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Abstract 
 
The first recordings of human brain activity in 1929 revealed a striking 8-12 Hz oscillation in 
the visual cortex. During the intervening 90 years, these alpha oscillations have been linked 
to numerous physiological and cognitive processes. However, because of the vast and 
seemingly contradictory cognitive and physiological processes to which it has been related, 
the physiological function of alpha remains unclear. We identify a novel neural circuit 
mechanism—the modulation of both excitatory and inhibitory neurons in a balanced 
configuration—by which alpha can modulate gain. We find that this model naturally unifies 
the prior, highly diverse reports on alpha dynamics, while making the novel prediction that 
alpha rhythms have two functional roles: a sustained high-power mode that suppresses 
cortical gain and a weak, bursting mode that enhances gain. 
 
Summary: Alpha oscillations—ubiquitous in the primate brain—control neuronal gain via 
two mechanisms: sustained to suppress gain and bursting to enhance it. 
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Introduction 

Oscillations in the alpha (8-12 Hz) range are the most prominent feature of human visual 
cortical activity. Alpha is widespread, observed over the entire posterior half of human 
cortex. Alpha was initially viewed as a suppressive rhythm (1, 2) as alpha power is maximal 
in visual regions when eyes are closed and the person is relaxed (3). Numerous studies over 
the last century suggest that this simplified characterization is incomplete because the 
physiology of alpha is quite complex. Alpha oscillations have been shown to rhythmically 
modulate population spiking (4, 5), with alpha phase influencing information transfer (6), 
stimulus detection (7), illusory perception (8, 9), and age-related working memory decline 
(10). The magnitude, or power, of alpha rapidly tracks the allocation of attention and memory 
in space and time (11-14) and influences trial-by-trial perception (7, 15). Individuals can 
even modulate their alpha frequency to optimize behavioral outcomes (12, 16-18), possibly 
via thalamic modulation of alpha phase biasing cortical activity (19). These results suggest an 
active role for alpha where it serves a gating function controlled by top-down processes (11). 
This is contrary to the classic perspective and shows that alpha may not be uniformly 
inhibitory but, rather, rhythmically so, such that only certain phases of the oscillation aid 
information transfer (20). 
 
Here, our central assumption is that, to understand how alpha affects cognition, we must 
understand and account for the cortical circuits and dynamics with which alpha interacts. 
Alpha rhythms are (in part) generated in the thalamus (21-23). Thalamic projections into the 
cortex can both drive and modulate cortical activity (24) . These thalamic projections are 
divided into independent nuclei that relay visual, auditory, and somatosensory input into 
distinct areas of the cortex (25), as well as to higher-order nuclei that transmit input from 
cortex to other cortical regions (26). All independent thalamic nuclei appear to generate and 
transmit 6-14 Hz oscillations to the cortex, with many corticothalamic field models 
spontaneously generating such oscillations (27). Alpha generation is likely a consequence of 
neuronal time constants and the six-layer structure of mammalian neocortex. Thalamic input 
to cortex targets layers 4 and 6, and cortical output occurs predominantly through layer 5 
(25). The connectivity between these layers, and the intervening layers (2/3), is thought to be 
consistent across cortex. That is, while firing dynamics and fine computational and cognitive 
properties are highly regional (28, 29), the underlying cortical connectivity patterns are 
conserved (30). 
 
The consistent formation and projection of alpha rhythms from the thalamus, combined with 
the broad consistency of cortical architecture, argues strongly for a common (biological) 
function for thalamocortical alpha. However there exists no such general account. Following 
from previous phenomenological work linking attention and working memory to gain 
modulation (31-34), and given the fact that alpha is associated with alterations in cortical 
gain or inhibition (35), we formalized thalamocortical alpha as physiological gain modulation 
(defined as a multiplicative change in neural excitability). We then developed a novel 
computational model of alpha where 10 Hz oscillations rhythmically modulate both 
excitatory and inhibitory (EI) firing. Thus, to understand alpha’s role in visual cognition we 
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join two well-established models: one largely phenomenological and macroscopic—alpha 
oscillations control gain—and one mechanistic—EI inputs affect single unit gain. 
 
This offers a unifying functional theory for human cortical alpha oscillations. We explore the 
validity of this across several computational models of visual cognitive tasks, and show that 
our current formalization of alpha as a cortical gain control mechanism accounts for the 
disparate range of observed alpha functions to date. Critically, the model also generates novel 
predictions for the time-varying properties of alpha that we confirm in both human 
intracranial electrocorticography (ECoG) and scalp electroencephalography (EEG) 
recordings. 
 
Results 
Alpha modulation in single neurons 
We measured the gain of a single leaky integrate and fire (LIF) neuron (Fig. 1a) subjected to 
either constant activity or a 10 Hz oscillatory modulation (Fig. 1b). Specifically, we modeled 
oscillations as periodic suppression of background activity. While the net effect of this 
oscillatory modulation is an overall increase in gain (Fig. 1c), there are time-varying phase 
effects such that gain reaches its maximum in the trough of the oscillation and its minimum at 
the peak (Fig. 1d). This observation is consistent with prior reports regarding the effect of 
alpha on neural gain (4, 36, 37). Although alpha oscillations are often treated as inhibitory, 
we find that oscillations driven purely by excitatory inputs produce an inverse pattern where 
gain is maximum near the peak of the oscillation and minimum near the trough, 
recapitulating previous observations of the effect of excitatory oscillations (38). Perhaps 
unsurprisingly, these results suggest that the physiological origin of alpha—generated either 
through pulsed excitatory inputs or periodic suppression—influences its mechanistic effects 
on the local cortical circuit. 
 
Alpha modulation in neural populations 
To understand how oscillatory modulation affects populations of neurons, we constructed a 
multi-scale rate model of layer 4 of early visual cortex. This model featured a recurrently and 
reciprocally coupled set of excitatory and inhibitory populations, and two types of input: a 
“driver” stimulus, and a “modulatory” connection (24) . The (thalamic) driver inputs 
represent incoming sense information from the lateral geniculate nucleus (Fig. 2a). The 
modulatory inputs represent a background noise process, arising from comparatively weak 
thalamic connection (possibly to L6 (39)) (Fig. 2a). We then examined modeled visual 
responses for two types of prototypical visual stimuli: 1) Visual Detection—a 12 ms faint 
burst of activity, similar to that used in many visual target detection tasks (7)(Fig. 2b-d), or; 
2) Naturalistic Viewing—a continuous stream of noisy activity natural visual inputs (Fig. 2e-
l).  
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Figure 1. Oscillatory modulation of single unit activity. a. Diagram of a model LIF neuron subject to either 
asynchronous (constant) or oscillatory background modulation with pulses of excitatory input (purple). b. Spike 
raster of background noise (left) compared to the summed activity (right) of these balanced excitatory (black) 
and inhibitory (red) networks. In comparing constant (top) and oscillatory (bottom) firing modes, note how the 
standard deviation of the membrane potential is constant in the asynchronous case and fluctuates under 
oscillation (green versus blue arrows, which represent the trough and the peak, respectively). c. Firing rate 
versus input (F-I) curve of the model neuron in a under either constant (dashed) or oscillatory (solid) 
background modulation showing that an oscillatory background increases gain compared to a constant 
background. d. F-I curve at the peak and trough of the 10 Hz oscillation in the EI-balanced state. e. Firing rate 
as a function of oscillatory phase showing that firing is maximal at the alpha trough (±π rad) and minimal at its 
peak (0 rad). 
 
Visual detection 
To study the effect of visual attention on alpha, researchers frequently use visual target 
detection designs wherein a faint light is briefly flashed on screen. After psychophysical 
thresholding to 50-70% performance, participants then must indicate whether they detected a 
flash on each trial and, in some designs, indicate the spatial location of the flash (7, 12). 
Similar to human behavioral experiments, trials are sorted by their alpha phase or power at 
the time of stimulus onset, and performance is examined post hoc as a function of alpha at the 
beginning of each trial. 
 
We modeled this by presenting a 12 ms “flash” of input into our simplified model of early 
visual cortex. Here the flash was not a light per se, but an impulse of current into the model. 
We then examined the detection of this stimulus as a function of alpha power and phase (Fig. 
2b-e). The magnitude of the stimulus was tuned until the model achieved approximately 70% 
detection performance without oscillatory modulation (see Methods). In line with the 
literature on alpha suppression (40), increasing alpha power led to decreased detection 
performance (Fig. 2b). However when stimulus presentation was locked to the trough of the 
oscillations, performance improved compared to a constant, non-oscillatory, baseline (Fig. 
2c). This is expected given the model’s effect on firing (Fig. 1e). When the phase of a 
relatively weak oscillation (relative power = 1.5; Fig. 2b) was randomized between trials, 
detection performance was also improved, albeit with an increase in detection variance (Fig. 
2c). These results suggest that strong, sustained oscillations suppress gain, while the lower 
levels of alpha typically present in visual areas during task performance (Fig. 2c,d) may 
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represent more than a release of suppression, but may play an active, facilitatory role in 
visual cognition. 
 
As noted above, during visual cognitive tasks participants are frequently asked to indicate 
where a stimulus appears (10, 12, 13). Alpha power is widely reported to decrease more in 
the visual cortical hemisphere contralateral to stimulus presentation. We therefore 
implemented a “hemispheric” version of our population model. Two population models were 
weakly coupled to produce a bilateral model of the early visual system (see Methods). The 
model was tasked with identifying on which side a visual stimulus appeared. In this model, 
differences in alpha power could effectively control choice probability. Decreasing 
contralateral, relative to ipsilateral, alpha power suppressed false positives in that 
hemisphere, which increased correct detection events for contralateral targets (Fig. 2e). 
 

 
Figure 2: Alpha power, phase, and visual task performance. a. Diagram of our multi-scale population mass 
model. Center boxes represent layer 4, the cortical input layer, and the oval the thalamic sensory input. Input 
here is a brief (12 ms) pulse (violet), simulating a rapid light flash. The dashed purple line represents the input 
integration window used to estimate d'. Background modulation is estimated in a single neuron model whose F-I 
curve serves to estimate population gain, following a smoothing procedure. The inset panel represents this F-I 
curve under constant (grey) or oscillatory (black) modulation. b. Simulated visual target detection (d') decreased 
with increasing alpha power. (Black line, mean d'; light gray, standard error.) c. Phase-locked stimulus 
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presentation showing that detection increases as a function of increasing signal-to-noise ratio (SNR), and that 
this effect is strong in a bursting, as opposed to constant, oscillatory state. d. Visual target detection also 
improves as a function of SNR when phase is randomized between trials, and is also better when alpha is 
bursting. e. A hemispheric gating model showing that choice probability improves for simulated lateralized 
visual stimuli when the alpha power difference is greatest between the two simulated visual cortical hemispheric 
populations. f-g. Example rate model time-courses under naturalistic viewing conditions. Fluctuations in alpha 
power lead to periodic changes in gain; such changes spontaneously generate phase-amplitude coupling in the 
populations in a. h-i. Mutual information between the stimulus and excitatory population increases with 
increasing white noise and type of phase-amplitude coupling (asynchronous high gamma versus oscillatory 
gamma-to-alpha). Small dots represent individual trials (N = 36); large dots represent average MI. j. Schematic 
of two independent EI populations receiving common naturalistic input, where alpha phase synchronization 
drifts between the two populations. K. Example time-courses of model output from j. l. Mutual information 
between excitatory populations decreases as the phase difference between populations increases, showing that 
inter-regional oscillatory phase coherence may improve information transfer. 
 
Communication though coherence 
In human and non-human animals, oscillatory coupling between cortical layers, and between 
brain regions, is believed to control information flow. Two modes of coupling are commonly 
reported: phase-amplitude coupling (PAC)(41) and coherence (phase-phase coupling)(42). 
We studied the effect of coupling on information flow under simulated naturalistic viewing 
conditions. 
 
The periodic fluctuations in gain intrinsic to our model produce two modes of PAC: slow 
oscillation phase coupled with asynchronous firing (i.e., “high gamma”, 80-150 Hz) and the 
coupling between a slower alpha oscillation and a faster oscillation in the beta/gamma range 
(20-50 Hz; Fig. 2f-g). Note that distinguishing between these two forms of PAC is critical, as 
they likely have different physiological interpretations (43-45). In line with previous reports, 
both modes of oscillatory coupling lead to an increase in information flow compared to the 
non-oscillatory control condition (46)( Fig. 2h-i). Additionally, when the “hemispheric” 
model (see above) was exposed to common naturalistic input, but the phase of the alpha 
modulation was allowed to drift between regions such that they could be in phase or drift out 
of phase (Fig. 2j,k), information flow decreased as the two regions moved out of phase (Fig. 
2l). This observation recapitulates theories on neural communication through phase 
coherence (42), where inter-regional phase coherency has been previously linked to 
maximized information flow (47, 48), possibly via PAC (49, 50) . 
 
Contradictory effects of alpha power 
Increased oscillatory power can arise from several different sources, including either 
increasing the amplitude of each cycle, or simply increasing the number of cycles over the 
temporal integration window (51). To simulate the former, we show that increasing the peak 
firing rate of a neuronal population generating oscillatory alpha increases alpha power, but 
decreases neuronal gain (Fig. 3a-c). In contrast, while increasing the number of oscillation 
cycles also increases alpha power (Fig. 3d,e) this “bursting” mode has the seemingly 
contradictory effect of increasing gain (Fig. 3f). 
 
That is, our model suggests that alpha power is not a singular physiological phenomenon, but 
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rather may have two distinct functional modes: A strong, sustained mode (>5-10 cycles) that 
serves to suppress neuronal activity, and a weaker “bursting” mode (of 1-5 cycles) for fast, 
precisely-timed gain increases. Given this, we hypothesize that the sustained mode should 
therefore decrease the average firing rate, as well as the variance of firing, in an oscillating 
region. That is, sustained alpha suppresses, but stabilizes, firing. We further hypothesize that 
alpha bursts act in an opposite manner—to rapidly but temporarily increase gain, which is 
supported by several recent reports that brief (100 ms) cortical beta (13-30 Hz) bursts of just 
a few cycles aid in behavioral outcomes (51, 52). That is, our model suggests oscillatory 
bursting should increase both average firing and firing variance. 
 
The above modeling results offer novel predictions regarding the physiological and 
functional role of sustained versus bursting alpha. To experimentally test these hypotheses, 
we analyzed both invasive and non-invasive human visual cortical electrophysiology while 
participants performed visual attention tasks. 
 

 
Figure 3: Alpha power increases can imply both increases or decreases in neural gain depending on their 
physiological origin. a-b. Alpha power increases as the peak neuronal firing rate in a sustained oscillation 
increases. c. Increases in sustained alpha power lead to decreases in F-I curve slope, indicating a decrease in 
gain. d-e. Increasing the number of alpha cycles in a short burst of oscillatory activity also increases alpha 
power. f. Increased alpha power due to an increase in burst number, however, increases gain (F-I slope). 
 
Analysis of visual cortical EEG data shows that, during eyes-closed rest, there is a bimodal 
distribution of alpha power in visual areas. However, when participants are performing a 
visual attention task, only lower power mode is apparent (Fig. 4d). In terms of oscillation 
duration, task-related alpha has a median length of 0.256, corresponding to roughly 2-3 
cycles (Fig. 4e). This represents a 57% reduction in length compared to rest periods (median 
length of 0.404 seconds; Fig. 4e). Consistent with our EEG results, the median duration of 
task-related alpha oscillations in our analysis of ECoG data (discussed below) was 0.285 
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seconds. 
 
To assess the physiological link between alpha and spiking in humans, we examined alpha as 
a function of asynchronous high gamma power (50-150 Hz), which is believed to index 
increases in multi-unit spiking activity (53, 54) . However, because of the difficulty in 
measuring high gamma non-invasively, due to non-neural noise sources in scalp EEG (55), 
we analyzed invasive human ECoG data from 2 patients performing a visual attention task. 
Specifically, we compared the relationship between high gamma and alpha power (Fig. 4g, 
top panels), classifying periods of alpha oscillation into two categories: sustained oscillatory 
alpha (> 5 cycles) and alpha bursts (< 3 cycles, see Methods). Sustained alpha was related to 
significantly reduced high gamma power, consistent with previous ECoG reports (36, 56, 57). 
In contrast, bursts showed an approximately 2-4-fold increase in gamma power and variance 
(Fig. 4g, top panels). In fact, separating sustained versus bursting oscillations explains the 
nonlinear correlation observed between alpha and high gamma power (or spiking)(5)( Fig. 
4g, compare top and bottom panels). 
 

 
Figure 4. Sustained versus bursting: evidence for two modes of alpha activity. a. All electrophysiological 
data was collected from posterior occipital areas (ECoG or electrode OZ in EEG). b. Example EEG data from 
both task and rest periods. Dark lines represent instantaneous alpha power, light lines represent the unfiltered 
electrophysiological recordings. Blue lines denote the criterion for burst onset (dark) and offset (light) criterion. 
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c. Power spectra of EEG data showing significant alpha power reduction from rest to task. d-e. Distribution of 
oscillatory power (d) and duration (e) for all detection periods of oscillatory activity. f. Example of ECoG data 
(only task data was available for these participants, not rest). Dark lines represent instantaneous alpha power, 
light lines represent the unfiltered electrophysiological recordings. Blue lines denote the criterion for burst onset 
(dark) and offset (light) criterion. g. Relationship between alpha (8-12 Hz) and high gamma (80-150 Hz) power 
for two participants, both overall (top) and as function of oscillation type (bottom). Oscillations were periods of 
activity lasting greater than 0.5 seconds (5 cycles), while “bursts” were periods of oscillation lasting less than 
0.3 seconds (3 cycles). h. Comparison of oscillation waveform shape between model and ECoG data. 
 
Waveform shape 
The background oscillatory process in our model is a periodic burst of background firing 
followed by a return to a longer period of below-baseline activity (Fig. 4h, top). This pattern 
is inspired by the highly synchronous bursts of activity typically reported in the thalamus, but 
is quite dissimilar to the waveforms typically observed in EEG (Fig. 4b) and ECoG 
recordings (Fig. 4f,g, bottom). When this “thalamic” pattern is used to control gain, 
excitatory population waveforms are remarkably similar to the patterns observed in human 
electrophysiology (Fig. 4g, middle). That is, ECoG and EEG recordings of alpha present with 
typically asymmetric, non-sinusoidal waveforms, featuring a comparatively narrow and sharp 
decreasing component and relatively broad, smooth upward profile (Fig. 4g). This is the 
pattern observed in our model, a pattern that is unique to balanced gain modulation. Under 
the same conditions, oscillatory modulation driven by excitatory input alone produces a 
smoother, symmetric, waveform (not shown). This is in line with new evidence that 
physiological information may be extracted from the waveform shape of non-sinusoidal 
oscillations(43, 44) . 
 
Discussion 
We show how the diversity of changes to alpha power and phase can be understood in terms 
of a single mechanism—gain modulation—implemented specifically by periodic fluctuations 
in balanced EI background activity. This view of alpha unifies past theoretical views with 
empirical behavioral and physiological findings under a single mechanism. This is 
significant, as the spectrum of theories about the functions of alpha are broad, ranging from 
suppression, gating, sampling, and gain control to working memory maintenance and 
attentional allocation. A common thread to these interpretations is the modulation of 
information. Beginning from this common view, we began by positing a biophysical 
mechanism for alpha: balanced gain control(46). From there we found that our model could 
capture much of the existing alpha literature while offering novel predictions. 
 
The earliest accounts treated alpha as an idling rhythm. This view is challenged by studies 
examining alpha as function of, for example, working memory, by showing that alpha power 
in posterior electrodes increases with working memory load across many paradigms (58). 
The idling hypothesis was thus updated to an account where alpha acts to rhythmically inhibit 
neural gain (4, 37, 59). In this updated view, regions not receiving sense information or 
otherwise engaging in active behavioral responses were said to be suppressed to avoid 
introducing noise into the larger network. When stimulated, task-relevant regions are 
disinhibited, restoring cortical processing. 
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An alternative account of alpha oscillations and working memory is the phase-coding 
approach, where individual neuronal spiking activity is phase-locked to the oscillation (60), 
offering a route to encode memory items inside single alpha cycles  (61, 62). While 
influential, both the inhibition and phase-coding models have two crucial shortcomings (58): 
1. Alpha activity occurs outside working memory and attentional tasks, and; 2. Regions 
implicated in working memory and attention (such as prefrontal cortex) have weak, if any, 
alpha. 
 
In our model, alpha oscillations, when treated specifically as balanced gain modulation, can 
suppress visual detection. When suppression acts over long periods (e.g., >1 sec) this 
strongly reduces the overall gain (Fig. 2b). This low-gain state reflects an “idle” state of 
activity, serving to inhibit (i.e., reduce) firing output for any given input. Stimulus 
presentation during the high-gain trough of alpha maximizes detection sensitivity, giving the 
model a natural “phase preference” for visual stimulus detection (Fig. 1d,e and Fig. 2c). 
However even if phase is randomized, the average increase in gain provided by weak 
oscillatory activity improves detection performance compared to non-oscillatory periods 
(Fig. 2d). This feature offers an intuitive answer to why noticeable alpha oscillations are 
present even during very difficult visual tasks (Fig. 4b,f): if alpha acted only to suppress 
activity, naively one would expect oscillatory activity to cease in task-relevant regions during 
the most difficult cognitive processes. Yet, oscillatory activity persists. 
 
This alpha-as-gain theory also provides for gating operations by biasing phase (Fig. 2l) and 
amplitude (Fig. 2e). For example, competition between hemispheres during detection of a 
random lateralized stimulus can be accomplished in our model by either biasing the power 
between two tonic oscillations (Fig. 2e,j-l), or by the focal application of “bursting” activity 
to the desired hemisphere (see below). 
 
Regarding the phase-coding view of alpha, wherein asynchronous high gamma or oscillatory 
gamma are nested inside alpha cycles, our model generates both modes of PAC. 
Asynchronous high gamma PAC is thought to reflect the phasic control of the aggregate 
firing rate while nested beta/gamma-to-alpha PAC, in contrast, reflects the phase of a slow 
oscillation (alpha in this case) controlling the amplitude of a faster oscillation (20-60 Hz beta 
or gamma). Both types of PAC have been observed in electrophysiological recordings of 
human and non-human primates (45) with visual cortex high gamma PAC preferentially 
coupling to alpha (63). However why one mode is preferred in some regions, tasks, periods, 
and participants is not understood. Our model suggests an answer: the transition from 
asynchronous high gamma to nested beta/gamma-to-alpha PAC depends largely on the 
connectivity of the local EI populations. That is, both types of PAC are driven by gain 
modulation. However whether high gamma or beta/gamma is present depends on the local 
connectivity. In this case the transition from high gamma to nested beta/gamma PAC follows 
from doubling the recurrent excitatory connection (WEE). However increasing the EI ratio 
(WIE/WEI) or the length of the inhibitory time constant (τgaba) can also control the transition 
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from high gamma to nested oscillatory PAC. Likewise, whether beta or gamma oscillations 
appear depends on the strength of local EI reciprocal connections and time constants, and the 
magnitude of gain changes, such that higher gain increases the relative strength of cellular 
input while stronger inputs favor faster oscillations (64) . 
 
A major question in neuroscience is how sense information from the periphery is represented 
cortically. A controversial and longstanding debate centers around whether that 
representation is continuous or discrete, with evidence for both perspectives. Without any 
special tuning our model explains both of these continuous versus discrete features. Periodic 
alterations in gain segment continuous sense input into, effectively, high and low 
informational bins. When measured experimentally, such bins may give the appearance of a 
“discrete” representation of the sense information. However the difference in informational 
content induced by the gain effect is modest when oscillatory activity is weak (Fig. 2b), as it 
is during task periods (Fig. 1b,f). Likewise, gain effects are strongest when noise is large 
(Fig. 2h,i). 
 
Model predictions 
Though our model of alpha modulation can produce a continuous range of effects, we took a 
dichotomous approach in order to generate novel testable predictions. Specifically, we 
hypothesized that alpha oscillations could serve two distinct functional roles: 1) A strong 
sustained oscillation (> 5-10 cycles) for suppression, and; 2) A weaker “bursting” mode for 
fast, temporally-precise gain increases (of 1-3 cycles; Fig. 3). Experimentally, using both 
invasive and non-invasive human electrophysiology, we observe that alpha power has a 
bimodal distribution, consistent with our bimodal hypothesis for alpha activity. Further, only 
low-power, low-duration “bursts” of alpha lead to increases in high gamma power, a well-
established proxy for multi-unit spiking (53, 54) (Fig. 4g, compare top and bottom panels). 
 
A distinction between relatively sustained versus bursting oscillatory periods is supported by 
recordings in thalamus of nonhuman primates, in which alpha rhythms appear in two modes: 
tonic oscillations and bursts of alpha power (25, 65). The contrast between the number of 
bursts increasing gain while the increasing magnitude of tonic oscillations decreases gain, 
suggests an answer to the question of why the thalamus explores separate firing modes: 
bursts may serve to provide a rapid, stimulus dependent tuning of gain while tonic firing may 
serve to modulate or inhibit regional activity (35, 66). This would, as previously proposed, 
inhibit noisy or undesirable activity in one area from influencing other regions. Both 
stimulus- and internally-driven tuning, as well as homeostatic demands, may therefore seek 
to rapidly modulate gain. Our model suggests that fluctuations in alpha power, phase, and 
frequency be viewed as part of singular cortical tuning process. 
 
Outside of normal cognitive functioning, disruptions to alpha have been implicated in 
numerous neurological and psychiatric disorders, most markedly in depression (67) and 
autism (68). Notably, these disorders are often associated with alterations in EI balance as 
well as with working memory and attention impairments (49, 69, 70). Given our current 
results unifying alpha and EI dynamics, it is plausible to suspect that the observed alpha and 
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EI balance disruptions across these disorders—as well as associated cognitive deficits—
reflect similar physiological mechanisms. Difficulty in measuring EI dynamics in humans has 
prevented exploring such links, however recent advances in estimating EI balance from the 
local field potential (71) may offer novel insights. 
 
Our results show how alpha oscillations can manipulate balanced EI coupling to control gain, 
and suggest this control is used across a wide range of visual and cognitive operations—
including attention, memory, gating, and sensory sampling. These results show that alpha is 
not an index of a cognitive process, but rather that alpha oscillations index a canonical circuit 
mechanism used to implement many aspects of cognition. 
 
Methods 
We developed a model of periodic gain control, relying on the manipulation of balanced 
interactions between excitatory and inhibitory neurons. Balanced here implies that increases 
in excitatory firing are quickly (< 3 ms) and exactly countered by an increase in inhibitory 
activity. With the converse being true for inhibitory activity. Modeling efforts in this work 
spanned two levels of analysis. First we studied how a balanced 10 Hz modulation altered the 
firing properties of single LIF neurons. Second we used the tuning properties of this model to 
develop a population firing rate model of layer 4 in early visual cortex. We then subjected 
this cortical model to range of visual cognition experiments to demonstrate that it can 
produce effects highly consistent with the existing literature. Finally we confirm the novel 
predictions made by our model using both invasive and non-invasive human 
electrophysiological data. 
 
Modeling assumptions 
The central assumption of our model is that EI interactions within and between cortical layers 
are balanced, as defined above. This is supported by evidence that in awake, behaving 
animals, excitatory and inhibitory firing exists in a balanced state such that increases in 
excitatory firing are rapidly and exactly countered by inhibitory firing (72). The balanced 
state is crucial for efficient neural coding, transmission, and information gating (46, 73-75) as 
well as for maintaining neural homeostasis and preventing seizure activity (76-78). Balanced 
interactions can also give rise to gain modulation (24, 79). That is, if EI balance is 
maintained, but the overall magnitude of background excitatory and inhibitory firing is 
lowered, the gain onto a target neuron increases. This gain effect arises from two separate 
processes: 1) A slight hyper-polarization driven by the difference in excitatory versus 
inhibitory synaptic decay times, and; 2) An increase in the variance of the membrane 
potential (79). 
 
Oscillatory modulation in visual cortex is traditionally modeled as either an excitatory or an 
inhibitory process. However this excitatory or inhibitory arrangement stands in contrast to 
our current knowledge of cortical connectivity and dynamics where fast and balanced EI 
interactions are the norm (80). Recent cortical micro-connectivity studies further suggest that 
balanced EI connectivity exists not only within cortical layers, but also between layers and 
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across cortical regions (81, 82). 
 
Beyond the assumption of global EI balance (80, 83, 84), we assume: 

1. The LIF model is sufficient to capture the effect of background noise on neural 
tuning (24, 79, 85). However we note that, in modeling studies, dendritic connectivity 
can strongly alter cortical tuning (86, 87). Incorporating dendritic effects may 
therefore represent an important route for future work. 
 
2. Large-scale cortical dynamics are well represented by an average firing rate model 
(88-93). Like the case of dendritic effects above, extending our approach to include 
populations of heterogeneous neurons represents another important future extension 
(94, 95). 
 
3. A two-population model of only excitatory and inhibitory neurons is sufficient to 
capture the fundamental effects of gain modulation in cortex (90, 96). Rate models 
with a larger numbers of populations offer a richer set of potential dynamics (95, 97-
99), but should not alter the fundamentally biophysical EI effect on which our model 
relies (79). 
 
4. The driver/modulation dichotomy (24, 100). 
 
5. As a corollary of 1, we assume single neuron properties can be generalized to 
predict the tuning of many homogeneous neurons in a rate model (90, 96, 101, 102). 
 
6. Alpha oscillations are well approximated by periodic pauses, i.e., as periods of 
below-baseline firing (22, 35, 66),(103). 

 
Single neuron model 
Consistent with prior experiments, oscillatory modulations were first examined in a single 
LIF neuron (Eq. 1-4). 

 
Where v is the membrane voltage, and V are the rest and Nernst reversal potentials for the 
neuron (Vr) and its synapses (Ve, Vi) and (we, wi) are the synaptic weights. δ(t) is Dirac 
function centered at spike time t. Iφ is the input current (see below). Following the typical 
LIF definition, if the membrane voltage v exceeded the fixed threshold Vt, v was immediately 
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reset to Vr and an action potential was generated. See Table 1. 
 

 
 
φ-curve 
The F-I curve (φ) represents the relation between an input to single neuron and its firing rate 
output (Fig. 1a-c). We study F-I curves of neurons that are subject to a set of balanced 
background parameters, Ω = {be, bi, we, wi, τe, τi}, which act to modulate the gain of the 
neuron (79). Specifically, for a given ith neuron !!! , the F-I curve is the range of firing rates 
produced by a range of input currents, Iφ (Table 1). 
 
Background activity 
Three modes of background modulation were explored. In each, the balanced condition was 
always maintained (see Introduction). In each condition only the rates were modulated, i.e., 
{be, bi} ⊂ Ω. In the constant mode, the LIF neuron was subject to a fixed rate of background 
activity level b. In the oscillatory mode, the background firing rates varied with time 
according to a truncated cosine (Eq. 5). This rectified wave more closely resembled the 
synchronous pulses of activity often found in recordings of thalamic oscillations. The third 
mode, bursting, is a mix of the previous mode. Firing is constant at b until a preselected time 
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tf, after which there are k cycles of oscillation (Eq. 5), followed by a return to b. 
 

Multi-scale rate model 
Our simplified model of layer 4 in visual cortex consisted of two reciprocally coupled EI 
populations, as well as two thalamic inputs (Fig. 3a). One thalamic connection acted as a 
driver of excitatory activity, i.e., having a weight that is strong (4-8x) compared to the 
internal connectivity of the layer model. The second input modulates the gain (output 
nonlinearity) of the network (discussed below). 
 
Our formulation for population firing rate was based on the classic model of Wong and Wang 
(91), but was modified to retain nonlinear connectivity between excitatory and inhibitory 
populations, and neglecting NDMA synapses. The rate equations for population x are: 

Where x denotes either excitatory (e) or inhibitory (i) activity, and Ix is the total synaptic 
input into the model, defined by Eqs. 7 and 8. The bias term θ was adjusted so the baseline 
firing rate the populations was approximately 6 and 12 Hz for e and i respectively (Table 1). 

 
Each of the synapses sx,y is modeled as single exponential function increasing or decreasing 
additively with the population rate rx (Eq. 9). The time constant τx,y is either taue or taui 
depending on the population of x.

 
Dynamic gain control 
Altering the output nonlinearity φ in a rate model simulates gain modulation. The output 
nonlinearity in Wong and Wang (91) is based on a closed-form solution for balanced gain 
modulation taken from Abbott and Chance (24). This solution was based on a simulated LIF 
neuron’s F-I curve as it was subjected to a range of balanced background modulations (see 
Fig. 1c). As in most rate models, however, this nonlinearity is static in time. 
 
Introducing a dynamic output nonlinearity, and therefore dynamic gain control, required 
moving from the closed-form solution to a multi-scale simulation approach. This approached 
joined together a single neuron (LIF) simulation with the population rate model, with the 
former used to estimate the gain/output nonlinearity of the latter. 
 

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/185074doi: bioRxiv preprint first posted online Sep. 7, 2017; 



16 
	

For every population time-step dt in Eq.6, a new instantaneous F-I curve was estimated using 
the single neuron model (Eqs. 1-4). That is, at every time t a background instantaneous 
parameter set Ω and an input range Iφ, generating a single-unit tuning curve. This curve then 
defined the output nonlinearity φΩ, subject to linear interpolation, as necessary, to account for 
the discrete sampling of Iφ. 
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Substituting in the multi-scale nonlinearity give us the final rate equation (Eq. 10) with an 
additional constraint (Eq. 11) that keeps I in the range supported by φΩ . 

 
Multi-scale simulations are computationally demanding. To make ours tractable we restricted 
changes in {be, bi} to 1 Hz increments. Restricting {be, bi} worked in concert with a caching 
system that stored prior φΩ curves to disk. Initial “burn in” runs took 4-24 hours, while 
subsequent runs using caching parameters generally completed within 2-3 seconds. 
 
Simulated task design 
Visual target detection 
In a typical visual detection task a faint flash or grating is presented on screen for a brief 
period (10-20 ms). Detection of the stimulus is indicated by a button press. To simulate this 
task, a brief stimulus (11.7 ms) was injected into the model’s excitatory population 400 ms 
after trial onset. This stimulus was modeled as a 50-150 Hz burst of Poisson firing. The 
intensity of the stimulus was adjusted so it was detectable on 70% of trials. Detection 
required the excitatory population’s firing rate to exceed 2 standard deviations above the 
averaged pre-stimulus rate (350 to 100 ms before onset). The detection window spanned 400-
420 ms following trial onset. Activity was averaged over this period during detection. Such a 
narrow window would be infeasible for human participants, however the stimulus onset, and 
neural response time-constant, are precisely known in our simulated experiment; increasing 
the integration windows only serves to linearly decrease d'. 
 
During half the trials no stimulus was presented to the model. The combined stimulus/no 
stimulus trials allowed for calculation of d' for each simulation experiment by controlling for 
"false alarms" (outlined below). Each experiment contained 720 trials: 360 with stimulus 
presentation and 360 without. 
 
Four experiments were performed using this task. Each manipulated only the parameters for 
the alpha rhythm. 
Experiment 1 compared d' between a constant gain condition and oscillatory gain condition, 
where the phase of oscillation was randomly sampled from a uniform distribution, −2π, 2π 
(Fig. 3b-e). 
 
Experiment 2 compared d' as function of oscillatory power, spanning a range of 1-3x over the 
default rate of 135 Hz (Fig. 3f-g). 
 
Experiment 3 phase-locked a 2-cycle burst of oscillation to stimulus onset, such that the 
stimulus was appeared in the center of trough; the highest gain period (Fig. 3j-l). 
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Experiment 4 combined two V1 populations acting as separate “hemispheres” in an 
ipsi/contralateral visual detection task. This modified version of the model and task simulates 
a visual field detection task where the participant must indicate which side of the visual field 
a stimulus appeared. The manipulation condition in this task was ipsi- or contralateral alpha 
power (Fig. 3h,i). 
 
Naturalistic vision 
Naturalistic viewing experiments, in both humans and non-human animals, typically have the 
participants to watch a video recoding of natural scenes. The pattern of early visual activity 
under these conditions is often reported to correspond to an Ornstein–Uhlenbeck process. In 
such tasks, alpha activity is reported to track both stimulus intensity and attentional 
allocation. We therefore modeled to what degree thalamic alpha gain modulation could 
increase information flow in layer 4 of our modeled V1. To model natural viewing condition, 
a time varying stimulus S was sampled from an Ornstein–Uhlenbeck process and fed into the 
excitatory population (Eq. 12; η is the normal distribution with mean 0, variance 1; Fig. 4a). 

 
Experiment 1 compared mutual information between the incoming naturalistic stimulus and 
the excitatory population’s dynamics. 

 
Experiment 2 was similar to 1 but featuring two V1 circuits. Here both circuits were 
subjected to alpha modulation, but the phase between the oscillations varied with each trial 
(Fig. 4f-h). Phase differences from 0 to π radians were explored. Mutual information was 
measured as in 1. 
 
Analysis 
Mutual information 
Information content was estimated between the stimulus and the excitatory populations in 1 
ms intervals. To allow for reliable calculation of the conditional probabilities necessary for 
information theoretic calculations, the summed rates were discretized into 10 integer levels. 
Integer levels between 4 and 30 were considered, but did not alter the patterns of results we 
report here. Using this new activity “alphabet”, entropy and mutual information (MI) were 
subsequently calculated with the pyentropy library (104), using the Panzeri–Treves method 
(105) of correcting for downward bias in estimating entropy H introduced by finite sampling 
of each time window. 
 
EEG 
EEG data was collected from 29 participants performing a visual target detection task 
(detailed below). Scalp EEG data were collected using a 64 electrode BrainVision EEG 
system (Brain Products). Data were sampled at 1000 Hz and electrode impedances kept 
below 10 kΩ. Horizontal eye movements (HEOG) were recorded with electrodes at both 
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external canthi. Vertical eye movements (VEOG) were monitored with a left inferior eye 
electrode and either a superior eye or a fronto-polar electrode. All data was referenced offline 
to the common average. Segments with blink or saccade artifacts were removed from 
analyses. 
 
Participants sat facing a CRT monitor, with a 100 Hz refresh rate. A two-minute resting state 
(eyes closed) EEG recording was done at the beginning of each experiment. After this 
preliminary recording, two further resting state recordings (also eyes closed) were collected 
(3-4 minutes each) during the course of the task. Stimuli were presented with the 
Psychtoolbox-3 presentation toolbox (106) running on Matlab (MATLAB R2014a, The 
Mathworks). Participants were instructed to keep their eyes fixated on a white fixation cross 
at the center of an otherwise black screen. At the start of the trial, horizontal lines appeared, 
one across the top of the screen and another across the bottom. During the time when the 
white lines were present the participant was instructed to covertly attend to the region 
between the top and bottom line and report (by pressing a button on a keyboard) if they 
detected a brief flash of light that may appear. On 80% of trials, a flash occurred randomly 
between 500 ms and 1500 ms post line onset. This flash of light always occurred between the 
lines that were present on screen and had a duration of 10 milliseconds on screen and a radius 
of 2 pixels. On 20% of trials, no flash occurred. The participant was instructed to respond by 
pushing the space bar on a keyboard to indicate if they saw the flash. 
 
From these datasets, timeseries from a single posterior electrode (Oz) was analyzed. To 
estimate alpha power, the instantaneous power in the 8-12 Hz range data from extracted by 
taking the absolute values of the Hilbert transform which was subjected to a burst detection 
procedure (below). 
 
ECoG 
These data were previously published (36), where complete acquisition and processing 
details can be obtained. In brief, ECoG data was collected from four participants using eight 
16-channel USBamp biosignal acquisition devices (g.tec, Graz, Austria). Of these, in our 
analyses two patients showed strong alpha in their more posterior electrodes. Data was 
digitized at 1200 Hz and visually inspected offline; channels that did not contain clear ECoG 
signals were removed prior to analysis. Data was acquired while patients completed a 
modified Posner cueing task (107), however our analysis did not examine task-specific 
effects and instead focused on the general relationship between alpha and gamma power, as 
our model’s predictions are not contingent on a set task-state. 
 
Burst detection 
Periods of oscillations (i.e., bursts) were detected based on a modified version of the method 
wherein they detected bursts by comparing instantaneous power to median power in the 
channel of interest (52). However for very stable oscillations and very intermittent 
oscillations, this criterion becomes unreliable. To detect bursts we instead compared power in 
the alpha band (8-12 Hz) to power in the 1/f background of the power spectrum. An 
instantaneous estimate of background power was found by averaging power from two 
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narrowband filters on either side of the alpha band—3-5 and 12-14 Hz. A similar approach 
was validated for human alpha (108), but calculating full power spectra at every time-step. 
Using our approach, a burst was then said to begin whenever the alpha (8-12 Hz) power 
exceeded 2 times background power, and ended when power dropped below 1.5 times 
background power. Burst length is defined by (toffset-tonset). 
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