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SUMMARY

Evidence from macaques [1] and humans [2, 3] has
shown that back projections from extrastriate areas
to the primary visual area (V1) determine whether
visual awareness will arise. For example, reentrant
projections from the visual motion area (V5) to V1
are considered to be critical for awareness of motion
[2, 3]. If these projections are also instrumental to
functional processing of moving stimuli [4–8], then
increasing synaptic efficacy in V5-V1 connections
should induce functionally relevant short-termplastic
changes, resulting in enhanced perception of visual
motion. Using transcranial magnetic stimulation
(TMS), we applied a novel cortico-cortical paired
associative stimulation (ccPAS) protocol to tran-
siently enhance visual motion sensitivity and demon-
strate both the functional relevance of V5-V1 reen-
trant projections to motion perception and their
plasticity. Specifically, we found that ccPAS aimed
at strengthening reentrant connectivity from V5 to
V1 (but not in the opposite direction) enhanced the
human ability to perceive coherent visual motion.
This perceptual enhancement followed the temporal
profile of Hebbian plasticity [9–18] and was observed
only when an optimal timing of 20 ms between TMS
pulses [2, 3, 5, 6] was used, not when TMS pulses
were delivered synchronously. Thus, plastic change
is critically dependent on both the direction and
timing of connectivity; if either of these requirements
was not met, perceptual enhancement did not take
place. We therefore provide novel causal evidence
that V5-V1 back projections, instrumental to motion
perception, are functionallymalleable. These findings
have implications for theoretical models of visual
awareness and for the rehabilitation of visual deficits.

RESULTS

Using a novel cortico-cortical paired associative stimulation

(ccPAS) protocol by means of transcranial magnetic stimulation
Current
(TMS) based upon Hebbian principles [9, 10], we tested whether

temporarily increasing reentrant connectivity from V5 to V1,

considered to be crucial for visual motion [1–8], enhances

perceptual sensitivity to motion.

We repeatedly activated the neural pathway between V5

and V1 in 32 healthy volunteers assigned to four ccPAS condi-

tions, in which 90 paired TMS pulses over V5 and V1 were

administered at 0.1 Hz frequency [13–19] (see Supplemental

Experimental Procedures). The directionality and timing of the

stimulation between V5 and V1 were manipulated across

groups, resulting in one experimental and three control groups.

The experimental group received V5-to-V1 ccPAS (ExpV5-V1).

During ccPAS, the first TMS pulse was administered to V5 fol-

lowed by another pulse to V1. The interstimulus interval (ISI)

was set at 20 ms, corresponding to the average time for V5 stim-

ulation to exert an effect over V1 processing [2, 3], i.e., the

optimal timing for the activation of V5-V1 back projections un-

derlying visual motion perception [2–6]. The specific ISI used

was critical to create sequential pre- and post-synaptic activity

in the V5-V1 pathway. This is essential for the occurrence of

spike timing-dependent plasticity (STDP) [10–12], a form of syn-

aptic plasticity that meets the Hebbian principle that synapses

are potentiated if the pre-synaptic neuron fires repeatedly before

the post-synaptic neuron [9, 10]. Thus, ccPAS in the EXPV5-V1

group was aimed at strengthening reentrant connections from

V5 to V1. Control group 1 received V1-to-V5 ccPAS with 20 ms

ISI, thus controlling for the directionality of the connectivity

(CtrlV1-V5). Control group 2 received simultaneous V5-V1 ccPAS

with 0 ms ISI, thus controlling for timing (Ctrl0ms). Finally, control

group 3 received V5-to-V1 ccPAS with 20 ms ISI in sham mode,

controlling for nonspecific TMS effects (Ctrlsham).

To test the effect of ccPAS on visual perception, participants

performed a motion coherence discrimination task before (i.e.,

at baseline [BSL]) and immediately after the ccPAS phase (T0)

and after 30, 60, and 90 min (T30, T60, T90; see Figure 1A).

The motion coherence discrimination task consisted of a two-

alternative forced choice where participants had to report the di-

rection of coherent motion (leftward or rightward) for ten different

magnitudes of motion coherence ranging from 0 (random mo-

tion) to 80% coherence (Figures 1B and 1C). For each experi-

mental condition and time, we determined the motion sensitivity

threshold, calculated as the minimum percentage of motion

coherence necessary to discriminate the coherent direction of

the moving dots with an accuracy of 75% (see Supplemental

Experimental Procedures).
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Figure 1. Experimental Design and Procedures

(A) Timeline of the experiment. For each participant, the experiment beganwith a

preparation phase composed by a demo block (Demo) aimed to familiarize the

participant with the basic mechanisms of the motion coherence task and a

training session (TR) of threeblocks, performed toallow the participant to reacha

stable performance level before the actual experiment. This preparation phase

was followed by a baseline session (BSL). After the BSL measurement, partici-

pantswere randomly assigned to one of four groups, therefore undergoing either

the experimental or one of the three control ccPAS protocols. Participants had to

perform the same task immediately (T0), 30 (T30), 60 (T60), and 90 (T90) minutes

followingccPASprotocol.Onesessionconsistedof fourblocksof160 trialseach.

(B) Task sequence. Each trial consisted of a white central fixation cross dis-

played alone for 500 ms followed by a dot motion coherence stimulus dis-

played for 400ms. Here, a single frame of the motion coherence stimulus used

in the study is depicted. The motion coherence of the stimulus varied across

trials, and it could appear either on the left or on the right side of the cross. To

indicate that a response was required, the dot motion stimulus disappeared

and the cross remained. A new trial started as soon as the participant pressed

the response key on a keyboard indicating whether the coherent motion was

perceived moving leftward (left arrow) or rightward (right arrow), regardless of

the side of presentation.

(C) Stimuli. Schematic representation of the stimuli used to test the coherence

threshold. The coherent motion display contains a set of 400 moving dots, a
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The experiment used a 5 3 2 3 4 design with time (BSL, T0,

T30, T60, T90) and hemifield (left, right) as within-group condi-

tions and experimental manipulation (ExpV5-V1, CtrlV1-V5, Ctrl0ms,

Ctrlsham) as a between-groups condition.

A 5 3 2 3 4 mixed-factors ANOVA showed a main effect of

time (F4,112 = 2.51, p = 0.046), suggesting that motion sensitivity

threshold changed as a function of testing time. Crucially, there

was an interaction between time and experimental manipulation

(F12,112 = 2.51, p = 0.006), suggesting that any modification of

motion sensitivity threshold depended on the specific ccPAS

condition. No other main effects or interactions were significant

(all p > 0.1). As clearly reported in Figure 2, only the experimental

group (ExpV5-V1) showed motion sensitivity enhancements, as

evidenced by significant threshold shifts toward lower levels of

motion coherence between 30 and 60 min following the ccPAS

phase, before returning toward baseline values (see also Fig-

ures 3 and S1). Bonferroni-corrected t tests indicate that partic-

ipants assigned to ExpV5-V1 are more sensitive to visual motion

(lower motion sensitivity threshold) at T30 (p = 0.003) and T60

(p = 0.048) relative to baseline. Moreover, Bonferroni-corrected

t tests comparing ExpV5-V1 versus all the other groups confirmed

the greater sensitivity of the ExpV5-V1 group at T30 (ExpV5-V1

versus CtrlV1-V5: p = 0.008; ExpV5-V1 versus Ctrl0ms: p = 0.034;

ExpV5-V1 versus Ctrlsham: p = 0.003) and T60 (ExpV5-V1 versus

CtrlV1-V5: p = 0.006; ExpV5-V1 versus Ctrl0ms: p = 0.046; ExpV5-V1

versus Ctrlsham: p = 0.025). Perceptual enhancement in the

ExpV5-V1 group was similar across hemifields as suggested by

the non-significance of the triple interaction (see Figure S2).

None of the control groups showed a similar increase in perfor-

mance after ccPAS (CtrlV1-V5: all p > 0.19; Ctrl0ms: all p > 0.12;

Ctrlsham: p > 0.53), suggesting that perceptual boosting was spe-

cifically determined by the ccPASmanipulation when stimulation

directionality (from V5 to V1) and timing (20 ms) met the physio-

logical constraints of reentrant connectivity [2, 3]. This pattern of

results was substantially replicated when using non-parametric

tests (see Supplemental Information).

DISCUSSION

Repetitive paired stimulation, evoking sequential pre- and post-

synaptic activity in interconnected neurons, induces Hebbian

associative plasticity, prompting those synaptic connections to

transiently strengthen [9–12]. Previous TMS studies have shown

that similar synaptic strengthening can be induced in the human

motor system over two interconnected motor areas through

ccPAS administered at an optimal ISI [13–19]. These studies
fixed proportion of which are moving in a coherent direction (except for 0%

motion coherence condition), while the remainder move in randomly chosen

directions. Coherence of themotion ranged from 0% to 80%, distributed in ten

levels (represented on the line below). When the proportion (‘‘coherence level’’)

is high, task difficulty is low. The coherence threshold is the minimal per-

centage of dots moving in the same direction needed for the participant to

accurately perceive (75% of accuracy) the predominant motion direction. The

left panel represents a schematic trial with 0% coherence as all the dots are

moving randomly. The central panel represents a trial with 35% coherence in

the leftward direction. The right panel represents a trial with 80% coherence in

the leftward direction. The arrows illustrate the motion direction of each dot.

Green arrows represent the directions of signal dots; black arrows represent

the directions of noise dots.
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Figure 2. Changes in Visual Motion Sensitivity Induced by Cortico-cortical Paired Associative Stimulation

Only participants assigned to the experimental group (ExpV5-V1; ccPAS: direction V5-V1, ISI 20 ms) showed a reduction of motion sensitivity threshold (baseline

corrected) at 30 and 60 min after ccPAS, indicating enhanced visual motion sensitivity. Participants in control group 1 (CtrlV1-V5; ccPAS: direction V1-to-V5, ISI

20ms), control group 2 (Ctrl0ms; ccPAS: simultaneous V5-V1 stimulation, ISI 0ms), and control group 3 (Ctrlsham; V5-to-V1 sham stimulation, ISI 20ms) showed no

significant changes in motion sensitivity threshold over time. Error bars denote ± 1 SEM. Asterisks indicate significant differences (*p < 0.05, **p < 0.01). See also

Figure S2 and Table S1.
have shown that the ISI at which one targeted region (e.g., the

premotor cortex) exerts a physiological effect on an anatomically

connected second region (i.e., the motor cortex) is also the ISI at

which ccPAS can induce Hebbian-like cortico-cortical connec-

tion changes (e.g., 6–8 ms for premotor-motor circuits; compare

[15, 16] with [20, 21]). Such ccPAS studies have supported the

notion of STDP by showing a causal and directional change of in-

fluence of the first over the second targeted region [16, 19]. How-

ever, little is known about the impact on behavior of such an

experimental increase in synaptic efficiency, and no study to

date has tested ccPAS protocols over the visual system.

Seminal studies in animals have provided in vitro and in vivo

evidence of Hebbian plasticity in the visual system [10, 22, 23].

Our study goes beyond previous animal evidence by providing

the first demonstration that directly fostering Hebbian plasticity

in a cortical visual circuit has an impact on behavior. We demon-

strated for the first time that ccPAS over two interconnected

visual regions with an ISI consistent with evoking pre- and

post-synaptic activity necessary for STDP [2–6] affects visual

perception. In particular, we showed that stimulation aimed at

increasing synaptic efficacy in back projections from V5 to V1

transiently boosted visual motion sensitivity. Such perceptual

enhancement was evident for at least 60min, and its time course

resembled that of Hebbian-like physiological effects observed in
animal studies as well as in studies using ccPAS over the human

motor system [10–19].

Our findings provide causal evidence that short-term synaptic

strengthening of reentrant V5-V1 connections can enhance mo-

tion perception. This supports the view that reentrant connectiv-

ity from higher-order to early visual areas subserves integrative

visual functions [1–8, 24]. Animal studies have shown that sup-

pression of V5 in the visual system weakens V1 responses to

moving bar stimuli, in particular when stimuli have low salience

[25], which suggests a top-down amplification mechanism in

the processing of visual motion. This mechanism is also thought

to promote visual awareness of motion [1, 26, 27], and TMS

studies in humans have provided causal evidence of the role of

V5-V1 backward connectivity on motion visual awareness as

probed by TMS-induced visual phosphenes [2, 3]. However, ev-

idence indicates that backward connectivity is important also for

efficient processing of actual moving stimuli [4–7], even when

motion stimuli are not consciously perceived [5]. This suggests

that the top-down gain control function of backward connec-

tions [6, 25] is not limited to subserving awareness [2, 3] and re-

flects a general principle of visual cortical information processing

[6, 8, 24]. Remarkably, our study is the first to directly show that

synchronous stimulation of V5 and V1 aimed at strengthening

backward connections improves the perceptual processing of
Current Biology 26, 2155–2160, August 22, 2016 2157
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Figure 3. Curve Fitting and Groups’ Perfor-

mance

Sigmoid curve fits (top panels) and participants’

average performance (bottom panels) are plotted

for eachgroup asa function of timebefore andafter

the ccPAS protocol has been applied. The black

dotted line represents the baseline session (BSL);

gray, red, green, and blue lines represent task

performance at 0 (T0), 30 (T30), 60 (T60), and 90

(T90) minutes after the end of the ccPAS protocol,

respectively. The motion sensitivity threshold was

determined by taking the percentage of coherent

motion where the logistic function had a value of

75% of correct responses. The motion sensitivity

threshold represents the percentage of coherent

motion necessary to discriminate the coherent

direction of the moving dots with an accuracy of

75%. Below each graph, the averaged motion

sensitivity threshold (and SE) across participants,

in each of the four groups, are plotted for each

session. Only in the EXPV5-V1 group is there a sig-

nificant TMS-induced decrease in the motion

sensitivity threshold, at T30 and T60 relative to

BSL, as indicated by the asterisks (*p < 0.05, **p <

0.01). This reduction shows an enhancement in

sensitivity to the global motion task. See also Fig-

ure S1 for a representation of averaged data points

for each group and each time.
coherent motion. Notably, we specifically tested for a novel

account of the functionality of reentrant projections, namely

the plasticity of the V5-V1 circuit, by manipulating its pre- and

post-synaptic nodes according to the Hebbian rule as imple-

mented through this novel ccPAS protocol. The most immediate

consequence of this novel intervention approach is that par-

ticipants in the experimental group (ExpV5-V1) experienced an

enhanced perception of motion coherence. In contrast, none

of the participants in the control groups (including CtrlV1-V5 con-

trolling for directionality of the stimulation) improved their

perception at any testing time following the TMS application,

when compared to their pre-TMS BSL measure.

One may wonder why no change in performance was de-

tected following ccPAS in the CtrlV1-V5 group. In principle,
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reversing the order of the stimulation

(i.e., first TMS pulse over V1, second

over V5) would strengthen feedforward

rather than backward connectivity in the

network. Our findings suggest that back-

ward more than feedforward connections

are amenable to plastic boosting of visual

perception, which is in keeping with

their top-down modulatory role [1–8, 24,

25]. However, it should be noted that

the ISI of the ccPAS was selected based

on the timing of causal interactions that

V5 exerts over V1 [2, 3], and, thus, other

ISIs may be effective for modulating

perceptual function via changes in

feedforward connectivity. Visual tasks

strongly relying on bottom-up processes
may be particularly sensitive to manipulations of feedforward

connectivity [28].

It might be worth noting that during ExpV5-V1 ccPAS, the stim-

ulation of V5may induce not only orthodromic activation of back-

ward V5-to-V1 connections, but also antidromic activation

of feedforward V1-to-V5 connections. Thus, one may consider

the possibility that during ExpV5-V1 ccPAS, stimulation of V1

could reactivate the same feedforward connections, and this

repeated pairing may also contribute to the observed plastic ef-

fect. Indeed, studies have shown that repeated TMS pairing over

the same region can induce STDP [29]. However, such induction

is selective for very short ISIs (�1.5 ms) [30], making it

unlikely that it played a major role in the plastic effects we de-

tected. While our study supports the hypothesis of Hebbian



strengthening of V5-V1 backward connections, future studies

are needed to elucidate the possible contribution of additional

mechanisms underlying ccPAS aftereffects.

In sum, our study suggests that ccPAS can enhance visual

perception of motion in participants where the V5-V1 circuit is

critically manipulated by repeatedly pairing pre- and post-syn-

aptic nodes in the direction and timing that are optimal for

strengthening these reentrant connections. This provides a novel

mechanistic insight into the circuit and computational basis of vi-

sual perception by providing causal evidence of its malleability

and demonstrating that this strictly depends on the timing and

directionality of the repeated ccPAS manipulation.

This new demonstration of the malleability of the network gov-

erning visual processing paves the ground for future exploration

of brain mechanisms responsible for integrative visual functions.

While our offline ccPAS procedure addressed the basic fea-

tures of associative plasticity in the cortical network for motion

perception, future investigations might use a state-dependent

approach [31–33] and pair ccPASwith specificmotion directions

in order to boost direction-specific perceptual tuning. Our study

may also have implications for understanding more general

mechanisms of perceptual learning [34] and fine-tuning interven-

tional approaches aimed at enhancing perception, for example

by combining training and neuromodulation strategies. How-

ever, physiological evidence indicates that ccPAS aimed at

strengthening a given pathway may also induce weakening of

non-stimulated pathways [19]. Thus, future studies are needed

to understand the impact of such neural changes on behavior,

as, in principle, the ccPAS protocol may be useful but also detri-

mental depending on the stimulated pathway and the task at

hand.

We have probed the effects of associative plasticity on themo-

tion perception reentrant network. There has been no attempt in

the previous literature to explore this aspect of motion percep-

tion. Currently, it is not obvious whether and how our ability to

make sense ofmotion signals depends on the capacity of the cir-

cuit to adapt to the environment. Here, we specifically shed light

on the mechanisms by which reentrant connections become

functionally adaptive. This has important implications for the

way we perceive, conceptualize, interpret, and learn motion pat-

terns, from simple to more complex spatio-temporal structures.

Our study may have implications for the recovery of abilities that

have been lost as a result of disorders such as stroke, as it

suggests possible therapeutic interventions aimed at enhancing

motion perception, and sensory processing in general.

Conclusions
Wehave enhancedmotion coherenceperception for an extended

period through the application of the ccPAS protocol. This

enhancementwascritically dependent onmimicking the temporal

features of Hebbian plasticity, by exactly pairing the nodes of the

network subservingmotion perception in the right direction andat

the right time. The effects we observed are the result of a plastic

modification of the circuit and not amere interferencewith the cir-

cuit. As such, they provide novelmechanistic insights into theway

the circuit functions. These findings have implications for theoret-

ical models of visual perception as well as for the rehabilitation of

visual deficits through non-invasive brain stimulation. Moreover,

this novel protocol provides a novel perspective on current
models of perceptual learning and its potential underlying

neurophysiology.
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