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�e patterns that support decoding of visual motion memory 
representations are spatially con�ned to posterior visual regions

�ese patterns appear to be temporally dynamic, but future work 
will be required to further determine the details of these dynamics

Distributed decoding approaches provide valuable insight into the 
neural representations used for short-term storage

Conclusions

Results: Stability of patterns when combining ROIs

Approach: Compare the overlap of the important voxels in an 
individual ROI with the important voxels in that same ROI 
when it is combined with other ROIs

M
as

k 
C

om
bo

MLPF
MPF
MLF
MLP
MF
MP
ML

0 4 8 12 16 20 24

MLPF
LPF
MLF
MLP

LF
LP
ML

MLPF
LPF

MPF
MLP

PF
LP

MP

MLPF
LPF

MPF
MLF

PF
LF

MF

Medial
Occipital

Lateral Occ/
Temporal

Parietal Frontal
24

0 4 8 12 16 20 24 24

0 4 8 12 16 20 24 24

0 4 8 12 16 20 24 24

M
as

k 
C

om
bo

Trial timepoint (s) Trial timepoint (s)

0

0.2

0.4

0.6

0.8

1

Proportion
overlapping

Future: Dynamic pattern or sampling larger stable pattern?
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Q2 Results: Temporal stability of representations

1. Extract top 25% most “important” voxels

2. Compute continuous overlap of “important” voxels

3. Compute any overlap of “important” voxels

Approach: Extract “important” voxels and compare how much they 
overlap with the “important” voxels from other timepoints
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Approach: Compute decoding performance for all possible combi-
nations of ROIs, isolate best performing combination

 

Q1 Results: Spatial distribution of representations
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Decoding Approach
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We have recently demonstrated successful decoding of stimulus- 
speci�c patterns of BOLD activity throughout the delay period of a 
delayed-recognition task for visual motion (Riggall & Postle, 2012).

 

Introduction

Stimulus-speci�c information was decodable only from posterior 
visual regions and NOT from frontal and parietal areas that showed 
sustained, elevated BOLD activity during the delay-period.
 

Inspection of the “importance maps” from feature-selected 
whole-brain decoding revealed two results that appear at odds with 
these �ndings: 

 “Important” voxels appear in frontoparietal regions 

 “Important” voxels change timepoint to timepoint.

 

�e current work sought to resolve these paradoxical results and 
answer two questions about the nature of visual STM representations:

 Q1: How spatially distributed are these representations?

 Q2: How temporally stable are these representations?
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How distributed are short-term memory representations of visual motion?
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