2002; Xu and
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Chun 2006) reported that the BOLD signal in IPS increases when
an increasing number of objects are presented over space
(simultaneously). However, no change in parietal activity was
reported when a variable number of items were presented in
the same location (Shafritz et al. 2002; Xu and Chun 2006), sug-
gesting that PPC integrates numerical information over space
but not across time. Second, evidence for shared numerosity
tuning for different presentation formats and modes predomi-
nantly comes from electrophysiological studies in NHPs and
small numerosities from 1 to 5 (Nieder and Miller 2004; Nieder
et al. 2006; Tudusciuc and Nieder 2007). Only few studies tested
the notion of a mode independent numerosity representation
in humans (Castelli et al. 2006; Dormal et al. 2006; Piazza et al.
2006). Yet, none of these studies provided conclusive evidence
due to confounds between numerosity and frequency (Dormal
et al. 2010) or duration, or increased risk for false positive
results from noncorrected data (Castelli et al. 2006). In light of
these findings, it is still to be investigated if identical neural cir-
cuits in PPC contribute to the encoding of both sequential and
simultaneous numerosities in a way that goes beyond common
task activation.

Extant computational models of numerosity perception
diverge on the notion of a labeled-line coding of numerosity
(quantity is coded by the location of the activation in a popula-
tion of linearly ordered neurons) but agree on a summation-
coding instance (more quantity is coded by larger summed
activity) and the idea that numerosity is abstracted from low-
level visual features during encoding. Two prominent computa-
tional models of simultaneous numerosity extraction propose a
hierarchy of number-sensitive and number-selective proces-
sing steps (Dehaene and Changeux 1993; Verguts and Fias
2004). First, spatial location of objects is coded in an object–
location map. The activity in these units changes monotoni-
cally with increasing number of objects, reflecting summation
coding. The summed activation is then fed into the next
instance that contains number-selective units. Activity of these
units decreases monotonically as numerical distance between
preferred and actual numerosity increases. This dovetails with
number-selective neurons in monkey area VIP (Nieder and
Miller 2004). Importantly, this model suggests that as one
moves up in the processing hierarchy, the importance of visual
features like object-size and location should decrease and the
importance of numerosity should increase. In humans,
Roggeman et al. (2011) found a hierarchical organization along
the occipital-to-parietal pathway for numerosities in the subi-
tizing range (i.e., 1–5), in line with this computational model.
BOLD signal in superior occipital cortex and the adjacent trans-
ition region between occipital and parietal cortex monotoni-
cally increased with numerosity. Areas in posterior superior
parietal lobule (PSPL) and IPS, on the other hand, exhibited
numerosity tuning such that BOLD signal decreased as numeri-
cal distance between preferred and presented numerosities
increased. A more recent model of spatial numerosity percep-
tion used deep networks with 2 hidden layers that were trained
to reproduce visual input numerosities (Stoianov and Zorzi
2012). As in Dehaene and Changeux (1993) and Verguts and Fias
(2004), the response of units in hidden layer 2 was unaffected by
non-numerical features of the stimuli such as size or density of
the input images, thereby providing a computational instantia-
tion of a visual sense of numbers (Burr and Ross 2008; Anobile
et al. 2016), that emerged during unsupervised learning.

While computational studies foresee that simultaneous
numerosity perception should be independent of visual

features of the stimuli, Gebuis and Reynvoet (2012a, b) reported
that the performance in numerical comparison tasks depends
on the congruity of numerosity with visual features like object
size, convex hull, and total area occupied. In line with this,
monkey electrophysiology and human imaging suggest that
object size and numerosity representations are intermingled in
PPC (Tudusciuc and Nieder 2007; Harvey et al. 2013). Although
most studies try to control for non-numerical features using
multiple stimulus sets with different visual features (see
Dehaene et al. 2005 for a discussion), it is very difficult, if not
impossible, to decorrelate numerosity from all other sensory
features (see Leibovich et al. 2016 for a discussion). Hence,
more empirical data is needed to investigate whether previ-
ously observed numerosity tuning in simultaneous mode
reflects the abstract numerosity information from a visual
scene or results from the weighted integration of several non-
numerical dimensions like area, density, and dot-size by
Gebuis et al. (2016).

For sequential numerosities, on the other hand, researchers
assume the involvement of an accumulator that reflects
increasing numerosity with increasing activity, potentially
assisted by mechanisms that keep track of the serial position of
an item in a sequence (Nieder et al. 2006; Dormal et al. 2010). A
vast number of NHP perceptual decision-making studies found
activity in lateral intraparietal area (LIP) to be closely correlated
with evidence accumulation over time (Shadlen and Newsome
2001; Hanks et al. 2015), even if their functional significance
remains unclear since inactivation of these circuits does not
affect decision-making performance (Katz et al. 2016). Whether
in humans the accumulator instance for sequential mode coin-
cides with the computational mechanisms for the encoding of
simultaneous numerosities remains an open question.

The use of study designs that fail to disentangle domain-
general processes (e.g., response selection) from numerosity
processing further undermines the soundness of existing evi-
dence for a mode-independent numerosity representation in
PPC. It has long been known that the parietal cortex is involved
in various aspects of task related processing ranging from
working memory and attention to response selection (Koenigs
et al. 2009; Malhotra et al. 2009; Shomstein 2012; Dean et al.
2012). Hence, common BOLD increase in numerical tasks does
not necessarily imply that the underlying representation for
different formats and modes is the same. Yet, human imaging
studies using multivoxel pattern analysis (MVPA) endorse
simultaneous numerosity encoding independent of response/
task related processing (Eger et al. 2009, 2015; Dormal et al.
2010; Bulthé et al. 2014; Castaldi et al. 2016). Based on BOLD sig-
nal patterns from PPC these authors were able to decode the
numerosities seen by the participants using MVPA. These
results contrast with human imaging studies showing that
parietal BOLD increase disappeared when response and task
related factors are well controlled in numerical tasks (Göbel
et al. 2004; Shuman and Kanwisher 2004; Cavdaroglu et al.
2015). Taken together, it still remains elusive whether identical
PPC circuits integrate numerosity information in the absence of
domain-general task requirements.

In this study, we investigated the neural basis of simulta-
neous and sequential numerosity perception to answer the
questions outlined above. Specifically, we tested how simulta-
neous and sequential numerosities are encoded in the absence
of response/task related processing using a task that probed
comparison of numerosities only at random points throughout
the experiment (Fig. 1). We used MVPA to inquire if there is a
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common coding scheme for simultaneous and sequential
numerosities, which was not employed by previous studies
investigating mode-independence. In addition, we used numer-
osities larger than 4 to see whether the previously reported gra-
dient can also be observed for numerosities outside the
subitizing range. This is important, since accumulating evi-
dence suggests that subitizing and estimation of numerosities
outside the subitizing range are 2 distinct processes, potentially
hinging on different neural architectures (Piazza et al. 2002,
2011; Revkin et al. 2008; Burr et al. 2010; Anobile et al. 2012).
Last but not least, in simultaneous mode, we tested how encod-
ing of non-numerical visual features in the occipitoparietal path-
way changes along with numerosity using MVPA to study the
specificity of previously reported PPC tuning for numerosities.

Materials and Methods
Participants

Overall, 20 healthy right-handed participants underwent fMRI
scanning after giving written informed consent. Three of them
were excluded from further analysis due to excessive motion
(more than the size of one voxel between subsequent volumes) or
abortion of the experiment. The data from the remaining 17 partici-
pants were analyzed subsequently (8 males, mean age: 27.35, stan-
dard deviation (SD) = 4.64). All had normal or corrected-to-normal
vision and reported no history of neurological or psychiatric dis-
eases. The study was approved by Bernstein Center for Advanced
Neuroimaging (BCAN, No. 165) and the Ethical committee of
Humboldt Universität zu Berlin. Participantswere reimbursed 24 €.

Figure 1. (A) Schema of the experimental procedure. Top panel depicts a response trial. After the presentation of the first numerosity (Numerosity 1), the color of the

fixation-cross changed from red to blue indicating that participants were supposed to compare the numerosity before the blue fixation-cross with the numerosity

coming after the fixation-cross (Numerosity 2). Participants responded by pressing the right or left button while the fixation-cross was green. The green fixation-cross

was displayed for 2 s. After that, a new trial started. Bottom panel depicts a nonresponse trial. The color of the fixation-cross remained red until the next numerosity

appeared. Once the trial was over, the red fixation-cross was replaced by a new numerosity and a new trial started. The inset depicts example numerosity in simulta-

neous (top) and sequential (bottom) mode. Both modes appeared with equal probability (P = 0.05). (B) The ROIs used for MVPA. The color coding indicates in how

many participants a given voxel was activated. Although individualized ROIs were used for each site (i.e., SC, EC, and PC), there was a reasonable consistency over

participants.
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Stimuli

Participants were engaged in a nonsymbolic numerosity pro-
cessing task. The numerosities were presented on a black back-
ground using white dots. Spatial enumeration was probed by
presenting simultaneous numerosities, presented as spatially
scattered sets of dots (dot clouds). Temporal enumeration was
probed by presenting sequential numerosities. These were
scattered over time by repeatedly flashing (on–off) a single
white dot in the center of the screen. Four numerosities (5, 7,
11, and 16) outside the subitizing range were used. These
numerosities were chosen as they had approximately equal
distance from each other on logarithmic scale. Simultaneous
numerosities were created using a set of Matlab scripts as
described in Dehaene et al. (2005). The scripts were adapted
such that the sensory properties of dot arrays (i.e., convex hull,
density, diameter, and total area) were written out during stim-
ulus creation. Sequential numerosities were created using the
method described in Cavdaroglu et al. (2015).

More specifically, non-numerical sensory features of simul-
taneous numerosities (i.e., dot-arrays) were controlled by 2
sets. In one set, the dot-size was kept constant whereas in the
other set total area was kept constant. This way, the intensive
(e.g., dot size and interitem spacing) and extensive (e.g., total
luminance and total area) features of stimuli were balanced
over the whole stimulus set (see Dehaene et al. 2005 for a
discussion).

The non-numerical features of sequential numerosities
(“flickers”) were controlled in 4 sets. Single dot duration and
total duration increased with numerosity in set 1 and
decreased with numerosity in set 4. The interval between dots
(ISI) increased with numerosity in set 2 and decreased with
numerosity in set 3. Frequency (numerosity divided by total
duration) increased with numerosity in sets 3 and 4 and
decreased with numerosity in sets 1 and 2. Hence, participants
could not rely on a single sensory cue (i.e., duration, frequency,
or ISI) to extract numerosity. The individual dots were pre-
sented for a maximum duration of 270ms to prevent counting.
Only in set 4 we used dot durations longer than 270ms as well.
It was not possible to create a set of trials where total duration
decreases with numerosity otherwise. This threshold was cho-
sen based on previous studies which showed that participants
cannot rely on verbal strategies (e.g., counting) within this time
frame (Piazza et al. 2006; Tokita and Ishiguchi 2011). Random
jitters were introduced in sequential numerosities to prevent
periodicity that may lead to the perception of rhythms. The
length of the jitter depended on the single dot duration. It was
calculated such that after the subtraction of that jitter, the
duration of the single dot was 40ms (i.e., jitter = [dot duration −
40ms]). This procedure guaranteed that 1) each individual dot
remained distinguishable from the previous or subsequent dot
and 2) when the duration of a single dot was longer than 270ms,
participants could not reliably count because the remaining sti-
muli in the sequence would still appear at a sufficiently high
presentation rate to prevent counting. The size of dots was con-
stant for a given numerosity sequence and was chosen ran-
domly such that it matched the total area occupied by each dot-
array in simultaneous stimuli. This ensured balanced illumina-
tion between simultaneous and sequential numerosities.

Stimuli were generated and presented using Matlab
(MathWorks) and Psychtoolbox (Brainard 1997; Pelli 1997;
Kleiner et al. 2007) and were projected with an LCD projector
(60 Hz frame rate) onto a translucent screen in the bore of the
scanner and viewed through a mirror mounted on the head

coil. The duration of each dot and ISI in sequential stimuli was
calculated as multiples of the refresh rate of the monitor
(60 Hz) and the presentation of all the dots was synchronized
with vertical refresh of the projector.

Experimental Task and Design

To separate decision and response related activations from
numerosity perception, participants responded only in one-
third of trials (henceforth “response trials”). In response trials, 2
numerosities from the same mode (simultaneous or sequential)
were presented one after the other (Fig. 1). Participants indi-
cated via left (first) or right (second) button press which of the 2
sequentially presented numerosities was numerically larger.
The numerosities in a given response trial differed by 25% to
balance difficulty across numerosities. That is, while the first
numerosity in a given response trial was drawn from the set
comprising 5, 7, 11, or 16, the second numerosity in that trial
could be either 25% smaller or larger than the first numerosity.
For example, when the first numerosity in a given trial was a
temporally scattered sequence of 7 dots flashed in the center of
the screen (i.e., sequential numerosity 7), the second numeros-
ity in that trial would have comprised either 5 or 9 dots flashed
in the center of the screen. In the remaining two-thirds of
trials, no response was required (henceforth “nonresponse
trials”).

Upon presentation of a given numerosity, the participants
did not know whether they would have to make a comparison
with that numerosity later. This information was conveyed via
the color of the fixation cross only after they were exposed to
the numerosity. If the color of the fixation cross that followed
the numerosity changed from red to blue (i.e., response trial),
participants had to compare it with the upcoming numerosity.
If the fixation-cross remained red until the next numerosity
appeared, they were instructed to forget the previous numeros-
ity and concentrate on the new one (i.e., nonresponse trials, a
new trial begins if the color of the fixation-cross remains red).
This way, we encouraged participants to pay attention to the
numerical dimension of stimuli throughout the experiment
without having any comparison or response related confounds
in numerosity perception in nonresponse trials (Fig. 1).

The experiment had a fast event-related design. The timing
of stimuli was optimized using simulation with fMRI design
software (efMRI V9) and a stochastic design (http://archive.is/
rhI2t). This type of design allows for shorter scanning periods
with greater statistical power than deterministic designs (i.e.,
fixed ISI) or purely random ISIs (Dale 1999; Friston et al. 1999).
The order of conditions and the length of the interstimulus
interval (ISI) were determined using an exponential function
(Dale 1999). Specifically, the ISI was randomized from an expo-
nential distribution, taking into account the minimum ISI of
4000ms, maximum ISI of 9000ms and an average ISI of
6000ms (Friston et al. 1999). The time of the jittered fixation-
cross was adjusted accordingly. Double-Gamma HRF emulation
was used to emulate the SPM hemodynamic response function
(HRF). Five conditions were passed into the software to get the
optimized presentation time for simultaneous nonresponse,
simultaneous response, sequential nonresponse, sequential
response, and null event (i.e., fixation) trials. Trials were ran-
domly distributed between 4 numerosities used in the experi-
ment (i.e., 5, 7, 11, and 16) within each condition.

The duration of null events was fixed at 1.4 s, which was the
average duration of all trials. Simultaneous numerosities were
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presented for 200ms to avoid eye movements and counting.
Sequential numerosities had a total duration between 630 and
4870ms. The duration of the fixation-cross (i.e., ISI) after each
response trial varied between 4071 and 8872ms, and was iden-
tical for sequential and simultaneous numerosities. The dura-
tion of the fixation-cross between the first and second
numerosity in response trials was chosen randomly from ISI
durations used in between each stimulus trial. The experiment
consisted of 8 blocks in total. In each block, there were 64 non-
response trials (half simultaneous), 32 response trials (half
simultaneous), and 8 null events which lasted in total ~9min.
Hence, the total duration of the main fMRI task was ~72min.

In nonresponse trials, an equal number of trials were drawn
from each stimulus set. That is, in 1 block, there were 16 numer-
osities from each simultaneous set and 8 numerosities from
each sequential set (i.e., 16 × 2 sets = 32 simultaneous numeros-
ities and 8 × 4 sets = 32 sequential numerosities). In response-
trials, an equal number of trials were drawn from each stimulus
set. Importantly, the first and second numerosities were always
drawn from different sets to make sure that participants could
not rely on non-numerical sensory features while they were
comparing the 2 numerosities. Furthermore, both response and
nonresponse trials had an equal amount of trials per numerosity
and an equal number of stimuli were drawn from each set.

Localizer Task

To independently determine functional ROIs for multivariate anal-
ysis, a 12min functional localizer was created using Psychtoolbox
(Brainard 1997; Pelli 1997; Kleiner et al. 2007) and presented after
the numerical task. The task is an adapted version of the localizer
described in Cavdaroglu et al. (2015) with an additional visual
motion localizer appended. It consisted of reading, date recall,
mental subtraction, object grasping, house roof color naming, sac-
cade formation, motion, and rest conditions.

Reading, subtraction and date recall conditions were presented
using an optimized rapid event-related design (see Cavdaroglu
et al. 2015 for all the details about timing). Ten simple sentences
(“Bears are fond of salmon and honey”), subtraction problem sen-
tences (“Calculate eleven minus five”) (translated from Pinel et al.
2007) and novel date recall sentences (“The date of New Year’s
Eve is ____”), were intermixed with 10 rest periods, for a total of 40
trials. In all 3 conditions, participants were instructed to silently
read the sentences and mentally generate an answer when neces-
sary (subtraction and date recall) without giving an explicit
response. In the rest condition, a blank screen with a central fixa-
tion dot was presented.

Object grasping, saccades and roof color naming blocks were
presented using an optimized epoch design. Black and white illus-
trations of graspable objects (e.g., scissor, cup; courtesy of Philippe
Pinel), multidirectional (360°) saccade targets and photographs of
houses with different roof colors, were presented. In object grasp-
ing trials, participants were instructed to mentally imagine grasp-
ing the objects with their dominant (right) hand. In saccade trials,
3 saccades were made through following a saccade target (+). In
house roof color naming, participants were instructed to silently
name the roof color. All trials were alternated with jittered fixation
trials, with a minimum ISI of 4000ms.

The visual motion localizer was added as we found increases
in the BOLD signal in MT during processing of nonsymbolic
numerosities in a previous experiment (Cavdaroglu et al. 2015).
The motion localizer was based on the MT localizer described in
Takemura et al. (2012). In total, 200 white dots (0.25°) were pre-
sented on a black background with a circular aperture of 20°

diameter centered at the fixation point. In a 12 s motion block,
the dots moved inwards and outwards at a speed of 8°/s. The
motion block was followed by a 12 s stationary block. Each dot
lasted for 10 frames and it was replaced at a random position
once the life time ended. Moreover, the dots that crossed the
borders of the circle during outward motion were replaced at
random locations within the circle as well as the dots that
reached the central fixation during inward motion. Nine pairs of
motion and nonmotion blocks were run in total.

fMRI Data Acquisition

Functional images were acquired at the Berlin Center for
Advanced Neuroimaging (BCAN) with a 3T Siemens TIM Trio
scanner (Siemens, Erlangen), using a 12-channel head coil. Before
the experiment, a T1-weighted image (MPRAGE) was collected as
high-resolution anatomical reference (TR = 1900ms, TE =
2.52ms, flip angle = 9°, FOV = 256mm × 256mm × 192mm, reso-
lution = 1mm). T2*-weighted gradient-echo echo-planar images
were collected during the experiment (TR = 2500ms, TE = 25ms,
flip angle = 82°, FOV = 190mm × 190mm, resolution = 2.5mm,
slices = 42 slices with a 20% distance factor; interleaved acquisi-
tion order). Finally, T2*-weighted gradient-echo echo-planar
images were collected during the localizer task (TR = 2000ms, TE
= 30ms, flip angle = 78°, FoV = 192mm × 192mm, resolution =
3mm, slices = 33 with a 25% distance; descending acquisition
order). The first 2 images in each series served to guarantee sta-
ble magnetization and were not recorded. After the acquisition of
the anatomical image as well as before the localizer, a magnetic
field mapping sequence was run to correct for inhomogeneities
in the magnetic field (TR = 400ms, TE = 5.19ms/7.65ms, flip
angle = 60°, FOV = 192mm × 192mm, resolution = 3mm, slice
gap = 25%, slices = 33).

fMRI Data Analysis

Images were analyzed using Statistical Parametric Mapping soft-
ware (SPM8; Wellcome Trust Center for Neuroimaging; http://
www.fil.ion.ucl.ac.uk/spm/). Functional images were first reor-
iented to the anatomical reference and then corrected for inho-
mogeneities in the magnetic field. Subsequent preprocessing
included slice-timing correction (where middle image in the time
series was taken as the reference), spatial realignment and
unwarping, coregistration to the unwarped mean image, seg-
mentation, normalization to standard Montreal Neurological
Institute (MNI) space, and smoothing (FWMH = 6 × 6 × 6mm3).

After preprocessing, a general linear mode (GLM) based on
numerosity was defined using a canonical HRF. The numerosity
model included a regressor for each numerosity (5, 7, 11, and 16);
separately for simultaneous/sequential modes and response/
nonresponse trials as well as a regressor for null events. In
response trials, the first and second numerosities were also mod-
eled separately. Thus, the numerosity-GLM had 33 regressors in
total along with 6 movement parameters from preprocessing to
capture signal variations due to head motion. The event-related
numerosity regressors were locked to the onset of the numeros-
ity presentation. The null events were used as baseline for the
contrasts in univariate analysis.

All the contrasts reported in this paper were corrected with FDR
at P = 0.05 on cluster level, P = 0.001 on voxel level with minimum
cluster size 15 using xjView (http://www.alivelearn.net/xjview).

Unsmoothed images from the preprocessed data were used
for multivariate analysis to preserve the maximal amount of spa-
tial information. Pattern classification was performed using
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linear support vector machines (SVM) on The Decoding Toolbox
(Hebart et al. 2015) with regularization parameter [C] set to 1
(LIBSVM 3.12, Chang and Lin 2011). A one-block-out cross valida-
tion scheme was employed. That is, one experimental block was
left as the test data and the remaining 7 blocks were used to train
the classifier. The left-out block was iterated over all 8 blocks and
an average decoding accuracy estimate was obtained at the end.

To investigate how numerosity-specific the pattern recogni-
tion results were in simultaneous trials, the stimuli were reor-
ganized for each sensory feature (i.e., convex hull, density,
diameter, and total area) such that there were 4 categories for
the respective sensory feature. That is, instead of labeling the
dot arrays based on the number of dots (i.e., 5, 7, 11, and 16),
we labeled them with the corresponding category (e.g., based
on how big the total area is) in 4 different models that were
based on the convex hull, total area, density, or diameter of the
dots in the stimulus. Since perfect balancing of the number of
trials in each category was not possible in all cases, we cor-
rected for the remaining numerical imbalances between differ-
ent categories by using the balanced accuracies (that are
provided by The Decoding Toolbox) during the statistical test-
ing of multivariate analysis results for sensory features.

Analysis of the Localizer Data and ROI Extraction

Preprocessing of the localizer data was identical to the functional
data besides the reference slice used for slice-timing correction
(first image) and the order of slice-timing correction and spatial
alignment (here, spatial alignment and unwarping was performed
before slice-timing correction due to differences in slice acquisi-
tion order). After preprocessing, the localizer task was modeled
by a canonical HRF and a GLM was defined that included a regres-
sor for each condition (houses, objects, dates, reading, subtraction,
saccades, motion, and fixation) and 6 motion parameters from pre-
processing to capture signal variations due to head motion.

For MVPA, bilateral parietal ROIs were extracted from the
combination of F-contrast (main task) on a subject-by-subject
basis and subtraction minus reading contrast (localizer task) on
group level within a mask of parietal cortex (WFU PickAtlas,
Maldjian et al. 2004, 2003). Within these masks, the 500 most
active voxels were chosen as subjective ROIs (Fig. 1B). The group
level “subtraction minus reading” contrast was used, as there
were not enough voxels for most subjects on individual level.

Finally, to investigate how the representation of numerosity
and other sensory features evolve along the visual hierarchy,
we created 2 ROIs separating striate from extrastriate areas of
the visual cortex. The first visual ROI was a combination of
“houses minus rest” contrast (localizer task) on subject-by-
subject basis within a mask of “occipital cortex minus striate
cortex” (Anatomy Toolbox, Eickhoff et al. 2005, 2006, 2007;
Fig. 1B). The second visual ROI was a combination of “houses
minus rest contrast” (localizer task) on a subject-by-subject
basis within a mask of striate cortex (V1, WFU atlas, Maldjian
et al. 2003, 2004; Fig. 1B). Hence, the first visual ROI included the
extrastriate areas whereas the second visual ROI included only
the striate cortex. For both ROIs, the 500 most active voxels
within these masks were chosen as subjective ROIs.

Tuning Curves

Similar to the analysis of single neuron numerosity tuning
(Nieder 2012; Viswanathan and Nieder 2013), we determined for
each participant which numerosity a given voxel responded to
maximally by searching for the maximal beta weight from the

above described model containing all numerosities in simulta-
neous mode. Since one of the aims of this study was to analyze
whether the extraction of numerosities outside subitizing range
is organized along an occipital-to-parietal gradient, we defined
6 nonoverlapping ROIs in each hemisphere that covered the entire
dorsal pathway from striate to parietal areas (see left inset in
Fig. 2D). All ROIs were boxes including 768 voxels (640mm3), col-
lapsed across the 2 hemispheres. The lower 3 ROIs had an exten-
sion of 16 × 12 × 4 voxels centered on the following coordinates
(x, y, z; from occipital to parietal): (0, −90, 6); (0, −90, 18); (0, −80, 30).
The upper 3 ROIs had an extension of 8 × 12 × 4 voxels in each
hemisphere, centered on the following coordinates (x, y, z; from
occipital to parietal): (±15, −70, 42); (±20, −60, 54); (±25, −50, 66).

Along this gradient, we computed the voxel-wise tuning
functions and averaged across numerosities to determine the
average numerosity tuning at each level of the gradient (see
Serences et al. 2009 for an example). That is, we centered the
numerosity-specific tuning curves on the preferred numerosity
and pooled across preferred numerosities. For example, the
BOLD response for numerosity 7 in voxels that respond maxi-
mally to numerosity 5 (approximate log distance: 0.15) is pooled
with responses to numerosity 16 in voxels that respond maxi-
mally to numerosity 11 (approximate log distance: 0.16). The
resulting numerosity tuning functions indicate the degree to
which voxels in each ROI change their response as a function
of numerical distance between preferred and presented numer-
osity. For each ROI, we computed 2 linear regressions on the
numerosity tuning functions, one for negative numerical devia-
tions from the preferred numerosity and one for positive. In a
last step, we averaged the 2 regression coefficients to compute
an intuitive measure of numerosity filter precision along the
ROI gradient. All tuning curve analyses are based on 14 partici-
pants only, since we excluded participants who did not show at
least one activated voxel in every ROI.

Results
Behavioral Results

The mean accuracy was 79.46% (SD 8.52%) for simultaneous
response trials and 72.67% (SD 6.75%) for sequential response
trials. In both modes, participants performed significantly above
chance (t(16) = 14.238, P < 0.001 for simultaneous and t(16) =
13.852, P < 0.001 for sequential). We submitted behavioral accu-
racies to a repeated measures ANOVA with factors mode (simul-
taneous, sequential) and numerosity (5, 7, 11, and 16) and found
a main effect of mode (Fig. 2, F(1,16) = 13.761, P = 0.002), numeros-
ity (F(1,16) = 16.271, P < 0.001) as well as an interaction between
mode and numerosity (F(1,16) = 5.034, P = 0.004). Post hoc tests
revealed that in simultaneous trials, the comparison accuracy
for numerosity 7 was significantly higher than the accuracy for
numerosity 16 (t(1,16) = 5.22, P = 0.001; Bonferroni corrected). In
sequential trials, comparison accuracies for numerosity 7 and 11
were significantly higher than for numerosity 5 (t(16) = 5.912, P =
0.009; t(16) = 5.748, P < 0.001, respectively; Bonferroni corrected)
and the accuracy for 11 was significantly higher than 16 (t(16) =
4.188, P = 0.005; Bonferroni corrected). Participants were signifi-
cantly more accurate in simultaneous compared with sequential
response trials (t(16) = 4.485, P < 0.001).

fMRI Results

Univariate Analysis
The BOLD signal during nonresponse trials was captured by
contrasting all numerosities against baseline, irrespective of
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numerosity and separately for simultaneous and sequential
trials. For simultaneous numerosities in nonresponse trials,
BOLD signal increased significantly in bilateral visual areas,

bilateral intraparietal lobule, left-hemispheric superior parietal
lobule, and bilateral frontal gyrus (purple color in Fig. 2A and
Supplementary Table S1). For sequential numerosities in

Figure 2. (A) Depiction of areas where the BOLD signal increased significantly for simultaneous (purple) and sequential (orange) numerosities in nonresponse trials.

Overlapping activations are shown in yellow. (B) Depiction of areas where there was a greater BOLD increase for simultaneous compared with sequential (purple) or

sequential compared with simultaneous (orange) numerosities. (C) Bar graph depicts the average decoding accuracy obtained from the MVPA. The graph on the left

depicts the results for convex hull, density, area, and numerosity, each of which had 4 categories. The chance level was determined by permutation analysis. While

sensory measures as well as numerosity were decoded significantly from visual ROIs (i.e., SC and EC), only the decoding accuracy for numerosity was significant in

PC. The graph on the right depicts the decoding accuracy for diameter, which had 3 categories. An equal number of trials was chosen per diameter category to have a

balanced sample for MVPA. The chance level was again determined by permutation analysis. The decoding accuracy for diameter was significant both in visual ROIs

and PC. (D) Normalized beta-weights for all 6 ROIs (depicted on the brain within the inset) as a function of log distance between numerosities in simultaneous format.

The beta values follow a tuning-profile in all the ROIs but the precision of tuning (i.e., slope of the tuning curves) increases as one moves from visual to parietal areas.

(E) Depiction of areas where the BOLD signal increased more for large numerosities (11 and 16) compared with small numerosities (5 and 7) for simultaneous and

sequential numerosities. Only visual cortex exhibited summation coding like activity for both simultaneous and sequential numerosities. All activations FDR cor-

rected at P = 0.05 on cluster level, P = 0.001 on voxel level, cluster size 15. Left, top, and right views (respectively) of the inflated Human Connectome Project atlas

(group average S1200) using Connectome Workbench software (Marcus et al. 2011).
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nonresponse trials, BOLD signal increased significantly in bilat-
eral primary visual areas, right-hemispheric superior temporal
sulcus, left insula and precentral gyrus, and right-hemispheric
BA 44 (orange color in Fig. 2A and Supplementary Table S1).
Only in the frontal cortex (BA 44) and visual cortex (V5 and
Area 18) did the BOLD signal increased when we inclusively
masked simultaneous and sequential nonresponse trials (yel-
low areas in Fig. 2A, Supplementary Table S2).

Since previous studies found parietal involvement during
sequential numerosity processing, the absence of parietal acti-
vation may simply be due to a lack of statistical power. To
increase statistical power for sequential numerosities, we
included 13 participants (healthy adults; 4 males; mean age =
26.3 ± 6.29 years) from a previous experiment who performed
the same task on the same visual sequential numerosity stimu-
li (for more details see Cavdaroglu et al. 2015). While activity in
occipital areas remains stable across the 2 studies, no parietal
activation can be observed for sequential numerosities in the
absence of active response preparation despite considerably
increased statistical power (cf. Supplementary Fig. S1). No such
analysis was done for simultaneous numerosities since partici-
pants in the previous study (Cavdaroglu et al. 2015) were pre-
sented with auditory numerosities instead.

To further probe brain areas that were more activated for
sequential or simultaneous numerosities, respectively, we con-
trasted both modes against each other. Simultaneous numeros-
ities evoked more activity in bilateral parietal cortex, bilateral
area V3v, and right middle occipital gyrus (purple in Fig. 2B).
Areas that were more active during encoding of sequential
numerosities include bilateral occipital cortex (middle occipital
gyrus, left area 18 and area 4p), middle cingulate cortex, left insu-
la, and bilateral precentral sulcus (orange in Fig. 2B). Peak coordi-
nates and cluster sizes are reported in Supplementary Table S3.

The BOLD signal for response trials was captured by con-
trasting the second numerosity in response trials against non-
response trials separately for simultaneous and sequential
numerosities. As the comparison (and response) came right
after the presentation of the second numerosity, this contrast
included comparison/response related activity. We observed
the classic frontoparietal task-positive network (Fox et al. 2005);
see Supplementary Fig. S2A). The BOLD signal increased promi-
nently in the parietal cortex (as well as other areas) for
response trials both in simultaneous and sequential mode

In order to investigate the areas that show summation cod-
ing like activity, we subtracted the BOLD signal for smaller
numerosities (5 and 7) from the BOLD signal for larger numer-
osities (11 and 16). Only visual cortex exhibited summation
coding like activity for both simultaneous and sequential
numerosities (Fig. 2E).

Multivariate Analysis
For multivariate analysis, we chose ROIs from PPC, extrastriate
cortex and striate cortex based on a combination of localizer and
task activity (see Materials and Methods for details; see Fig. 1B
for ROIs). To test whether the decoding accuracies in parietal
cortex were significantly different from chance classification, we
ran a permutation analysis with 1000 cycles where the labels of
training data were shuffled and randomized. We tested the aver-
age MVPA accuracies per participant against the accuracies from
the permutation analyses for both modes (simultaneous and
sequential). While the decoding accuracy for simultaneous
numerosities was significantly higher than chance in the parie-
tal ROI (t(16) = 2.25, P = 0.039), the decoding accuracy for

sequential numerosities did not reach significance (t(16) = 0.44, P
= 0.66; see Fig. 2C for graphical depiction of decoding accuracies
and see Supplementary Fig. S2B for confusion matrices).

To test whether the decoding accuracies in visual and parie-
tal cortices were significantly different from chance classifica-
tion, we run a permutation analysis with 1000 cycles where the
labels of training data were shuffled and randomized. We
tested the MVPA accuracies per participant against the accura-
cies from the permutation analyses for all measures (convex
hull, density, diameter, total area, and numerosity) and ROIs
(striate, extrastriate, and parietal). As one of the stimulus sets
for simultaneous numerosities had constant diameter, there
was an imbalance in the number of trials for that diameter cat-
egory in MVPA analysis. While half of the trials had the same
diameter, the other half had 4 different diameter values where
the diameter decreased with increasing numerosity (i.e., the set
where total area was constant, hence diameter was decreasing
with increasing numerosity). To overcome this, we grouped the
diameters in the set where total area was constant in 2 catego-
ries (number 5 and 7 one category as their diameter was closer
to each other, 11 and 16 another) and picked equal number of
trials from the other set where diameter size was constant.
Hence, only for diameter, we had 3 categories instead of four.
Decoding accuracies for numerosity and diameter were signifi-
cant in all ROIs (numerosity: t(16) = 2.39, P = 0.03; t(16) = 2.6, P =
0.02; t(16) = 2.24, P = 0.03; diameter: t(16) = 5.5, P < 0.001; t(16) =
4.46, P < 0.001; t(16) = 3.92, P = 0.001 for striate, extrastriate, and
parietal, respectively; see Fig. 2C for graphical depiction of
decoding accuracies and Supplementary Fig. S2B for confusion
matrices). Decoding accuracies for total area and density were
significant only in striate and extrastriate areas (total area: t(16) =
3.36, P = 0.004; t(16) = 3.6, P = 0.002; t(16) = 0.667, P = 0.51; density:
t(16) = 3.88, P = 0.001; t(16) = 3.79, P = 0.002; t(16) = 1.45, P = 0.167 for
striate, extrastriate, and parietal, respectively). Finally, decoding
accuracies for convex hull were significant only in the striate
visual cortex (t(16) = 4.02, P < 0.001; t(16) = 1.45, P = 0.17; t(16) = 0.68,
P = 0.51 for striate, extrastriate, and parietal, respectively).

To investigate if any of the ROIs had a mode-independent
representation, we tested whether the classifier could discriminate
presentation modes (simultaneous and sequential). Again, we sta-
tistically validated the resulting accuracies against the accuracies
obtained from the permutation analysis with 128 cycles—which
was the highest possible amount of permutations—where labels
of training data were shuffled and randomized. Interestingly,
decoding accuracies for presentation mode were significantly
above chance in all the ROIs tested (striate: t(16) = 24.87, P < 0.001;
extrastriate: t(16) = 15.93, P < 0.001; parietal: t(16) = 5.15, P < 0.001)
indicating separate representations for simultaneous and sequen-
tial numerosities.

We observed overlapping activity for simultaneous and
sequential numerosities in left and right precentral gyrus. The
assumption that these regions provide the abstract conver-
gence of sequential and simultaneous numerosities stipulates
1) significant activation and 2) numerosity specificity as tested
with MVPA that 3) generalizes across modes (i.e., sequential to
simultaneous, simultaneous to sequential). However, for none
of these regions, we were able to significantly decode numeros-
ity (precentral gyrus: P = 0.4338 for simultaneous, P = 0.5156 for
sequential). This contradicts conditions 2) and 3).

Tuning Profiles

Similar to the analysis of single neuron numerosity tuning
(Nieder 2012; Viswanathan and Nieder 2013), we determined for
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each participant which numerosity a given voxel responded to
maximally and computed voxel-wise tuning curves along an
occipital-to-parietal gradient. First, we observed number-
selective voxels at each step within the gradient from occipital
to parietal cortex (Fig. 2D). We found a significantly positive
regression slope in all ROIs (all t[13] > 14 with Ps < 0.0001).
However, the slopes varied as a function of ROI (F[5, 65] = 9.093,
P = 0.0001). Pairwise comparisons between neighboring ROIs
revealed that the slope was significantly larger in ROI 3 compared
with ROI 2 (t[13] = 2.83, P = 0.014). Maximal slope was observed in
ROI 6, where it was larger compared with ROI 5 (t[13] = 2.49, P =
0.027). We found that numerical distance from preferred numeros-
ity (F[3, 39] = 426.27, P < 0.0001, ε = 0.619) and ROI (F[4, 65] = 4.84,
P = 0.006, ε = 0.603) had a significant impact on brain activity, that
significantly interacted with each other (F[15, 195] = 5.59, P = 0.0003,
ε = 0.324). Within each ROI we observed a significant change of
activity as numerical distance between preferred and actual
numerosity increased (all Ps < 0.0001). We found that within all
ROIs except ROI 3 the comparison between numerical distances
±0.51 and ±0.34 was not significant while all other comparisons
between adjacent distances were significant (Table 1). This implies
that in all ROIs except ROI 3 the tuning was most marked for
numerosities numerically close to the preferred numerosity and
became increasingly blurred for nonpreferred numerosities deviat-
ing maximally from the preferred numerosity.

Discussion
Whether the parietal cortex hosts a mode-independent seman-
tic representation of numerosity has long been debated. Here,
we probed sequential (i.e., dots presented over time) and simul-
taneous (i.e., dots presented over space) numerosity perception
while recording BOLD response. Going beyond previous studies,
we tested numerosities outside the subitizing range and iso-
lated perception from decision and response-related processes.
We found an increase in the parietal BOLD signal during the
presentation of simultaneous numerosities but not during the
presentation of sequential numerosities. Using MVPA we suc-
cessfully trained a classifier to decode simultaneous numeros-
ity from the BOLD signal in the parietal cortex, providing
further confirmation of numerosity selective activity in these
areas. No better-than-chance classification was observed for
sequential numerosities in the same ROIs. These results imply
distinct underlying coding schemes for sequential and simulta-
neous numerosities. This idea is further supported by signifi-
cant decoding of the presentation mode (i.e., simultaneous vs.

sequential) in the parietal ROIs. We used ROI-based MVPA to
further explore how the encoding of simultaneous numerosity
and other visual features (i.e., convex hull, total area, density,
and diameter) evolves from the primary visual cortex to the
parietal cortex. While striate and extrastriate areas gave rise to
successful classification of both non-numerical visual features
and numerosity, parietal ROIs allowed for decoding of numer-
osity and dot diameter only, suggesting a higher-level repre-
sentation in the parietal cortex beyond sensory features. We
found voxel-wise numerosity tuning functions for simulta-
neous numerosities in occipital and parietal ROIs. Numerosity
selectivity increased along an occipitoparietal gradient reaching
maximal selectivity in parietal areas. We observed overlapping
summation coding profiles (higher BOLD signal for large
numerosities vs. small numerosities) for sequential and simul-
taneous numerosities in low-level visual areas only.

Previous human neuroimaging found an occipital–parietal
gradient for numerosities in the subitizing range that associ-
ated occipital areas with a location map, occipitoparietal areas
with summation coding and superior parietal areas and IPS
with number-selective coding (Roggeman et al. 2011). Our
results complement these in several ways. First, we found
selectivity in PPC for simultaneous numerosities outside subi-
tizing range and independent from response requirements.
This suggests that the number-selective coding scheme that is
at the top of the model of Dehaene and Changeux (1993) may
generalize to larger numerosities. Note that at the time when
proposing their model, Dehaene and Changeux (1993) did not
consider subitizing to be a different process from estimation
(Revkin et al. 2008). Hence, our results provide the first empiri-
cal extrapolation of this model to larger numerosities in the
light of recent evidence that imply a procedural distinction
between small and large numerosities (Revkin et al. 2008;
Anobile et al. 2014). Second, unlike striate and extrastriate
areas, parietal cortex did not allow for the decoding of non-
numerical stimulus features such as density or convex hull,
supporting the notion of a high-level abstract number code in
IPS. This notion is in line with recent neuroimaging findings
that observed number-selective activity patterns in IPS in both
adults (Bulthé et al. 2015; Eger et al. 2015; Castaldi et al. 2016)
and adolescents (Wilkey et al. 2017). With respect to the ques-
tion whether (Bulthé et al. 2015; Eger et al. 2015) or not (Castaldi
et al. 2016) striate and extrastriate areas allow numerosity
decoding, our results suggest that numerosity is represented in
the striate and extrastriate areas as well as parietal cortex. At
the same time, non-numerical stimulus features such as den-
sity and convex hull were decodable only in striate and extra-
striate areas but not in parietal cortex. Together, this
underlines the idea that numerosity 1) can be conceived of as a
primary visual feature that influences activity patterns during
early processing steps in the visual system and 2) that numer-
osity is abtracted away from these physical features of the
visual scene as activity travels up towards IPS. The interaction
between numerical and non-numerical information along the
visual processing hierarchy remains an important question to
unravel in the future.

Finally, unlike Roggeman et al. (2011) we did not observe
areas in the occipitoparietal transition zone that exhibit a sum-
mation coding scheme for simultaneous numerosities.
However, contrasting large with small simultaneous numeros-
ities revealed summation coding in low-level visual areas, close
to the occipital pole. These voxels partially overlapped with
voxels that were more active for large sequential numerosities
compared with small sequential numerosities. Sequential

Table 1 Pairwise comparisons testing whether numerosity tuning is
limited to the difference between preferred numerosity and directly
neighboring numerical distances (last column) or whether numer-
osity preference extends to numerosities with larger numerical dis-
tance from preferred numerosity (first and second column).

Numerical distances

±0.51 vs. ±0.34 ±0.34 vs. 0.17 0.17 vs. 0

t(13) P t(13) P t(13) P

ROI 1 −1.6130 0.1307 −3.0407 0.0095 −25.4139 <0.0001
ROI 2 −1.3049 0.2146 −2.1541 0.0506 −31.8596 <0.0001
ROI 3 −1.4337 0.1753 −2.4205 0.0309 −24.1097 <0.0001
ROI 4 −1.0519 0.3120 −2.2468 0.0427 −27.1566 <0.0001
ROI 5 −1.6776 0.1173 −3.2145 0.0068 −17.1302 0.0001
ROI 6 −1.9087 0.0786 −3.1432 0.0078 −17.0212 0.0001
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summation coding was also observed in occipital areas along
the calcarine sulcus and in superior occipital areas, most likely
reflecting longer stimulation during larger numerosities. Hence,
it remains an open question to what extent previously
observed priority maps in superior PPC (Knops et al. 2014) con-
tribute to a summation mechanism during numerosity extrac-
tion, as suggested by prominent computational models
(Dehaene and Changeux 1993; Verguts and Fias 2004).

Monkey area VIP has been shown to contain 1) distinct neu-
ronal circuits for the coding of simultaneous and sequential
numerosities and 2) overlapping neural circuits for the mainte-
nance of numerosities from either mode (Nieder et al. 2006).
Furthermore, a recent fMRI study revealed adaptation for
sequential numerosities in human IPS (Wang et al. 2015).
Although our results seem to contradict these findings, it
should be noted that both studies employed small numeros-
ities (1–4 and 2–6, respectively). Moreover, fMRI adaptation and
primate neurophysiology can measure neural activity on sub-
voxel level whereas GLM and MVPA measure the activity from
tens or hundreds of voxels that contain millions of neurons
(Logothetis 2008). While primate neurophysiology studies mea-
sure spiking activity from single neurons, fMRI BOLD signal cor-
relates better with local field potentials (Goense and Logothetis
2008). These render a one-to-one mapping between MVPA anal-
ysis and adaptation studies or neurophysiology difficult. We
observed overlapping activity in prefrontal cortex. This may be
interpreted as the neural instantiation of a high-level integra-
tion of numerosity information across modes and modalities
that has been observed on the behavioral level (Arrighi et al.
2014). In order to claim that these regions were actually providing
the abstract convergence of sequential and simultaneous numer-
osities would require 1) significant activation and 2) numerosity
specificity as tested with MVPA that 3) generalizes across modes
(i.e., sequential to simultaneous and simultaneous to sequential).
However, for none of these regions, we were able to significantly
decode numerosity. This contradicts conditions 2) and 3). Hence
we do not consider these regions to contribute to numerosity cod-
ing in our experiment. Alternatively, areas in premotor cortex and
inferior frontal gyrus have recently been suggested to be involved
in the maintenance of sensory information (frequency) across dif-
ferent modalities (tactile and visual) in working memory (Spitzer
et al. 2014). These authors suggest that the role of frontal areas
goes well beyond executive control functions but is more closely
associated to the sensory content in working memory. Hence,
these areas may provide a more abstract convergence zone for
numerosity information in working memory. It remains unclear,
however, why Wu et al. (2018) observed a parametric modulation
of activity in precentral areas, while we did not observe a system-
atic modulation of activity as a function of numerosity. Our find-
ing makes sense under the assumption that participants did not
maintain the raw primary percept in WM but rather retained the
abstract numerosity information. The present study was not
designed to distinguish between encoding and working memory
maintenance, and our data to not allow disentangling these pro-
cesses. Future studies with a more stringent design are needed to
clarify differential roles of prefrontal and parietal areas during
encoding and working memory maintenance, and how this is
associated with supramodal integration that is observed in
behavior.

One may argue that encoding of sequential information is
associated with higher working memory demands compared
with the processing of simultaneous numerosities and that the
long ISI in the current study particularly affects the mainte-
nance of sequential numerosities. The fact that participants

were overall performing better in response trials for simulta-
neous numerosities compared with sequential numerosities
may be interpreted in this vein. On the neural level, higher
working memory demands should lead to higher activity in
working memory related areas. Working memory is usually
associated with activity in a frontoparietal network, comprising
parietal and prefrontal areas (Xu and Chun 2006; Li et al. 2014;
Ma et al. 2014). Our results fit nicely with previous results (Xu and
Chun 2006), that showed that even with much shorter ISIs (i.e.,
1000–1200ms), superior parietal activity in a working memory
task showed significantly smaller modulation of activity as a func-
tion of set size in response to sequential presentation at a center
location (comparable to the present study) compared with sequen-
tial off-center presentation (cf. Fig. 2 in Xu and Chun 2006).
Inferior parietal cortex did not exhibit any modulation of activity
as a function of set size with sequential presentation at center.
Alternatively, the difference between sequential and simultaneous
numerosities may result from higher encoding demands for
sequential numerosities. However, even if encoding sequential
numerosity information is more demanding compared with
simultaneous encoding, this is not associated with higher parietal
activity for sequential numerosities. This further undermines the
idea that parietal areas play a pivotal role during the encoding of
sequential numerosities.

Human neuroimaging suggested overlapping representations
of sequential and simultaneous numerosities (Castelli et al. 2006;
Piazza et al. 2006; Dormal et al. 2010). However, these neuroimag-
ing studies were difficult to interpret due to confounds between
numerical and non-numerical stimulus features in the sequential
mode (e.g., Dormal et al. 2010 used constant duration, confound-
ing numerosity with frequency) and the use of an active compari-
son task that may in and by itself activate parietal cortex that is
part of a domain generalized, nonspecific network (Hugdahl et al.
2015). Our results question the assumption that in the absence of
decisional and response-related requirements, numerosities from
different modes converge on a common, abstract, and mode-
independent representation in parietal cortex. Instead, we show
that when isolating sequential numerosity perception from
response requirement and carefully orthogonalizing temporal and
numerical stimulus dimensions, parietal BOLD signal remains
under threshold for sequential mode, even when pooling across
different studies to increase statistical power.

Previous studies suggest an association between numerosity
perception and formal math competencies (Feigenson et al.
2013). Despite the convergence of numerosity information from
various modes and modalities that is evident from a number of
behavioral studies (Arrighi et al. 2014), recent evidence found
only spatially distributed numerosities to be associated with
formal math skills (Anobile et al. 2018). Against this back-
ground, our results suggest that it may be parietal cortex activ-
ity that drives the association between the approximate
number system and formal math skills. On a functional level,
this parallels the idea that structural features of parietal cortex
correlate with formal math skills (Price et al. 2016)

To conclude, while the absence of evidence may not be con-
founded with evidence for absence, considering the MVPA
results, our study casts some doubt on the idea of a mode-
independent numerosity representation in IPS. As the neural
circuits for simultaneous and sequential numerosity compari-
son largely overlap in response trials, our results do not contra-
dict with previous studies that used numerical tasks and
reported common activation for both modes. It remains
unclear, however, whether the role of parietal cortex during
previous studies was to encode numerosity or to contribute to
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domain-general task components such as decision making and
response preparation.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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