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 28 

Abstract 29 

Although the manipulation of load is popular in visual working memory research, many 30 

studies confound general attentional demands with context binding by drawing memoranda from 31 

the same stimulus category. In this functional magnetic resonance imaging (fMRI) study of 32 

human observers (both sexes), we created high- versus low-binding conditions, while holding 33 

load constant, by comparing trials requiring memory for the direction of motion of one random 34 

dot kinematogram (RDK; 1M trials) versus for three RDKs (3M), or versus one RDK and two 35 

color patches (1M2C). Memory precision was highest for 1M trials, and comparable for 3M and 36 

1M2C trials. And although delay-period activity in occipital cortex did not differ between the 37 

three conditions, returning to baseline for all three, multivariate pattern analysis (MVPA) 38 

decoding of a remembered RDK from occipital cortex was also highest for 1M trials and 39 

comparable for 3M and 1M2C trials. Delay-period activity in intraparietal sulcus (IPS), although 40 

elevated for all three conditions, displayed more sensitivity to demands on context binding than 41 

to load per se. The 1M-to-3M increase in IPS signal predicted the 1M-to-3M declines in both 42 

behavioral and neural estimates of working memory precision. These effects strengthened along 43 

a caudal-to-rostral gradient, from IPS0 to IPS5. Context binding-independent load sensitivity 44 

was observed when analyses were lateralized and extended into prefrontal cortex (PFC), with 45 

trend-level effects evident in left IPS and strong effects in left lateral PFC. These findings 46 

illustrate how visual working memory capacity limitations arise from multiple factors that each 47 

recruit dissociable brain systems. 48 

 49 

  50 
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Significance Statement 51 

Visual working memory (VWM) capacity predicts performance on a wide array of 52 

cognitive and real-world outcomes. At least two theoretically distinct factors are proposed to 53 

influence VWM capacity limitations: an amodal attentional resource that must be shared across 54 

remembered items, and the demands on context binding. We unconfounded these two factors by 55 

varying load with items drawn from the same stimulus category (“high demands on context 56 

binding”) versus items drawn from different stimulus categories (“low demands on context 57 

binding”). The results provide evidence for the dissociability, and the neural bases, of these two 58 

theorized factors, and they specify that the functions of intraparietal sulcus may relate more 59 

strongly to the control of representations than to the general allocation of attention.  60 

 61 

  62 
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Introduction 63 

Visual working memory (VWM) research has seen a convergence in recent years 64 

between cognitive models emphasizing the role of attention to knowledge structures (Cowan, 65 

1988, 1995, 1999) and neurophysiological evidence for the sustained engagement of circuits in 66 

posterior cortex involved in the perception of the remembered information (Super et al., 2001; 67 

Pasternak and Greenlee, 2005; Serences et al., 2009; Sprague et al., 2014; Foster et al., 2016; van 68 

Kerkoerle et al., 2017). Among the outstanding questions about the precise mechanisms and 69 

boundary conditions of this principle of “sensorimotor recruitment” in working memory (e.g., 70 

D'Esposito and Postle, 2015) is understanding the contributions to VWM of the territory of the 71 

intraparietal suclus (IPS) vis-a-vis classically defined visual circuits of occipital cortex.  72 

A role for IPS in the short-term retention of egocentrically encodable spatial information 73 

is well established (Chafee and Goldman-Rakic, 1998; Schluppeck et al., 2006; Hamidi et al., 74 

2008; Jerde et al., 2012). For nonspatial stimuli, however, the literature is more complicated. 75 

Delay-period functional magnetic resonance imaging (fMRI) signal intensity is elevated in IPS 76 

for even simple stimuli (e.g., motion directions (Riggall and Postle, 2012) or color patches (Todd 77 

and Marois, 2004)), and varies with working memory load in a manner that can predict 78 

individual differences in VWM capacity (Todd and Marois, 2004; Todd and Marois, 2005; Xu 79 

and Chun, 2006), as do the dynamics of cross-frequency oscillatory synchrony localized to IPS 80 

(Palva et al., 2010). Such load sensitivity could be consistent with a role in storage (Xu and 81 

Chun, 2006; Xu, 2017) or in attentional control (Fukuda et al., 2015), or both. It is well 82 

established that IPS contributes to the attentional control of visual perception (Anderson et al., 83 

2010; Scolari et al., 2015), as well as to the control of mnemonic stimulus representation, during 84 

both stimulus encoding (Mitchell and Cusack, 2008, 2010; Weber et al., 2016) and retention 85 
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(Nelissen et al., 2013). Finally, efforts to decode stimulus identity from delay-period signal in 86 

IPS has been uneven, with some successful (Christophel et al., 2012; Ester et al., 2015; 87 

Bettencourt and Xu, 2016; Yu and Shim, 2017), some successful only under certain task 88 

instructions (Sarma et al., 2016), and some unsuccessful (Linden et al., 2012; Riggall and Postle, 89 

2012; Emrich et al., 2013; Lee et al., 2013).  90 

Theoretical models of an amodal attentional resource hypothesized to constrain the 91 

number of units or objects that have to be maintained in working memory (Cowan, 1995) have 92 

drawn support from observations from the IPS. Common patterns of delay-period load-93 

sensitivity in IPS are observed for multiple stimulus modalities (Brahmbatt et al., 2008; Majerus 94 

et al., 2010; Chein et al., 2011; Cowan et al., 2011), and multivariate pattern analysis (MVPA) 95 

classifiers trained to discriminate high- from low-load conditions of VWM for colored squares 96 

can successfully discriminate comparable conditions during working memory for visually 97 

presented letters, and vice versa (Majerus et al., 2016). To date, however, many studies 98 

employing load manipulations have used items drawn from the same category. This may 99 

confound the effects of load, per se, with the possibly more specific control requirements of 100 

managing the retention of multiple items drawn from the same category. Same-category memory 101 

could entail more competition between items, leading to loss of precision, and can increase the 102 

demands on context binding as proposed by many computational models (Oberauer and Lin, 103 

2016; Schneegans and Bays, 2017) and generate “misbinding” (or “swap”) errors (Bays et al., 104 

2011). 105 

The present study compared load manipulations for category-homogeneous (one vs. three 106 

RDKs) versus category-heterogeneous (one RDK and two colors) memory sets, to address two 107 

interrelated questions. First, can the general attentional demands of a load manipulation be 108 
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dissociated from the putatively more specific demands of the control of context binding? Second, 109 

does load-sensitive activity in the IPS relate more closely to one or the other of these two 110 

hypothetically dissociable types of top-down control?  111 

 112 

Materials and Methods 113 

Subjects  114 

Twelve individuals (3 female, mean age 25 years (SD = 4), who reported normal or 115 

corrected-to-normal vision, no history of neurological or psychiatric illness, and no 116 

contraindications for fMRI were recruited from the local community. Recruitment and 117 

experimental methods were approved by the University of Wisconsin–Madison Health Sciences 118 

Institutional Review Board, and all subjects provided written informed consent. 119 

Stimuli and Procedure 120 

After training, subjects performed the delayed-recall task in the MRI scanner. Six blocks 121 

of 30 trials (13 minutes each) were performed during concurrent fMRI, and an additional three 122 

blocks of 24 trials (10 min 4 sec each) were performed during the same session, while the subject 123 

was in the scanner, but without concurrent fMRI acquisition (more detail below).    124 

The background of the projected image was black throughout each scanning session, and 125 

each trial began with the onset of a white fixation mark (2 sec), which remained on the screen 126 

until the trial-ending memory probe. Initial fixation was followed by the serial presentation of 127 

three sample-display events. Each sample-display event comprised the 500 msec presentation of 128 

a circular aperture subtending approximately 11° of visual angle, centered on fixation, and, 129 

depending on the condition, filled with one of three types of stimulus: a field of stationary, low-130 

contrast gray dots (dot diameter ~0.13°; dot density ~0.07 dots/square degree); a field of high-131 
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contrast white dots moving with 100% coherence at 2.75°/sec; or a uniform patch of color. 132 

Although dots could move in any of the possible 360° of motion, on 90% of trials one was drawn 133 

from the closed set of 7°, 127°, and 247° (to afford MVPA, as described below. During post-scan 134 

debriefing, no subject reported noticing the recurring presentation of a small number of 135 

directions), and the other two were selected at random. Colors were drawn at random, with 136 

replacement, from a circular CIE L*a*b color space, with the constraint that no two sample items 137 

presented on the same trial could be closer on the color wheel than 50°. The circle was centered 138 

in the color space at (L = 70, a = 20, b = 38) with a radius of 60. Thus, colors had equal 139 

luminance, and varied in hue and saturation. ISI between sample-display events was 250 msec. 140 

The 2 sec of sample presentation was followed by an 8 sec delay period (white cross), then a 141 

recall period of 5 sec, and finally 9 sec of ITI (total trial length of 26 sec).  142 

There were three trial types: remember 1 direction of motion (“1M”); remember 3 143 

directions of motion (“3M”); and remember 1 direction of motion and 2 colors (“1M2C”). On 144 

1M and 1M2C trials, stimulus order across the three sample-display events was equiprobable and 145 

unpredictable. For all three trial types, the recall stimulus was a dial of the same diameter and 146 

location as the stimulus aperture, with a digit appearing in the center and a needle extending 147 

from the digit to the circular edge of the dial. The digit (“1”, “2”, or “3”) corresponded to the 148 

sample-display event that was to be recalled (the first, second, or third, respectively). For trials 149 

requiring recall of the direction of motion, the circular edge of the dial acted as a “direction-of-150 

motion wheel”, and subjects adjusted the direction of the needle (via a trackball) to indicate their 151 

memory of the direction of the probed sample, and pressed a button to register their response. 152 

For trials requiring color recall, a color wheel appeared superimposed on the edge of the dial, and 153 

subjects adjusted the needle to indicate their memory of the probed color (Figure 1). On all trials, 154 
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the starting position of the needle was randomly determined. On 3M and 1M2C trials, each 155 

stimulus had an equal probability of being probed. An equal number of trials of each type 156 

occurred, in an unpredictable order, during each of six 30-trial runs. This design allowed us to 157 

compare the effects of a manipulation of load on VWM for motion, when the two additional 158 

items on load-of-3 trials were drawn from the same or different stimulus domains.  159 

Note that, because memory for each item on 1M2C trials was probed an equal number of 160 

times, those performed during fMRI scanning yielded only 1/3 as many instances of recall of 161 

motion as did the other two trial types. In order to acquire a sufficient number of motion-probed 162 

1M2C trials to fit to a mixture model (described in Behavioral analyses), an additional 24-trial 163 

block was performed by each subject prior to the first and fourth scanned block, and immediately 164 

after the sixth one. Each block of these supplementary behavioral trials contained 24 1M2C trials 165 

(randomly ordered), and half of these 1M2C trials probed the RDK and half probed a color. This 166 

yielded an additional 36 motion recall trials that were combined with the 18 from the fMRI 167 

session to yield a total of 54 1M2C trials that were entered into the mixture model. 168 

The behavioral experiment was administered via the Psychophysics Toolbox 169 

(http://psychtoolbox.org) running in MATLAB (MathWorks), presented using a 60 Hz projector 170 

(Avotec Silent Vision 6011), and viewed through a coil-mounted mirror in the MRI scanner. An 171 

fMRI-compatible trackball fiber optic response pad (Current Designs Inc., HHSC-TRK-2) was 172 

employed to record the behavioral responses. 173 

Behavioral analyses  174 

As with Emrich, Riggall, et al. (2013), we used this delayed-recall (a.k.a. “delayed 175 

estimation”) procedure in order to estimate the precision of mnemonic representations by fitting 176 

response error to a three-factor mixture model. The model (Bays et al., 2009), implemented with 177 
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code available from http://www.bayslab.com, uses maximum likelihood estimation to generate 178 

estimates of 1) the proportion of responses based on a working memory representation of the 179 

probed item (“responses to target”); 2) the proportion of responses incorrectly based on a 180 

representation of an unprobed item (i.e., “misbinding” or “swap” errors); and 3) the proportion of 181 

responses that were guesses not based on any working memory representation, and 4) a 182 

“concentration” parameter that estimates the precision of target responses (i.e., that is based on 183 

the distance between the true target position and the subject’s response, for the set of responses 184 

estimated to have come from categories 1 and 2). Conceptually, the concentration parameter is 185 

similar to a model-free measure of the precision of responses that is computed as the inverse of 186 

the standard deviation of the distribution of responses. It is taken as a proxy for the fidelity of the 187 

working memory representation. Reaction time of the response-ending button press was also 188 

collected, although this measure was necessarily noisy because it included the time to adjust the 189 

response dial with a trackball positioned adjacent to the thigh of the supine subject. 190 

fMRI Data acquisition  191 

Subjects were in a comfortable supine position, and wore earplugs and headphones. 192 

Whole brain images were acquired using a 3 Tesla GE MR scanner (Discovery MR750; GE 193 

Healthcare) at the Lane Neuroimaging Laboratory at the University of Wisconsin–Madison 194 

HealthEmotions Research Institute (Department of Psychiatry). Blood oxygen level-dependent 195 

(BOLD) data were acquired with a gradient-echo planar sequence (2 sec repetition time (TR), 25 196 

msec echo time (TE), 60° flip angle) within a 64 × 64 matrix (39 sagittal slices, 3.5mm 197 

isotropic). Each of the six fMRI scans generated 390 volumes. A high-resolution T1 image was 198 

also acquired for all subjects for coregistration to the functional data with a fast spoiled gradient-199 
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recalled-echo sequence (8.2 msec TR, 3.2 msec TE, 12° flip angle, 160 axial slices, 256 × 256 200 

in- plane, 1.0 mm isotropic). 201 

fMRI Data Preprocessing  202 

We preprocessed the functional data using the Analysis of Functional NeuroImages 203 

(AFNI) software package (http://afni.nimh.nih.gov; Cox, 1996). For each subject’s data, all 204 

volumes were spatially aligned to the final volume of the last functional run, then to the 205 

structural volume. The preprocessing steps were slice-timing correction, detrending, conversion 206 

to percent signal change, and spatial smoothing with a 4-mm FWHM Gaussian kernel. 207 

Univariate analyses 208 

We calculated the percent signal change in BOLD activity relative to baseline for each 209 

time point during the working memory task; baseline was chosen as the average BOLD activity 210 

of the first TR of each trial. A conventional mass-univariate general linear model (GLM) 211 

analysis was implemented in AFNI, with sample, delay and probe periods of the task modeled 212 

with boxcars (2 sec, 8 sec, and 5 sec in length, respectively) that were convolved with a 213 

canonical hemodynamic response function. 214 

ROI definition 215 

Much of the motivation for the present study came from the fact that we have previously 216 

observed different patterns of activity, consistent with the operation of distinct cognitive 217 

operations, in different parts of the brain. In particular, in a task requiring VWM for one vs. two 218 

vs. three RDKs, successful MVPA decoding of delay-period stimulus information, consistent 219 

with a storage function, was primarily observed in occipital cortex, whereas load-sensitive 220 

variation in BOLD signal intensity, perhaps reflecting a control operation, was observed in IPS, 221 

as well as in regions of PFC (Emrich et al., 2013). Therefore, our a priori hypotheses were tested 222 
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in functionally-defined, anatomically constrained ROIs based theoretically on past work. These 223 

ROIs allow the most powerful examination of the hypotheses, given individual differences in 224 

brain anatomy. However, given that functional ROIs are necessarily biased by the voxel 225 

selection procedure, we also developed anatomical ROIs, motivated by past work, to ask more 226 

general, nomothetic questions about areas of the cortex. 227 

The principal hypothesis tests were carried out in two anatomically constrained 228 

functional ROIs: an Occipital Sample ROI intended to capture regions previously associated with 229 

the delay-period retention of stimulus representations; and a Parietal Delay ROI intended to 230 

capture regions of IPS previously shown to demonstrate delay-period load sensitivity of BOLD 231 

signal intensity (Emrich et al., 2013). The Occipital Sample ROI was defined as the 2000 voxels 232 

displaying the strongest loading on the contrast [sample - baseline] from the GLM, collapsed 233 

across the three conditions, and located within an anatomically defined occipital ROI (see 234 

below). The Parietal Delay ROI was defined as the 2000 voxels displaying the strongest loading 235 

on the contrast [delay - baseline], also collapsed across the three conditions, and located within 236 

an anatomically defined IPS ROI. In effect, the [sample - baseline] and [delay - baseline] 237 

contrasts served as the basis for feature selection for the MVPA that we planned to carry out in 238 

the occipital cortex and IPS, respectively. 239 

Occipital and parietal anatomical ROIs were created by extracting masks for V1-V4, 240 

V3a, V3b, and LO, and for IPS0-IPS5, respectively, from the probabilistic atlas of Wang and 241 

colleagues (2015), and warping them to each subject’s native space. Based on the results from 242 

occipital and parietal ROIs, we followed-up with additional analyses performed in the left 243 

hemisphere half and the right hemisphere half of the Parietal Delay ROI, and in the prefrontal 244 

cortex with a Lateral PFC Delay ROI comprising the 2000 voxels with the strongest loading on 245 
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the contrast [delay - baseline], collapsed across the three conditions, and located anatomically 246 

within a region defined by the union of masks of the superior, middle, and inferior frontal gyri 247 

supplied by AFNI. This Lateral PFC Delay ROI was also divided into a left hemisphere half and 248 

the right hemisphere half. 249 

Pattern classification  250 

Multivariate pattern classification was performed using the Princeton Multi-Voxel 251 

Pattern Analysis toolbox (www.pni.princeton.edu/mvpa/). The 10% of trials that did not include 252 

one of the three critical directions of motion, as well as the first and last trials of each run, were 253 

discarded from further analysis. We used L2-regularized logistic regression with a penalty term 254 

of 25 to classify the three critical motion directions. Specifically, the classifier was trained and 255 

tested on the three motion directions at each time point through a leave-one-trial-out k-fold 256 

cross-validation procedure. The training dataset was collapsed across all three trial types. For 257 

each iteration, an estimate (ranged from 0 to 1) of the similarity between the pattern on the test 258 

trial and the training pattern (a.k.a., MVPA “evidence”, c.f. Lewis-Peacock and Postle, 2012) 259 

was generated for each of the three motion directions. Classification performance was 260 

characterized by the difference between the evidence for the target motion direction relative to 261 

the mean of the evidences for the two non-target motion directions, and averaged across trials 262 

within each condition. Classifier performance values higher than 0 indicated higher sensitivity 263 

for the correct motion direction, compared with the incorrect motion directions.  264 

Of primary theoretical interest was the item-level classification of stimulus motion 265 

direction (7° vs. 127° vs. 247°). Additionally, however, we also planned to carry out category-266 

level MVPA to assess the discriminability of activity related to the trial type (1M vs. 3M vs. 267 

1M2C). 268 
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Task-related patterns of covariation 269 

Following our previous work (Emrich et al., 2013), we used analysis of covariance 270 

(ANCOVA) to evaluate evidence for correlated sensitivity to trial type (e.g., 1M vs. 3M) across 271 

pairs of dependent variables (i.e., permutations of BOLD loading on covariates from the GLM 272 

analyses [a.k.a. “beta values”] vs. classification performance vs. behavioral precision). Unlike 273 

simple correlations, ANCOVA accommodates the fact that each subject contributes a value for 274 

each level of the factor of trial type. It removes between-subject differences and assesses 275 

evidence for “within-subject correlation”: the extent to which remaining variation in one 276 

dependent variable can be explained by variation in a second (Bland and Altman, 1995).  277 

Instead of modeling trial epochs across trials, as we did when defining the Sample and 278 

Delay ROIs, we modeled the sample, delay, and probe periods on a trial-by-trial basis (still using 279 

boxcar regressors of 2 sec, 8 sec, and 5 sec, respectively) in order to better capture the fluctuation 280 

in BOLD activity between trials. Classification performance for these analyses was calculated 281 

across the average signal from 10-14 sec after trial onset; behavioral precision was defined as the 282 

concentration parameter in the mixture model. First, to test for replication of the finding that 283 

load-related changes in MVPA predict load-related changes in behavioral precision (Emrich et 284 

al., 2013), we performed an ANCOVA of classification performance in the Occipital Sample 285 

ROI vs. behavioral precision, across 1M and 3M trial types. Next, assuming successful 286 

replication, to assess whether this effect is related to memory load, per se, or, rather, to the 287 

additional control demands imposed by stimulus homogeneity, we repeated this analysis, but 288 

across the trial types 1M and 1M2C (All subsequent analyses were also performed separately for 289 

1M vs. 3M and for 1M vs. 1M2C). A second set of ANCOVAs was planned to examine, at each 290 

ROI, whether load-sensitive patterns of delay-period BOLD activity related to load-sensitive 291 
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patterns of behavioral precision. Finally, to further investigate evidence for parietal control of 292 

working memory representation (Mitchell and Cusack, 2008, 2010; Nelissen et al., 2013; Weber 293 

et al., 2016), a third set of ANCOVAs, one at each IPS ROI, was planned to assay relations 294 

between parietal BOLD activity and occipital MVPA performance. 295 

Experimental design and statistical analysis 296 

 The experiment was a within-subject design of three trial types: 1M, 3M, and 1M2C. 297 

Tests of changes across three trial types, and across ROIs, were performed using one-way 298 

repeated-measures analysis of variance (ANOVA). Tests of difference between two conditions 299 

were performed using paired two-tailed t-tests. Tests of difference between one condition and 0 300 

were performed using one-sample two-tailed t-tests. Bonferroni correction was applied to all 301 

pairwise comparisons, unless specified otherwise. Evaluation of within-subject correlations 302 

(ANCOVAs) was described in the section above. 303 

In addition to this frequentist statistical reporting, we also estimated Bayes factors for 304 

each of the comparisons. The Bayes factor can be understood as the ratio of the likelihood of the 305 

alternate hypothesis compared with the null hypothesis. For the Bayes factors, values >1 indicate 306 

greater evidence in favor of the alternative hypothesis (i.e., that decoding was successful), and 307 

values < 1 indicate greater evidence in favor the null hypothesis (i.e., that decoding was 308 

unsuccessful, implying that there is no stimulus information in that ROI). Bayes factors allow for 309 

the quantitative assessment, for each effect in each ROI, of the strength of evidence in favor of 310 

the null versus the alternative hypothesis. In this analysis, we chose the simplest possible prior 311 

distribution for the Bayes factor analysis, which is a uniform distribution from 0 to the maximum 312 

possible classification performance value (which we set to 0.35, a value 0.01 higher than the 313 

highest classification performance achieved in any subject’s data, in the Occipital Sample ROI). 314 
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 315 

Results 316 

Behavior 317 

The (model-free) descriptive statistics suggested that task difficulty increased from 1M to 318 

1M2C to 3M, as reflected in the distribution of response error (converted to “precision” as 1/SD 319 

of error, F(2,22) = 7.07, p = 0.004; and as reflected in RT, F(2,22) = 16.05, p = 5 × 10-5; Table 320 

1).  321 

Results from mixture modeling indicated no differences across trial types in the 322 

probabilities of target responses, of non-target responses, or of guesses (all ps > 0.148; Table 1). 323 

The concentration parameter, which provides an estimate of the precision of mnemonic 324 

representations, was significantly higher for 1M trials than for both 3M trials (t(11) = 10.56, p = 325 

0.021) and 1M2C trials (t(11) = 11.83, p = 0.046), but did not differ between 3M trials and 326 

1M2C trials (t(11) = 0.13, p > 0.999).  327 

Univariate delay-period activity 328 

BOLD activity in the Occipital Sample ROI decreased steadily after the stimulus-evoked 329 

response, dropping to baseline by time 12 sec. Moreover, activity in the 3M condition was higher 330 

than the other two conditions during the very early delay period, but it didn’t differ at later delay 331 

time points across any of the three conditions (Figure 2A). Comparisons between average delay-332 

period activity (10-14 sec) further confirmed no difference between any two of the conditions, all 333 

p > 0.132. 334 

In the Parietal Delay ROI, in contrast, one-sample t-tests against 0 at each time point 335 

confirmed that delay-period activity was elevated in a sustained manner for all the three 336 

conditions. Furthermore, although delay-period activity in the 3M condition was significantly 337 
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higher than in the two other conditions, it did not differ between the 1M and the 1M2C 338 

conditions (Figure 2B). Average delay-period activity (10-14 sec) in the 3M condition was also 339 

significantly higher than the other two conditions, t(11) = 7.95 and 4.63, p = 7.0 × 10-6 and 7.2 × 340 

10-4, respectively. 341 

Pattern classification 342 

Item-level decoding. In the Occipital Sample ROI the remembered direction of motion 343 

could be successfully decoded from the delay period on a time point-by-time point basis for the 344 

1M condition, and from the delay period of all three conditions when signal was collapsed across 345 

all delay time points (10-14 sec, all ps < 0.05; Figure 2C). Comparison between conditions 346 

indicated that delay-period decoding performance was significantly superior for the 1M 347 

condition relative to 3M and 1M2C (t(11) = 4.19, p = 0.005; t(11) = 3.84, p = 0.008, 348 

respectively), but that it didn’t differ between 3M and 1M2C (t(11) = 1.00, p > 0.999).  349 

In contrast to the Occipital Sample ROI, decoding performance in the Parietal Delay ROI 350 

was much weaker and much more variable. Time point-by-time point classification was only 351 

significant in early portions of the delay in the 1M condition. Likewise, difference between 1M 352 

and 3M conditions was also observed only during the early delay period. 353 

Category-level decoding. In both the Occipital Sample ROI and the Parietal Delay ROI, 354 

MVPA successfully discriminated 1M from 3M from 1M2C trial types at ps < 0.001 for all 355 

pairwise comparisons. 356 

Task-related patterns of covariation in BOLD activity, MVPA, and behavioral precision 357 

In the Occipital Sample ROI, and replicating a previous finding (Emrich et al., 2013), 358 

ANCOVA of data from 1M and 3M revealed a significant within-subject correlation relating the 359 
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load-related decline in MVPA to the load-related decline in behavioral precision (r2 = 0.33, p = 360 

0.038; Figure 3A).  361 

Next, and of primary theoretical interest for the present study, we carried out a series of 362 

ANCOVAs intended to elucidate functional correlates of the elevated delay-period activity in the 363 

Parietal Delay ROI. Beginning with the 1M vs. 3M comparison, a significant within-subject 364 

correlation indicated that the load-related increase in delay-period signal in the Parietal Delay 365 

ROI was negatively related to the load-related decrease in behavioral precision (r2 = 0.59, p = 366 

0.002; Figure 3B). Note that this is the opposite pattern from what was observed in the Occipital 367 

Sample ROI. Furthermore, a second ANCOVA indicated that the 1M-to-3M load-related 368 

increase in delay-period signal was also significantly negatively related to the load-related 369 

decrease in classification performance in the Occipital Sample ROI (r2 = 0.68, p = 0.00055; 370 

Figure 3C). Interestingly, neither of these effects was significant in comparable analyses 371 

comparing the load manipulation of 1M vs. 1M2C (r2 = 0.14, p = 0.206; r2 = 0.09, p = 0.312).  372 

Anatomically defined ROIs 373 

Although our primary theoretical interest was in the functions of delay-period activity in 374 

the Parietal Delay ROI, the results from this ROI were necessarily biased by our voxel selection 375 

procedure. Therefore, to address more general questions about the organization VWM functions 376 

in posterior parietal cortex, we repeated all the aforementioned analyses in the anatomical ROIs 377 

covering the IPS. To anticipate our findings in summary, the results revealed a gradient along the 378 

IPS, with the delay-period signals and analytically derived effects in the caudal-most portions of 379 

IPS generally weak or not detectable, and progressively taking on the characteristics of the 380 

Parietal Delay ROI at progressively more rostral subregions along the IPS.  381 
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Group-average effects. Beginning with delay-period BOLD activity, inspection of the 382 

time series data revealed that it decreased to baseline by the end of the delay in IPS0, but became 383 

progressively more elevated with more rostrally located ROI (not shown). An F test of parameter 384 

estimates from GLM delay covariates, collapsing across 1M, 3M, and 1M2C conditions, 385 

indicated a highly significant caudal-to-rostral increase (F(5,66) = 19.08, p = 1.1 × 10-11; Figure 386 

4A). Similarly, the 1M vs. 3M effect of load also increased progressively from IPS0 to IPS5 387 

(F(5,66) = 3.11, p = 0.014; Figure 4B).  388 

An F test of average delay-period MVPA performance failed to find evidence for a 389 

similar gradient (F(5,66) = 0.10, p = 0.992). We further examined the MVPA performance for 390 

each condition separately, and performed t tests to evaluate the significance of classifier 391 

performance in each subregion. Consistent with the results in the Parietal Delay ROI, only the 392 

1M condition showed a trend of successful decoding of motion direction (Figure 3C; Also see 393 

Table 2 for statistical results).  394 

To better interpret the marginally significant decoding results in IPS, we calculated Bayes 395 

factor for each of the comparisons. The Bayes factor analysis showed a gradient of the amount of 396 

evidence in favor of the alternative hypothesis along IPS. For the 1M condition, the alternative 397 

hypothesis (decoding performance higher than 0) was more likely than the null hypothesis 398 

(decoding performance not different from 0) in caudal parts of IPS (IPS0-2) for the 1M 399 

condition, and vice versa in IPS3-5. For the 3M and 1M2C conditions, in contrast, the Bayes 400 

factors in all parietal ROIs (with the exception of IPS5 in the 1M2C condition) revealed greater 401 

evidence in the data for the null hypothesis (Table 2).402 

 Patterns of covariation. Recall that, in the Parietal Delay ROI, the level of BOLD signal 403 

in the 1M vs. the 3M condition predicted the effects of this manipulation on behavioral precision. 404 
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At a finer grain of anatomical resolution, this relation was not observed in IPS0 and IPS1 (r2 = 405 

0.028 and 0.10, respectively), began to emerge in IPS2 (r2 = 0.31), and was uniformly robust for 406 

IPS3-IPS5 (r2s > 0.40; Figure 5A). Recall as well that, in the Parietal Delay ROI, the level of 407 

BOLD signal in the 1M vs. the 3M condition also predicted the effects of this manipulation on 408 

MVPA performance in the Occipital Sample ROI. In the anatomically defined ROIs, this effect 409 

was not significant in IPS0 and IPS1 (r2 = 0.0004 and 0.21, respectively), but was robust and 410 

progressively stronger from IPS2-IPS5 (r2s > 0.40; Figure 5B).  411 

Exploratory analyses by hemisphere, and of lateral prefrontal cortex  412 

All of the analyses of IPS ROIs that have been reported up to this point suggest a much 413 

more prominent role for IPS activity, whether assessed as aggregated BOLD signal intensity or 414 

with MVPA, in the delay-period control of working memory for three items drawn from the 415 

same category than for three items drawn from two different stimulus categories. Furthermore, 416 

BOLD signal intensity of IPS delay-period activity was comparable in the 1M and 1M2C 417 

conditions, and the 1M to 1M2C load effect in IPS failed to show within-subject correlation with 418 

either neural or behavioral precision. Although these findings provided clear answers to the two 419 

principal questions that motivated this experiment, they left unanswered how our data might 420 

explain the general effects of memory load: the fact that behavioral precision was comparably 421 

lower for both 3M and 1M2C trials relative to 1M; and the fact that delay-period stimulus 422 

decoding from occipital cortex was comparably lower for both 3M and 1M2C trials relative to 423 

1M. To address this question, we returned to the theoretical proposition that an amodal 424 

attentional resource underlies VWM capacity limitations. Because previous studies carried out 425 

within this framework have primarily identified load-sensitive modality-independent effects in 426 

left-hemisphere regions of IPS and frontal cortex (Cowan et al., 2011; Li et al., 2014; Majerus et 427 
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al., 2016), we carried out these additional analyses in the left-hemisphere and right-hemisphere 428 

Parietal Delay ROIs, and in the left-hemisphere and right-hemisphere Lateral PFC Delay ROIs 429 

(as described in Materials and Methods) .  430 

 In a unilateral left-hemisphere Parietal Delay ROI, 1M2C delay-period activity 431 

(averaged across 10-14 sec) was significantly higher than was 1M delay-period activity (t(11) = 432 

2.28, p = 0.043), and the ANCOVA relating load-related change in delay-period activity to 433 

behavioral precision also approached significance (r2 = 0.24; p = 0.09); no such trends were in 434 

evidence in the right hemisphere. Importantly, in the left-hemisphere Lateral PFC Delay ROI, 435 

delay-period activity was elevated for both the 1M2C and 3M conditions relative to 1M, and did 436 

not differ between 1M2C and 3M (Figure 6A). Furthermore, for both of these conditions, the 437 

ANCOVAs relating BOLD signal intensity in the left-hemisphere Lateral PFC Delay ROI to 438 

behavioral precision and to occipital MVPA, as a function of memory load, revealed reliable 439 

within-subject correlations (r2s > 0.3; ps < 0.05; Figure 6C-F); such trends became a lot weaker 440 

in the right-hemisphere Lateral PFC Delay (r2s = 0.29 and 0.03, ps = 0.06 and 0.55), where 441 

delay-period activity for the 1M2C condition was reduced (Figure 6B). 442 

 443 

Discussion 444 

Although delay-period activity in the IPS increases monotonically with memory load 445 

(Emrich et al., 2013), and in a manner that saturates with VWM capacity (Todd and Marois, 446 

2004, 2005), the functions that this activity supports remain unclear. Many studies to date have 447 

confounded memory load with the potential for elevated demands on context binding. It is well 448 

established, both at behavioral (Wickens et al., 1963; Wickens, 1973) and neural (Postle et al., 449 

2004; Cohen et al., 2014) levels, that mnemonic representations of same-category items interfere 450 
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to a greater extent than heterogeneous items. Furthermore, our serial presentation and single-item 451 

probing procedure required subjects to retain not just the physical properties of each stimulus, 452 

but also the order in which it had been presented. 3M trials were expected to place greater 453 

demands on context binding (Oberauer and Lin, 2016), for the reason that the ordinal context of 454 

each item could be confused with those of two other items, whereas on 1M2C trials such 455 

confusion was only possible for the two colors, but not for the single RDK. Despite these 456 

considerations, however, the fact that VWM for heterogeneous items is also capacity limited left 457 

open at least two possibilities for our study. First, neural operations recruited by 3M and 1M2C 458 

may have differed only quantitatively, in which case capacity limitations in VWM might be 459 

understood as deriving from limitations inherent in the operations summarized here. Second, and 460 

more consistent with our findings, 3M and 1M2C trials may differentially tap into two discrete 461 

sets of mental operations, one engaged to address demands of context binding, and one more 462 

generally associated with capacity limitations, regardless of stimulus category or modality. 463 

(Additionally, and mutually compatible with the context-binding account, the two load-of-three-464 

items conditions also afforded different strategies for chunking by category, a possibility that 465 

cannot be disambiguated with the present design.)  466 

IPS and the control of demands on context binding 467 

Delay-period activity in IPS was much more strongly implicated in controlling the effects 468 

of stimulus homogeneity than in the effects of varying memory load. Spatially aggregated delay-469 

period BOLD activity was greater for 3M than for 1M and 1M2C, and did not differ between the 470 

latter two. Furthermore, IPS BOLD sensitivity to the 1M-to-3M manipulation predicted the 1M-471 

to-3M drop in VWM fidelity, both as estimated in behavioral performance and in delay-period 472 

decoding of occipital stimulus representation. No such relations were observed in 1M vs. 1M2C 473 
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comparisons. This means that factors other than load, per se, drove these within-subject 474 

correlations. Although our results do suggest a possible alternative explanation for the load-475 

sensitive activity reported in the earlier work by Todd and Marois (2004; 2005), our study used a 476 

different method to define the functionally activated ROI. Therefore, we cannot rule out the 477 

possibility that there are two discrete sources of load-sensitive activity, one putatively related to 478 

context binding, the other to memory storage. 479 

Our findings are broadly consistent with the operation of a salience map (Colby and 480 

Goldberg, 1999; Knops et al., 2014) under conditions in which the most behaviorally relevant 481 

stimulus dimension to be tracked is order of presentation, rather than the more traditionally 482 

studied spatial location (Jerde et al., 2012). The representation of temporal order information 483 

engages PPC and lateral PFC (Marshuetz et al., 2000). Interestingly, many current computational 484 

models also emphasize that context binding is fundamental to VWM function, and that the 485 

critical context can often be temporal (Oberauer and Lin, 2016; Schneegans and Bays, 2017). 486 

Because only temporal order served as context in the present study, it remains to be examined 487 

whether this “context binding” hypothesis generalizes to other domains, such as space. 488 

Despite the marked differences of processing requirements between the 3M and 1M2C 489 

conditions, data from these two conditions were also similar in many respects. Behaviorally, the 490 

two conditions did not differ statistically in terms of precision, probability of target responses, or 491 

guessing. Neurally, decoding of the critical motion direction from the Occipital Sample ROI did 492 

not differ between these two. Furthermore, swap errors for RDK stimuli, which were only 493 

possible in the 3M condition, were nonexistent. The most parsimonious explanation for these 494 

outcomes is that the additional demands of the 3M condition, relative to 1M2C, were overcome 495 

by the recruitment of IPS-based control. The absence of swap errors may be explained by the 496 
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effective implementation of context binding, which is reflected in the greater delay-period 497 

activity in IPS in the 3M condition. 498 

Constraints on working memory capacity 499 

The patterns of IPS activity that we have emphasized up to this point have not shown 500 

strong evidence for activity related to category-independent capacity limitations on VWM. One 501 

would expect a region whose activity reflected more general capacity limitations to show greater 502 

delay-period activity for 1M2C than 1M. Consistent with previous studies (Cowan et al., 2011; 503 

Li et al., 2014; Majerus et al., 2016), our data suggests that such activity is strongly left 504 

lateralized, trending in IPS, and robust in lateral PFC. Indeed, our data are consistent with a 505 

model of at least partial independence between a left-lateralized amodal attentional resource that 506 

most prominently draws on lateral PFC (Cowan, 1995), and an IPS-supported salience map that 507 

can carry out the function of context binding. This pattern is also consistent with computational 508 

models that posit distinct explanations for binding errors versus the effects of load, the latter 509 

being attributed to changes in signal-to-noise (Oberauer and Lin, 2016; Schneegans and Bays, 510 

2017), as would be expected in a system operating under a normalization regime (Carandini and 511 

Heeger, 2012). 512 

Functional distinction between occipital and parietal cortex, and a gradient of function along the 513 

IPS 514 

Together with evidence for the dissociability of two kinds of control, our data also 515 

confirmed a clear distinction between patterns of activity in occipital cortex versus IPS, 516 

suggesting different contributions to VWM. This dissociation is highly robust and replicable, in 517 

that three previous studies (Emrich et al., 2013; LaRocque et al., 2017; Riggall and Postle, 2012) 518 

have demonstrated similar patterns of results. Whereas aggregated delay-period BOLD signal 519 
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intensity in the Occipital Sample ROI did not differ between the three conditions, nor from 520 

baseline levels; in the Parietal Delay ROI it was elevated in all three conditions, and markedly 521 

more so for 3M than 1M2C and 1M. This IPS activity is associated with a control function, as 522 

it’s correlated with both behavioral and neural estimates of VWM fidelity. In contrast, delay-523 

period MVPA decoding, which suggests a role in information storage, was markedly superior in 524 

the Occipital Sample ROI. Specifically, decoding of mnemonic representations was successful in 525 

the Occipital Sample ROI regardless of memory load, whereas successful decoding in the 526 

parietal ROIs was only possible, or trending, when only one item was held in memory.  527 

The contribution of the parietal cortex to VWM storage, per se, is controversial and 528 

remains to be fully understood. Task-specific delay-period selectivity for motion direction was 529 

not observed in single neurons in the lateral intraparietal area (LIP) of monkeys (Sarma et al., 530 

2016). However, delay-period motion direction can be decoded from local field potentials 531 

regardless of task (Masse et al., 2017). Another study has demonstrated that LIP neurons encode 532 

the magnitude of the difference in shape between a target and a nonmatching foil rather than 533 

shape identity (Ong et al., 2017). Human fMRI studies also produced mixed findings, with some 534 

successful (Christophel et al., 2012; Ester et al., 2015; Bettencourt and Xu, 2016; Yu and Shim, 535 

2017) and some unsuccessful (Linden et al., 2012; Riggall and Postle, 2012; Emrich et al., 2013; 536 

Lee et al., 2013) when decoding stimulus identity from delay-period activity in the parietal 537 

cortex.  538 

Along the length of the IPS, differences in function were graded, rather than categorical. 539 

1M-to-3M load sensitivity of delay-period activity was lowest for IPS0 and became 540 

progressively greater for each more rostrally located ROI. This gradient was mirrored in the 541 

results of analyses indexing control-related patterns of activity: The evidence for functional 542 
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interactions between parietal signals and occipital mnemonic representations, as well as the 543 

evidence for a relation between parietal signals and behavior, were non-existent for the more 544 

caudal part of IPS and became progressively larger for more rostral parts. Thus, rather than being 545 

highly localized, the working-memory-related control functions of the IPS may emerge and 546 

strengthen along a caudal-to-rostral gradient. This observation is broadly consistent with 547 

longstanding views suggesting a functional distinction between caudal and rostral IPS (Cole et 548 

al., 2013; Freud et al., 2016; Xu and Chun, 2006). 549 

The neural bases of working memory capacity limitations  550 

Empirical observation has demonstrated that VWM is capacity limited (Luck and Vogel, 551 

1997; Cowan, 2001), with individual differences stable and trait-like (Fukuda et al., 2015), and 552 

predictive of many other cognitive measures (Cowan, 2014). Although this characteristic of 553 

human cognition undoubtedly derives from many sources, two that have received considerable 554 

attention are an amodal resource that must be allocated across all to-be-held items in memory, 555 

and processes to control interactions among mnemonic representations. Our results provide 556 

evidence that these two are mutually compatible, and supported by at least partially dissociable 557 

systems in the brain.    558 

559 
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Table 1. Behavioral responses to direction-of-motion probes 560 
 Descriptive data 2-factor mixture model (parameter estimates) 

Trial type Distribution of 

response error 

(converted to 

1/SD) 

RT 

(sec) 

Probability of 

response to 

target  

Probability of 

response to 

non-target 

Probability of 

guess response 

Concentration 

1M 2.97 [0.47] 2.42 [0.47] 0.932 [0.26] n/a 0.068 [0.003] 30.2 [0.47] 

3M 1.84 [0.31] 2.66 [0.09] 0.867 [0.40] 0.002 [0.002] 0.131 [0.039] 20.1 [3.1] 

1M2C 2.36 [0.37] 2.55 [0.09] 0.901 [0.41] n/a 0.098 [0.004] 20.4 [2.5] 

All values in brackets are standard error of the mean; n/a = not applicable 561 

  562 
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Table 2. Statistical results of MVPA performance for 1M, 3M, and 1M2C conditions separately 563 

 t value p value (FDR corrected 
in each condition, for 
anatomically-defined 
ROIs) 

Bayes factor 

 1M 3M 1M2C 1M 3M 1M2C 1M 3M 1M2C 
Parietal 
Delay 
ROI 

1.83 0.58 1.58 0.094 0.576 0.142 0.57 0.02 0.25 

IPS0 2.37 0.32 0.92 0.075 0.752 0.378 2.64 0.75 0.10 
IPS1 2.45 0.48 1.94 0.075 0.752 0.122 2.23 0.02 0.47 
IPS2 2.57 0.65 1.75 0.075 0.752 0.131 4.29 0.02 0.01 
IPS3 1.91 0.79 1.92 0.100 0.752 0.122 0.65 0.02 0.66 
IPS4 2.05 0.82 2.01 0.098 0.752 0.122 0.80 0.02 0.74 
IPS5 0.93 0.84 2.18 0.370 0.752 0.122 0.11 0.02 1.03 

 564 

  565 
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Figure 1. Experimental procedure.  566 

Participants fixated at the center of the screen and remembered one motion direction (1M), one 567 

motion direction and two colors (1M2C), or three motion directions (3M) on different trials. 568 

After a long delay of 8 s, participants rotated the needle to indicate the probed motion direction 569 

or color. 570 

 571 

Figure 2. BOLD activity and classification performance in Sample and Delay ROIs 572 

A. Time course of BOLD activity in Occipital Sample ROI, and B. in Parietal Delay ROI. C. 573 

Time course of classifier performance in Occipital sample ROI, and D. in Parietal Delay ROI. 574 

Red, blue, and green lines represent the 1M, 3M, and 1M2C conditions, respectively. Circles on 575 

top of each plot denote significance of each time point. Purple, Orange, and Cyan circles 576 

represented the comparisons of 1M vs. 3M, 1M vs. 1M2C, and 3M vs. 1M2C, respectively. Solid 577 

circles: p < 0.05; dashed circles: p < 0.10. All p-values were corrected with False Discovery Rate 578 

(FDR). The shaded gray areas indicate the timing of the sample (S), delay (D), and probe (P) 579 

epochs of each trial. Error bars denote ± 1 SEM. 580 

 581 

Figure 3. Within-subject correlations between behavioral precision, BOLD activity, and 582 

classification sensitivity, as a function of memory load (1M vs. 3M). 583 

A. Results from ANCOVA relating behavioral precision (concentration parameter from mixture 584 

model) and classification performance in Occipital sample ROI. B. Results from ANCOVA 585 

relating behavioral precision and delay-period BOLD activity (beta value from GLM) in Parietal 586 

Delay ROI. C. Results from ANCOVA relating delay-period BOLD activity in Parietal Delay 587 

ROI and classification sensitivity in Occipital sample ROI. In each plot, data from each subject 588 
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are portrayed in a different color, and the “1” and “3” symbols display individual values in the 589 

1M and 3M conditions, respectively. Lines illustrate the best fit of the group-level linear trend 590 

(i.e., the within-subject correlation) in relation to each individual subject’s data.  591 

 592 

Figure 4. Delay-period BOLD activity and classification sensitivity in each IPS anatomical ROI. 593 

A. Delay-period BOLD activity, collapsing across 1M, 3M, and 1M2C conditions. B. Load 594 

effect [3M – 1M]. C. Mean classification of averaged delay-period signal for the 1M condition in 595 

the functionally defined Occipital sample and Parietal Delay ROIs, and in anatomically defined 596 

IPS0-IPS5. Error bars denote ± 1 SEM. 597 

 598 

Figure 5. Within-subject correlation between behavioral precision, BOLD activity, and 599 

classification sensitivity, as a function of memory load (1M vs. 3M), in each IPS anatomical 600 

ROI. 601 

A. Results from ANCOVAs relating behavioral precision and BOLD activity. B. Results from 602 

ANCOVAs relating BOLD activity in each IPS anatomical ROI and classification performance 603 

in the Occipital sample ROI. 604 

 605 

Figure 6. BOLD activity and within-subject correlation in the Lateral PFC ROIs. 606 

A. Time course of BOLD activity in left hemisphere Lateral PFC ROI, and B. right hemisphere 607 

Lateral PFC ROI.  Red, blue, and green lines represent the 1M, 3M, and 1M2C conditions, 608 

respectively. Circles on top of each plot denote significance of each time point for 1M vs. 3M 609 

(purple), 1M vs. 1M2C (orange), and 1M2C vs. 3M (cyan). Solid circles: p < 0.05; dashed 610 

circles: p < 0.10. The shaded gray areas indicate the timing of the sample (S), delay (D), and 611 
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probe (P) epochs of each trial. Error bars denote ± 1 SEM. C. Results from ANCOVAs relating 612 

variation as a function of the 1M vs. 3M manipulation between BOLD activity in the left 613 

hemisphere Lateral Prefrontal ROI and behavioral precision, and D. between BOLD activity in 614 

the left hemisphere Lateral Prefrontal ROI and classifier performance from Occipital sample 615 

ROI. E. Results from ANCOVAs relating variation as a function of the 1M vs. 1M2C 616 

manipulation between BOLD activity in the left hemisphere Lateral Prefrontal ROI and 617 

behavioral precision, and F. between BOLD activity in the left hemisphere Lateral Prefrontal 618 

ROI and classifier performance from Occipital sample ROI. In each plot, data from each subject 619 

are portrayed in a different color, and the “1”, “2”, and “3” symbols display individual values in 620 

the 1M, 1M2C, and 3M conditions, respectively.   621 
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