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The  significance  of  the  recent  introduction  to cognitive  neuroscience  of  multivariate  pattern  analysis
(MVPA)  is  that,  unlike  univariate  approaches  which  are  limited  to identifying  magnitudes  of  activity  in
localized  parts  of the  brain,  it affords  the  detection  and  characterization  of  patterns  of  activity distributed
within  and  across  multiple  brain  regions.  This  technique  supports  stronger  inferences  because  it  cap-
tures  neural  representations  that have  markedly  higher  selectivity  than  do univariate  activation  peaks.
Recently,  we  used  MVPA  to  assess  the  neural  consequences  of  dissociating  the  internal  focus  of  attention
from  short-term  memory  (STM),  finding  that  the  information  represented  in delay-period  activity  corre-
sponds  only  to  the  former  (Lewis-Peacock,  Drysdale,  Oberauer,  & Postle,  in  press).  Here  we report  several
additional  analyses  of these  data  in  which  we  directly  compared  the  results  generated  by  MVPA  vs. those
generated  by  univariate  analyses.  The  sensitivity  of  MVPA  to subtle  variations  in  patterns  of  distributed
brain  activity  revealed  a  novel  insight:  although  overall  activity  remains  elevated  in  category-selective
brain  regions  corresponding  to  unattended  STM  items,  the  multivariate  patterns  of  activity  within  these

regions  reflect  the  representation  of  a different  category,  i.e.,  the  one  that  is  currently  being  attended  to.
In addition,  MVPA  was  able  to  dissociate  attended  from  unattended  STM  items  in  brain  regions  whose
univariate  activity  did  not  appear  to  be  sensitive  to the  task.  These  findings  highlight  the  fallacy  of  the
assumption  of  homogeneity  of representation  within  putative  category-selective  regions.  They  affirm  the
view that  neural  representations  in  STM  are  highly  distributed  and  overlapping,  and  they  demonstrate
the  necessity  of  multivariate  analysis  for  dissociating  such  representations.

© 2011 Elsevier Ltd. All rights reserved.
. Introduction

Short-term memory refers to the ability to temporarily retain
nformation when it is no longer present in the environment.
he related and overlapping construct of working memory also
ncorporates the ability to manipulate or otherwise transform
nformation, to protect it in the face of interference, and to use it to
uide behavior. These abilities (from here on referred to as “STM”)
re of central importance in the study of human cognition, being
mplicated as critical contributors to such functions and proper-
ies as language comprehension, learning, planning, reasoning and
eneral fluid intelligence (Baddeley, 1986; Conway, Kane, & Engle,
003; Engle & Kane, 2003; Engle, Kane, & Tuholski, 1999; Unsworth

 Engle, 2007). The brain structures and cognitive processes under-

ying STM are topics of intense investigation and debate (see Jonides
t al., 2008; and Postle, 2006b for reviews).

∗ Corresponding author at: Princeton University; Green Hall; Princeton, NJ 08540,
nited States. Tel.: +1 609 258 4442; fax: +1 609 258 1113.

E-mail address: jalewpea@princeton.edu (J.A. Lewis-Peacock).

028-3932/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.neuropsychologia.2011.11.006
Many contemporary accounts of the neural bases of cogni-
tion (e.g., Haxby et al., 2001; Rogers & McClelland, 2004) describe
mental representations as emergent properties of coordinated and
distributed neural activity. However, many traditional techniques
for analyzing neuroimaging data are poorly suited for the investi-
gation of distributed systems. This is because they are limited to
identifying magnitudes of activity in localized parts of the brain
and, in effect, assume a homogeneity of representation within
contiguous clusters of voxels. The profound importance of the
recent introduction to cognitive neuroscience of multivariate pat-
tern analysis (MVPA) (Haynes & Rees, 2006; Kriegeskorte, Goebel,
& Bandettini, 2006; Norman, Polyn, Detre, & Haxby, 2006; Pereira,
Mitchell, & Botvinick, 2009), therefore, is that it affords the detec-
tion and characterization of information that is represented in
patterns of activity distributed within and across multiple regions
of the brain.

The research that we present here is motivated by the embedded-
component theories of STM (Cowan, 1988, 1995; Ericsson & Kintsch,

1995; Oberauer, 2002), which characterize STM as an emergent
property of the interaction of long-term memory and attention.
They postulate a distinction between a capacity-limited central
component of STM (referred to as the focus of attention) and a more

dx.doi.org/10.1016/j.neuropsychologia.2011.11.006
http://www.sciencedirect.com/science/journal/00283932
http://www.elsevier.com/locate/neuropsychologia
mailto:jalewpea@princeton.edu
dx.doi.org/10.1016/j.neuropsychologia.2011.11.006
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Fig. 1. Task Diagrams. In Phase 1, participants performed short-term recognition

eripheral component (outside the focus, commonly referred to as
ctivated long-term memory). To date, we have leveraged MVPA to
enerate stronger neural evidence than had previously existed for
he idea that reactivated long-term memory representations are
he basis of STM (Lewis-Peacock & Postle, 2008), and to generate
ome of the first evidence (see also Nee & Jonides, 2008, 2011) that
he distinction between attended and unattended representations
ithin STM, which has been proposed on the basis of behavioral

vidence (Cowan, 1988; Oberauer, 2002), has a neural basis (Lewis-
eacock et al., in press). Independent of the embedded-component
odel, the results from this latter study have demonstrated that the

ctive neural signature of information being remembered across a
rief delay can be disrupted by redirecting attention, without sac-
ificing the short-term retention of that information. This finding
aises questions about the common view in cognitive neuroscience
hat the maintenance of persistently elevated neural activity is
equired for the short-term retention of information, and supports
n alternative model: the sustained activation of a stimulus repre-
entation is not necessary for its short-term retention; this activity,
nstead, corresponds to the focus of attention.

Here, we present several additional analyses of the data from
ewis-Peacock et al. (in press) that compare the inferences that
an be drawn from MVPA vs. from univariate approaches based on
he general linear model (GLM). We  began by attempting to decode
rain activity, not from multivariate patterns of activity throughout
he brain, but from the average activity inside category-selective
egions of interest (ROI). The successes and failures of this approach
n replicating the results from MVPA are instructive. The successes
rovide confirmatory evidence that neural representations inside
nd outside the focus of attention are neurally dissociable. The
ailures of the GLM approach, however, illustrate how MVPA can
rovide additional insights into the neural bases of cognition. For
xample, MVPA alone was able to verify that STM representations,
ike perceptual ones (Haxby et al., 2001), are widely distributed and
verlapping, and that they can be observed in brain regions which
ail to show elevated activity during the delay period (e.g., Serences,
ster, Vogel, & Awh, 2009; Harrison & Tong, 2009). Also, the mul-

ivariate results highlight potentially misleading interpretations of
nivariate results (e.g., Postle, 2006a)  that are based on the (faulty)
ssumption of homogeneity of representation in category-selective
rain regions.
ingle stimulus. In Phase 2, they performed short-term recognition of two stimuli.

2. Methods

2.1. Behavioral task

A full description of the design and analysis of this experiment is presented
in  Lewis-Peacock et al. (in press).  Here, we provide a brief overview. Nine healthy
young adults were scanned in one session performing two different tasks. In the
first, they performed short-term recognition of a stimulus drawn from one of
three categories: words, pronounceable pseudo-words, or line segments (Fig. 1,
Phase 1). Subjects indicated whether the probe stimulus matched the target stim-
ulus (p = 0.5) according to a domain-specific judgment: synonym (words), rhyme
(pseudo-words), and orientation (line segments). Foils for the three categories were,
respectively, conceptually unrelated words, single-syllable pseudo-words with a
non-matching vowel sound, or line segments in which one of the segments dif-
fered in orientation from the targets by at least 30◦ . The stimuli and task demands
were designed to encourage domain-specific encoding in a primary dimension for
each trial (semantic, phonological, and visuospatial, respectively). In the second
task, subjects performed a two-step short-term recognition task in which two  tar-
get items, each drawn from a separate category, are presented as targets, followed
by  a brief delay, followed by a cue indicating the target item for which memory
would be tested by the first recognition probe. As in the first task, subjects indi-
cated whether this first probe stimulus matched the cued target item according to
a  domain-specific judgment. Trials were configured such that there was a prob-
ability of 0.5 that the probe stimulus satisfied the criterion, with foils chosen as
before. After the first probe, a second cue appeared which indicated the target item
for  which memory would be tested by the second probe, with equal probability of
cuing the same item (repeat trials) or the other item (switch trials). Thus, until the
onset of the second cue, all items needed to be maintained in STM for successful
task performance.

2.2. Analysis plan

The logic of the analyses presented here was to demonstrate the benefits of using
MVPA over a conventional univariate approach for addressing questions relating to
the  neural bases of STM. The structure of the analyses was  first to analyze neural
data from Phase 1 (the “training” data), and then to use the results of that analysis to
decode neural data from Phase 2 (the “testing” data). We used two methodologies –
univariate analysis (GLM), and multivariate analysis (MVPA) – in order to compare
the results obtained from each. For Phase 1, a GLM on whole-brain fMRI data iden-
tified voxels whose activity remained elevated during the delay periods of the three
categories of STM trials. Such elevated delay-period activity is widely considered to
be  the neural basis of STM (e.g., Curtis & D’Esposito, 2003; Fuster & Alexander, 1971;
Kubota & Niki, 1971). These voxels were used to create a ROI for each stimulus cat-
egory. For Phase 2, we decoded the moment-to-moment contents of STM from the
neural data, at every time point and in every trial, using two different approaches:

(1) by inspecting the average signal intensity within category-specific ROIs; and (2)
by  assessing the multivariate patterns of signal intensity within these same ROIs.
The former is modeled on traditional univariate fMRI analysis which assumes a
homogeneity of representation within contiguous clusters of voxels (e.g., Worsley
&  Friston, 1995); the latter on MVPA which assumes that neural representations are
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oth  distributed and overlapping (e.g., Norman et al., 2006). Finally, we also applied
VPA to brain regions outside the putative “task-sensitive network” identified by

he GLM to demonstrate the heightened sensitivity and inferential power of the
ethod.

The continuous decoding of data from the entirety of the Phase 2 trials allowed
or  a complete characterization of the evolution of brain states corresponding to
ategory-specific information inside and outside the focus of attention. If sustained
rain activity reflected the contents of the focus of attention, but not all of STM, one
ould expect that the delay-period brain activity would reflect only that information

hat had most recently been cued. Based on behavioral evidence (Oberauer, 2001,
005),  we  expected that during the initial delay period both target items should be
aintained in the focus of attention because both were potentially relevant for the

rst  response. Following the first cue, the uncued item would be removed from the
ocus of attention after about 1–2 s. (This timing also holds for the cross-category
timulus sets used in the present study; Drysdale, Lewis-Peacock, Oberauer, & Postle,
010.) Such removal of task-irrelevant information from the focus would be indi-
ated by an attenuation of neural evidence for the active representation of that target
tem. Whether the strength of the evidence was  to drop to an intermediate level,
r to baseline, would have implications for what it means for information to be “in
TM” but outside the focus of attention. On switch trials, retrieval of information into
he focus of attention would be indicated by the restrengthening of neural evidence
or  the target item cued as relevant for the second decision. In contrast, if sustained
rain activity reflected the full contents of STM, we  would expect that, regardless of
ueing, evidence for the active neural representation for both target items should
emain strong throughout the trial (at least until the second cue, because both stim-
li  had to be remembered up to that point). Each component of our analyses will
ow be described in more detail.

.3. GLM: Phase 1

A traditional mass-univariate analysis based on the GLM was performed on the
hase 1 data using AFNI’s 3dDeconvolve.  All trial events were modeled with boxcar
egressors of different lengths: cue (1 s), target (0.5 s), delay (7.5 s), probe (2 s), and
eedback (0.5 s). A third-order polynomial was used for the null hypothesis, and all
asis functions for trial events were normalized to have an amplitude of 1. For each
articipant, three thresholded (p < 0.01, uncorrected) sets of voxels were extracted
rom the GLM based on t-tests (with respect to baseline) of delay-period regressors
rom phonological, semantic, and visual trials, respectively. No clustering algorithm
as  used, thus voxels were not forced to be spatially contiguous at an arbitrary

hreshold. Nonetheless, the activation maps showed high levels of spatial clustering
ased on interrogation of subject-level and group-level maps. Because the extracted
OIs were not mutually exclusive (i.e., they shared voxels that were identified as
ctive for multiple trial categories), we refer to them as the “inclusive” ROIs. Three
exclusive” ROIs were created by removing, for each category, any voxels that were
hared by at least one other category. These ROIs were subsequently used for both
nivariate and multivariate decoding of the neural data from Phase 2. Four more
OIs  were created solely for use with MVPA. A concatenation of the three inclusive
OIs formed an aggregate Inclusive ROI, and a concatenation of the three exclusive
OIs formed an aggregate Exclusive ROI. The use of these aggregate ROIs provided
VPA access to the all of the voxels that were used by the GLM decoding analysis

described below). Finally, the Overlap ROI contained only those voxels that were
dentified as active for all three categories, and the Removed ROI contained all voxels
hat remained after removing those identified as active for any category. These final
wo ROIs allowed MVPA to perform additional hypothesis testing in brain regions
or  which the GLM could not. For display purposes, the ROIs for each participant
ere transformed into standardized space using AFNI’s @auto tlrc,  blurred with a

ull-width half-max of 8 mm,  averaged across all participants with 3dmerge, and
apped onto an inflated anatomical version of the N27 brain dataset (Holmes et al.,

998)  using AFNI’s surfacing mapping utility (SUMA).

.4. GLM: Phase 2

For each participant, we calculated the average signal intensity in category-
pecific ROIs to assess the extent to which STM representations in the Phase 2 task
xhibited an active neural trace during the delay period. Preprocessed (see Lewis-
eacock et al. (in press) for details) and z-scored fMRI data at intervals of TR = 2 s from
very trial were classified by the GLM. At each time point in the trial, the strength
f  representation for each of the two target items was  estimated by averaging the
ignal intensity within the appropriate category-specific ROI. For example, for a
rial that contained a semantic and a visual stimulus (as depicted in Fig. 1, Phase 2),
he  moment-to-moment signal strength of the semantic item representation was
stimated by calculating the average activity within the semantic ROI, whereas the
ignal strength of the visual item representation was estimated separately from
he average activity within the visual ROI. To combine results from all trials, the
LM estimates for phonological, semantic, and visual were relabeled and collapsed

cross trials into three new categories: 1st (the category of the target item selected
y  the first cue), 2nd (the category of the other target item), and irrel (the trial-

rrelevant category). For display purposes, the signal intensity values at each time
oint in the trial-averaged data for each participant were normalized by removing
he  resting state baseline level of activity from the ROIs being tested. Per standard
sychologia 50 (2012) 470– 478

GLM procedure, this baseline activity was used as reference for assessing whether a
category-specific representation was  “above baseline” throughout the trial. Finally,
the  recoded data were averaged across all participants for hypothesis testing, and
the  group-averaged data were spline interpolated across the 23 discrete data points
in  each trial to create smooth waveforms for display.

2.5. MVPA: Phase 1

MVPA was performed on the Phase 1 data, separately, in all ROIs identified by the
GLM. The classification procedure used was  modeled on the whole-brain analyses
from Lewis-Peacock et al. (in press).  All classification was carried out using penalized
logistic regression, using L2 regularization with a penalty parameter of 50. Regular-
ization prevents over-fitting by punishing large weights during classifier training
(Duda, Hart, & Stork, 2001). Results were fairly insensitive to the penalty strength
(sampled between 0.1 and 1000), although performance was  markedly improved
over unpenalized classification using the backpropagation algorithm. A unique clas-
sifier was created for each participant and applied only to that participant’s data.
A feature selection analysis of variance (ANOVA) was applied to the preprocessed
images to select those voxels whose activity varied significantly (p < 0.05) between
the  categories over the course of entire task. This standard machine learning proce-
dure reduces noise in the classification by removing uninformative voxels. (Note: all
classification analyses were repeated without feature selection and the results were
qualitatively similar). Data from the final 6 s of the 7.5-s delay period in the Phase
1  task, at intervals of TR = 2 s, were used to train a classifier to distinguish patterns
of brain activity corresponding to the short-term retention of information encoded
primarily in a phonological (pseudoword trials), semantic (word trials), or visual
(line trials) form. All data were shifted back in time by 4 s to account for hemody-
namic lag of the BOLD signal. Therefore, the data that were used from each trial were
actually recorded between 8 and 14 s after the beginning of the trial. This adjust-
ment, although crude, reasonably accommodates the slow hemodynamic response
and is standard practice in MVPA. As a check on validity, we retrained the classifier
using a 6 s lag adjustment, and this did not significantly alter the results. We  evalu-
ated classifier training accuracy by using the method of k-fold cross-validation, i.e.,
training on k-1 blocks of data and testing on the kth block, and then rotating and
repeating until all trials had been classified. For each 2-s TR of fMRI data, the clas-
sifier produced an estimate (from 0 to 1) of the extent to which the brain activity
matched the pattern of activity corresponding to the categories it had been trained
on. These estimates reflected the classifier’s evidence for each category. The classi-
fier’s prediction at each TR corresponded to the category with the most evidence.
Prediction accuracy was calculated as the proportion of TRs in which the classifier
correctly predicted the actual category of the trial from which that TR was  sampled.

To  improve the interpretability of the whole-trial decoding of the Phase 2 data,
we  trained the classifier on a fourth category: resting state brain activity during the
unfilled inter-trial interval (ITI). Resting activity served as a “ground reference” for
the classifier, analogous to how the Earth serves as a zero-voltage ground reference
for  electrical circuits. Training the classifier with rest activity did not alter the clas-
sifier’s assessment of the relative differences between the three stimulus categories
during the task-portion of the trial. It did, however, normalize the classifier’s assess-
ment such that evidence for the stimulus categories was  low during the rest periods
(during which time the participants were not performing a STM task). Data from
the ITI were randomly sampled so that, within each block of trials, the classifier was
trained on the same number of exemplars for all four categories (72 total TRs each
of  phonological, semantic, visual, and ITI across the whole experiment).

To  assess the relative importance of different brain areas to the classification of
the  stimulus categories, we determined, from a classifier trained using all brain vox-
els, which voxels were important for (correctly) identifying patterns of brain activity
corresponding to each of the three categories. We applied the voxel importance for-
mula (from McDuff, Frankel, & Norman, 2009): impij = 100 × wij × avgij , where wij is
the  weight between input unit i and output unit j, and avgij is the average activity
of  input i during the short-term retention of category j. Positive importance was
assigned to a voxel whose average activity was positive (indicating that it was more
active than usual), negative importance was assigned to a voxel whose average activ-
ity was  negative (indicating that it was less active than usual), and voxels where the
sign  of wij differed from the sign of avgij (indicating a net negative contribution of
that voxel to detecting that task state) were assigned an importance value of zero.
Importance maps for the three categories were calculated for each participant. For
display purposes, these maps were then transformed into standardized space, aver-
aged across participants, thresholded at an absolute value of importance of 0.075,
and mapped onto an inflated brain (as described above for the GLM maps).

2.6.  MVPA: Phase 2

MVPA decoding was performed on the Phase 2 data, separately, in all ROIs iden-
tified by the GLM from the Phase 1 data. A pattern classifier for each participant,
trained on all four blocks of Phase 1 data, was used to assess the extent to which

category-specific patterns of brain activity reappeared during the Phase 2 task. Pre-
processed fMRI data at intervals of TR = 2 s, masked by the feature-selected set of
voxels within the ROI being tested, were classified from every trial. Classifier evi-
dence values for phonological, semantic, and visual representations were relabeled
and collapsed across all trials into 1st, 2nd, and irrel categories (as described above).
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Fig. 2. Brain Maps. Delay-period activation maps are shown on the left for phonological (pho), semantic (sem), and visual (vis) trials in Phase 1. The mean number of voxels for
each  category (plus the overlapping voxels between categories) are shown in the color-coded venn diagram. Delay-period classifier importance maps are shown on the right,
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eparately for each category (including the inter-trial interval, iti).  For each category
s  indicated with black. (For interpretation of the references to color in this figure le

nlike  the GLM analyses described above, the information estimates from the classi-
er  were not normalized by removing from each time point the classifier’s estimates

rom  the rest period. Whereas resting state levels of BOLD signal are typically inter-
reted as a meaningful baseline, resting state levels of classifier evidence values
re  not. Therefore, the “baseline” reference used for the MVPA analyses was the
lassifier’s evidence for the trial-irrelevant category at each time point throughout
he trial. (Although we also show mean signal intensities from the trial-irrelevant
ategory’s ROI in the GLM decoding results, we  do not interpret them as baseline
ecause such data are not intuitively meaningful and are not typically, if ever, used
o  normalize univariate activation results.) Finally, the recoded trial-averaged MVPA
esults were averaged across all participants for hypothesis testing, and spline inter-
olated across the 23 discrete data points in each trial to create smooth waveforms
or display.

. Results

.1. Behavior

Full behavioral results for the Phase 1 and Phase 2 tasks are
eported in Lewis-Peacock et al. (in press).  The mean accuracy
nd response time across all participants in the Phase 1 task
ere 94% (SEM = 1) and 933 ms  (SEM = 22). The mean accuracy

nd response time across all participants in the Phase 2 task were
1% (SEM = 1) and 936 ms  (SEM = 10). Participants were more accu-
ate (F(1,8) = 27.18, p < 0.001) and faster to respond (F(1,8) = 7.86,

 = 0.023) on repeat trials (93%, SEM = 1; 898 ms,  SEM = 13) than on
witch trials (88%, SEM = 1; 975 ms,  SEM = 15). Here, all subsequent
nalyses focus on switch trials only.

.2. Phase 1: GLM vs. MVPA

Group-averaged locations of voxels in GLM-defined ROIs are
isplayed on inflated brain hemispheres in Fig. 2 (left). The
ategory-specific regions identified here are broadly consistent
ith previous findings related to phonological (e.g., Buchsbaum &
’Esposito, 2008), semantic (e.g., Shivde & Thompson-Schill, 2004),
nd visuospatial (e.g., Postle & D’Esposito, 1999) STM. (Note that
roup averaging obscured the presence of supra-threshold voxels
hat were anatomically heterogeneous across subjects, such as in
osterior superior temporal gyrus in many individual phonological

OIs.) Importance maps for each category (distinguishing positive

rom negative voxels; and based on whole-brain classification) are
lso shown in Fig. 2 (right). Positive voxels are those for which
ncreases in activity were important for classification, and negative
ive importance is indicated with a category-specific color and negative importance
 the reader is referred to the web version of this article.)

voxels are those for which decreases in activity were important
for classification. Although importance maps do not indicate where
information is stored in the brain, but rather which voxels the classi-
fier found to be important for classification of each category, visual
comparison of these maps to the GLM activation maps reveals a
high-degree of correspondence between supra-threshold voxels
(GLM) and positively informative voxels (MVPA) for each category.

MVPA performance (classification accuracy & classification evi-
dence) for the Phase 1 data is shown in Fig. 3 for seven different
ROIs defined by the GLM. The assumption that the GLM identi-
fies localized areas (i.e., voxels) that are specific for a particular
kind of information would make the following predictions: clas-
sification in the Inclusive and Exclusive ROIs should be excellent
for all categories; in the Phonological, Semantic, and Visual ROIs
it should be excellent for that ROI’s category and at chance for
all others; and in the Overlap and Removed ROIs it should be at
chance for all categories. However, group-averaged results show
that classification succeeded in all ROIs. That is, delay-period activ-
ity from every ROI were reliably classified as matching the stimulus
category of the trial. This result indicates that the classifier suc-
cessfully differentiated visuospatial from phonological (Baddeley,
1986) from semantic (Cameron, Haarmann, Grafman, & Ruchkin,
2005; Haarmann & Usher, 2001; Martin, Wu,  Freedman, Jackson, &
Lesch, 2003; Shivde & Thompson-Schill, 2004) STM, and all three
from the resting state activity recorded during the ITI. Predic-
tion accuracy for each category in all ROIs was  significantly above
chance based on independent-sample t-tests across participants.
This was  true if we  considered chance-level performance to be 25%
(considering all four categories that the classifier was  trained on;
p < 0.001) or 33% (considering only the three task-related categories
(ignoring ITI); p < 0.05). The heightened sensitivity to neural repre-
sentations of MVPA compared to the GLM is clearly demonstrated
by the fact that MVPA was  able to neurally distinguish phonolog-
ical, semantic, and visual STM in regions that the GLM identified
as: (a) task-sensitive but not category-selective (Overlap); (b) task-
sensitive but exclusive to one category (Phonological, Semantic, and
Visual); and (c) task-insensitive (Removed).

The mean classifier evidence values in all ROIs showed strong

category-selectivity, supported by a significant interaction of trial
type (phonological/semantic/visual/ITI)x evidence type (phonologi-
cal/semantic/visual/ITI) from a 4 × 4 repeated measures ANOVA on
the classifier evidence values (p < 0.001). In all ROIs except Overlap,
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ig. 3. MVPA Training. Classifier training performance on Phase 1 data is shown for
vidence (bottom) across all trials and participants are shown for phonological (pho

ollow-up pairwise comparisons indicated significant differences
p < 0.05, Bonferroni corrected) between the relevant evidence
alue and the other evidence values (e.g., the evidence for the
honological category vs. evidence values for semantic, visual, and
TI on phonological trials). A qualitatively similar pattern of results

as observed in the Overlap ROI: the overall ANOVA on classifier
vidence scores was significant (F(9,72) = 40.42, p < 0.001), and all
ollow-up pairwise comparisons were significant (p < 0.05, Bonfer-
oni corrected) except for the comparisons between phonological
nd semantic evidence scores on phonological and semantic trials
p > 0.05, uncorrected). Despite the relatively weaker category-
electivity for phonological and semantic representations in this
OI, however, the classifier’s prediction accuracy was well above
hance for both categories (p < 0.001). Importantly, although clas-
ification is a discriminative procedure, the pattern of evidence
alues in these results demonstrates that the categories were not
nti-correlated by the classifier. That is, the increasing strength
f one category representation did not necessarily decrease the
trength for another category. This claim is supported by the graded
vidence values for a given category across the three trial types
e.g., phonological evidence was highest in phonological trials, mod-
rately high in semantic trials, and lowest in visual trials). If the
ategories were anti-correlated, one would expect to find high cat-
gory evidence for trials from that category and uniformly low
vidence for that category for trials from other categories. There-

ore, we interpret the classifier evidence values as (reasonably)
ndependent indicators of brain activity for each category. This
nterpretation is supported by the classifier’s detection of super-
mposed patterns of brain activity corresponding to two memory
 different ROIs. For each ROI, the mean classifier accuracy (top) and mean classifier
antic (sem), and visual (vis) trials, and for the inter-trial interval (iti).

items from different categories during the initial delay period in
the Phase 2 task. These data will now be described in more detail.

3.3. Phase 2: GLM vs. MVPA

Brain data from every time point in all Phase 2 switch trials
were decoded from the Inclusive and the Exclusive ROIs, separately
for each participant, using two different methods: GLM decoding
(Fig. 4, top row); and MVPA decoding (Fig. 4, bottom row). The ini-
tial overall conclusion that one can draw from the results is that
whereas the BOLD response is markedly different in these two
ROIs – with signal strength being higher in the Inclusive ROI and
waveforms less discriminable – MVPA decoding performance is
effectively identical in the two. At a finer grain of detail, in both
ROIs, group-averaged decoding across all trials revealed an ini-
tial rise in mean BOLD signal (GLM) and mean classifier evidence
(MVPA) corresponding to the two categories of stimuli presented
at the beginning of each trial. Thus, both methods indicated that
the two target items were encoded and sustained in the focus of
attention across the initial memory delay, while it was  equiprob-
able that either would be relevant for the first memory response.
Following onset of the first cue, both methods revealed a strength-
ening of the neural representation of the cued item. The pattern
for the uncued item, however, differed across methods and, for
the BOLD data, across ROIs. With MVPA, classifier evidence for the

uncued item dropped to baseline. For BOLD data in the Inclusive
ROI, the uncued signal also increased in response to the first cue,
but remained weaker than the cued signal until the time of the
second cue. In the Exclusive ROI, although the uncued BOLD signal
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Fig. 4. Decoding: GLM vs. MVPA. Trial-averaged decoding of Phase 2 switch trials across all participants is shown for the Inclusive ROI (left column) and Exclusive ROI (right
column),  using the GLM method (top row) and the MVPA method (bottom row). Data for each category (1st, the first cued category; 2nd, the second cued category; irrel,
the  trial-irrelevant category) are shown as ribbons whose thickness indicate ±1 SEM across participants. The colored shapes along this horizontal axis indicate the onset of
the  targets (green and purple circles), the first cue (green triangle), the first probe (green square), the second cue (purple triangle), and the second probe (purple square).
Statistical comparisons focused on within-subject differences: for every 2-s interval throughout the trial, color-coded bars along the top of each graph indicate that the signal
intensity  (GLM) or classifier evidence (MVPA) for each category was  above baseline. Activation baseline is mean signal intensity during rest, whereas information baseline is
m d out
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ean  classifier evidence for irrel at each time point (see Section 2). Circles inside an
han  the value for the other trial-relevant category (small circles: p < 0.05; big circ
gure legend, the reader is referred to the web version of this article.)

id decline relative to the cued signal, it nonetheless remained ele-
ated above baseline throughout the first delay period. Because we
resent results only for switch trials here, in these data the second
ue always selected the previously uncued item as relevant for the
econd response. Following the second cue, all four plots show the
eural dissociation between the two target items inverted, such
hat the previously uncued item exhibited the stronger represen-
ation both in terms of BOLD activity and classifier evidence. The
OLD signal for the now-uncued item in the Inclusive ROI is dif-

erent from the other three, however, in that it remained elevated
bove baseline throughout the second delay period. The pairwise
omparisons shown for both ROIs at each time interval in Fig. 4
re validated by significant (p < 0.001) 3 × 23 repeated measures
NOVAs on trial-averaged BOLD signal (GLM) and classifier evi-
ence values (MVPA), with stimulus type (1st/2nd/irrel) and time
TRs 1-23) as within-subjects factors.

There are two highly salient observations that emerge from the
nalyses performed on these two ROIs. The first is that whereas
he behavior of the BOLD signal is highly sensitive to the ROI from
hich it is extracted, the MVPA appears to be relatively stable. (This
ill be reinforced as additional ROIs are interrogated; Fig. 5.) The

econd observation, which has important implications for both cog-
itive and neurobiological models of STM, relates to the neural fate
f the uncued (i.e., unattended) STM item after the first cue. During
his portion of the trial, this item remained potentially relevant for
he second half of the trial and thus could not be forgotten. Accord-

ng to the GLM analysis, in both the Inclusive and Exclusive ROIs,
he BOLD signal remained elevated above baseline for voxels cor-
esponding to the uncued category, although it was lower than in
he voxels corresponding to the cued category. This result could
side these bars indicate that the value for one trial-relevant category was stronger
 0.002, Bonferroni corrected). (For interpretation of the references to color in this

be taken as evidence for an “intermediate” state of activation for
STM representations outside the focus of attention. MVPA decod-
ing of this elevated activity, however, refuted this interpretation.
Instead, MVPA showed the multivariate patterns in both regions to
reflect the representation of the category that had been cued, and
that the active neural representation of the uncued item effectively
disappeared.

Further demonstrations of the inferential strength of MVPA are
shown in Fig. 5. Successful decoding of Phase 2 data is shown from
within voxel regions that the GLM identified as: (a) task-sensitive
but not category-selective (Overlap); (b) task-sensitive but exclu-
sive to one category (Phonological, Semantic, and Visual);  and (c)
task-insensitive (Removed). The MVPA results obtained in these
regions are consistent with those obtained in the putative task-
sensitive regions (Fig. 4), in that the delay-period brain activity
is shown to reflect the focus of attention, but not the contents of
STM per se. Whereas the GLM results show that category-selective
voxels remain activated above baseline even when their category
is uncued, MVPA applied to the same voxels (i.e., Phonological,
Semantic, and Visual ROIs) reveals that that above-baseline activ-
ity actually reflects a representation of the cued stimulus (even if
that stimulus is from a different category). Therefore, MVPA shows
that it would be misleading to interpret the activation of category-
selective voxels as reflecting a sustained representation of an item
from that category. The pairwise comparisons shown for all ROIs at
each time interval in Fig. 5 are validated by significant (p < 0.001)

3 × 23 repeated measures ANOVAs on trial-averaged classifier evi-
dence values, with stimulus type (1st/2nd/irrel) and time (TRs 1-23)
as within-subjects factors. This pattern of results was  extremely
robust throughout the neocortex: it was also observed in prefrontal
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ig. 5. More MVPA Decoding. Trial-averaged MVPA decoding of Phase 2 switch tria
raph  conventions are as described in Fig. 4.

ortex, a brain region that is known to be important for STM but
ne whose activity patterns are notoriously difficult to classify (e.g.,
ewis-Peacock & Postle, 2008); and it was even observed in pri-
ary motor cortex which is an area not thought to be responsive

o tests of STM (data not shown). However, these results could not
e replicated when we restricted decoding to sub-cortical regions.

. Discussion

Our recent findings (Lewis-Peacock et al., in press) derived with
VPA, have provided some of the first neural evidence for a distinc-

ion between attended and unattended representations in STM, and
hey have also revealed a novel insight: the active neural signature
f information being remembered across a brief delay can be dis-
upted by redirecting attention, without sacrificing the short-term
etention of that information. This finding raises questions about
he common view in cognitive neuroscience that the maintenance
f persistently elevated neural activity is required for the short-
erm retention of information, and supports an alternative model:
he sustained activation of a stimulus representation is not neces-
ary for its short-term retention; this activity, instead, corresponds
o the focus of attention. Therefore, we posited that two comple-

entary forms of retention underlie STM: (1) the active retention of
nformation inside the focus of attention via sustained neural firing,
nd (2) the passive retention of information outside the focus via
ome other neural mechanism (e.g., changes in synaptic potentia-
ion) from which it can be reactivated with cue-based retrieval. The
atter idea is anticipated in neural-network models of serial order

ecall (Botvinick & Plaut, 2006; Burgess & Hitch, 1999, 2006; Farrell

 Lewandowsky, 2002), and in “retrieved context” models of mem-
ry search (Howard & Kahana, 2002; Polyn, Norman, & Kahana,
009; Sederberg, Howard, & Kahana, 2008).
ss all participants is shown for five ROIs from which the GLM  could not decode. All

The suggestion that long-term memory (LTM) mechanisms sup-
port performance during a test of short-term retention is not
novel. In dual-store models (Atkinson & Shiffrin, 1968; Waugh
& Norman, 1965), the contribution of LTM is thought to supple-
ment (and not replace) a STM system that is capable of holding
several items. Neural evidence for this idea comes from neuroimag-
ing and neuropsychological studies which have demonstrated that
medial temporal lobe structures (known to be essential for LTM)
also contribute to performance on tests of short-term retention
(Hannula, Tranel, & Cohen, 2006; Jeneson, Mauldin, & Squire, 2010;
Jeneson, Mauldin, Hopkins, & Squire, 2011; Nichols, Kao, Verfaellie,
& Gabrieli, 2006; Olson, Moore, Stark, & Chatterjee, 2006; Olson,
Page, Moore, Chatterjee, & Verfaellie, 2006). All theories of STM
assume a capacity of more than one item, and typical estimates
are around four (Cowan, 2001; Luck & Vogel, 1997). In our study,
we deliberately held the overall memory load so small (2 items
maximum) that the capacity limits of STM would not be exceeded.
Therefore, based on the ubiquitous assumption that sustained
activity is the neural correlate of maintenance in STM, one would
expect to observe persistent neural representations for all mem-
ory items in our task. However, our results demonstrate that only
the item in the focus of attention retained its active representa-
tion during the delay period. In fact, the focus demonstrably held
two  items at the same time, as shown by high classifier evidence for
both target items after encoding, so it was  not for lack of attentional
capacity that only one representation was actively represented
after the cue. Rather it was  the behavioral relevance of the memory
item that determined its activity status.
Through the additional analyses of these data presented here,
we demonstrated that this discovery could not have been made
with conventional mass-univariate analysis. Additionally, the
direct comparisons presented here highlight the susceptibility of
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he univariate approach to voxel selection bias, and the remarkable
nsensitivity of MVPA to this bias. In this section we will con-
ider, in turn, the implications of these two findings. Although both
ethods dissociated neural representations for attended and unat-

ended items in STM, the divergent results of GLM and MVPA with
egard to the neural fate of unattended information have impor-
ant implications for both cognitive and neurobiological models of
TM. According to the GLM analysis, brain activity remained ele-
ated above baseline in voxels presumed to be representing the
nattended information. This result could be taken as evidence
or an “intermediate” state of activation for STM representations
utside the focus of attention, a hypothetical state which resides
n between the highly activated state of information inside the
ocus of attention and the latent state of the vast majority of rep-
esentations in episodic and semantic LTM. Such an intermediate
tate is predicted by many theoretical models (e.g., “activated long-
erm memory” in Cowan, 1988 and Oberauer, 2002; “long-term
orking memory” in Ericsson & Kintsch, 1995; “working mem-

ry” in McElree, 2006), and putative neural evidence for it has been
escribed in BOLD data (Nee & Jonides, 2008). However, our MVPA
esults directly challenge this view, and they do so in two  ways.
irst, is the “negative” finding from ROI-based analyses (and whole-
rain analysis; Lewis-Peacock et al., in press) that unattended STM
epresentations are not actively sustained during a brief memory
nterval, and yet they are not forgotten. Further, these representa-
ions can be restored to an active state if they are cued as relevant
or subsequent behavior. (We  interpret this as the retrieval of this
nformation back into the focus of attention; Oberauer, 2005). Sec-
nd, is the “positive” finding that voxels within ROIs defined by GLM
o be category specific will flexibly represent the information that
s currently in the focus of attention, rather than being restricted to
nly representing the category used to define them. These results
re consistent with previous reports of representational flexibil-
ty in category-specific processing regions (e.g., Carlson, Schrater,

 He, 2003; Chao, Martin, & Haxby, 1999; Cox & Savoy, 2003;
alther, Caddigan, Fei-Fei, & Beck, 2009). In addition to MVPA’s

erformance in category-selective ROIs, it was also able to suc-
essfully decode STM representations from voxels that the GLM
dentified as either (a) insensitive to the task, or (b) task-sensitive
ut category-insensitive.

This highly stable pattern of classification results highlights at
east two points. From the methodological perspective, it shows
hat MVPA, unlike GLM, is remarkably unsusceptible to voxel-
election bias (or, alternatively, that it lacks the regional specificity
f GLM). Therefore, from the theoretical perspective, it reaffirms
he need to dissociate brain regions whose information is actually
used” for task performance from those brain regions whose activ-
ty is epiphenomenal. For example, one might question the extent
o which, despite successful decoding from its anatomical ROI, pri-

ary motor cortex represents the three categories in our task. Such
 dissociation could be made, for example, by assessing correlations
etween ubiquitous category information and behavioral perfor-
ance (Williams, Dang, & Kanwisher, 2007), or by disrupting this

nformation in a specific brain region (e.g., by using transcranial
agnetic stimulation; Mattavelli, Cattaneo, & Papagno, 2011) to

est the necessity of that region for performance. Such approaches
re being considered in our ongoing research.

In conclusion, the present findings highlight the fallacy of the
ssumption of homogeneity of representation within GLM-defined
ategory-selective regions; one that, whether implicitly or explic-
tly acknowledged, is inherent in this approach. Instead, they
rovide strong evidence for highly distributed and overlapping

eural representations in STM. Our analyses affirm and extend the
iew that MVPA is much more sensitive and robust than traditional
easures of BOLD (see also Harrison & Tong, 2009; Kriegeskorte,

ormisano, Sorger, & Goebel, 2007; Serences et al., 2009), and they
sychologia 50 (2012) 470– 478 477

highlight the necessity of multivariate approaches for addressing
theoretical questions pertaining to the neural bases of STM and
attention. One final, but important, note is that our findings do
not indict the broad array of neuropsychological and neuroscien-
tific findings in support of localization of cognitive function in the
brain. Rather, they suggest that multivariate and univariate fMRI
approaches are complementary forms of analysis that should be
applied depending on the question one is addressing and inter-
preted in accord with the aspects of the physiology that each is
sensitive to.
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