How distributed are short-term memory representations of visual motion? Adam C. Riggall and Bradley R. Postle University of Wisconsin-Madison

Introduction

We have recently demonstrated successful decoding of stimulusspecific patterns of BOLD activity throughout the delay period of a delayed-recognition task for visual motion (Riggall & Postle, 2012).

Decoding Approach

Train on single trial timepoint, test on all trial timepoints

Q1 Results: Spatial distribution of representations

Approach: Compute decoding performance for all possible combinations of ROIs, isolate best performing combination

Q2 Results: Temporal stability of representations

Approach: Extract "important" voxels and compare how much they overlap with the "important" voxels from other timepoints

1. Extract top 25% most "important" voxels

2. Compute continuous overlap of "important" voxels

3. Compute any overlap of "important" voxels

Results: Stability of patterns when combining ROIs

Approach: Compare the overlap of the important voxels in an individual ROI with the important voxels in that same ROI when it is combined with other ROIs

Future: Dynamic pattern or sampling larger stable pattern?

Conclusions

The patterns that support decoding of visual motion memory representations are spatially confined to posterior visual regions

These patterns appear to be temporally dynamic, but future work will be required to further determine the details of these dynamics

Distributed decoding approaches provide valuable insight into the neural representations used for short-term storage

References

Crowe, D. A., Averbeck, B. B., & Chafee, M. V. (2010). Rapid sequences of population activity patterns dynamically encode task-critical spatial information in parietal cortex. The Journal of Neuroscience, 30, 11640–11653.

Emrich, S. M., Riggall, A. C., LaRocque, J. J., & Postle, B. R. (2013). Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory. The Journal of Neuroscience, 33, 6516-6523.

Riggall, A. C., & Postle, B. R. (2012). The relationship between working memory storage and elevated activity, as measured with functional magnetic resonance imaging. The Journal of Neuroscience, 32, 12990-12998.

Supported by NIH RO1 MH064498 (B.R.P.)