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Abstract 
 

A longstanding view holds that information is maintained in working memory (WM) via 
persistent neural activity that encodes the content of WM. Recent work, however, has 
challenged the view that all items stored in WM are actively maintained. Instead, 
“activity-silent” models propose that items can be maintained in WM without the need 
for persistent neural activity, raising the possibility that only a subset of items – perhaps 
just a single item – may be actively represented at a given time. While past studies have 
successfully decoded multiple items stored in WM, these studies cannot rule out an 
active switching account in which only a single item is actively represented at a time. 
Here, we directly tested whether multiple representations can be held concurrently in an 
active state. We tracked spatial representations in WM using alpha-band (8–12 Hz) 
activity, which encodes spatial positions held in WM. Human observers (male and 
female) remembered one or two positions over a short delay while we recorded EEG. 
Using a spatial encoding model, we reconstructed stimulus-specific working memory 
representations (channel tuning functions, CTFs) from the scalp distribution of alpha-
band power. Consistent with past work, we found the selectivity of spatial CTFs was 
lower when two items were stored than when one item was stored. Critically, data-
driven simulations revealed that the selectivity of spatial representations in the two-item 
condition could not be explained by models restricting storage to a single item at a time. 
Thus, our findings provide robust evidence for the concurrent storage of multiple items 
in visual working memory. 
 
 

Author Summary 
 

Working memory (WM) is a mental workspace where we temporarily hold information 
“online” in pursuit of our current goals. However, recent activity-silent models of WM 
have challenged the view that all items are held in an “online” state, instead proposing 
that only a subset of representations in WM – perhaps just one item – are represented 
by persistent activity at a time. To directly test a single-item model of persistent activity, 
we used a spatial encoding model to read out the strength of two representations from 
alpha-band (8–12 Hz) power in the human EEG signal. We provide direct evidence that 
both locations were maintained concurrently, ruling out the possibility that declines in 
stimulus-specific activity are due to storing one of two items in an activity-silent state. 
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Introduction 

 
Working memory (WM) is an “online” memory system that maintains information 

in a readily accessible state. A longstanding view is that WM representations are 
maintained via persistent, stimulus-specific delay activity. Visual features maintained in 
WM can be decoded from patterns of persistent neural activity in humans and non-
human primates alike (Funahashi et al., 1989, 1993; Lara and Wallis, 2014; Harrison 
and Tong, 2009; Serences et al., 2009). In line with the known declines in behavioral 
performance as WM load increases (Luck and Vogel, 1997; Wilken and Ma, 2004; 
Zhang and Luck, 2008), the selectivity of stimulus-specific delay-period activity also 
declines with increasing memory load (Buschman et al., 2011; Emrich et al., 2013; 
Matsushima and Tanaka, 2014; Sprague et al., 2014, 2016). Thus, persistent activity 
has been thought to play a central role in WM maintenance (Sreenivasan et al., 2014). 

 
Despite robust parallels to behavior findings, prior work does not firmly establish 

that multiple items are concurrently stored in an active state (i.e. represented by 
persistent neural activity). It has been postulated that reduced selectivity of neural 
representations with greater memory load occurs because competition between 
concurrently stored representations degrades the fidelity of those representations 
(Bays, 2014; Franconeri et al., 2013). However, recent “activity-silent” models of 
working memory have challenged the view that all items maintained in WM are 
supported by a persistent pattern of neural activity (e.g., continued firing of neurons), 
instead proposing that activity-silent memory mechanisms (e.g., rapid changes to 
synaptic weights) can support the short-term retention of information (Lewis-Peacock et 
al., 2012; Mongillo et al., 2008; Rose et al., 2016; Stokes, 2015; Wolff et al., 2017). In 
this view, when multiple items are stored in WM, they need not be concurrently 
represented by persistent activity. Instead, each item may transition between active and 
silent states, with only a single item in an active state at any given time. Indeed, recent 
work suggests that multiple items maintained with WM are activated serially 
(Bahramisharif et al., in press). Furthermore, other work suggests that when two 
locations must be attended, these locations are sampled sequentially (Fiebelkorn et al., 
2013; Landau and Fries, 2012; vanRullen et al., 2007). Given past work positing a 
functional overlap between spatial WM and spatial attention (Awh and Jonides, 2001; 
Awh et al., 2006; Gazzaley and Nobre, 2012), sequential representation may also 
underpin the maintenance of multiple locations in spatial WM. Such a switching model, 
in which only one item is actively represented at once, also predicts an apparent decline 
in the fidelity of neural representations when mnemonic load is increased, because 
typical analyses aggregate data across multiple trials (e.g., Emrich et al., 2013; Sprague 
et al., 2014). Thus, if an item is represented for a smaller portion of the delay period 
when load increases, this could mimic the effects of competition between concurrently 
stored items. 
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Here, we provide a decisive test of whether persistent neural activity can 
concurrently represent multiple items. Human observers maintained the locations of one 
or two items over a brief delay period. We tested whether multiple locations are 
concurrently represented in oscillatory alpha-band (8–12 Hz) activity, which past work 
has shown precisely encodes spatial locations in WM (Foster et al., 2016, 2017). To this 
end, we used an inverted encoding model (IEM; Brouwer and Heeger, 2009; Sprague et 
al., 2015) to reconstruct representations of the remembered locations from the scalp 
distribution of EEG alpha-band power (Foster et al., 2016, 2017). Consistent with past 
work, we found that the selectivity of stimulus-specific activity was reduced when two 
items were remembered than when one item was remembered. Critically, however, 
when we simulated the expected selectivity of stimulus-specific activity during the two-
item condition assuming a switching model (in which only one item was actively 
represented at once), we found that the observed selectivity in the two-item condition 
was reliably higher than predicted by a switching model. Thus, our findings provide 
robust evidence for the concurrent representation of at least two items in an active 
state. 

Results 
 

Behavior 
 
 Observers performed a spatial working memory task (Fig. 1A). On each trial, 
observers remembered the spatial position of one or two colored dots and reported the 
position of a cued item with a mouse click. We found that median response times (Fig. 
1B) were slower for two-item trials (M = 1224 ms, SD = 271) than one-item trials (M = 
1050 ms, SD = 245), t(27) = 12.33, p < .0001. In line with past work (Luck and Vogel, 
1997; Wilken and Ma, 2004; Zhang and Luck, 2008; Bays et al., 2009), memory 
performance declined as memory load increased from one to two items. We analyzed 
the recall data using a three-component mixture model (Bays et al., 2009) to estimate 
mnemonic precision (SD, higher values indicate lower precision), the probability that a 
stimulus was forgotten (pGuess), and the probability of reporting a non-target item 
(pSwap). We found that mnemonic precision was worse (i.e., SD was higher, Fig. 1C) 
when participants maintained two items (M = 6.83°, SD = 1.05) than when they 
maintained one item (M = 5.45°, SD = 1.01), t(27) = 15.66, p < .0001. We saw no 
reliable difference in the rate of guessing (Fig. 1D) between one-item (M = 0.12%, SD = 
0.24) and two-item (M = 0.08%, SD = 0.16) trials, t(27) = -1.60, p = 0.121. Finally, 
observers’ rates of misreporting the location of the non-target item (Fig. 1E) on two-item 
trials (M = 0.23%, SD = 0.30) was reliably greater than zero, t(27) = 4.10, p = 0.0003. 
Note that the combined rate of guessing and swapping were very low (less than 1% for 
almost all observers). Thus, the primary change in behavior with memory load was the 
slowing of response times and reduction in precision of responses. 
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Alpha-band representations of space degrade with increased memory load 

 
To test how online representations change with increased memory load, we 

examined oscillatory alpha-band (8–12 Hz) activity, which encodes spatial 
representations that are maintained in WM (Foster et al., 2016, 2017). We used an 
inverted encoding model (IEM; Brouwer and Heeger, 2009, 2011; Sprague et al., 2015) 
to reconstruct spatial representations encoded by alpha-band activity (Foster et al., 
2016). Our encoding model assumes that alpha-band power measured at each scalp 
electrode reflects the activity of a number of spatially tuned channels (or neuronal 
populations), each tuned for a different position in the visual field (Fig. 2A and 2B). In a 
training phase, we estimated the relative contributions of the spatial channels to each 
electrode on the scalp (called the “channel weights”) using a subset of trials during the 
spatial WM task (Fig. 2C). Then, in a test phase, using an independent subset of trials, 
we used these channel weights to estimate the responses of the spatial channels given 
the pattern of alpha-band power across the scalp. The resulting profile of responses 
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across the spatial channels (called channel-tuning functions, or CTFs) reflects the 
spatial selectivity of alpha-band activity measured by EEG. We performed this analysis 
at each time point throughout the trial, which allowed us to test whether active spatial 
representations were maintained throughout the delay period. 
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To examine how WM load 
affects alpha-band representations 
of the remembered positions, we 
reconstructed CTFs for the both the 
one- and two-item conditions (see 
Materials and Methods). We 
observed a clear spatially selective 
CTF, with a peak response in the 
channel tuned for the remembered 
location (a channel offset of 0°), 
which persisted throughout the delay 
period in both the one-item and two-
item conditions (Fig. 3A and 3B). 
Figure 3C shows the spatial 
selectivity of the CTFs seen in each 
condition across time (measured as 
CTF slope, see Materials and 
Methods). Cluster-based 
permutation tests revealed that 
spatial selectivity of alpha-band 
CTFs was reliably above zero 
throughout the delay period for both 
the one- and two-item conditions (p 
< .05, corrected for multiple 
comparisons; see markers at the top 
of Fig. 3C). Next, we compared CTF 
selectivity for the one-item and two-
item conditions. A resampling test 
confirmed that delay-period CTF 
selectivity (averaged from 250 to 
1250 ms after stimulus onset) was 
reliably lower (p < .0001) for two-

item trials (M = .059, SD = .033) than for one-item trials (M = .087, SD = .046). 
Importantly, we also found that this difference was reliable (p = .004) during a late 
window (800–1250 ms) when alpha-band representations are unlikely to be affected by 
stimulus-driven activity. Thus, as memory load increases, there is a decline in spatially-
selective alpha-band activity that tracks the stored locations. 

 
Alpha-band activity concurrently encodes two spatial representations 
 

Consistent with past work (Buschman et al., 2011; Emrich et al., 2013; Sprague 
et al., 2014, 2016), we observed that spatially specific alpha-band activity deteriorates 
as memory load increases. However, declines in stimulus-specific activity with 
increasing load can be explained in two ways. On the one hand, the observed decrease 
in selectivity might reflect the loss of memory fidelity due to competition between 
representations when multiple stimuli are maintained in an active state (Bays, 2014; 
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Franconeri et al., 2013). On the other 
hand, activity-silent models of WM 
(Stokes, 2015), highlight the possibility 
that only a single item is maintained in an 
active state at any given moment, while 
the other items stored in WM are 
represented in an activity-silent state. 
Under this account, the apparent 
persistent activity in the two-item condition 
(Fig. 3B) can be explained if the two items 
in WM switch in and out of an active state. 
(Fig. 4A). Critically, this switching account 
asserts that with a memory load of two 
items, each item can only be represented 
a maximum of 50% of the time, on 
average. To test whether this switching 
account can explain the CTFs seen during 
the two-item condition, we simulated the 
CTF selectivity expected under a 
switching account. To this end, we 
generated CTFs from the single-item 
condition but randomized the position 
labels for 50% of the trials (see Materials 
and Methods). We then compared CTF 
selectivity seen during the two-item 
condition with the CTF selectivity 
expected under the switching account. 
We reasoned that if the switching account 
was correct, we should see no difference 
between CTF selectivity for two-item trials 
and for the simulated switching 
conditions. However, if we observed a 
higher CTF selectivity for the observed 

two-item data, we could conclude that alpha activity reflects the simultaneous 
maintenance of multiple locations in WM during a given trial.  

 
Figure 4B shows CTF selectivity across time for the two-item condition and for 

simulated switching based on the one-item data. We found that CTF selectivity was 
higher throughout the delay period (averaged from 250 to 1250 ms after stimulus onset) 
for the two-item condition (M = .063, SD = .036) than expected based on the switching 
account (M = .043, SD = .030). A resampling test revealed that this difference was 
reliable (p < .0001). We also observed a reliable difference when we restricted our 
analysis to a window late in the delay period (800-1250 ms) to minimize the contribution 
of stimulus-driven activity (p = .001). This analysis provides definitive evidence that 
multiple locations are simultaneously represented by alpha-band activity, and that 
observed decreases in CTF selectivity as memory load increases reflect a decline in the 
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quality of concurrently stored representations rather than rapid switching between active 
representations.  

 
The frequency of oscillations that encode spatial representations does not 
change with memory load 
 

 The decline in the spatial selectivity of 
alpha-band activity with increasing 
memory load suggests that the fidelity of 
the spatial representations decreased as 
memory load increased. However, 
another possibility is that the 
remembered locations were represented 
by a different frequency band when 
memory load increased. To test this 
possibility, we performed the IEM 
analysis separately for the one-item and 
two-item conditions (i.e., both training 
and testing within each condition; see 
Materials and Methods) across a range 
of frequencies (4–50 Hz). We conducted 
a cluster-corrected permutation test to 
identify reliable clusters of above-chance 
CTF selectivity. Consistent with our past 
work (Foster et al., 2016), we observed a 
burst of spatially specific activity across a 
range of frequencies (4–25 Hz). 
However, only alpha-band activity (8–12 
Hz) tracked the remembered position(s) 
throughout the delay period (Fig. 5A and 
5B). An overlay plot of spatially specific 
frequencies in both one-item and two-
item trials revealed a strikingly similar 
frequency profile later during the delay 
period, when stimulus-driven activity has 
subsided (Fig. 5C). These findings show 
that the frequency of oscillatory activity 

that encodes spatial representations does not change with memory load. Thus, the 
decrease observed in the spatial selectivity of alpha-band CTFs with increasing memory 
load reflects a decline in spatially selective activity rather than a shift in the frequency of 
spatially selective oscillations. 
 
Ruling out chunking of locations when two items are stored in WM 
 

In our two item condition, observers precisely reported each of the two locations 
and we saw clear spatially specific delay activity in this condition. However, past work 
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has suggested that multiple items may be stored in WM by maintaining a single “chunk” 
in WM rather than independent representations of each item (e.g., Huang and Awh, 
2018). We reasoned that if observers maintained the two locations as a single chunk, 
then the pattern of spatially selective alpha-band activity on the scalp should not 
generalize from the one-item condition to the two-item condition. In contrast, if 
observers maintained two independent spatial locations, we expected that pattern of 
alpha-band activity corresponding to each location should generalize from the one-item 

condition to the two-item 
condition. To test between these 
two possibilities, we trained the 
IEM on one-item trials, and tested 
on two-item trials. This analysis 
revealed robust reconstructions of 
the remembered locations (Fig. 
6), providing clear evidence that 
the spatially selective pattern of 
alpha-band activity generalizes 
from the one-item condition to the 
two-item condition. This finding 
supports the view that observers 
maintained two distinct spatial 
representations in spatial working 
memory. 

 
Discussion 

 
A longstanding view is that the maintenance of information in WM is realized via 

persistent neural activity that encodes the content of WM.  In support of this view, past 
work has shown that stimulus-specific patterns of delay-period activity track visual 
features maintained in WM (Funahashi et al., 1989, 1993; Foster et al., 2016; Harrison 
and Tong, 2009; LaRocque et al, 2017; Serences et al., 2009; for review, see 
Sreenivasan et al., 2014). However, recent work has challenged stimulus-specific 
activity as the sole mechanism that supports maintenance in WM, instead proposing 
that other activity-silent mechanisms can also support the retention of information 
(Lewis-Peacock et al., 2012; Stokes, 2015; Rose et al., 2016; Wolff et al., 2017). This 
activity-silent account warrants a re-evaluation of the evidence that all items maintained 
in WM are represented in stimulus-specific patterns of activity. The prevailing view has 
been that multiple items are concurrently represented by stimulus-specific delay activity. 
Indeed, past work finds that increased memory load results in a decline in the stimulus-
specific patterns of activity during WM maintenance (Buschman et al., 2011; Emrich et 
al., 2013; Sprague et al., 2014, 2016), mirroring behavioral declines in performance. 
However, the activity-silent account raises the possibility that only a single item is 
actively represented at a time, and that the apparent representation of multiple items is 
seen because typical analyses aggregate data across trials, averaging together periods 
when an item is represented and when it is not represented. 
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Here, we tested such a switching account, in which only one item was actively 
represented at once. We used an inverted encoding model (IEM) combined with EEG 
measurements of oscillatory alpha-band (8–12 Hz) power to track remembered spatial 
locations during a WM task in which human observers remembered one or two spatial 
locations. Consistent with previous fMRI and non-human primate unit recordings that 
found that stimulus-specific activity declines with WM load (e.g., Buschman et al., 2011; 
Emrich et al., 2013; Sprague et al., 2014), we found that the spatial selectivity of alpha-
band activity declined as memory load increased. We tested the switching account by 
simulating selectivity expected under a switching model in which only one item was 
actively represented at a time. We found that the spatial selectivity of alpha-band CTFs 
during two-item trials was greater than predicted by models that restrict active storage 
to only one item at a time, even when rapid switching is allowed. Thus, our findings 
provide clear evidence that two items can be represented concurrently in an active 
state. 

 
In principle, our switching simulation can also be applied to existing MRI studies 

that have examined stimulus-specific activity as a function of memory load (e.g., Emrich 
et al., 2013; LaRocque et al., 2017; Sprague et al., 2014, 2016). However, the BOLD 
(blood oxygen level dependent) signal measures the hemodynamic response as a proxy 
for neural activity rather than measuring neural activity directly. Thus, evidence for 
concurrent representations in the BOLD signal does not necessarily indicate concurrent 
representations in neural activity, especially given the slow time course of the 
hemodynamic response. For example, if two items were switched in and out of an active 
state (e.g., on the order of hundreds of milliseconds), this would likely produce 
concurrent representations of both items in the BOLD signal. In contrast, we directly 
measured alpha-band activity. Thus, we can be confident that both items are 
concurrently represented by neural activity.  

 
The encoding model approach – which allowed us to directly assay stimulus-

specific activity – was critical to test whether two items were concurrently represented in 
an active state. Past work has identified load-dependent neural signals that track the 
number of items maintained in WM, reaching an asymptote around WM capacity. For 
example, Vogel and Machizawa (2004) reported a lateralized EEG signal (called 
contralateral delay activity or CDA) that tracked the number of items held in WM, 
reaching an asymptote around 3-4 items. Similarly, Todd and Marois (2004) found that 
delay activity in the intraparietal sulcus showed a similar load-dependent profile. We 
and others have viewed these load-dependents signals as tracking the number of active 
representations in WM (Luck and Vogel, 2013; Luria et al., 2016). However, neural 
activity that scales with the number of items in memory array does not necessitate that 
multiple active representations are maintained concurrently in WM. For example, under 
an activity-silent account in which only one item is actively represented at once, load-
dependent activity could track the rate at which items are switched in and out of an 
active state. When more items must be maintained, items may be switched in and out of 
an active state more rapidly, which might produce activity that tracks memory load. In 
contrast, because we directly examined stimulus-specific activity, we were able to 
provide unambiguous evidence that multiple representations were actively represented 
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at once. It may well be that load-dependent signals track the number of active 
representations. However, more work is needed to test this claim. If load-dependent 
signals track the number of active representations in WM, then load-dependent activity 
should predict the number of active representations in WM. 

 
At first glance, our finding that two spatial representations can be concurrently 

represented in an active state seems inconsistent with spatial attention studies that 
have provided evidence for rhythmic sampling when multiple items or locations must be 
attended or stored (e.g., Bahramisharif et al., in press; Busch and Van Rullen, 2010). 
However, the switching account that we tested is a stringent version of rhythmic 
sampling in which items alternate between “on” and “off” states. Our results do not rule 
out all classes of rhythmic sampling models, but they do constrain these models. 
Specifically, our data demonstrate that even if there are orderly rhythms that describe 
when a given item is best represented, a complete model must allow for the concurrent 
representation of multiple items. Thus, if the primary active representation switches from 
one item to the other, then this handoff must be done in such a way that both items are 
actively represented during the switch.  

 
Finally, evidence that two active representations can be maintained concurrently 

is relevant to a long-standing debate about the nature of representations in WM. 
Embedded process models characterize memory as a common storage space with 
different levels of activation corresponding to short-term memory and long-term memory 
(for review, see LaRocque et al., 2014). One key distinction between competing 
embedded process models is the number of items that can be represented in an active 
state in WM. The proposed number of items ranges from a strict limit of one item 
(McElree, 2006; Oberauer, 2002) to 3-4 items (Cowan, 1995; Luck and Vogel, 2013), 
and competing models are each able to account for many aspects of behavioral 
performance (LaRocque et al., 2014). Our findings provide clear evidence that two 
items can be actively represented concurrently, disconfirming the class of models that 
posit a strict one-item limit on the number of items that can be actively represented.  

 
Materials and Methods 

 
Participants 
 

Forty-one volunteers participated in the experiment for monetary compensation 
($15/hr). Participants were between 18 and 35 years old, reported normal color vision 
and normal or corrected-to-normal visual acuity, and provided informed consent 
according to procedures approved by the University of Chicago Institutional Review 
Board. The sample included both male and female participants. We excluded 
participants from the final sample if fewer than 450 trials per condition remained after 
discarding trials contaminated by recording or ocular artifacts (see Artifact Rejection). 
Eight observers were excluded because too few trials remained after artifact rejection. 
Data collection was terminated early for four observers because the data were unusable 
due to excessive artifacts, and for one observer because of a fire alarm. The final 
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sample included 28 observers with an average of 581 (SD = 75) trials for one-item trials 
and 596 (SD = 69) trials for two-item trials.  

 
Apparatus and Stimuli 
 
 We tested participants in a dimly lit, electrically shielded chamber. Stimuli were 
generated using Matlab (MathWorks, Natick, MA) and the Psychophysics Toolbox 
(Brainard, 1997; Pelli, 1997), and were presented on a 24” LCD monitor (refresh rate: 
120 Hz, resolution: 1080 × 1920 pixels) at a viewing distance of ~100 cm. Stimuli were 
rendered against a gray background. 
 
Task procedure 
 
 Participants performed a spatial delayed-estimation task in which they 
remembered the spatial position of one or two sample stimuli (see Fig. 1A). Participants 
initiated each trial with a spacebar press. Each trial began with a fixation point (0.2° in 
diameter) presented for 500-800 ms. Next, a memory array which comprised one or two 
sample stimuli was presented for 250 ms. Each stimulus was a blue or green circle (0.2° 
in diameter, equated for luminance) centered 4° of visual angle from the fixation point. 
On one-item trials, the sample stimulus was blue or green. On two-item trials, one 
stimulus was blue and the other was green. Participants were instructed to remember 
the spatial position of the sample stimuli as precisely as possible. The angular position 
of each stimulus around the fixation point was sampled from eight position bins, each 
spanning a 45° wedge of angular positions (bins were centered at 0°, 45°, 90°, and so 
forth, see Fig. 2A), with jitter added to cover all 360° of possible locations to prevent 
categorical coding of stimulus location. On two-item trials, the position bins that each 
stimulus occupied were fully counterbalanced across trials for each observer. Thus, the 
position bin that one stimulus occupied was random with respect to the other, which 
allowed us to reconstruct spatial CTFs for each stimulus independently. When both 
stimuli occupied the same position bin, their exact position within the bin was 
constrained so that the two items were separated by at least 0.2° of visual angle. The 
memory array was followed by a 1000-ms delay period during which only the fixation 
point remained on screen. Finally, after the delay period, a cursor appeared at fixation 
and the fixation point turned blue or green to indicate which stimulus should be 
reported. Participants report the remembered location of the probed stimulus by using a 
mouse to click on the perimeter of a probe ring (8° in diameter, 0.2° thick). The color of 
the probed item (green or blue) was pseudo-randomized across trials and conditions 
such that each color was probed on 50% of trials for each condition. Before starting the 
task, participants completed a brief set of practice trials to ensure that they understood 
the task. 
 
Electrophysiology 
 

We recorded EEG activity from 30 active Ag/AgCl electrodes mounted in an 
elastic cap (Brain Products actiCHamp, Munich, Germany). We recorded from 
International 10-20 sites: FP1, FP2, F7, F3, Fz, F4, F8, FT9, FC5, FC1, FC2, FC6, 
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FT10, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz, O2. Two 
additional electrodes were affixed with stickers to the left and right mastoids, and a 
ground electrode was placed in the elastic cap at position FPz. Data were referenced 
online to the right mastoid and re-referenced offline to the algebraic average of the left 
and right mastoids. Eye movements and blinks were also monitored using 
electrooculogram (EOG), recorded with passive Ag/AgCl electrodes. Horizontal EOG 
was recorded from a bipolar pair of electrodes placed ~1 cm from the external canthus 
of each eye. Vertical EOG was recorded from a bipolar pair of electrodes placed above 
and below the right eye. Data were filtered online (low cut-off = .01 Hz, high cut-off = 80 
Hz, slope from low- to high-cutoff = 12 dB/octave), and were digitized at 500 Hz using 
BrainVision Recorder (Brain Products, Munich, German) running on a PC. Impedance 
values were kept below 10 kΩ.  

 
Eye Tracking 
 

We monitored gaze position using a desk-mounted EyeLink 1000 Plus infrared 
eye-tracking camera (SR Research, Ontario, Canada). Gaze position was sampled at 
500 Hz, and data were obtained in remote mode (without a chin rest).  We obtained 
usable eye-tracking data for 19 out of 28 participants.   

 
Artifact Rejection 
 

We visually inspected the segmented EEG data for artifacts (amplifier saturation, 
excessive muscle noise, and skin potentials), and inspected EOG for ocular artifacts 
(blinks and eye movements). For observers with usable eye tracking data, we also 
inspected the gaze data for ocular artifacts. We discarded trials contaminated by 
artifacts. We discarded electrode FT9 and FT10 for all observers because we obtained 
poor quality data (excessive high-frequency noise) at these sites for most observers. 
Data from one or two electrodes were discarded for four participants because of 
excessive high-frequency noise or sudden steps in voltage which occurs when an 
electrode is damaged. The discarded electrodes for each participant were: T7; F3; CP6 
and C4; and P8. For the analysis of gaze position, we further excluded trials in which 
the eye tracker was unable to detect the pupil, operationalized as any trial in which the 
horizontal or vertical gaze position was more than 15° from fixation. At most 15 trials per 
observer were rejected due to this reason. For most observers (15 of 19), no trials were 
excluded for this reason.  

 
Removal of trials with ocular artifacts was effective. Variation in grand-averaged 

HEOG as a function of the remembered stimulus position was < 3.6 µV for both one-
item trials and < 1.7 µV for two-item trials. Given that eye movements of about 1° of 
visual angle produce a deflection in the HEOG of ~16 µV (Lins et al., 1993), the residual 
variation in the HEOG corresponds to variations in eye position of < 0.23°. Analysis of 
the subset of participants (19 participants) for whom we obtained usable gaze position 
data corroborates the HEOG data obtained from all participants. Variation in grand-
average horizontal gaze position as a function of remembered stimulus position was < 
0.12° for one-item trials and < 0.07° for two-item trials. For comparison, for these 
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participants the variation in the average HEOG as a function of remembered stimulus 
position was < 3.1 µV for one-item trials and < 1.6 µV for two-item trials.  

 
Time-frequency Analysis 
 
 To calculate frequency specific activity at each electrode we first band-pass 
filtered the baselined raw EEG data using EEGLAB (“eegfilt.m”, Delorme and Makeig, 
2004). For alpha-band analyses, the data were band-pass filtered between 8 to 12 Hz. 
For our exploratory analysis of a broad range of frequencies, we band-pass filtered the 
data in 1-Hz bands from 4 to 50 Hz (i.e., 4-5 Hz, 5-6 Hz, etc.). We applied a Hilbert 
transform (MATLAB Signal Processing Toolbox) to the band-pass-filtered data to obtain 
the complex analytic signal. Instantaneous power was calculated by squaring the 
complex magnitude of the complex analytic signal. To reduce computation time for the 
IEM analysis across time and frequency, we down-sampled the matrix of power values 
to one sample every 20 ms. We down-sampled power values (i.e., after filtering and 
applying the Hilbert transform) so that down-sampling did not affect the calculation of 
power.  
 
Inverted Encoding Model 
 

Following our prior work (e.g., Foster et al., 2016, 2017), we used an inverted 
encoding model (IEM; Brouwer and Heeger, 2009, 2011; Sprague and Serences, 2013; 
for review, see Sprague et al., 2015) to reconstruct spatially selective channel-tuning 
functions (CTFs) from the topographic distribution of oscillatory power across 
electrodes. We assumed that the power at each electrode reflects the weighted sum of 
eight spatially selective channels (i.e., neuronal populations), each tuned for a different 
angular location (Fig. 2A). We modeled the response profile of each spatial channel 
across angular locations as a half sinusoid raised to the twenty-fifth power: 

  

𝐑 = 𝐬𝐢𝐧(𝟎. 𝟓𝛉)𝟐𝟓, 
 

where θ is angular location (0–359°), and 𝑅 is the response of the spatial channel in 
arbitrary units. This response profile was circularly shifted for each channel such that 
the peak response of each spatial channel was centered over one of the eight positions 
corresponding to the eight positions bins (0°, 45°, 90°, etc., see Fig. 2B). 
 

An IEM routine was applied to each time point in the alpha-band analyses and to 
each time-frequency point in the time-frequency analyses. We partitioned our data into 
independent sets of training data and test data (see the Training and Test Data section). 
This routine proceeded in two stages (training and test). In the training stage (Fig 2C), 
training data (B1) were used to estimate weights that approximate the relative 
contribution of the eight spatial channels to the observed response measured at each 
electrode. Let B1 (m electrodes × n1 measurements) be the power at each electrode for 
each measurement in the training set, C1 (k channels × n1 measurements) be the 
predicted response of each spatial channel (determined by the basis functions, see Fig. 
2B) for each measurement, and W (m electrodes × k channels) be a weight matrix that 
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characterizes a linear mapping from “channel space” to “electrode space”.  The 
relationship between B1, C1, and W can be described by a general linear model of the 
form: 

𝐁𝟏 = 𝐖𝐂𝟏 
 

The weight matrix was obtained via least-squares estimation as follows: 
 

𝐖
^

= 𝐁𝟏𝐂𝟏
𝐓(𝐂𝟏𝐂𝟏

𝐓)
−𝟏

 

 
In the test stage (Fig. 2D), we inverted the model to transform the observed test data B2 
(m electrodes × n2 measurements) into estimated channel responses, C2 (k channels × 

n2 measurements), using the estimated weight matrix, 𝑊
^

, that we obtained in the 
training phase: 

𝐂𝟐
^

= (𝐖
^
𝐓𝐖
^

)
−𝟏

𝐖
^
𝐓𝐁𝟐 

 
Each estimated channel response function was then circularly shifted to a common 
center, so the center channel was the channel tuned for the position of the probed 
stimulus (i.e., 0° on the “Channel Offset” axes). We then averaged these shifted 
channel-response functions across the eight position bins to obtain a CTF.  
 

Finally, because the exact contributions of each spatial channel to each electrode 
(i.e., the channel weights, W) likely vary across participants, we applied the IEM routine 
separately for each participant, and statistical analyses were performed on the 
reconstructed CTFs. This approach allowed us to disregard differences in the how 
location-selective activity is mapped to scalp-distributed patterns of power across 
participants, and instead focus on the profile of activity in the common stimulus or 
“information” space (Sprague et al., 2015). 

 
Training and Test Data 
 
 For the IEM procedure, we partitioned artifact-free trials into independent sets of 
training data and test data for each observer. Across all analyses, we partitioned the 
trials into three independent sets. When portioning the trials into these sets, we equated 
the number of trials for each location in each set. Because of this constraint, some 
excess trials were not assigned to any set. Thus, we used an iterative approach to 
make use of all available trials. For each iteration, we randomly partitioned the trials into 
sets (as just described), and performed the IEM procedure on the resulting training and 
test data. Therefore, the trials that were not included in any block were different for each 
iteration. We averaged the resulting channel-response profiles across iterations. This 
iterative approach reduced noise in the resulting CTFs by minimizing the influence of 
idiosyncrasies that were specific to any given assignment of trials to blocks. For 
analyses focused on alpha-band power, we performed 50 iterations. For analyses 
across a wide range of frequencies (which is a time-consuming procedure), we 
performed 10 iterations. 
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Once trials were assigned to the three sets, we averaged across trials for each 

stimulus location bin to obtain a matrix of power values across all electrodes for each 
location bin (electrodes × locations, for each time point). We used a leave-one-out 
cross-validation routine such that two of these sets served as the training data, and the 
remaining matrix served as the test data. We applied the IEM routine using each of the 
three matrices as the test data, and the remaining two as the training set. The resulting 
CTFs were averaged across the three test sets. Different analyses require that the data 
for one and two item trials are partitioned into training and test sets differently 
depending on the goal of the analysis. In the following sub-sections, we outline how 
data were partitioned into training and test sets for each analysis.  

 
Comparing CTF selectivity across conditions. In two analyses, we tested 

whether CTF selectivity varied across condition. In the first analysis, we tested whether 
CTF selectivity differed as a function of memory load (see Fig. 3). In the second 
analysis, we compared CTF selectivity between the two-item condition and a condition 
that simulated switching using the one-item condition (see Fig. 4). These two analyses 
were assigned to training and test sets the same way. The only difference between the 
analyses was that for the simulated switching analysis, we randomized the position 
labels for half of the one-item trials after assigning trials to training and test sets. When 
comparing CTF properties across conditions, it is important to estimate a single 
encoding model that is then used to reconstruct CTFs for each condition separately. If 
this condition is not met, then it is difficult to interpret differences in CTF selectivity 
between conditions because these might result from differences between the training 
sets (i.e., how the model is estimated; for further discussion of this issue, see Sprague 
et al., 2018). We achieved this by estimating the encoding model using a training set 
consisting of equal trials from each condition. Specifically, we partitioned data for each 
condition into three sets (as described above, with the additional constraint that the 
number of trials per location in each set was also equated across conditions). We 
obtained condition-neutral training data by combining data across the two conditions 
before averaging, resulting in two training sets that included equal numbers of trials 
from each condition. We then tested the model of the remaining set of data for each 
condition separately. Thus, we used the same training data to estimate a single 
encoding model, and varied only the test data that was used to reconstruct CTFs for 
each condition. 

 
Time x Frequency analysis. In another analysis, we tested whether the range of 

frequencies that carried location-specific information varied as a function of memory 
load (see Fig. 5). For this analysis, we trained and tested the IEM within each condition 
separately. We trained and tested within each condition separately because we were 
interested in whether the frequencies that track the remembered location(s) differed 
between the conditions, a mixed training set would not be optimal to detect which 
frequencies do carry location-specific information in either condition. Thus, we 
partitioned data from each condition into three sets. As we did for the other analyses, 
we then trained the model using two out of three sets and tested the model using the 
one remaining set. Each of the three sets for each condition was held out as the test 
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set. Critically, because the IEM was trained and tested within condition, we estimated a 
separate encoding model for each condition. Thus, this analysis maximizes our 
sensitivity to differences in the frequencies carrying spatial information between 
conditions; however, it is difficult to interpret any difference in CTF selectivity across 
conditions because these differences might result from difference in how the encoding 
model was estimated (see Sprague et al., 2018 for further discussion of this issue).  

 
Cross-training analysis. For analyses in which we assessed whether the 

similarity of multivariate patterns representing one-item and two-item trials, we again 
partitioned each condition into three sets. We then trained the IEM on two sets of one 
item data and tested on a single set of the two item data.  

 
Statistical Analysis 
 

Modeling response error. Response error was measured as the number of 
degrees between the presented angular location and reported angular location, such 
that errors ranged from 0° (a perfect response) to ±180° (a maximally imprecise 
response). To quantify performance we fit a mixture model to the distribution of 
response errors for each participant using MemToolbox (Suchow et al., 2013). For one-
item trials, we modeled the distribution of response errors as a two-component mixture 
model, comprising a von Mises distribution centered on the correct value (i.e., a 
response error of 0°), corresponding to trials in which the sample location was 
remembered, and a uniform distribution, corresponding to guesses in which the 
reported location was random with respect to the sample location. We obtained 
maximum likelihood estimates for two parameters: (1) the dispersion of the von Mises 
distribution (SD), which reflects response precision; and (2) the height of the uniform 
distribution (Pg), which reflects the probability of guessing. For two-item trials we fit a 
three-component mixture model that also included an additional von Mises component 
centered on the location of the unprobed item, corresponding to trials in which 
participants mistakenly reported the location of the unprobed item (i.e. swaps, Bays et 
al., 2009). We obtained maximum likelihood estimates for the same parameters as in 
one-item trials, with one additional parameter (Ps), which reflects the probability of 
swaps.  

 
CTF selectivity. To quantify the spatial selectivity of alpha-band CTFs, we used 

linear regression to estimate CTF slope. Specifically, we calculated the slope of the 
channel responses as a function of spatial channels after collapsing across channels 
that were equidistant from the channel tuned for the position of the stimulus (i.e., a 
channel offset of 0°). Higher CTF slope indicates greater spatial selectivity. 

 
Cluster-based permutation test. We used a cluster-based permutation test to 

identify when CTF selectivity was reliably above chance. This procedure corrects for 
multiple comparisons (Maris and Oostenveld, 2007; Cohen, 2014). To this end, we 
identified clusters in which CTF selectivity was greater than zero by a performing one-
sample t-test (against zero) at each time point in the alpha-band analyses (or at each 
time-frequency point in the time × frequency analysis). We then identified clusters of 
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contiguous points that exceeded a threshold of t = 1.703 (which corresponds to a one-
sided p-value of .05 for 27 degrees of freedom). For each cluster, we calculated a test 
statistic by summing all t-values in the cluster. We used a Monte Carlo randomization 
procedure to empirically approximate a null-distribution for this test statistic. Specifically, 
we repeated the IEM procedure 1000 times but randomized the positions labels within 
each block so that the labels were random with respect to the observed response at 
each electrode. For each iteration, we calculated CTF selectivity across time (or across 
time and frequencies), and identified clusters as described above. For each iteration, we 
calculated the test statistic for the largest cluster, resulting in a null distribution of 1000 
cluster test-statistics. Finally, we identified clusters that had test statistics larger than the 
95th percentile of the null distribution. Thus, our cluster test was a one-tailed test with an 
alpha level of .05, corrected for multiple comparisons.  

 
Bootstrap resampling tests. We used a subject-level bootstrap resampling 

procedure (Efron and Tibshirani, 1993) to test for differences in CTF selectivity 
(measured as CTF slope) between the one-item and two-item conditions. We drew 
100,000 bootstrap samples, each containing N-many observers sampled with 
replacement (where N is the sample size). For each bootstrap sample, we calculated 
the mean difference in CTF selectivity between conditions, yielding a distribution of 
100,000 mean difference values. We tested whether the mean difference was 
significantly different from zero in either direction by calculating the proportion of values 
greater than or less than zero. We doubled the smaller value to obtain a two-tailed p-
value. In cases where the mean difference for all bootstrap samples were to one side of 
zero, we report the p-value values as p < .00001. We deemed results to be reliably 
above chance if p < .05.  
 
Data and Code Availability 
 

Data and code will be made publicly available at the time of publication.  
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