
*For correspondence: satu.

palva@helsinki.fi

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 27

Received: 01 December 2015

Accepted: 24 September 2016

Published: 26 September 2016

Reviewing editor: Maurizio

Corbetta, Washington University,

United States

Copyright Siebenhühner et al.

This article is distributed under

the terms of the Creative

Commons Attribution License,

which permits unrestricted use

and redistribution provided that

the original author and source are

credited.

Cross-frequency synchronization connects
networks of fast and slow oscillations
during visual working memory
maintenance
Felix Siebenhühner1, Sheng H Wang1, J Matias Palva1, Satu Palva1,2*

1Neuroscience Center, University of Helsinki, Helsinki, Finland; 2BioMag laboratory,
HUS Medical Imaging Center, Helsinki, Finland

Abstract Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation
and attentional control, respectively, of sensory information maintained in visual working memory
(VWM). Within these regions, beta/gamma phase-synchronization supports the integration of
sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional
functions. A key challenge is to understand which mechanisms integrate neuronal processing across
these distinct frequencies and thereby the sensory and attentional functions. We investigated
whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using
concurrent magneto- and electroencephalography, we found that CFS was load-dependently
enhanced between theta and alpha–gamma and between alpha and beta-gamma oscillations during
VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the
hubs of within-frequency-synchronized networks and its strength predicted individual VWM
capacity. We propose that CFS integrates processing among synchronized neuronal networks from
theta to gamma frequencies to link sensory and attentional functions.
DOI: 10.7554/eLife.13451.001

Introduction
Working memory (WM) has a limited capacity of 3!4 objects (Luck and Vogel, 1997) and is com-
prised of sensory storage and central executive control for manipulating the stored information and
supporting the preparation of a contingent response (Baddeley, 1996; Miller and Cohen, 2001;
Sreenivasan et al., 2014). During visual WM (VWM) maintenance, these functions are achieved in
visual and fronto-parietal (FP) brain areas, which exhibit enhanced neuronal activity levels during
memory maintenance in both monkey single- and multi-unit recordings (Buschman et al., 2011;
Goldman-Rakic, 1995; Siegel et al., 2009) and functional MRI (fMRI) of humans (Munk et al., 2002;
Pessoa et al., 2002; Todd and Marois, 2004). While the visual cortex is responsible for the process-
ing of visual information and its maintenance in VWM (Riggall and Postle, 2012; Emrich et al.,
2013; Kravitz et al., 2013), lateral prefrontal cortex (LPFC) is thought to regulate VWM mainte-
nance, represent goals and rules, and govern response selection (Miller and Cohen, 2001;
Rowe et al., 2000; Sreenivasan et al., 2014; Markowitz et al., 2015). Recent studies show that
even in primate prefrontal cortex, these VWM functions are achieved in multiple dissociable net-
works (Markowitz et al., 2015; Lundqvist et al., 2016).

Phase synchronization (PS) is a mechanism for integrating anatomically distributed processing and
regulating the communication between distant assemblies (Singer, 1999; Fries, 2005,
2015). Macaque cortical recordings have shown that in beta- (b, 15–30 Hz) and gamma- (g,
30!90 Hz) frequency bands, inter-areal PS is indeed enhanced by the maintenance of visual
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information in VWM and it has been suggested to support the maintenance of VWM content

(Siegel et al., 2009; Salazar et al., 2012). Using MEG and EEG, source-localization, and network
analyses (Bullmore and Sporns, 2009), we observed that VWM involves large-scale b- and g-band

PS in the visual and parietal regions as in invasive LFP recordings from monkeys, but also high-alpha
(a)-band (11–14 Hz) synchronization in fronto-parietal areas (Palva et al., 2010). This anatomical pat-

tern suggests a putative functional division where b- and g-band synchronization underlies the main-

tenance and integration of visual information while the high-a-band synchronization supports the
coordination of processing among brain regions serving attentional and central executive control.

Likewise in MEG, also human intracranial EEG (iEEG) data have revealed long-range phase-synchro-
nization in theta (q, 4–8 Hz), b, and g bands in hippocampal memory circuits (Fell et al., 2001;

Axmacher et al., 2008; Burke et al., 2013).
Similar conclusions have also been made in studies addressing the relationship of VWM perfor-

mance and oscillation amplitude or power modulations that reflect local cortical synchronization.
The amplitudes of both b- and g-band oscillations are positively correlated with the task performance

and individual capacity limits (Sauseng et al., 2009; Palva et al., 2011; Roux et al., 2012;

Honkanen et al., 2015) and thought to support the neuronal representations of VWM contents (Tal-
lon-Baudry et al., 1998; Honkanen et al., 2015). In contrast, the plateau of load-dependent

strengthening in a-frequency band amplitudes during VWM is negatively correlated with
the individual VWM capacity (Palva et al., 2011) and a oscillations are stronger for distractors than

memorized items (Bonnefond and Jensen, 2012; Park et al., 2014). Together with a large body of

other evidence (Palva and Palva, 2007; Buffalo et al., 2011; Saalmann et al., 2012;
Haegens et al., 2015), these findings suggest that q and/or a oscillations underlie the attentional

functions of VWM by facilitating the processing of relevant and/or by suppressing irrelevant informa-
tion (Jensen et al., 2014; Palva and Palva, 2011).

Hence, a crucial challenge now is to reveal what kinds of cross-frequency coupling (CFC) mecha-
nisms integrate the neuronal processing that during VWM maintenance is distributed to multiple fre-

quency bands in anatomically distinct networks. These mechanisms would conceivably also support
the emergence of subjectively coherent VWM from sensory and central executive functions. Phase

amplitude coupling (PAC) is one form of CFC that has been suggested to underlie cross-frequency

integration (Palva et al., 2005; Palva and Palva, 2007; Sirota et al., 2008; Canolty and Knight,
2010; Fell and Axmacher, 2011; Giraud and Poeppel, 2012; Lisman and Jensen, 2013). Prior

studies have shown that during VWM maintenance, g oscillation amplitudes are coupled to q phase
via PAC in cortical (Sauseng et al., 2009; Siegel et al., 2009) and hippocampal recordings

(Axmacher et al., 2010; Park et al., 2016). However, PAC is independent of the phase of the fast

oscillations and hence cannot promote a consistent temporal and spike-time relationship between
the slow and fast oscillations (Palva et al., 2005; Fell and Axmacher, 2011; Palva and Palva, 2012),

which are essential in the regulation of neuronal communication (Singer, 1999; Fries, 2015).
In contrast to PAC, n:m-cross-frequency phase synchrony (CFS) (Tass et al., 1998; Palva et al.,

2005; Palva and Palva, 2007) is a form of CFC that indicates direct phase coupling of the slow and
fast oscillations. CFS could thus mechanistically underlie the cross-frequency integration of synchro-

nized networks at the temporal resolution of the faster oscillation (Fell and Axmacher, 2011;
Palva and Palva, 2012) through coordination of consistent spike timing relationships between the

oscillations. In CFS, the ratio of high (fhigh) and low (flow) frequencies is defined by the integers n and

m so that n. fhigh = m. flow. In humans, CFS has been observed in resting-state (Nikulin and Brismar,
2006) and VWM tasks among EEG sensors (Schack et al., 2005; Hamidi et al., 2009;

Sauseng et al., 2009) and in a mental calculation WM task among MEG sensors (Palva et al., 2005).
However, being limited to the sensor level, these studies leave the cortical sources of CFS as well as

its functional significance unclear. A recent study using intracranial EEG (iEEG) also reported behav-

iorally significant q:b and q:g CFS during VWM in human hippocampus using a serial Stenberg task
(Chaieb et al., 2015). Additionally, CFS has also been observed in the neocortical (Roopun et al.,

2008) and hippocampal (Belluscio et al., 2012) microcircuits in rats.
We postulate that CFS supports the integration of neuronal processing between synchronized

networks in distinct frequency bands during VWM maintenance and thereby underlies the integra-
tion of sensory and attentional functions of VWM (Figure 1). We use here concurrent magneto- and

electroencephalography (M/EEG) with individual-anatomy-based source reconstruction and data-
driven analyses to investigate the functional significance of CFS in WVM. The key predictions of our
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postulate are that CFS should be observable and load-dependent in a parametric VWM task

(Palva et al., 2010), that it should connect the task-relevant within-frequency-synchronized networks,

and finally that it should be predictive of individual behavioral VWM performance. We found solid

support for each of these predictions, which shows that CFS may indeed be a mechanism for coordi-

nating the neuronal processing and regulating communication among oscillatory networks at differ-

ent frequencies.

Results

Inter-areal CFS is a robust phenomenon during VWM retention period
We assessed here the functional role of CFS in VWM by analyzing M/EEG data acquired during a

delayed match-to-sample VWM task (Luck and Vogel, 1997; Palva et al., 2010, 2011), which had

earlier revealed concurrent large-scale 1:1 synchronization in a-, b-, and g-frequency bands

(Palva et al., 2010). In each trial of the task, the subjects were presented a to-be-memorized ’Sam-

ple’ stimulus containing one- to six-colored squares and, after a memory retention period of 1 s, a

’Test’ stimulus, wherein 50% of trials one square was of a different color than in the Sample

(Figure 2a). The subjects gave a forced-choice response about whether the Test was same or differ-

ent than the Sample. The hit rate (HR) decreased as a function of VWM load but remained above

chance level for the highest load of six objects (Figure 2—figure supplement 1).

a

b

1:m m m m m CFS

Slow 1:1 network (θ/α)

Fast1:1 network

Fast oscillation

Slow oscillation

Fast oscillation
phase

Slow oscillation
phase

11::m m 

Figure 1. Schematic illustration of the hypothesis. (a) Fast gamma (g) network synchronization (red) integrates

processing within the visual system while slow theta and/or alpha (q/a) synchronization (blue) supports attentional

processing in the fronto-parietal network. Cross-frequency phase synchronization (CFS) (purple) connects the fast

and slow networks and regulates their communication to integrate sensory and attentional functions. (b) 1:3-phase
synchronized slow (blue) and fast (red) oscillations and their phase time series. Highlights indicate how cross-

frequency phase synchronization endows the fast and slow oscillation time windows where their systematic phase

relationship allows spike coincidence detection and other spike-time dependent interactions to take place.

DOI: 10.7554/eLife.13451.002
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Figure 2. VWM modulates inter-areal cross-frequency phase synchrony (CFS) in human cortex. Example of

prominent single-trial CFS during the VWM retention period. (a) Illustration of the delayed-match-to-sample

experimental paradigm where the Sample stimulus containing 1–6 colored squares is presented for 0.1 s and then

after a 1 s retention period a Test stimulus appears and the subject responds whether the Test contains an object

with a color different from than in Sample. The flattened cortical surface shows an example of 1:4 CFS (purple line)

transiently phase coupling a (13 Hz) oscillations in the right medial frontal sulcus (MFS) with g (54 Hz) oscillations in

left occipital pole (Occ.Pole) during VWM retention. These a and g oscillations were concurrently also 1:1

synchronized in networks of other cortical areas (blue and red lines, respectively). The cortical surface is colored by

brain systems as indicated in Figure 4. (b) The signals from right MFS and left occ. pole were filtered with Morlet

wavelets at 13 Hz and 54 Hz respectively. (c) The phase of the signals in (b). The zoom-in insert illustrates visually

salient 1:4 cross-frequency phase synchrony during the retention period. (d) Top panel: 1:4 CFS between these a

and g oscillations was quantified with the phase-locking value (PLV) in sliding 300 ms time windows. The grey area

denotes the 99%-ile confidence intervals of null hypothesis PLV values obtained with time-shifted surrogate data.

CFS was strengthened during VWM retention significantly above the baseline and null hypothesis levels. Middle

panel: 1:1 a phase synchrony between MFS and the five connected fronto-parietal parcels shown in (a) Bottom
panel: 1:1 g phase synchronization of Occ. Pole with the other visual cortex areas shown in (a).
DOI: 10.7554/eLife.13451.003

The following source data and figure supplements are available for figure 2:

Figure 2 continued on next page
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We estimated the phase time series of single-trial ongoing neuronal activity for all cortical grey
matter sources by filtering artefact-cleaned M/EEG recordings with Morlet wavelets ranging from 3
to 90 Hz in frequency and using cortically-constrained minimum-norm estimates (Lin et al., 2006) for

the inverse transform. These source estimates were collapsed with individually optimized collapse

operators (Korhonen et al., 2014) to neuroanatomically labeled cortical parcellations of 400 parcels
(see Figure 2—figure supplement 2).

To first re-illustrate with real data the concept (see Figure 1) of CFS connecting cortical parcels
engaged in 1:1 synchronization in a and g bands, we selected two cortical parcels in a single subject:

middle frontal sulcus (mFS) in lateral prefrontal cortex (LPFC) for a oscillations and occipital pole
(early visual cortex) for g oscillations (Figure 2b), and estimated their phase time series (Figure 2c).

We then quantified n:m CFS (Palva et al., 2005; Tass et al., 1998) and 1:1 synchronization with the
phase-locking value (PLV) in sliding time windows (Figure 2d) and found in single trials that CFS

between these regions as well as 1:1 a and g band synchronization in separate networks were

strengthened during VWM retention.
To characterize this phenomenon at the group level (N = 12), we quantified event-related CFS

obtained across trials for each pair of frequency bands and each pair of the 400 cortical parcels.

Mapping the correlation networks at the whole-brain level is crucial for understanding neuronal com-

munication in cognitive architectures (Petersen and Sporns, 2015). As the n:m ratios, we used n = 1
and m = 2!9 and assessed CFS in two pre-stimulus and two VWM-retention period time windows

(0.4!0.7 and 0.7!1 s from Sample onset). The retention period windows were free of stimulus-

evoked activity (Palva et al., 2011), which is a major confounder in analyses of both inter-areal PS
and all forms of CFC (Palva and Palva, 2012). For robust statistical mapping of CFS at the group

level, we collapsed the parcel-parcel adjacency matrices of CFS strength (PLV) to a coarser parcella-
tion, the Destrieux atlas (Destrieux et al., 2010), where the cortical surface is divided into 148 par-

cels (see Figure 2—figure supplement 2 and Figure 2—source data 1). The workflow for obtaining

the results shown in Figures 3!9 is shown in Figure 3—figure supplement 1.
We first addressed whether the inter-areal CFS was strengthened or suppressed during VWM

retention compared to the pre-Sample baseline (two-sided t-test, a = 0.05, corrected). We initially

averaged the CFS estimates across the six memory-load conditions (’Mean condition’) and repre-

sented significant differences in CFS between baseline and retention as graphs where cortical areas
comprise the vertices and significant connections are edges (Bullmore and Sporns, 2009). These

task effects on the CFS were indexed at the graph level by connection density, K, that was the pro-

portion of statistically significant inter-areal interactions of all possible pair-wise interactions among
the 148 brain areas. Visualizing K as a function of flow and the frequency ratio 1:m revealed that

inter-areal CFS of high-a (11–14 Hz) with b- and g-band oscillations as well as CFS of high-q-band
(5!7 Hz) with a-, b- and g-band oscillations were enhanced above baseline levels for most or all fre-

quency ratios (Figure 3a, see external source data 1 for statistical information, Siebenhühner et al.,

2016). In contrast, CFS of low-q (3–4 Hz) and low-a (7!10 Hz) oscillations with their corresponding
higher frequency bands was concurrently suppressed below baseline levels (Figure 3b; external

source data 1, Siebenhühner et al., 2016). These data hence show that CFS among cortical oscilla-

tions is both up- and down-regulated dynamically by VWM maintenance. The horizontal concentra-
tion of positive and negative findings across the frequency ratios to consistent lower frequencies

(see Figure 3a and b) suggested that the high-a and q oscillations were synchronized in a harmonic
structure with higher frequency oscillations in a!g bands. We quantified this by comparing

the harmonic consistency of CFS across frequency ratios against surrogate data (see Materials and

methods) and found this consistency to be significant for the enhanced CFS in high-q and high-a
bands and for the suppressed CFS in the low-a band (Figure 3a and b, p < 0.05, FDR corrected).

Figure 2 continued

Source data 1. List of parcels.

DOI: 10.7554/eLife.13451.004

Figure supplement 1. Behavioral performance.

DOI: 10.7554/eLife.13451.005

Figure supplement 2. Parcellations and subsystems.

DOI: 10.7554/eLife.13451.006
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Figure 3. During VWM retention, inter-areal CFS was both strenghtened and suppressed in harmonic structures.

(a) Fractions (K+) of inter-areal CFS connections that were significantly stronger during VWM maintenance than in

the pre-stimulus baseline (Mean condition, Wilcoxon signed ranked test, p < 0.05, corrected). K+ values (color

scale) are shown for all studied pairs of 1:m ratios from 1:2 to 1:9 (x-axis) and lower frequencies from 3.3 to 45 Hz

(y-axis) and represent data from an adjacency matrix for each frequency-pair. The grey line marks the boundary set

by the highest investigated frequency (90 Hz). CFS of high-q and high-a with their upper frequencies was

increased for essentially all ratios. Right: The brown line indicates the harmonic consistency of CFS across low

frequencies. The dashed line denotes the 95%-ile confidence limit. CFS of high-q and high-a oscillations with their

harmonics at higher frequencies is significantly consistent across ratios. (b) Fractions of inter-areal CFS connections

(K-) that were suppressed below baseline levels during the retention period. Harmonic consistency (blue line) was

estimated as in and shows that low-a consistent CFS was suppressed at all ratios.(c) Fractions of CFS connections

that were significantly positively (K+) or (d) and negatively (K-) correlated with VWM load (Spearman Rank

correlation test of CFS across the six VWM memory load conditions, p < 0.05, corrected).

DOI: 10.7554/eLife.13451.007

The following figure supplements are available for figure 3:

Figure supplement 1. Workflow.

DOI: 10.7554/eLife.13451.008

Figure supplement 2. Leave-one-out statistics and effect size thresholding corroborate the robustness of CFS

observations.

DOI: 10.7554/eLife.13451.009

Figure supplement 3. Apparent signal-to-noise ratio (aSNR) in source space.

DOI: 10.7554/eLife.13451.010

Figure supplement 4. CFS PLV changes in the Mean condition are not attributable changes in the signal-to-noise

ratio (SNR).

Figure 3 continued on next page
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These data thus suggest that q and high-a oscillations are systematically phase coupled with b and g

networks for which they thus provide temporal framing across a range of frequency ratios.
To then assess the relationship of CFS with progressive VWM task demands, we asked whether

the strength of CFS was systematically correlated with the memory loads from 1 to 6 objects (’Load
condition’). We found that CFS between the high-a-band consistent frequency pairs was positively

correlated with memory load (Spearman’s rank correlation test, a = 0.05, false discovery rate (FDR)
corrected) while for q-consistent CFS, VWM load-dependent modulations were weak. Further, low-a
consistent CFS was negatively correlated with VWM load (Figure 3c–d; external source data

1, Siebenhühner et al., 2016).
To consolidate these observations and ensure that they were not driven by outliers or attributable

to effects that would be unreliably sampled at the current cohort size, we performed two lines of
control statistics for positive observations in the mean and load conditions. First, using a leave-one-

out approach, we created 12 datasets of 11 subjects and performed the group statistics as earlier.
We then examined each significant parcel-parcel CFS observation of the prior group statistics (see

Figure 3a–d) and considered significant only those connections that were significant in every leave-
one-out cohort. Second, we estimated the effect size that could be estimated at statistical power

1!b of 0.8 with the original cohort size and then from the results of the original group statistics
accepted as significant only observations exceeding this limit. Neither the leave-one-out (Figure 3—

figure supplement 2a) nor the effect size (Figure 3—figure supplement 2b) masks or their com-
bined effects (Figure 3—figure supplement 2c) led to marked changes in the overall patterns of

Mean or Load (Figure 3—figure supplement 2d–f) condition findings. The present findings are thus
robust despite the smallish sample size and cannot be attributable to any single subject.

CFS is not attributable to concurrent event-related amplitude changes
The results so far showed that CFS is a robust, dynamic, and task-dependent phenomenon in human

cortical activity and is, both theoretically and in the light of the present empirical data, a plausible
mechanism for the integration of neuronal processing distributed across frequencies. However,

event-related changes in CFS could be attributable to changes in the signal-to-noise ratio (SNR)
caused by task-induced changes in oscillation amplitudes. To rule out this possibility, we obtained

source-space parcel-specific estimates of apparent SNR (aSNR) (Figure 3—figure supplement 3)
and used the event-related and memory-load dependent changes in aSNR to predict the changes in

CFS estimates that one would observe in the absence to true changes in phase coupling
(Palva et al., 2010) see Materials and methods). However, we did not find any systematic relation-

ship between SNR and CFS, and observed that as in similar prior analyses for 1:1 PS (Palva et al.,
2010), the observed CFS changes were much larger than those predicted by changes in SNR in both
the Mean (Figure 3—figure supplement 4) and Load (Figure 3—figure supplement 5) conditions.

To further corroborate that the observed CFS effects were not attributable to SNR changes in a case
where the SNR would be overestimated, we quantified the correlation between the Mean- and

Load-condition effects in PLV and oscillation amplitudes for each significant edge, for each ratio,
and for each frequency-pair (see Materials and methods). In line with the prior findings, we found

that the task effects on oscillation amplitudes were either insignificantly correlated with the CFS
effects or, in the few ratio-frequency pairs where a significant correlation was observed, explained

Figure 3 continued

DOI: 10.7554/eLife.13451.011

Figure supplement 5. Observed PLV changes in the Load condition are not predicted by changes in SNR.

DOI: 10.7554/eLife.13451.012

Figure supplement 6. Changes in PLV and amplitude are not correlated.

DOI: 10.7554/eLife.13451.013

Figure supplement 7. Cross-frequency (CF) amplitude-amplitude correlations do not have a low-frequency

consistent harmonic structure.

DOI: 10.7554/eLife.13451.014

Figure supplement 8. Connections with significant CFS are not co-localized with those exhibiting significant CF

amplitude correlations.

DOI: 10.7554/eLife.13451.015
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only a small fraction of the variance in CFS PLV (Figure 3—figure supplement 6). Overall, the pat-

tern of these correlations was far from the pattern of CFS and hence the Mean- and Load-condition

CFS effects are unlikely to be explained by concurrent changes in SNR.

LF hubs: θ HF hubs: α−γ a

HF hubs: γb

Vis DA VA Lim FP DMSM

iPGsup

sTS

mFS

intPS
iPGang

CS

mFG

iprCS

CN

sOG

sFG
iprCS

iTG

mFS

mFS

intPS

mFG
sFG

iPGsup

iPGang

b

sFG
sFG

iTG

iFS

iPGsup

prCG

poCS

mFS

sFS

sPG
iPGang

α−γ 

sFG

sPG

poCG

iPGang

mFS

intPS

poCS

iprCS

LF hubs: high-α

Figure 4. q- and high-a-consistent CFS is observed in fronto-parietal and visual networks. (a) Low-frequency CFS hubs (LF, left) and high-frequency CFS

hubs (HF, right) and their most central connections during the VWM retention period for q-consistent CFS averaged across memory loads (Mean

condition) and shared across frequency ratios from 1:2!1:9 (see Materials and methods for details) displayed on a flattened cortical surface. These

networks and the most central low- and high-frequency hubs are presented here separately to illustrate the distinct neuroanatomical sources of the

most central cortical q oscillations (left) and the a!g oscillations (right) connected by this CFS coupling. The complete q-consistent CFS network is thus

the combination of these graphs. Circles represent network vertices (cortical parcels), their size is proportional to their degree centrality, and both

vertex and surface colors represent functional brain systems (see colors below). The lighter sector of each vertex represents the fraction of low-

frequency connections and the darker section the fraction of high-frequency connections this vertex has in the graph. The width of the edges

represents the coupling strength between the two vertices and their color is a mixture of the brain system assignments of the vertices. The dotted lines

at the end of the connections point towards the high-frequency (from LF hubs, left panel) or the low-frequency (from HF hubs, right panel) vertices for

LF and HF networks, respectively. (b) As in (a), but for the high-a-consistent CFS shared across ratios from 1:3!1:9. Functional subsystem abbreviations:

Vis: Visual, SM: Sensorimotor, DA: Dorsal Attention, VA: Ventral Attention, Lim: Limbic, FP: Frontoparietal, DM: Default Mode.

DOI: 10.7554/eLife.13451.016

The following figure supplements are available for figure 4:

Figure supplement 1. 1:2 CFS between high-a and b bands is most pronounced in the sensorimotor network.

DOI: 10.7554/eLife.13451.017

Figure supplement 2. Network of low-a consistent CFS suppression.

DOI: 10.7554/eLife.13451.018
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To further test whether event-related changes in non-sinusoidal/spike-like waveforms
(Palva et al., 2005) could have led to artificial observations of CFS, we estimated cross-frequency

amplitude-amplitude correlations. For CFS attributable to non-sinudoidal waveforms, these ampli-

tude correlations should exhibit a frequency-ratio pattern similar to that of CFS. However, the

observed pattern of CF amplitude correlations was saliently distinct from CFS (Figure 3—figure sup-

plement 7; external source data 2, Siebenhühner et al., 2016) and within each frequency-ratio pair,

the vast majority of significant CFS connections did not exhibit significant amplitude-amplitude cou-

pling (Figure 3—figure supplement 8). These analyses thus rule out the possibility that changes in

SNR or in waveform non-sinusoidalities could have contributed significantly to the observations of

CFS in this study.

CFS during VWM retention links visual and attentional systems
If CFS supports the integration of spectrally distributed processing of attentional and representa-

tional functions during VWM, it should be localized to the task-relevant visual and attentional brain

systems, and the strength of CFS in these regions should be predictive of behavioral performance.

To illustrate the most robust CFS networks in these data, we identified the connectivity backbones

of high-a- and q-consistent CFS networks across the frequency ratios 1:2!1:9 by pooling the adja-

cency matrices of significant connections, rejecting connections that were significantly attributable

to any single ratio, and visualizing the most central connections and network hubs (see Materials and

methods).
As CFS networks are asymmetric, the visualization was performed separately for the low- and

high-frequency parts of CFS networks. In the visualization, we also accounted for the M/EEG signal

mixing effects with a novel clustering approach that bundles the connections more likely to reflect a

single true underlying neuronal interaction (see Materials and methods). The brain regions putatively

supporting attentional and other functions were identified by co-localizing our parcellation with the

Figure 5. 1:3!1:9 CFS between high-a and g oscillations is VWM load-dependently strengthened among visual, sensorimotor, and frontoparietal

networks during the retention period. Low-frequency high-a (LF, left) and corresponding high-frequency g (HF, right) CFS hubs and their connections

for the Load condition high-a-consistent CFS shared across ratios 1:3!1:9 (all illustration details as in Figure 4a).

DOI: 10.7554/eLife.13451.019

The following figure supplement is available for figure 5:

Figure supplement 1. VWM-load-dependent strengthening of 1:2 CFS between high-a and b oscillations is observed in largely in sensorimotor, but

also in attentional brain systems.

DOI: 10.7554/eLife.13451.020
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boundaries of seven predominant brain systems defined by the modularity of intrinsic BOLD signal

correlations in fMRI (Yeo et al., 2011) (see Figure 2—figure supplement 2).
We first visualized the most central hubs and connections of q-harmonic networks for ratios from

1:2 to 1:9 in the Mean condition separately for the low-frequency (LF, here q) and high-frequency

(HF, here a!g) parts of the CFS interactions. LF network hubs, i.e., areas wherein the q oscillations

were coupled with a!g oscillations elsewhere, were found mainly in the fronto-parietal (FP), dorsal

(DA), and ventral (VA) attention systems and included the right-hemispheric middle frontal gyrus and

sulcus (mFG, mFS), intraparietal sulcus (intPS), and bilateral inferior parietal gyri (iPG) (see large

circles in Figure 4a, left; external source data 3, Siebenhühner et al., 2016). These q hubs were

CFS-coupled with HF oscillations in visual, parietal, and frontal cortices (see dashed ends of connec-

tions). HF hubs, i.e., loci where a!g oscillations were predominantly coupled with q elsewhere, were

observed in the DA system, namely in the left inferior precentral sulcus (iprCS), right superior parietal

gyrus (sPG), and intPS as well as in postcentral sulcus and gyrus (poCS/G) of the sensorimotor sys-

tem (SM) and superior frontal gyrus (sFG) of the default-mode (DM) system (Figure 4a, right).
We next visualized the most central hubs and connections of the high-a-CFS network with the

same approach. For the CFS between high-a and g , in networks with ratios 1:3!1:9, we observed LF

(high-a) hubs in the right-hemispheric iPG, mFS, and iFS in the FP system (see blue hubs in

Figure 4b, left panel) and in bilateral sFG, right superior frontal sulcus (sFS), and inferior temporal

gyrus (iTG) in the DM system. Among other targets, the FP a-hubs were bilaterally and strongly con-

nected to g oscillations in the visual cortex (see dashed line ends of red FP-Vis connections in

Figure 4b, left panel). The HF (here, g) hubs included mFG and mFS (FP), bilateral iprCS and left

Figure 6. CFS connects task-relevant functional brain systems. (a) Connection density K for q consistent CFS (ratios

1:2–1:9) in the Mean condition within and between functional brain systems of the Yeo parcellation. The x-axis

shows the subsystems for the lower frequency and the y-axis for the higher frequency oscillations. K is shown for

those brain system pairs where K exceeded the 95%-ile of the corresponding K values obtained with surrogate

data. (b,c) Same as (a), but for high-a consistent CFS (ratios 1:3–1:9) in the Mean and Load conditions,

respectively. (d,e) Same as (a), but for a:b CFS (ratio 1:2) in the Mean and Load conditions, respectively. (f) K of

low-a consistent CFS decreases (negative Mean condition) within and between systems.

DOI: 10.7554/eLife.13451.021

The following source data is available for figure 6:

Source data 1. Statistical table for connection densities.

DOI: 10.7554/eLife.13451.022
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Figure 7 continued on next page
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intPS in the DA system and, importantly, the right-hemispheric cuneus (CN) and superior occipital

gyrus (SOG) in the visual system. These visual system g hubs were connected to high-a-oscillations in

LPFC and with left-hemispheric posterior parietal cortex (PPC) and visual system (Figure 4b, right).

CFS between high-a and g hence connected the FP and DA internally and these attentional systems

with the visual system. Moreover, in both the q- and high-a-consistent CFS networks (see Figure 4a

and b), the LF hubs were more salient in right-hemispheric FP areas while HF hubs were more promi-

nent in bilateral DA and visual areas. This tentative dichotomy is well in line with the idea that q/a

oscillations serve higher attentional/executive functions (FP) while g oscillations serve visual represen-

tational and lower-level attentional (DA) functions. Both LF and HF hubs were also observed in DM

and most commonly in sFG and sFS therein.
In contrast with the 1:3!1:9 a:g CFS, 1:2 CFS connections between high-a and b oscillations were

saliently localized to the SM, DA, and VA systems (Figure 4—figure supplement 1; external source

data 5, Siebenhühner et al., 2016) and were thus visualized separately from a:g CFS. The differen-

ces between a:b and a:g CFS suggest that they may underlie functionally distinct CFC.
To localize the suppression of CFS and address whether it was a characteristic of the task–rele-

vant or -irrelevant circuitry, we visualized the hubs and connections for the low-a consistent CFS net-

works that exhibited the greatest suppression during VWM maintenance. We found that both LF

and HF hubs were predominantly found in the DM and SM systems that are putatively task-irrelevant

in VWM (Figure 4—figure supplement 2; external source data 6, Siebenhühner et al., 2016). How-

ever, a LF low-a hub was also observed in intPS (DA) and HF b / g hubs in iprCS (DA) and mFG (FP),

which were connected to the nodes in the DM system.
We then visualized the most central connections and nodes of the high-a consistent networks

that were positively correlated with VWM load (’Load condition’). High-a (LF) hubs were mostly

found in the left-hemispheric visual system, right-hemispheric FP, including the mFS, and iPG, and in

SM bilaterally (Figure 5; external source data 4, Siebenhühner et al., 2016). The HF g hubs were

observed in the areas overlapping with those of high-a hubs in the left-hemispheric visual system

and in right-hemispheric mFG and sPG. Interestingly, mFS and iFS were key frontal HF nodes and

were connected to the visual system similarly to what was observed in the Mean condition a(LF) net-

works. This suggests that the reciprocality of a and g oscillations in these areas is enhanced with

increasing VWM load. Further, similarly to the Mean condition, also the load-dependent 1:2 CFS

connections between high-a and b oscillations were localized to the SM, DA and VA networks (Fig-

ure 5—figure supplement 1; external source data 5, Siebenhühner et al., 2016).

Figure 7 continued

with Benjamini-Hochberg FDR method). (b) Simplified illustration of CFS connecting 1:1 networks. The graph

shows 15 brain areas with the greatest degree centrality in significantly 1:1 phase synchronized (Mean-condition) q-

band (green) and a-band networks (pink). Blue borders indicate the brain areas that belong to the most central

low-frequency CFS-hubs while the violet borders indicate the brain areas that are among the most central high-

frequency CFS hubs. Significant CFS coupling between these networks is shown in a separated manner for clarity:

left column shows CFS coupling of the low-frequency CFS hubs with all of their targets in the 1:1 higher-frequency

network. Conversely, the right column shows the CFS coupling of the high-frequency CFS hubs with all of their

targets in the 1:1 lower-frequency network. Individual brain areas may appear both as low- and high-frequency

hubs within the same graph. (c) CFS coupling between 1:1 high-a-band network (green) and the low-g-band

network (pink). All visualization details as in (b).
DOI: 10.7554/eLife.13451.023

The following source data and figure supplements are available for figure 7:

Source data 1. Statistical table for correlation coefficients r and p-values.

DOI: 10.7554/eLife.13451.024

Figure supplement 1. CFS connects the hubs of 1:1 synchronized networks in q and b-g bands.

DOI: 10.7554/eLife.13451.025

Figure supplement 2. CFS connects the hubs of 1:1 synchronized networks in a and b!high-g bands.

DOI: 10.7554/eLife.13451.026

Figure supplement 3. Network vertex centralities are correlated among oscillations with nearby frequencies.

DOI: 10.7554/eLife.13451.027
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Brain-system-level connectivity analysis of the CFS effects
To further elucidate CFS connectivity among brain systems, we complemented the detailed network

visualization of the strongest CFS connections (see Figures 4 and 5) by assessing the densities of all

significant CFS connections, K, within and between the seven functional brain systems. These K val-

ues were compared against non-parametric statistical thresholds obtained by shuffling the adjacency

matrices. The system-system connection density matrices largely corroborated the main phenomena

found in the network visualizations and showed that VWM retention was associated with significantly

denser CFS coupling of q-oscillations in DA, FP, visual, SM, and DM systems with a!g oscillations in

SM and DA than expected by chance (Figure 6a, see Figure 6—source data 1). q-oscillations in DA

were also synchronized with a!g oscillations in visual, FP, and limbic systems.
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Figure 8. Phase-amplitude coupling (PAC) couples the phases of low-frequency q and a oscillations with the

amplitudes of faster a–g oscillations. (a) Fractions of strengthened (K+) and (b) suppressed (K-) PAC in the Mean

condition. PAC couples the phase of the low-frequency (y-axis) oscillations with the amplitudes of the faster

oscillations at the frequency ratio on the x-axis. The harmonic consistency for PAC is shown on the right as in

Figure 3a and b for CFS. PAC was suppressed below baseline levels for the high-a consistent ratios where CFS

was strengthened and did not show significant harmonic consistency. (c) Load-dependent increases and (d)
decreases in PAC (comparable with the Load condition CFS in Figure 3c and d).

DOI: 10.7554/eLife.13451.028

The following figure supplement is available for figure 8:

Figure supplement 1. Leave-one-out statistics and effect size thresholding corroborate also the robustness of

PAC observations.

DOI: 10.7554/eLife.13451.029
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In line with the visualization of the most central connections (See Figure 4b), high-a oscillations
were synchronized with g oscillations within DA, and between DA, visual, SM, and FP systems

(Figure 6b). As a notable feature in both of these analyses (see Figure 6a and b, cf. Figure 4a and
b), was that HF oscillations in the visual system were connected with LF oscillations in DA. However,
in the Load condition, high-a oscillations in SM and visual systems were synchronized with g oscilla-

tions in visual, SM, and DA systems, and conversely g oscillations in FP with high-a oscillations in DA,
limbic, and DM systems (Figure 6c).

Further, in line with the visualization of strongest connections, 1:2 a:b CFS was strengthened in
Mean and Load condition among SM and attentional systems (Figure 6d and e, cf. Figure 4—figure
supplement 1) as well as also between DA and FP. Low-a oscillations in SM, DA, FP and DM showed

suppressed synchronization with b and g oscillations in DM as well as in DA, SM and FP systems
(Figure 6f).

Thus, these brain-system-level connectivity analyses showed that CFS connected high-a oscilla-
tions in the attentional FP and DA systems with the g oscillations in the attentional as well visual and
SM systems in the Mean condition. In the Load condition, CFS was additionally strengthened within
the visual system. For the q-consistent CFS, the connectivity pattern was more widespread and q

oscillations in many brain systems were connected to attentional networks.

CFS connects the hubs of within-frequency (1:1) synchronized networks
If CFS mediates the integration of slow and fast 1:1 phase-synchronized networks, it should connect
the most central hubs of these corresponding within-frequency (1:1) synchronized networks. To
assess this hypothesis, we tested whether the most central areas of the low- (flow) and high-frequency
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Figure 9. The strength of CFS predicts individual VWM capacity. (a) Correlation of subjects’ individual CFS network strength in the Mean condition with

their behavioral VWM capacity for low (1:2!1:5, red line) or high (1:6!1:9, blue line) ratios. Positive correlation is found for low ratios in the high-a band

and for high ratios in the q band (Pearson correlation, **p < 0.01 after correction for multiple comparisons with the Benjamini-Hochberg method).

(b) Correlation coefficients of subjects’ individual CFS network strength with their VWM capacity for each ratio are shown cumulatively to illustrate

the systematic correlation across ratios at high-a and q frequencies. For the ratio colors, see legend in (d). Upward correlations indicate positive

correlations with capacity and downward ones negative correlations. (c) Correlation of subjects’ individual PAC network strength with their VWM

capacity, visualized as in (a). (d) Correlation of subjects’ individual PAC network strength with their VWM capacity for individual ratios, visualized as in

(b).
DOI: 10.7554/eLife.13451.030

The following source data is available for figure 9:

Source data 1. Statistical Table for the correlation of CFS and PAC values with the individual VWM capacity.

DOI: 10.7554/eLife.13451.031

Source data 2. Statistical Table for the correlation of CFS and PAC values with the individual VWM capacity.

DOI: 10.7554/eLife.13451.032
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(fhigh) CFS networks, i.e., the CFS network hubs, were co-localized with the hubs of the correspond-

ing 1:1 PS networks at flow and fhigh. (See Materials and methods). We found that for both the high-q

(5!7 Hz) and high-a (11!14 Hz) consistent CFS networks, the node degree centrality values were

correlated with the corresponding centrality values of within-frequency synchronized networks,

(p < 0.05, corrected, Figure 7a, see Figure 7—source data 1). Hence, the low-frequency CFS hubs

were significantly co-localized with the hubs of he slow 1:1 networks. The corresponding correlations

of high-frequency CFS hubs with those of the fast 1:1 networks were weaker but still significant for

several frequency pairs (Figure 7a). These findings thus support the notion that CFS connects the

1:1 networks.
We then used simplified graphs to illustrate the strongest hubs of the fast and slow 1:1 networks,

their within-frequency 1:1 connectivity, and how these two networks were mutually connected by

CFS. We first visualized the main hubs and their connections of 1:1 q and a networks and the

1:2!1:3 q:a CFS linking these networks by illustrating separately how the 1:1 q network was con-

nected with targets in the 1:1 a network (Figure 7b, left column) and how the 1:1 high-a network

was connected to targets in 1:1 q network (Figure 7b, right column). This showed that for LF-CFS

connections, 1:1 q and LF CFS hubs were co-localized in mFG and iFG of the LPFC and in CS

(Figure 7b, left column) while iPG and mFG were hubs for both the 1:1 a network and HF-CFS

(Figure 7b, right column). For 1:4!1:5 q:b CFS and for 1:6!1:9 q:g CFS, shared hubs for 1:1

q network and LF-CFS network were observed in the poCS and LPFC while shared HF-CFS and fast

1:1 hubs were observed in posterior parietal cortex (PPC) and LPFC and for or q:g CFS also in the

visual system (Figure 7—figure supplement 1).
For high-a consistent CFS, we first examined the coupling of the high-a band 1:1 network with

the low-g band 1:1 network (Figure 7c), as well as with b-band and high-g band networks (Figure 7—

figure supplement 2). This revealed a very similar pattern of CFS connections than that presented in

Figure 4. Shared key hubs in both 1:1 a and LF-CFS networks were mFS, sFG, both angular and

supramarginal parts of iPG, and precentral gyrus (prCG) which were connected to their g network

targets in the visual system through CFS (Figure 7c, left column). Hubs shared by low-g band and

HF-CFS were SOG and inferior temporal gyrus (iTG), which were connected with their a-network tar-

gets is LPFC and PPC (Figure 7c, right column). Thus as proposed by our hypothesis, high-a band

network included co-localized CFS and 1:1 hubs in the FP and DA attention networks while the g-

band network included key hubs in the visual system and posterior brain areas. A similar pattern of

co-localized 1:1 and CFS hubs was observed also for 1:2 high-a:b (Figure 7a and Figure 7—figure

supplement 2a) and for 1:6!1:9 high-a:high-g CFS (Figure 7a and Figure 7—figure supplement

2b).
Despite both low- and high-g networks being characterized by hubs in the visual system, they

were not mutually significantly correlated in parcel centralities (Figure 7—figure supplement 3),

which implies that these g oscillations were relatively narrow-band and can not particularly be

explained by broad-band g activities. Overall, these data show that, as hypothesized, CFS connects

1:1 slow and fast networks through common hubs that are most prominent in PPC and LPFC as sug-

gested also by data presented in Figure 4.

Phase-amplitude coupling (PAC) and CFS are distinct phenomena
PAC has been suggested to underlie cross-frequency coupling of slow and fast oscillations and prior

studies have found PAC, e.g., between the q phases and g amplitudes during VWM

(Axmacher et al., 2010; Siegel et al., 2009). To address the possibility that CFS and PAC would

underlie similar cross-frequency integration, we tested whether also PAC was correlated with the

VWM demands in the present data. We computed PAC between all parcels and for the same fre-

quency pairs used in the CFS analysis. Somewhat surprisingly, as the strongest effect, this analysis

revealed that q- and low-a-band phases were coupled with a- and b-band amplitudes at a 1:2 ratio.

We also found weak coupling of the g oscillation amplitudes with the phase of q oscillations at fre-

quency ratios up to 1:9 (Figure 8a; external source data 7, Siebenhühner et al., 2016). Importantly,

in the high-a band, where prominent CFS was observed, PAC was suppressed (Figure 8b). Load-

dependent modulations of PAC showed a similar spectral profile (Figure 8c–d). These data show

that PAC and CFS are clearly distinct phenomena.
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The strength of CFS predicts VWM accuracy and individual capacity
Finally, if CFS was functionally significant in the integration of neuronal processing across q- to g-

band synchronized networks, the strength of CFS should be predictive of individual VWM task per-

formance. We thus quantified the predictive correlation between inter-individual variability in the

strength of VWM-retention period CFS and the inter-individual variability in VWM capacity across

subjects. CFS network strength, S, was measured for each subject, VWM load, and low frequency of

low (1:2–1:5) and high (1:6–1:9) CFS frequency ratios, where S was the sum of phase-locking values

of all significant connections in the mean condition (positive). VWM capacity C was obtained sepa-

rately for each subject and VWM load (See Materials and methods). We estimated the correlation

(Pearson correlation test) between S and C and found that for low ratios the strength of high-a con-

sistent CFS networks predicted (r = 0.343, p = 0.003) VWM capacity (Figure 9a, see Figure 9—

source data 1). For the high (1:6!1:9) ratios, the individual capacity was correlated (r = 0.376,

p = 0.001) with high-q consistent CFS (see Figure 9a). These values remained significant when test-

ing all low frequencies for such correlations and correcting for multiple comparisons (Benjamini-

Hochberg method). We also tested whether the high-a low ratios observation was attributable only

to 1:2 a:b coupling but found both the high-a:b (ratio 1:2, r = 0.247, p = 0.036) and high-a:low-g

(ratios 1:3!1:5, r = 0.232, p = 0.0496) to be significant. We also estimated (see Figure 9b, Fig-

ure 9—source data 2) the CFS-capacity correlation of all individual ratios to illustrate their system-

atic contribution to the correlations of their mean (see Figure 9a) in the high-a and q frequency

bands.
We then estimated correlations of PAC network strength with individual VWM capacity in the

same manner (Figure 9c,d). However, no p values exceeded the corrected significance threshold.

These data thus indicate that cortical CFS is functionally significant in the human VWM maintenance

and also further reinforce the view that CFS and PAC are functionally distinct phenomena.

Discussion
WM is comprised of sensory storage and attentional control for manipulating the stored sensory

information (Baddeley, 1996; Miller and Cohen, 2001; Sreenivasan et al., 2014). While the mainte-

nance and integration of sensory information in WM is tentatively supported by b and g phase-syn-

chronization, q and a phase-synchronization appears to play a role in the coordination of attentional

functions. We hypothesized that concurrently synchronized assemblies in different neuronal circuits

and frequency bands could be integrated into coherent VWM by cross-frequency phase synchrony

(CFS).
We used M/EEG and a VWM task to investigate whether CFS would connect networks synchro-

nized in q-, a-, b-, and g-frequency bands and integrate the associated neuronal processing in visual

and attentional systems during VWM maintenance. We demonstrate here that human VWM mainte-

nance is indeed characterized by large-scale networks of functionally significant CFS among cortical

oscillations. We found that CFS was correlated with task demands, predicted individual VWM capac-

ity and connected 1:1-within-frequency synchronization among task-relevant visual and fronto-parie-

tal regions. Importantly, CFS could not be explained by changes in the signal-to-noise ratio (SNR),

concurrent amplitude-amplitude correlations, or non-sinusoidal waveforms, which supports the inter-

pretation that CFS indeed reflects dynamic cross-frequency coupling of narrow-band neuronal oscil-

lations. The present findings thus show that CFS reflects true dynamic cross-frequency coupling of

neuronal oscillations among task-relevant cortical circuits and may thus constitute a so far little

acknowledged computational mechanism for integrating and coordinating neuronal processing

across distinct frequency bands. Localization of the cortical sources and finding evidence for the

functional significance of CFS in the present study thus extend the scarce prior observations of CFS

in neuronal circuits, which have so far revealed CFS in sensor-level MEG or EEG analyses

(Hamidi et al., 2009; Nikulin and Brismar, 2006; Palva et al., 2005; Tass et al., 1998), in human

(Chaieb et al., 2015) and rat (Belluscio et al., 2012) hippocampal circuits, and in the neocortical

(Roopun et al., 2008) microcircuits in rats.
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CFS connects visual and attentional systems and within-frequency
synchronized networks therein
We found that in narrow q- and high-a-frequency bands and their harmonics, CFS was positively cor-

related with VWM task demands. CFS hence connected the q oscillations with those in a, b, and low-

g bands as well as the high-a with b and g oscillations. Several studies suggest that the contents of

VWM are maintained in the visual cortex (Riggall and Postle, 2012; Emrich et al., 2013;

Kravitz et al., 2013; Sreenivasan et al., 2014; Honkanen et al., 2015), while LPFC is thought to

underlie the attentional and executive regulation of the VWM maintenance (Rowe et al., 2000;

Miller and Cohen, 2001; Pessoa et al., 2002; Curtis and D’Esposito, 2003; Voytek and Knight,

2010; Sreenivasan et al., 2014; Markowitz et al., 2015) in multiple functionally dissociable net-

works (Markowitz et al., 2015; Lundqvist et al., 2016). A complementary view is obtained from

large-scale connectivity analyses of fMRI (Corbetta et al., 2000; Corbetta and Shulman, 2002;

Szczepanski et al., 2013), MEG (Spadone et al., 2015), and intracranial EEG (iEEG) (Daitch et al.,

2013) recordings which show that in attention tasks, functional connectivity between LPFC and PPC,

i.e., within the FP and DA systems, plays a fundamental functional role in attentional control and reg-

ulation. Indeed, studies both in human fMRI (Munk et al., 2002; Mohr et al., 2006) and monkey LFP

(Salazar et al., 2012) recordings have observed strengthened activity in both frontal and parietal

areas also during VWM tasks.
Hence, if CFS is a functionally significant mechanism for the integration of representational and

central executive functions of VWM, it should specifically connect synchronized networks across

visual and attentional systems. Moreover, as the integration in brain networks has been shown to be

dependent on key brain areas that are the most central nodes, i.e., the hubs in these networks

(de Pasquale et al., 2016), CFS should connect the key hubs of the within-frequency synchronized

networks among task-relevant, here attentional and visual, systems.
We found two lines of evidence for CFS playing such a role. First, the key hubs of CFS networks

were largely localized to these brain systems and CFS connectivity linked these systems extensively.

Both in the q and high-a band consistent CFS networks, the low frequency oscillations had hubs pre-

dominantly in FP and to a lesser extent in DA, and significant connectivity of these hubs to faster

oscillations in the visual system and DA. Conversely, the higher frequency oscillations had hubs pre-

dominantly in DA, and in the g band also in visual cortex. Second, we found that the most central

low- and high-frequency hubs of the CFS networks during VWM maintenance were anatomically co-

localized with the hubs of the slow and fast, respectively, 1:1 networks and that CFS was salient

among the most central nodes of the within-frequency synchronized networks between visual system

and attentional networks.
The present data thus show that CFS would be well positioned to underlie the integration and

regulation spectrally distributed neuronal processing between the fronto-parietal attention networks

and the visual system. Thereby CFS could underlie the integration and coordination of attentional

and representational functions suggested to be carried out by a and g band synchronization, respec-

tively (Tallon-Baudry et al., 1998; Sauseng et al., 2009; Palva et al., 2010, 2011; Bonnefond and

Jensen, 2012; Roux et al., 2012; Park et al., 2014; Honkanen et al., 2015).

The roles of CFS in sensorimotor and default mode systems
CFS among high-a and b oscillations was distinct in network topography from higher-ratio CFS of

high-a and g oscillations. a:b CFS had large hubs in SM system, strong within-SM connectivity, while

still having connections with both LPFC and visual system. fMRI studies have shown that during

VWM, neuronal activity is also strengthened in the SM system wherein the dorsal premotor cortex

(PMC) has been suggested to underlie the maintenance and manipulation of spatial features

(Munk et al., 2002; Mohr et al., 2006). Thus 1:2 high-a and b CFS in SM could reflect these func-

tions during VWM. However, a:b CFS could also be biased by the classical sensory-motor m!rhythm

(Hari and Salmelin, 1997) that is comprised of strongly 1:2 phase coupled a and b oscillations

(Nikulin and Brismar, 2006). While a:g CFS was largely distinct from a:b, also a:g CFS involved SM

hubs. Together with the prior fMRI data, this supports the notion that the SM system could be task-

relevant in VWM, but further studies are needed to disentangle their functional roles.
Interestingly, both high-a- and q-consistent CFS was found also in the DM system, including supe-

rior frontal areas of LPFC as well as inferior and superior temporal areas and the angular part of iPG.
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Despite DM being often categorized as a task-negative or -irrelevant system, recent studies have

shown that neuronal activity in the angular part of iPG is stronger for successfully memorized infor-

mation (Hutchinson et al., 2009; Lee and Kuhl, 2016; Spaniol et al., 2009) while the superior fron-

tal cortex is partly functionally similar to mFG (Fuster, 2008), and thus both these regions could be

task-positive in the present VWM task despite belonging to DM during resting state. sTS, on the

other hand, is related to multisensory processing (Beauchamp et al., 2004) and verbal WM functions

(Tanabe et al., 2005) and its presence in the CSF networks might be attributable to verbal rehearsal

during the memory maintenance even though the present cohort was instructed not to verbalize the

task. Overall, given that CFS was predominantly observed among the visual and attentional systems,

we suggest that these findings reflect task-positive roles of these brain regions rather than CFS

being a phenomenon characteristic to task-negative processing during VWM.

Suppression of CFS in task-irrelevant networks
Intriguingly, the positive CFS effects were paralleled by a suppression of CFS between d and low-a

bands with their harmonic frequency bands. The suppression involved network hubs predominantly

in the SM and DM systems and at the systems-level, disengaged DA and SM from DM and FP. The

DM system is widely thought to support non-task-oriented processing (Fox et al., 2009), which sug-

gests that the suppression of CFS there could represent the disengagement of task-irrelevant brain

regions and networks, even though some parts of DM could be task-positive in VWM (see above).

Low-a consistent suppression of CFS with the concurrent increase in the high-a consistent CFS

among visual and FP systems may also reflect the disengagement of neuronal processing in a task-

irrelevant frequency band from that in a task-relevant band. Overall, the task-negative and -positive

patterns of CFS hierarchies over the low- and high-a bands, respectively, suggest that a oscillations

support both the coordination of behaviorally relevant (Palva and Palva, 2007; Palva et al., 2011;

Saalmann et al., 2012) and the disengagement of task-irrelevant neuronal processes

(Klimesch et al., 2007; Jensen and Mazaheri, 2010) as suggested previously. These results suggest

that CFS can underlie both the integration as well as segregation of neuronal processing suggested

to be implemented via hierarchical network interactions (Sporns, 2013; Deco et al., 2015;

Spadone et al., 2015).

CFS but not PAC of ! and high-a consistent oscillations predicts VWM
performance
We hypothesized that CFS would regulate neuronal communication between fast and slow oscil-

latory networks. To obtain evidence for this, we tested whether CFS is correlated with task demands

and whether it is predictive of the individual the behavioral performance. We found that CFS of q

and high-a oscillations with their harmonics in b and g bands was strengthened above baseline levels

during VWM maintenance and was positively correlated with the VWM load. As key evidence for the

functional significance of this CFS, we observed that inter-individual variability of CFS network

strength predicted inter-individual variability in VWM capacity. Intriguingly, the strength of high-a

consistent CFS predicted individual VWM capacity at small frequency ratios while the strength of

high-q consistent CFS was correlated with individual capacity at large frequency ratios. In contrast,

we found no correlations between PAC and individual capacity.
As, synchronization in q and high-a bands is thought to support the attentional and executive

functions of VWM (Palva et al., 2010, 2011; Zanto et al., 2011; Bonnefond and Jensen, 2012;

Park et al., 2014) and synchronization in g band the contents of VWM (Tallon-Baudry et al., 1998;

Siegel et al., 2009; Salazar et al., 2012; Honkanen et al., 2015), the correlation of CFS between

these bands with individual capacity is well in line with the suggestion that VWM capacity is set by

the cross-frequency interactions among sensory and attentional rhythms (Lisman and Idiart, 1995;

Lisman and Jensen, 2013; Roux and Uhlhaas, 2014). However, in contrast with prior proposals

based on PAC, we found only CFS to be predictive of VWM capacity.
PAC and CFS have not earlier been directly compared in cognitive tasks—the present data thus

provide evidence for that these two forms of CFC are both phenomenologically and functionally dis-

tinct. The critical difference between CFS and PAC is that CFS couples the slow and fast oscillations

at a temporal accuracy of the faster oscillation. CFS, but not PAC, hence can achieve consistent

spike timing between these oscillations, which could reciprocally regulate neuronal communication
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between the frequency bands (Palva et al., 2005). The present data thus show that the classical 1:1

‘within-frequency’ phase synchronization, which has been suggested to provide a mechanistic basis

for regulating neuronal communication (Singer, 1999; Fries, 2005; Bastos et al., 2015; Fries, 2015),

is complemented by cross-frequency phase-phase synchronization integrating cortical assemblies

into hierarchical multi-scale networks.

Conclusions
We found that CFS connects slow and fast cortical oscillations across the visual, FP, and DA systems

during VWM retention. The strength of CFS was dynamically up- and down-regulated, correlated

with VWM task demands, and predictive of individual VWM capacity, which show that CFS is a func-

tionally significant cross-frequency interaction mechanism during VWM maintenance. CFS hierarchies

can thus be dynamically recruited to meet cognitive processing demands. The present data are in

line with the notions that CFS integrates neuronal processing and regulates neuronal communication

among spectrally and anatomically distributed cortical networks and that CFS could thereby support

the integration of attentional and representational functions of VWM.

Materials and methods
The workflow for all steps leading to the results in Figures 3–9 is also shown schematically in Fig-

ure 3—figure supplement 1, which is referenced in the following subsections by numeration. All

data analyses, where not indicated otherwise, were performed on a LabVIEW-based (National

Instruments, Austin, Texas) neuroinformatics platform available on request. Statistical tables for Fig-

ures 6, 7 and 9 are provided as source data. We further provide additional statistical data underly-

ing Figures 3–9 as external source data (Siebenhühner et al., 2016), which can be found online: dx.

doi.org/10.5061/dryad.fb240.

Task and recordings
The VWM task and MEG-EEG recordings of the data analyzed here are described in detail by Palva

et al. (Palva et al., 2010, 2011). In the task, 12 right-handed subjects (age 28 ± 3, mean ± SD, 4

females) memorized a Sample stimulus comprising one to six randomly located squares of different

colors and after a 1 s retention period answered whether the test display was the same or different

as the sample stimuli and whether they were sure about the responses. Subjects were instructed not

to use verbal rehearsal during memorization. A total of ~1800 trials (~300 per memory load of 1!6

objects) were collected from each subject. Cortical activity was measured with concurrent EEG (60-

channel) and MEG data (204 planar gradiometers and 102 magnetometers, Elekta Neuromag Ltd.,

Helsinki, Finland) recordings at 600 Hz sampling rate. Ocular signals were measured with electro-

oculogram (EOG) and the behavioral thumb-twitch responses with electromyography (EMG). Only

artifact-free trials with valid behavioral responses were included in the analysis. One subject was

excluded from the analysis due to too large differences in head position between recording sessions.

T1-weighted anatomical MRI scans for cortical surface reconstruction models were obtained at a res-

olution of 1x1x1 mm with a 1.5 T MRI scanner (Siemens, Germany). This study was approved by the

ethical committee of Helsinki University Central Hospital and was performed according to the Decla-

ration of Helsinki. Written informed consent was obtained from each subject prior to the

experiment.

Behavioral performance
Behavioral VWM performance was measured with Hit Rate (HR) that was given by the behavioral

accuracy in each VWM load condition, i.e., by the proportion of trials with correct responses of all tri-

als that were accepted into M/EEG analyses after blink rejection.

Data pre-processing
We used the Maxfilter software (Elekta Neuromag Ltd., Helsinki, Finland) to suppress extra-cranial

noise and to co-localize the recordings in signal space (Figure 3—figure supplement 1a). Indepen-

dent component analysis (ICA, Matlab toolbox Fieldtrip, http://fieldtrip.fcdonders.nl

(Oostenveld et al., 2011) was used to extract signal components both for the EEG and MEG data
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and to exclude components that were correlated with ocular artefacts identified by EOG or with

heartbeat for which the reference signal was estimated from MEG magnetometers.

Filtering
Preprocessed M/EEG data were filtered (Figure 3—figure supplement 1b) into 25 approximately

logarithmically spaced frequencies from fmin = 3 Hz to fmax = 90 Hz using Morlet Wavelets so that

the filtered time series Xðt;f Þwere obtained by convolution of the original time series xðtÞ with Morlet

wavelets wðt; f Þ : X t; fð Þ ¼ x tð Þ % w t; fð Þ for each wavelet frequency fmin & f & fmax, where:

w t; fð Þ ¼ A ' exp !t2

2's2
t

! "

' exp 2ipftð Þ, where sf ¼ 1=2pst, A ¼ st

ffiffiffiffi

p

p
ð Þ!1=2, i is the imaginary unit, and

the Morlet parameter m was m ¼ f
sf
¼ 5 (Tallon-Baudry et al., 1996).

Preparation of forward and inverse operators
Source reconstruction was performed using FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/

) for the volumetric segmentation of the MRI data, surface reconstruction, flattening, cortical parcel-

lation, and neuroanatomical labeling with the Destrieux atlas (Dale et al., 1999; Destrieux et al.,

2010; Fischl et al., 2002, see Figure 2—source data 1 for a list of parcels).
MNE software (http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php) was used

to create three-layer boundary element head conductivity models and cortically constrained source

models as well as for the M/EEG-MRI co-localization and for the preparation of the forward and

inverse operators (Figure 3—figure supplement 1c, Hämäläinen and Sarvas, 1989;

Hämäläinen and Ilmoniemi, 1994). MEG and EEG data (204 MEG planar gradiometers, 102 MEG

magnetometers, and 60 EEG electrodes) were hence integrated at the inverse transform stage of

data analysis (Hämäläinen and Sarvas, 1989; Hämäläinen and Ilmoniemi, 1994). The source models

had dipole orientations fixed to the pial surface normals and a 7 mm inter-dipole separation

throughout the cortex, which yielded models containing 7000–8000 source vertices.

Inverse transform and vertex collapsing
A single inverse operator was used for all wavelet frequencies and was obtained by using broad-

band- (1–40 Hz) filtered pre-S1 baseline periods of all trials for estimating the noise covariance

matrix. To reconstruct ongoing cortical phase-time series, the filtered complex single-trial M/EEG

time series were inverse transformed (Figure 3—figure supplement 1d) to source-vertex time series

that were then collapsed (Figure 3—figure supplement 1e) into time series of cortical parcels in a

400-parcel collection (see Figure 2—figure supplement 2). This parcellation was obtained by itera-

tively splitting the largest parcels of the Destrieux atlas along their most elongated axis using the

same parcel-wise splits for all subjects (Palva et al., 2010; Rouhinen et al., 2013; Honkanen et al.,

2015). Using neuroanatomical labeling as the anatomical ’coordinate system’ made inter-subject

morphing in group-level analyses unnecessary, which would have compromised the individual ana-

tomical accuracy. Collapsing the source time-series into time-series of cortical parcels was performed

with optimized collapse operators where only the source vertices with greatest source reconstruction

accuracy were used (Korhonen et al., 2014). For creating the collapse operators, we used forward

and inverse modeling of simulated data to assess the source reconstruction accuracy for each source

vertex and cortical parcel separately for each subject. In these simulations, Morlet-filtered white

noise was created independently for each cortical parcel and these time series together were for-

ward modeled to simulate the M/EEG recording of ongoing brain activity with known source dynam-

ics. Inverse modeling and parcel time series collapsing, carried out identically to the inverse

modeling of real data, was then applied to the simulated M/EEG data to reconstruct the spatial cor-

relation patterns attributable to signal mixing in M/EEG data acquisition and source reconstruction.

Comparison of the original parcel time series with the forward-inverse modeled source-vertex time

series was then used to identify for each parcel the collection source vertices that most accurately

reconstruct the original parcel time series (Korhonen et al., 2014).

Removal of low-fidelity vertices
In phase synchrony analyses of collapsed parcel time series data, one major confounding factor is

spurious edges resulting from signal mixing between neighbouring brain regions in data acquisition
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and source reconstruction (Palva and Palva, 2012). We assessed the reliability of data based on

phase correlations between real and simulated data. Parcel fidelity (f) was defined as the phase cor-

relation between the original true parcel time series and the forward-inverse modeled parcel time

series (Korhonen et al., 2014). Parcel cross-talk (c), conversely, was taken as the phase correlation

between the forward-inverse modeled parcel time series with the original true time series of all other

parcels. For each parcel, we calculated c as the average of f values with all other parcels. Fidelity

hence measures the parcel reconstruction accuracy and parcel cross-talk summarizes the degree of

mixing a given parcel has with other parcels. Parcel spread (s) for each parcel p was calculated as

the mean f of all other parcels with the original time series of parcel p and hence reveals parcels

generating signals that are spuriously picked up by many other parcels. To decrease the probability

of spurious synchronization and anatomically misplaced connections, for both statistical analyses and

graph visualization in this study, we removed parcels with f
c's<3000 (a.u.), so that ~10% of the cortical

surface was excluded. These parcels were located mostly deep and/or inferior sources, which gener-

ate the least detectable signals in M/EEG and hence are most likely to incorrectly reflect signals gen-

erated elsewhere.

1:1 and CF synchrony analysis
We estimated 1:1 phase-synchrony within frequencies and m:n phase-synchrony between frequen-

cies from source-reconstructed phase-time series of M/EEG data (Figure 3—figure supplement 1f).

The filtered time series Xðt; f Þ are complex and can be expressed as amplitude and a phase time

series Axðt; f Þ and !xðt; f Þ, respectively, so that

X t; fð Þ ¼ Ax t; fð Þ ' exp i ' ! t; fð Þ½ ):

We estimated n :m cross-frequency phase synchrony (CFS) and 1:1 within-frequency phase synchrony
for each pair of cortical parcels p and q and between pairs of low and high frequencies fhigh and

flow. We used the phase-locking value (PLV) to compute synchronization so that

PLVp;q;n:m;flow ;fhigh ¼
1

N r;t

P

exp i ' m ' !p r; t; flowð Þ! n ' !q r; t; fhigh
$ %$ %& '

(

(

(

(

(

(

(

(

where iis the imaginary unit, the integers nand mdefine the frequency ratio so that n ' fhigh ¼m ' flow,
N ¼Nr 'Nt, where Nr is the number of trials r and Nt is the number of samples t within a time window

(Palva et al., 2005).
For CFS we used n = 1 and m e {2,3,4,5,6,7,8,9} while for 1:1 within-frequency phase synchrony m =
1.
Phase-amplitude coupling (PAC) was also quantified for the same frequency pairs as CFS. We esti-
mated PAC by computing the 1:1 PLV between the phase of the slow oscillation and the phase of

the amplitude envelope of the fast oscillation (Vanhatalo et al., 2004). The phase of the amplitude

envelope was estimated by filtering it at flow. PAC was thus defined as:

PACp;q;flow ;fhigh ¼
1

N r;t

P

exp i ' !p r; t; flowð Þ! !Eq r; t; flow; fhigh
$ %

! "h i

(

(

(

(

(

(

(

(

where !Eðt; flow; fhighÞ is the phase of the filtered amplitude envelope time series Eðt; flow; fhightÞ that

was obtained by filtering Aðt; fhighÞ with the Morlet wavelet wðt; flowÞ:

E t; flow; fhigh
$ %

¼ A t; fhigh
$ %

%w t; flowð Þ:

Cross-frequency amplitude correlations were estimated for the same frequency pairs as the CFS by
using the Pearson correlation coefficient CC of the amplitude time series A(t) so that

CCp;q;flow;fhigh ¼
1

N r;t

P

Zp r; t; flowð Þ ' Zq r; t; fhigh
$ %$ %

where f ; r; tð Þ ¼ A f ;r;tð Þ!"f ;r;t

sf ;r;t
, "f ;r;t ¼ 1

N

P

f ;r;t A f ; r; tð Þ and sf ;r;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

f ;r;t
A f ;r;tð Þ!"f ;r;tð Þ

N

r

.
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Single-trial analysis
To assess 1:1 synchrony and 1:4 CFS at the single-trial level (see Figure 2), we computed the 1:1

and 1:4 PLV for a single trial between parcels observed to exhibit clear 1:4 CFS in the group analyses

(see below and Figure 4) in sliding 300 ms wide time windows at 50 ms distance. While 1:1 PLV esti-

mates may be biased by residual linear mixing after source reconstruction, neither the long-range

couplings nor the strengthening of 1:1 PLVs during the retention period can be attributed to linear

mixing. To assess the statistical significance, we computed the 99th% -ile of the PLV distribution of

1000 realizations of surrogate data. The surrogate PLVs were assessed identically to those of real

data and for the same sliding time windows, but so that one of the time series was shifted randomly

by 0!300 ms. This method of surrogate generation is specific for measuring the significance of inter-

areal correlations because all local features that bias the PLV estimates, such as temporal auto-corre-

lations, are preserved.

Group-level statistics
We then computed m:n CFS, PAC, and 1:1 phase-synchronization across trials separately for all sub-

jects (N = 12) between all cortical parcels, combinations frequency pairs of flow and fhigh, and for four

time-windows; two before stimulus onset and for early (400–700 ms from Sample stimuli) and late

(700–1000 ms from Sample stimuli) retention periods and for all memory loads l (N = 6).
Since PLV is sensitive to the number of trials, we equalized the number of trials between conditions

(memory loads) within each subject to the lowest number of trials among conditions. Prior to statistics,

the CFS adjacency matrices were collapsed (Figure 3—figure supplement 1g) to a coarser parcella-

tion, the Destrieux atlas (Destrieux et al., 2010) of 148 parcels (see Figure 2—figure supplement 2).
We then estimated (Figure 3—figure supplement 1h) the statistical significance across the entire

subject population of each pairwise interaction for each of the 1:m ratios. We first identified interac-

tions that were significantly stronger or weaker in the retention period time windows than in the first

pre-stimulus baseline by using a two-sided t-test with a statistical significance level p<0.05, and cor-

rected for multiple comparisons for data averaged across the six memory loads (Mean condition).

The effect sizes (Mean difference PLVret–PLVBL divided by the standard deviation of the difference)

and p-values for all frequencies and ratios are provided in external source data

1 (Siebenhühner et al., 2016). To correct for multiple comparisons, we removed as many of the

least significant edges as predicted by the p-value (False discovery rate correction). For the effect of

memory load (Load condition), we identified interactions whose strength was positively or negatively

correlated with the memory load with a Spearman rank correlation test (p<0.05; FDR corrected). In

the Load condition, the effect size is given by the correlation coefficients that together with the p

values are provided in external source data 1 (Siebenhühner et al., 2016).
We then used graph theoretical notation (Bullmore and Sporns, 2009) to characterize the statis-

tical CFS adjacency matrices at the graph level. Here, brain areas are the nodes, and connections of

synchrony, the edges. We used connection density, K, that was defined to indicate the proportion of

statistically significant inter-areal interactions from all possible interactions to indicate the extent of

statistically significant synchronization separately for each frequency ratios of CFS (Figure 3), CF

amplitude-amplitude correlations (Figure 3—figure supplement 7) and PAC (Figure 8). The effect

sizes and p values for CFS, amplitude-amplitude correlations and PAC are provided in external

source data 1, 2 and 7, respectively (Siebenhühner et al., 2016).
To compare the overlap between CFS and CF amplitude-amplitude coupling, we then computed

the fraction of edges that were found significant in both CFS and CF amplitude-amplitude correla-

tions to those that were significant in CFS only (Figure 3—figure supplement 8).

Estimation of consistency across ratios
To quantify how consistently the connection density K of CFS was increased or decreased across the

1:m frequency ratios for each flow < 18Hz, we introduced (Figure 3—figure supplement 1i) a consis-

tency measure C:

Cl;flow ¼ !Kl;flow ' exp !
PN

m Km;l;flow ! !Kl;flow

(

(

(

(

N ' !Kl;flow

 !
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where l denotes the memory load or test condition (Mean or Load), Km;i;flow is the connection density

for CFSlow: high at load l and !K is the mean value for all K, N is the number of ratios (here 8). The C

values were considered significant if they exceeded 95% -ile confidence limits estimated from 2000

realizations of surrogate data that were constructed by shuffling the Kvalues over frequencies. The

same procedures described in this paragraph were also used for estimation of K and C for ampli-

tude-amplitude (CC) and phase-amplitude (PAC) couplings.

Construction of summary graphs across ratios
We then performed (Figure 3—figure supplement 1j) graph visualization for CFS graphs in two

stages. In the first stage, we created graphs that summarize the connections shared among harmoni-

cally consistent networks across frequency ratios. These summary graphs are provided in external

source data 3–6 (Siebenhühner et al., 2016). In the second stage, the graphs were visualized so

that the most central edges were selected and hierarchically clustered to attenuate the effect of spu-

rious edges.
In the first stage, in order to identify CFS edges that were shared across ratios, edges from all

ratios of interest were clustered into hyperedges where each hyperedge could contain edges from

the adjacency matrices of multiple ratios. This edge clustering was performed so that an edge-edge

adjacency matrix was created and the adjacency was defined to be the product of corresponding

maximum parcel cross-talk c (see previous paragraph). Thus each element in the edge-edge adja-

cency matrix indicates the proximity of any two observed edges in terms of linear mixing attributable

to data acquisition and inverse modeling on the group level. Here high adjacency indicates a high

probability that these edges actually represent the same underlying cortico-cortical interaction. Hier-

archical clustering of the edge-edge adjacency matrix thus groups all observed edges into a set of

hyperedges that are mutually dissociable in the MEG linear mixing space. To achieve a representa-

tion of connectivity shared by multiple frequency ratios, we used permutation statistics to test for

each hyperedge whether it could be significantly (p<0.05, uncorrected) attributable to edges from

any single ratio. Then those hyperedges for which this was the case were excluded from further visu-

alization. The remaining hyperedges were then ’flattened’ into a regular adjacency matrix by sum-

ming the shared edges across ratios.

Bundling of edges into hyperedges
In the second stage (Figure 3—figure supplement 1k), in order to visualize these graphs for the

Mean and Load conditions we picked the 500 and 250 most central edges, respectively, i.e., edges

that were connected to the most central low- or high-frequency hubs. For flow, we ranked the edges

by the low-frequency degree centrality of the vertices to which their low-frequency end was con-

nected. Conversely for fhigh, we ranked edges by the high-frequency degree centrality of the vertices

that their high-frequency end was connected to.
We then re-used the edge-adjacency based hierarchical clustering described above in order to

bundle the edges into clusters that are likely to each represent a single underlying true interaction.

A bundle per se indicates the residual uncertainty about the anatomical localization of the interac-

tion. As large bundles are much more likely to reflect major true neuronal interactions than small

bundles, we excluded bundles of less than 4 edges and discarded edges with low centrality (<50% )

within a bundle.
We created low-and high-frequency graphs, i.e., graphs that showed the most central LF or HF

hubs and their connections to other vertices (parcels), respectively. Circles were used to denote the

vertices, i.e., parcels, so that their size was proportional to their degree in the graph. The vertices

were coloured by the functional brain system (Yeo et al., 2011) they belonged to. As many vertices

would be both at the high and low-frequency ’end’ of connections within a graph, we chose to indi-

cate their fractions of LF and HF degree by the light and darker shaded sectors. For example, a ver-

tex with 3 connections where it was at the LF ’end’ and one where it was at the HF ’end’ would be

divided into 75% area of lighter and 25% area of darker shade. CFS connections were indicated by

lines where dashed ends pointed towards the high-frequency vertices in LF graphs and towards low-

frequency vertices in HF graphs. The neuroanatomical spread of the ends of each bundle illustrates

the level of spatial smearing in M/EEG source reconstruction used here. The graphs were overlaid

on flattened maps of the complete cortical surfaces of left and right hemispheres. These maps
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indicate the cortical gyration so that sulci are darker than gyri. Color in flattened brains identifies the

7 brain systems of the Yeo parcellations (Yeo et al., 2011) and the thin white or grey lines the 148

parcels of the Destrieux parcellation (Destrieux et al., 2010). These graphs are shown in Figures 4,

5 and their supplements.

Assessing interactions within and between functional brain systems
To estimate the interactions between functional subsystems, we morphed (Figure 3—figure supple-

ment 1l) the ratio-collapsed graphs graphs from 148x148 parcel interaction matrices into 7x7 sub-

system interaction matrices, based on the Yeo 2011 parcellation scheme (Yeo et al., 2011) and

computed for each element the connection density K. We then computed 5000 randomized versions

of the same 148x148 matrix, keeping the number of edges constant. K values of the true subsystem

interaction matrix were reported as significant (see Figure 6, Figure 6—source data 1), if they

exceeded the 95th percentile of K values in randomized graphs.

Correlation between networks of CFS and 1:1 phase synchrony
To assess whether the CFS connected 1:1 synchronized networks, we obtained (Figure 3—figure

supplement 1) Mean condition 1:1 networks for all analyzed frequencies with the statistical

approach identical to what was used for CFS. With these networks, we tested whether the vertex

centralities (represented by vertex degree) of the low-frequency (flow) CFS network vertices were cor-

related with centrality values for the vertices of the corresponding slow 1:1 networks. Conversely,

we tested whether the vertices of the high-frequency (fhigh) part of the CFS networks were correlated

with the vertices of fast 1:1 networks. Finding such correlations would indicate that CFS connects

the major nodes of spectrally distinct within-frequency synchronized networks. We used the vertex

degree to quantify the centrality and Pearson correlation to quantify the correlations. The Pearson

correlation p values were corrected for multiple comparisons with the Benjamini-Hochberg FDR

method (Figure 7a, Figure 7—source data 1). For visualization (Figure 7b–c and Figure 7—figure

supplements 1 and 2), we used standard force-directed graph drawing.

Degree correlation between frequencies
To assess the parcel centrality similarity between narrow-band 1:1 networks, we computed the ver-

tex degree for each parcel in the Mean condition (positive tail) networks of all 25 narrow-band fre-

quencies. We then evaluated, for each pair of frequencies, the correlation of vertex degrees across

all parcels with the Pearson’s correlation coefficient. The results are presented in Figure 7—figure

supplement 3.

Correlation of CFS and PAC with the behavioral performance
To assess whether CFS and PAC were predictive of the subjects’ behavioral VWM performance, we

estimated (Figure 3—figure supplement 1n) the correlation between the network strength of CFS

networks and individual capacity for each memory load. Individual CFS strength was obtained as the

sum of individual connection strengths across connections significant in the positive tail of Mean con-

dition group statistics. Individual VWM capacity was defined for each VWM load as C(l) = HR(l) . l,

where HR(l) is the hit rate at load l.
In detail, the interaction matrices for the Mean condition were used to create binary masks M. If

the interaction at the 1:m-ratio m, at low frequency flow, in time window t was found significant

between parcels pand q in the group-level analysis, Mðp; q; m; t; flowÞ was set to 1, otherwise to 0.

For each subject, we multiplied CFS and PAC adjacency matrices with these masks and then

summed over all parcel pairs. Subjects’ individual network strength S for each m, memory load l, and

frequency flow was thus calculated as:

S l;m; flowð Þ ¼
X

p

X

q6¼p

X

t¼3;4

M p;q;m; t; flowð ÞPLV p;q; l;m; t; flowð Þ

Prior to correlation analyses these network strength and VWM capacity values were detrended and
normalized. For each m and flow, the modified individual strength S0of each subject s was obtained by

zero-meaning with subtraction of the individual mean Sacross loads, !SL sð Þ ¼ 1

Nl

P

lS s; lð Þ, detrending
with the population mean S for each load !Spop lð Þ ¼ 1

Ns

P

s S s; lð Þ! !SL sð Þð Þ, and normalizing by dividing
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with the absolute population mean !Sabs ¼ 1

Ns

P

s

P

l S s; lð Þ! !SL sð Þj j, so that:

S0 l; sð Þ ¼ 1
!Sabs

S l; sð Þ! !SL sð Þ! !Spop lð Þ
$ %

.

Identical detrending and normalization was applied to the VWM capacity values, i.e., for obtain-
ing C0ðs; lÞ from Cðs lÞ. We then averaged S0 separately across low (1:2!1:5) and high (1:6!1:9) CFS

ratios and then computed for each flow the correlation of S’ and C’ across subjects and VWM loads

with the Pearson correlation test (see Figure 9a and c, Figure 9—source data 1). Correction for

multiple comparisons across all flow ðn ¼ 12Þ was performed using the Benjamini-Hochberg method.

For dissecting post hoc the role of 1:2 CFS (see Results), we further also evaluated these correlations

for the ratios 1:2 and 1:3!1:5 for flow ¼ 13 Hz. For visualization without statistics (see Figure 9b

and d, Figure 9—source data 2), we also computed correlation coefficients separately for individual

ratios.

Leave-one-out and effect size analyses
We performed leave-one-out and effect-size analyses to confirm that the findings of increased CFS

(Mean condition) and of CFS positively correlated with VWM Load (Load condition) were not

affected by the small sample size of our cohort. In the leave-one-out analyses, we created 12 data-

sets of 11 subjects, where in each one a different subject had been excluded and repeated the sta-

tistical analyses underlying Figure 2a and c. We then retained those edges that were found

significant in the original analyses and had a p-value<0.05 in each leave-one-out dataset. These

results are presented in Figure 3—figure supplement 2a and d for Mean and Load conditions,

respectively. We then estimated that with 12 subjects in our cohort, to get alpha level 0.05 with sta-

tistical power of 0.8, our data needed to have an effect size of minimum of 0.9 for the Mean condi-

tion and 0.35 for the Load condition. In the effect size analyses, we thus retained those edges which

were found significant in the original analyses and which had an effect size > 0.9 (Mean condition) or

a correlation coefficient > 0.35 (Load condition). (Figure 3—figure supplement 2b and e). Finally,

we show the combined results from these masks in Figure 3—figure supplement 2c and f, where

only the edges significant in both the leave-one-out and effect-size analyses are retained. The same

analysis was also done for PAC, with the results shown is Figure 8—figure supplement 1.

Comparison of observed changes in PLV with changes predicted from
changes in SNR or oscillation amplitudes
Changes in phase synchrony may be partially caused by changes in oscillation amplitude. In particu-

lar, an increase in signal-to-noise ratio (SNR) can improve phase estimation and therefore also

phase-locking values (PLV). However, we showed in our earlier analysis of the same dataset that

changes in SNR could only explain a small fraction of the observed changes in PLV (Palva et al.,

2010). We here extend the approach to the case of cross-frequency phase synchrony.
We simulated four time series X, Y, Nx and Ny as white noise with 106 samples in the range of -1

to 1 that was filtered with a Morlet wavelet at f1 for X and Nx and at f2 for Y and Ny, where f2 ¼ n ' f1,
obtaining complex time series that can be written in the form X ¼ Ax ' exp i ' ’xð Þandanalogously.

We then obtained coupled time series as follows: X
0 ¼ X þ c ' Ay ' exp i

n
’y

$ %

and

Y
0 ¼ Y þ c ' Ax ' exp in’xð Þ; where c denotesthecouplingfactor. X’, Y’, Nx and Ny were then normalized as

in X
0

n ¼ X
0
=jX0j and so on, and the noise added to the coupled time series series: X

00 ¼ X
0

n þ sx ' Nx;n

and Y
00 ¼ Y

0

n þ sy ' Ny;n, where s ¼ 1=SNR.

Then, we estimated CFS, using PLV, between X’’ and Y’ for a range of values each for sx and sy,
which were spaced so that at SNRi1 ¼ 1:3 ' SNRi. We estimated the apparent SNR (aSNR) by compar-

ing the mean amplitude levels for experimental data across object loads and empty-room recordings

that were obtained before or after each recording session. Empty-room data were inverse modeled

with the inverse operator derived from the experimental data onto 400 parcels, and we defined the

aSNR as follows:

aSNR¼
1

Ns 'Np

X

s

X

p

Aexp;s;p !AER;s;p

AER;s;p

where Aexp; s;p denotes the mean amplitude for experimental data and AER; s;p the mean amplitude for
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empty room recordingsfor subject s (here Ns ¼ 6) and parcel p. The values for aSNR are shown in

Figure 3—figure supplement 3.
The (non-linear) function linking aSNR and SNR was estimated numerically. We created white

noise time series, noise and signal plus noise time series as above and obtained aSNR ¼ ASN!AN

AN
, where

ASþN is the mean amplitude of the signal plus noise time series and AN the mean amplitude of the

noise time series. By interpolating this function, we estimated SNR values for experimental data

from aSNR values.
We used these results to predict how large changes in PLV would be caused by changes in ampli-

tude in the low and high frequency band for selected frequency ratios (those that showed the largest

K values). For each of these, we identified the 200 parcel pairs with the largest observed change in

PLV in order to focus the analysis on the strongest effects in this dataset. If PLV were significantly

biased by SNR changes, this interaction should be most salient in the strongest PLV findings.
To obtain the changes of PLV in experimental data in the Mean condition, we computed for each

parcel pair j, k, the difference of the mean PLV between initial and modulated condition. For the

Mean effect, we computed the difference of the mean over subjects and object loads l in the reten-

tion period with that in the baseline window:

DPLVexp;j;k;f1;f2 ¼
1

Ns 'Nl

X

s

X

l

PLVs;j;k;f1;f2;ret !PLVs;j;k;f1 ;f2;BL

For the Load effect, we computed instead the difference of the 6 object and 1 object conditions in
the retention period:

DPLVexp;j;k;f1 ;f2 ¼
1

Ns

X

s

PLVs;j;k;f1 ;f2;ret l¼ 6ð Þ!PLVs;j;k;f1 ;f2 ;ret l¼ 1ð Þ

We further estimated the SNR for these conditions and parcel pairs from the aSNR and used the
SNR levels and PLV for the initial condition to estimate the coupling factor c from the simulated time

series, for which:

PLVexp;init f1; f2ð Þ ¼ PLVsim;f1;f2 cin;SNR1;init;SNR2;init

$ %

We then estimated the predicted PLV from the simulated time series with the SNR levels in the mod-
ulated condition:

PLVpred f1; f2ð Þ ¼ PLVsim;f1;f2 cin;SNR1;mod ;SNR2;mod

$ %

and thus obtained the change in PLV that could be expected from amplitude changes alone:

DPLVpred ¼ PLVpred !PLVexp;init

The results for the Mean and Load conditions are shown in Figure 3—figure supplements 4 and
5, respectively.

To assess whether PLV and amplitude effects were correlated directly, we calculated the Mean-
and Load-condition effects identically to what was done in the main analyses, for each ratio, fre-

quency and parcel pair. In the Mean condition, we computed the average PLV difference between

retention period and baseline time windows over subjects and conditions. In the load condition, we

correlated the PLV values in the retention period with the object load across subjects. We then

morphed these data from the 400-parcel to the coarser 148-parcel Destrieux parcellation. In the

same manner, we computed for each frequency and ratio the Mean and Load effects for the mea-

sured parcel amplitudes, averaged these amplitude effects for each parcel pair, and morphed to the

Destrieux parcellation. For both Mean and Load condition, we then computed the correlation coeffi-

cient r between the PLV and amplitude effect for all parcel pairs that were found to have a significant

PLV effect in the corresponding group analysis. We compared these r against 1000 surrogate data-

sets where the amplitude values were randomly shifted across edge pairs. We considered the PLV-

effect vs. amplitude-effect correlation significant if the r was in the highest or lowest 2.5%-ile of the

surrogate values. No multiple comparison corrections were applied across the studied frequency-

ratio pairs. In Figure 3—figure supplement 6, we illustrate the fraction of variance in PLV effects
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explained by the amplitude effects with r2values for those ratios and frequencies that had a signifi-
cant correlation between the PLV and amplitude effects and initially had K > 0.1% in the group
analysis.
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Hämäläinen MS, Ilmoniemi RJ. 1994. Interpreting magnetic fields of the brain: minimum norm estimates. Medical
& Biological Engineering & Computing 32:35–42. doi: 10.1007/BF02512476
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Palva S, Kulashekhar S, Hämäläinen M, Palva JM. 2011. Localization of cortical phase and amplitude dynamics
during visual working memory encoding and retention. Journal of Neuroscience 31:5013–5025. doi: 10.1523/
JNEUROSCI.5592-10.2011

Palva S, Palva JM. 2007. New vistas for alpha-frequency band oscillations. Trends in Neurosciences 30:150–158.
doi: 10.1016/j.tins.2007.02.001

Palva S, Palva JM. 2011. Functional roles of alpha-band phase synchronization in local and large-scale cortical
networks. Frontiers in Psychology 2:204. doi: 10.3389/fpsyg.2011.00204

Palva S, Palva JM. 2012. Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs.
Trends in Cognitive Sciences 16:219–230. doi: 10.1016/j.tics.2012.02.004

Siebenhühner et al. eLife 2016;5:e13451. DOI: 10.7554/eLife.13451 29 of 31

Research article Neuroscience



Park H, Lee DS, Kang E, Kang H, Hahm J, Kim JS, Chung CK, Jensen O. 2014. Blocking of irrelevant memories
by posterior alpha activity boosts memory encoding. Human Brain Mapping 35:3972–3987. doi: 10.1002/hbm.
22452

Park H, Lee DS, Kang E, Kang H, Hahm J, Kim JS, Chung CK, Jiang H, Gross J, Jensen O. 2016. Formation of
visual memories controlled by gamma power phase-locked to alpha oscillations. Scientific Reports 6:28092.
doi: 10.1038/srep28092

Pessoa L, Gutierrez E, Bandettini P, Ungerleider L. 2002. Neural correlates of visual working memory: fMRI
amplitude predicts task performance. Neuron 35:975–987. doi: 10.1016/S0896-6273(02)00817-6

Petersen SE, Sporns O. 2015. Brain networks and cognitive architectures. Neuron 88:207–219. doi: 10.1016/j.
neuron.2015.09.027

Riggall AC, Postle BR. 2012. The relationship between working memory storage and elevated activity as
measured with functional magnetic resonance imaging. Journal of Neuroscience 32:12990–12998. doi: 10.
1523/JNEUROSCI.1892-12.2012

Roopun AK, Kramer MA, Carracedo LM, Kaiser M, Davies CH, Traub RD, Kopell NJ, Whittington MA. 2008.
Period concatenation underlies interactions between gamma and beta rhythms in neocortex. Frontiers in
Cellular Neuroscience 2:1. doi: 10.3389/neuro.03.001.2008

Rouhinen S, Panula J, Palva JM, Palva S. 2013. Load dependence of b and g oscillations predicts individual
capacity of visual attention. Journal of Neuroscience 33:19023–19033. doi: 10.1523/JNEUROSCI.1666-13.2013

Roux F, Uhlhaas PJ. 2014. Working memory and neural oscillations: a-g versus q-g codes for distinct WM
information? Trends in Cognitive Sciences 18:16–25. doi: 10.1016/j.tics.2013.10.010

Roux F, Wibral M, Mohr HM, Singer W, Uhlhaas PJ. 2012. Gamma-band activity in human prefrontal cortex
codes for the number of relevant items maintained in working memory. Journal of Neuroscience 32:12411–
12420. doi: 10.1523/JNEUROSCI.0421-12.2012

Rowe JB, Toni I, Josephs O, Frackowiak RS, Passingham RE. 2000. The prefrontal cortex: response selection or
maintenance within working memory? Science 288:1656–1660. doi: 10.1126/science.288.5471.1656

Saalmann YB, Pinsk MA, Wang L, Li X, Kastner S. 2012. The pulvinar regulates information transmission between
cortical areas based on attention demands. Science 337:753–756. doi: 10.1126/science.1223082

Salazar RF, Dotson NM, Bressler SL, Gray CM. 2012. Content-specific fronto-parietal synchronization during
visual working memory. Science 338:1097–1100. doi: 10.1126/science.1224000

Sauseng P, Klimesch W, Heise KF, Gruber WR, Holz E, Karim AA, Glennon M, Gerloff C, Birbaumer N, Hummel
FC. 2009. Brain oscillatory substrates of visual short-term memory capacity. Current Biology 19:1846–1852. doi:
10.1016/j.cub.2009.08.062

Schack B, Klimesch W, Sauseng P. 2005. Phase synchronization between theta and upper alpha oscillations in a
working memory task. International Journal of Psychophysiology 57:105–114. doi: 10.1016/j.ijpsycho.2005.03.
016

Siebenhühner F, Wang SH, Palva JM, Palva S. 2016. Data from: Cross-frequency synchronization 7 connects
networks of fast and slow oscillations during visual working memory maintenance. Dryad Digital Repository .
doi: 10.5061/dryad.fb240

Siegel M, Warden MR, Miller EK. 2009. Phase-dependent neuronal coding of objects in short-term memory.
PNAS 106:21341–21346. doi: 10.1073/pnas.0908193106

SingerW. 1999. Neuronal synchrony: a versatile code for the definition of relations?Neuron 24:49–65. doi: 10.
1016/S0896-6273(00)80821-1

Sirota A, Montgomery S, Fujisawa S, Isomura Y, Zugaro M, Buzsáki G. 2008. Entrainment of neocortical neurons
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