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SUMMARY

When processing dynamic input, the brain balances
the opposing needs of temporal integration and
sensitivity to change. We hypothesized that the vi-
sual system might resolve this challenge by aligning
integration windows to the onset of newly arriving
sensory samples. In a series of experiments, human
participants observed the same sequence of two dis-
plays separated by a brief blank delay when perform-
ing either an integration or segregation task. First,
using magneto-encephalography (MEG), we found
a shift in the stimulus-evoked time courses by a
150-ms time window between task signals. After
stimulus onset, multivariate pattern analysis (MVPA)
decoding of task in occipital-parietal sources re-
mained above chance for almost 1 s, and the task-
decoding pattern interacted with task outcome. In
the pre-stimulus period, the oscillatory phase in the
theta frequency band was informative about both
task processing and behavioral outcome for each
task separately, suggesting that the post-stimulus
effects were caused by a theta-band phase shift.
Second, when aligning stimulus presentation to the
onset of eye fixations, there was a similar phase shift
in behavioral performance according to task de-
mands. In both MEG and behavioral measures, task
processing was optimal first for segregation and
then integration, with opposite phase in the theta
frequency range (3–5 Hz). The best fit to neurophys-
iological and behavioral data was given by a damp-
ened 3-Hz oscillation from stimulus or eye fixation
onset. The alignment of temporal integration win-
dows to input changes found here may serve to
actively organize the temporal processing of contin-
uous sensory input.

INTRODUCTION

Despite the presence of constantly changing sensory input, we

perceive a continuous and unitary interpretation of the current
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state of the environment at all times. Perception is faced with

opposing system requirements for this real-time processing.

Sensitivity to change necessitates high temporal resolution for

stimulus segregation, while stability of perceptual representa-

tions requires integration of signals over time.

Temporal segregation can occur with millisecond resolution.

In humans, flicker-fusion thresholds—the frequency at which

intermittent light stimulation appears continuous—range typi-

cally between 40 and 60 Hz [1]. Temporal offsets as brief as

5–20 ms can be detected between two sequential stimuli [2, 3],

and first-order motion detection can exceed 30 Hz [4]. Neural re-

sponses in retinal ganglion cells [5], the lateral geniculate nucleus

(LGN) [6], and even in primary visual cortex [7] can track temporal

properties driven by fast external stimulation. This high temporal

resolution of visual signals supports sensitivity to change and

may reduce motion blur ([8, 9]; for a review, see [10].

Temporal segregation sharply contrasts with the need to inte-

grate information over extended intervals of time to perceive

the stability of object identity and location [11, 12], to accumulate

information to reach reliable perceptual decisions [13], and to

understand sensory signals related to self and object motion

[9]. Temporal integration is supported by the brain’s capacity

for self-organized information retention and is based on persist-

ing neural activity after the input has already vanished [14, 15]. An

example of temporal integration is the finding that two flashes

separated by a brief delay may be perceived as a single item

when the inter-stimulus blank period is less than �50 ms [16].

Similarly, in forward- and backward-masking paradigms, inte-

gration of target and mask is reported for delays of 80 to

120 ms [17]. Another example of integration is the perception

of apparent motion between two briefly flashed stimuli, which

can occur across a temporal gap of hundreds of milliseconds

[e.g., 18].

Here, we aim to characterize the neural mechanisms that

determine whether two stimuli are temporally integrated into a

single event or, instead, perceived as separate entities. To this

end, we directly contrast the time course of stimulus segregation

and integration with a variant of the missing-element task [19,

20]. Human observers viewed the same sequence of two pat-

terns separated by a brief inter-stimulus interval (ISI) but were in-

structed to either segregate or integrate stimuli over time (Fig-

ure 1A). On integration trials, participants were instructed to

report the location of the missing element, which was the single

cell in a virtual grid where no itemwas presented in either the first

or the second display. This task was only possible when the two
uly 11, 2016 ª 2016 The Author(s). Published by Elsevier Ltd. 1659
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A B Figure 1. Experimental Stimuli and Behavioral

Data

(A) Variant of the missing-element paradigm [14]

measuring perceptual integration and segregation of

stimuli over time. A blank inter-stimulus interval (ISI)

separates the two stimulus frames, and participants

are instructed to locate either the missing element

(which requires temporal integration) or the odd

element (segregation) in separate blocks.

(B) Linear fits on mean integration and segregation

performance (circles; ±1 SEM) [21] as a function of

ISI. Task thresholds are calculated for each subject

(N = 19) as the between-task intersection point of the

inversely linear functions over ISI.

(C) Mean task performance (±1 SEM) [21] with con-

stant ISI over the course of the experiments (MEG:

n = 19; eye movement: n = 28).
displays were combined over time [19, 20]. On segregation trials,

in contrast, the task was to report the location in which an odd

element (half annulus) was shown in both displays. Performance

in the latter task required the two displays to be segregated in

time, since integration of the two half annuli rendered them indis-

tinguishable from a full annulus. As expected, performance was

near perfect for the integration task with a brief ISI and worsened

with longer delays [19, 20], while segregation showed the oppo-

site pattern (Figure 1B). For each subject, we determined the ISI

at which performance on the two tasks was matched; yielding

equal proportions between correct/incorrect trials for both

segregation and integration tasks (Figure 1C). Thus, this stimulus

display allowed us to match task difficulty and to use the iden-

tical physical stimulus while measuring the brain mechanisms

underlying temporally separate or combined visual percepts.

We tested the hypothesis that the visual system coordinates

stimulus segregation and integration over time by aligning the

phase of slow-frequency brain oscillations to the onset of newly

arriving sensory samples. First, we used magneto-encephalog-

raphy (MEG) to compare the converging measures of stimulus-

evoked fields, frequency-specific phase coherence, and multi-

variate pattern analysis (MVPA) decoding between segregation

and integration trials. Across all three MEG measures, we found

a task-specific pattern of brain states for either segregation or

integration in alternation at 3 Hz after stimulus onset, possibly

due to a phase shift in ongoing brain oscillations. Consistent

with our hypothesis, oscillatory activity in the pre-stimulus time

interval was already informative about both task processing

and behavioral outcome, with opposite phases in the theta fre-

quency band for segregation/integration, as well as distinguish-

ing correct/incorrect trials for each task separately.

In a second study, we investigated the role of saccadic eye

movements in shifting slow-frequency alternations between

task states. Like stimulus onset, each saccade confronts the vi-

sual system with a transient change in sensory input, creating a

conflict between stimulus segregation and integration. Analo-

gous to the temporal patterns decoded from the MEG data

when aligned to stimulus onset, the densely sampled time

courses of task performance alternated at a rate of 3–5 Hz

when aligned to the onset of each new eye fixation. Together,

these findings uncovered a counter-phase alternation between
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pattern segregation and integration in visual processing that

determined perceptual experience.

RESULTS

Psychophysics
The ISI that yielded equal proportions of correct trials for both

tasks was determined individually for each subject prior to

running theMEG experiment (Figure 1B; see Supplemental Infor-

mation). Integration performance decreased, and segregation

increased with longer ISI, with ISI explaining more than 90% of

the variance (Figure 1B). The average threshold over subjects

was 68 ± 27 ms. In behavioral experiments, the ISI was fixed

at 50 ms. For both experiments, performance did not differ

significantly between tasks: MEG experiment, t(18) = �0.4, n.s.

(not significant); eye movement experiment, t(27) = 1.8, n.s.)

(Figure 1C).

MEG Data
The analysis of MEG data focused on differences in neural activ-

ity, for an identical stimulus and with matched task difficulty, as a

function of task (integration/segregation) and performance (cor-

rect/incorrect). This involved the analysis of event-related fields

(ERFs), inter-trial phase coherence (ITC), and MVPA decoding

in the post-stimulus time period, plus theta frequency band

phase bifurcation in the pre-stimulus period.

Stimulus-Evoked Activity: ERF and ITC

First, we investigated stimulus-evoked activity in the time interval

ranging from the second stimulus display onset to +500 ms

afterward, as measured by the ERF and ITC (see Supplemental

Information). Statistical significance between conditions was as-

sessed by means of nonparametric cluster-based permutation

t statistics, effectively controlling for multiple statistical compar-

isons at multiple time, frequency, and sensor samples (see Sup-

plemental Information). Both measures (ERF and ITC averaged

over frequencies between 5 and 25 Hz) resulted in strong

response peaks relative to pre-stimulus baseline periods:

z(ERF) = 2.5, and z(ITC) = 2.3. As shown in Figure 2, the relative

strength of the evoked activity alternated between tasks, time

locked to stimulus onset. For the ERF, segregation trials evoked

a stronger response from 160 to 290 ms after display 2 onset
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Figure 2. MEG-Stimulus Evoked Activity

(A) Grand-average ERF (n = 19) time locked to the onset of the second stimulus display and averaged over a significant left temporal magnetometer sensor cluster

(see white dots in C). Shaded areas reflect ±1 SEM [21].

(B) Signal change in ITC, (segregation � integration)/integration, averaged over a significant central gradiometer sensor cluster (see top inset). Non-significant

effects (p < 0.05) are masked.

(C) Difference in topographies (segregation � integration) averaged over successive 150-ms intervals from pre- to post-stimulus periods.
(cluster-corrected p < 0.004). Then, the pattern reversed so that

the same sensor locations displayed stronger evoked amplitude

in integration trials from 300 to 450 ms (cluster-corrected

p < 0.007; Figure 2A). Averaged over this significant cluster of

sensors (highlighted with white dots in Figure 2C), evoked activ-

ity alternated four times between segregation and integration tri-

als in time windows of approximately 150ms in duration, starting

from the onset of the stimulus sequence until +600 ms (Fig-

ure 2C): �250 to �100 ms, t(18) = 1.9, n.s.; �50 to +100 ms,

t(18) = �3.7, p < 0.002; +150 to 300, t(18) = 5.3, p <

0.001; +300 to +450, t(18) = �6.2, p < 0.001; +450 to +600 ms,

t(18) = 2.5, p < 0.024; +600 to +750 ms, t(18) = �0.5, n.s.). This

ERF effect could result either from differences in stimulus-

evoked response amplitude or stimulus-reset phase coherence

between conditions. In order to disentangle these possibilities,

we estimated the amount of phase alignment to stimulus onset

with ITC. Both ERF and ITC activity peaked around 100 ms

after display 2 onset (mean ± SD: 120 ± 56 ms for ERF, and

98 ± 31 ms for ITC; no latency difference, t(18) = 1.6, n.s.), and

the baseline-corrected effect sizes correlated moderately over

subjects (r = 0.41, p < 0.085). Between tasks, we found a stron-

ger ITC for segregation trials immediately after display 2 onset

(0 to +150ms) at 6–7Hzwithin a central gradiometer sensor clus-

ter (Figure 2B; cluster-corrected p < 0.001 for the time interval

from �200 to +500 ms and the frequency range between 5 and

25 Hz). Confirming previous results using integration masking

[22], these findings suggest that the initial stronger response

for segregation trials, evident in the ERF, was, at least in part,

due to stronger phase coherence of slow-frequency oscillations.

Multivariate Analysis: MVPA

We used MVPA classification to further investigate the differ-

ences in the post-stimulus time period as a function of task (inte-

gration/segregation) and behavioral outcome (correct/incorrect;
Supplemental Information). Task was decodable as early as

100 ms after the second stimulus display onset (cluster-cor-

rected zcor = 3.1, p < 0.002), peaked at 260 ms (zcor = 3.7, p <

0.001), and persisted for almost an entire second (zcor = 3.2,

p < 0.002 at 950 ms; Figures 3A and 3B). Across subjects, the

highest decoding accuracy (z(task decoding) = 2.3; measure

and baseline intervals identical to thosementioned earlier) corre-

lated significantly with ERF (r = 0.55, p < 0.015) and ITC effect

sizes (r = 0.59, p < 0.008) but peaked in a significantly later

time interval (mean ± SD: 353 ± 96 ms; decoding versus ERF

peak latency, t(18) = �9, p < 0.001; versus ITC, t(18) = �12.2,

p < 0.001). Topographical maps and source projections (see

Supplemental Information) revealed two temporally distinct

time windows (150–450 ms and 600–900 ms), with maximal

decoding accuracy at occipital-parietal sensor locations and

occipital-parietal sources (Figure 3C; Table S1).

The MEG signal also contained information about task

outcome in terms of correct or incorrect trials, separately for

integration or segregation blocks. For segregation, we found

significant above-chance decoding of outcome by 140 ms after

display 2 onset (zcor = 2.1, p < 0.037). However, outcome de-

coding was most accurate and reliable in the time window

from around +500 to +900 ms, when the participants’ response

was probed (Figures 3A and 3B; see also Figure 2A) (for segre-

gation: peak sample at 570 ms, zcor = 3.7, p < 0.001; for integra-

tion: peak sample at 620 ms, zcor = 2.3, p < 0.022). For both inte-

gration and segregation blocks, the lcmv beamformer algorithm

(see Supplemental Information) suggested neural generators in

occipital areas as source solutions for outcome decoding, indi-

cating that the MVPA signal reflected perceptual rather than

purely decisional or motor processes (Figures 3D and 3E; Table

S1). Statistical significance was assessed by means of cluster-

corrected z statistics of decoding accuracy against chance
Current Biology 26, 1659–1668, July 11, 2016 1661
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Figure 3. MEG-MVPA Decoding

(A) Mean MVPA decoding accuracy for task and outcome. Shaded areas reflect ±1 SEM [21].

(B) Cluster-corrected z scores for task and outcome.

(C–E) Sensor topographies and neural sources for MVPA decoding of task (C) and outcome (D for integration, E for segregation).

See also Figures S1 and S2 and Table S1.
level, using a threshold-free method for clustering and a Monte

Carlo permutation approach for multiple comparison correction

(see Supplemental Information). MEG-MVPA decoding was

equally robust when the sensor topographies were normalized

for overall response amplitude (Figure S1) and/or when chance

level was estimated based on random permutations of the data

partitions (in contrast to assuming chance level as 50% a priori;

Figure S2).

The temporal generalization method (see Supplemental Infor-

mation) was used to characterize the temporal pattern of task

decoding and its interaction with task outcome (correct versus

incorrect). As shown in Figure 4A, we generated matrices

mapping each classifier’s task-decoding accuracy in the

training set against the entire testing time interval from �500

to +1,500 ms, relative to display 2 onset (in steps of 10 ms).

The strong above-chance decoding accuracy along the main di-

agonal suggests a series of distinct patterns of brain activity for

integration versus segregation trials (zcor = 3.3, p < 0.001;

training/testing time, +280/270 ms). On-diagonal, above-chance

decoding was accompanied by off-diagonal, below-chance ac-

curacy, with consistent and highly significant misclassification of
1662 Current Biology 26, 1659–1668, July 11, 2016
integration and segregation trials during the earlier and later in-

tervals (around 150–300 ms before and after) on the basis of

the trained pattern at a given time point (zcor = �3.3, p < 0.001;

training/testing time, +780/500 ms; Figure 4A). This pattern sug-

gests that the signal dissociating task processing reoccurred at

a later time point, but with reversed polarity. The pattern of

reversed decoding persisted for almost an entire second after

stimulus onset (Figures 4A and S3; Table S2), originated in occip-

ital brain regions for both the on- and the off-diagonal signals

(Figure 4B; Table S1), and alternated at a rate of approximately

3 Hz (Figures 4C and 4D). The strength of task decoding (segre-

gation versus integration trials) interacted with task outcome.

Decoding was significantly better in correct trials (used in both

training and testing sets), with more accurate classification for

the on-diagonal signal and stronger misclassification for the

off-diagonal signal (Figures 4C and S4; Tables S3 and S4). In

other words, incorrect segregation/integration trials were more

likely to be classified as belonging to the other task, respectively.

This resulted in significantly stronger 3-Hz amplitude in decoding

accuracy for correct trials (3.3-Hz amplitude peak, correct

versus incorrect, t(18) = 3.2, p < 0.006; Figure 4D).



A B C

Figure 4. Generalization over Time and Outcome of the Task-Decoding MVPA Signal

(A) Temporal generalization matrix of mean task decoding accuracy (segregation versus integration; n = 19).

(B) Neural sources for on-diagonal (testing time: 475 ± 25 ms) and off-diagonal (testing time: 725 ± 25 ms) decoding signals based on training time classifiers of

475 ± 25 ms.

(C) Top: time course of mean task decoding accuracy along the anti-diagonal (±250 ms; white shaded rectangle shown in A) separately for correct and incorrect

trials. Bottom: the spectral amplitude of the Hanning-tapered and demeaned time courses.

Asterisks indicate decreasing p values (*p < 0.05; **p < 0.01; ***p < 0.001) for correct versus incorrect trials. Shaded areas reflect ±1 SEM [21]. See also Figures

S3–S5 and Tables S1–S4.
Consistent with univariate analysis, MVPA temporal general-

ization confirmed that task processing alternated at a rate of

approximately 3 Hz. However, the most prominent pattern be-

tween segregation and integration signals was the robust phase

opposition in the first two 150-ms time windows after the stim-

ulus-evoked response. Additionally, we found indications for

further alternations but with decaying signal amplitude from the

time-locking event (Figures 2A, 2C, 4C, and 4D). In order to esti-

mate the longevity of the task-dissociating pattern and how often

the signal alternated between segregation and integration

states, we compared the explained variance (least-square) in

the task-decoding signal between the best-fitting models from

three different model classes: oscillatory (sinusoid function, or

S), decaying (Gabor function, or D) or dampened oscillatory

(Sinusoid Function 3 Decay Function, or DS; see Supplemental

Information).

The best-fitting dampened sinusoid function provided a strong

explanation for the observed mean decoding signal (R2 = 0.89;

Figure S5), accounting for significantly more variance compared

to the optimal sinusoid function (R2 = 0.31) or monotonic

response decay function (R2 = 0.61; change in R2 – F test: DS

versus S, F(1, 147) = 781.7, p < 0.001; DS versus D, F(2, 147) =

185.9, p < 0.001). Averaged across the single-subject parameter

estimates, both steady and dampened sinusoid functions were

best fit with a signal alternation rate around 3 Hz (mean

frequency ± SD [f]: for S, f = 2.9 ± 0.5 Hz; and for DS, f = 3.4 ±

0.4 Hz). In contrast to a longer-lasting ongoing alternation

between tasks, however, the dampened oscillation model

accounted for the signal variance foremost in a limited time win-

dow of one or two cycles from stimulus onset (mean ± SD for
full-duration half maximum [FDHM] = 395 ± 224 ms, 1.3 ± 0.5

cycles).

Pre-stimulus Oscillatory Activity

The dampened oscillatory pattern might be evident of a phase

reset in ongoing brain oscillations [23, 24], aligning the optimal

phases for segregation and integration to the onset of the stim-

ulus display. In order to directly test whether a shift in oscillatory

phase accounted for the alternations between task signals

observed here, we analyzed the oscillatory activity in the pre-

stimulus period. If the observed, stimulus-evoked alternations

were due to a phase shift in ongoing oscillations, the phase infor-

mation of slow-frequency oscillations before stimulus onset

should be informative about task processing and/or behavioral

outcome. To this end, we first extracted the instantaneous phase

in the theta frequency band (3- to7-Hz band-pass-filtered time

courses; Figure 5A) for the 1-s time period preceding the onset

of stimulus display 1 with a Hilbert transform. Then, we calcu-

lated the phase bifurcation index (PBI) [25] between segregation

and integration trials, as well as between correct and incorrect

trials for each task separately. Statistical significance was as-

sessed with a permutation approach based on 10,000 surrogate

datasets with shuffled condition labels and corrected formultiple

comparisons with the false discovery rate procedure (see

Supplemental Information). A positive PBI indicates that two

conditions exhibit strong phase coherence (as measured

with ITC) but at polar-opposite phase angles: PBI = (ITCcond1 �
ITCall trials) 3 (ITCcond2 � ITCall trials; see Supplemental Informa-

tion). Consistent with our hypothesis, we found significant phase

bifurcation in the pre-stimulus interval between segregation and

integration trials (smallest p < 0.01), mainly over occipital sensor
Current Biology 26, 1659–1668, July 11, 2016 1663
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Figure 5. Theta Phase in the Pre-stimulus Time Window

(A) Grand average (n = 19), theta-band-pass-filtered (3–7 Hz) time series in the pre-stimulus interval for the sensor with maximal phase bifurcation (see white dot

on topography in B).

(B) Left inset: phase bifurcation index (PBI) for task in the pre-stimulus interval for the same sensor: PBItask = (ITCsegregation � ITCall) 3 (ITCintegration � ITCall).

Significant time points are shaded in gray. Right inset: corresponding sensor topography averaged over significant time points. The white dot highlights the

sensor with maximal PBI.

(C and D) Pre-stimulus phase bifurcation and corresponding topographies for outcome: PBIoutcome = (ITCcorrect� ITCall)3 (ITCincorrect� ITCall) (C for segregation,

D: for integration). Shaded areas reflect ±1 SEM [21].

See also Figure S6.
locations (19/102 significant magnetometer sensors, p < 0.05;

Figure 5B). In addition, for each task separately, we observed

significantly stronger phase opposition than expected by chance

between correct and incorrect trials over temporal sensor loca-

tions (for integration: smallest p < 0.023, ten significant sensors;

for segregation: smallest p < 0.021, six significant sensors; Fig-

ures 5C and 5D). We found positive phase bifurcation indicative

of phase opposition between tasks, mainly in the pre-stimulus

time window. After stimulus onset, phase coherence (ITC) was

stronger in segregation trials (as also shown in the stronger ITC

effect reported earlier), which resulted in a negative PBI for

task processing due to stronger phase locking to stimulus onset

in one condition (Figure S6).

Behavioral Data Aligned to Eye Movements
Next, we tested whether this pattern of alternations between

temporal integration and segregation in the theta frequency

band has perceptual consequences. In the MEG study, we pre-

dicted that stimulus onset would lead to a phase reset of ongoing

slow-frequency oscillations, and we were able to trace the ef-

fects of the onset on neural signals at subsequent points in

time. For behavioral oscillations, however, it is necessary to

define a reset point prior to the stimulus/probe in order to trace

the time course of performance aligned to that event [26–29].
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We hypothesized, based on both theoretical reasons [30, 31]

and neurophysiological evidence for theta-band phase resets af-

ter saccades [32–36], that fluctuations would be aligned to new

fixations. Moreover, it has been shown that phase alignment in-

fluences the temporal precision of neural coding [32, 37], leading

to the hypothesis that segregation performance, which relies on

high temporal precision, might be best after a saccade-induced

reset.

On each trial, we measured the onset of an 8� saccadic eye

movement and then timed stimulus presentation relative to eye

fixation onset. Stimuli were presented over the first 500 ms

(20-ms time bins, 50-Hz sampling) in experiment 2A (Expt 2A)

or the entire first second after eye-fixation onset in experiment

2B (Expt 2B) (40-ms bins, 25 Hz; Figure 6A). Subsequently, we

calculated the proportion of correct responses at each time

point (dense sampling [26]; see Supplemental Information). We

hypothesized that the saccade, like the stimulus onset in the

MEG study, would create a phase reset and lead to alternations

in performance, with an initial benefit for segregation trials.

Consistent with this hypothesis, the temporal dynamics for

segregation and integration differed significantly with alterna-

tions between the two tasks in terms of accuracy occurring in

150-ms time windows for both Expts 2A and 2B (Figure 6B;

Tables S5 and S6). Following the logic used in previous studies
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Figure 6. Paradigm and Results for Eye-Movement-Aligned Behavioral Performance

(A) Experimental paradigm for measuring the time course of integration and segregation time locked to eye fixation onset.

(B) Time course of mean task performance as a function of fixation-to-stimulus onset interval (left panel: raw accuracy in Expt 2A; middle panel: linear detrended

accuracy in Expt 2B; both ns = 14). Asterisks indicate decreasing p values (*p < 0.05; **p < 0.01; ***p < 0.001) for segregation versus integration. Shaded areas

reflect ±1 SEM [21].

(C) Mean amplitude spectrum for the difference time course (segregation � integration) in Expt 2B. Shaded areas reflect ±1 SEM [21].

(D) Inter-observer phase coherence (IOC) of the difference time course in Expt 2B.

(E) Upper panel: phase angle distribution at 3 Hz for integration and segregation time courses across subjects (data from all subjects in Expts 2A and 2B; n = 28).

Lower panel: phase bifurcation index (PBI) for the raw time courses in Expt 2B.

Asterisks in (C)–(E) indicate decreasing p values (*p < 0.05; **p < 0.01; ***p < 0.001) for empirical versus random data. See also Figure S5 and Tables S5 and S6.
measuring behavioral oscillations [26–29], we Fourier-trans-

formed the accuracy time courses for each task and the differ-

ence time course between tasks (segregation-integration) in or-

der to reveal temporal structure in data. Statistical reliability of

the peaks in the Fourier spectra was assessed with a nonpara-

metric permutation approach based on shuffled surrogate data.

The spectral amplitude of the accuracy-difference time course

between tasks revealed a significant peak at 5.2 Hz (Expt 2B:

permutation test, p < 0.009; Figure 6C). Likewise, the phase of

the complex Fourier vectors across observers at 3 Hz deviated

significantly from a uniform distribution (Rayleigh test: Expt 2A,

3.75 Hz, z = 4.2, p < 0.0125; Expt 2B, 3.1 Hz, z = 5, p < 0.005)

and was significantly more concentrated (inter-observer coher-

ence [IOC]; see Supplemental Information) compared to random

time series (permutation test: Expt 2A, p < 0.015; Expt 2B, p <

0.004; Figure 6D). To confirm the phase opposition between

the two tasks, we assessed the average angular phase relation

across observers between integration and segregation with the

PBI that is sensitive to strong phase locking across observers

(IOC) at polar-opposite angles ([25]; see Supplemental Informa-

tion). A counter-phase relationship indicative of a phase shift

between integration and segregation time series was found at

3 Hz in both experiments (permutation test: Expt 2A, 3.3 Hz,

p < 0.004; Expt 2B, 3 Hz, p < 0.009; Figure 6E). Taken together,
the time course, spectral amplitude, and spectral phase ana-

lyses indicate that integration and segregation performance

alternated in the theta range (z3–5 Hz) and in counter-phase

locked to the new eye-fixation onset.

Similar to the modeling approach for the MEG data, we esti-

mated the longevity of these behavioral oscillations with least-

square curve fitting of the accuracy-difference time course

with a sinusoid function (or S), a decaying function (or D [expo-

nential]) or a combination of the two (DS). The average behavioral

time course in Expt 2A (+110 to +510 ms) was equally well

modeled by a sinusoid function (f = 3.6 Hz, R2 = 0.49) or damp-

ened sinusoid function (f = 3.5 Hz; half-life [t(1/2)] = 401 ms (1.4

cycles), R2 = 0.47), both explaining significantly more variance

compared to a monotonic decay (R2 = 0.22; F test: S versus D,

F(1, 18) = 7.8, p < 0.012; DS versus D, F(2, 18) = 4.2, p <

0.033). For Expt 2B, the behavioral time course (+160

to +1,000 ms) was best fit with a dampened sinusoid function

(f = 2.9 Hz, t1/2 = 143 ms [0.4 cycles], R2 = 0.57; Figure S5), fol-

lowed by a steady sinusoid function (f = 2.9 Hz, R2 = 0.33), and

then a decaying function (R2 = 0.22; F test: DS versus S,

F(1, 19) = 9.3, p < 0.007; DS versus D, F(2, 19) = 6.8, p <

0.006; S versus D, F(1, 19) = 4.3, p < 0.051). Thus, in accordance

with the MEG results reported earlier in the text, the behavioral

oscillations between integration and segregation decayed with
Current Biology 26, 1659–1668, July 11, 2016 1665



increasing time from fixation onset, evident of short-lived phase

synchronization triggered by the saccadic eye movement.

DISCUSSION

The findings reported here uncover the temporal coordination of

opposing processing demands for segregation and integration.

For MEG, we found an alternating temporal pattern between

segregation and integration in converging ERF, ITC, and

MVPA measures, as well as pre-stimulus phase. MEG-MVPA

task decoding correlated highly with classical measures of vi-

sual evoked activity (ERF, ITC) and spread over time in the

caudal-to-rostral direction. Consistent with previous studies us-

ing electroencephalography [38], we found the strongest MEG

signatures of pattern integration/segregation in intervals after

the first feed-forward sweep of visually evoked activity (�150–

450 ms). Critically, neither peak intensity nor latency of any

MEG measures (ERF, ITC, MVPA) was correlated with the tem-

poral offsets between the two stimulus frames for individual ob-

servers (r < 0.35, all ps were n.s.). Hence, the latency in evoked

activity between segregation and integration time courses does

not simply reflect a short-lived effect of selecting different target

displays, i.e., selection of the first or second display for segre-

gation or integration, respectively. MVPA generalization showed

that integration and segregation trials were predominantly de-

coded from the MEG signal on the basis of a pattern that re-

verses polarity with a period of approximately 150 ms, consis-

tent with a dampened 3-Hz oscillation alternating for a limited

time window of one or two cycles. Importantly, the MVPA de-

coding pattern between tasks (segregation versus integration)

interacted with task outcome, consistent with its holding func-

tional relevance for perception. To the best of our knowledge,

this provides the first report of significant MVPA decoding of

top-down signals (i.e., task instructions) in visual cortex using

MEG, with decoding performance in line with recent reports de-

coding top-down factors using functional magnetic resonance

imaging (fMRI) [39].

In the MEG study, we measured alternations in segregation/

integration time locked to stimulus onset. Time-frequency anal-

ysis of the pre-stimulus time period suggested that the post-

stimulus neural signals were due to a phase shift in ongoing brain

oscillations favoring either task in opposite phases in the theta

frequency band.

In natural viewing, however, it is more typically the case that

the stimulus is continuously present but discretely sampled by

saccadic eye movements at a rate of about 3–5 Hz [15]. In the

second experiment, we show that the visual system aligns its

susceptibility for segregation and integration to this overt sam-

pling behavior. When time locked to fixation onset, behavioral

performance alternated in time in the theta frequency range,

with a phase alignment similar to that of the stimulus-locked

MEG activity.

Interestingly, performance, when time locked to either stim-

ulus onset or fixation onset, was initially better for segregation.

One possible explanation is that performance in the segregation

task relies on high temporal resolution. In terms of neural pro-

cessing, high temporal resolution may reflect precision in spiking

activity; for a review, see [37]. Such increases in spike rate pre-

cision have been linked to both ongoing and saccade-induced
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oscillations [32, 37]. For perception, high temporal resolution

may be critical for encoding dynamic stimuli as well as support-

ing rapid scene segmentation [40]. In the case of saccades, the

bias toward segregation may also reflect the need of the visual

system to preserve separate retinal images across saccades

or may be a strategy to account for lingering effects of saccadic

remapping [30, 41].

Because eye movements are used to actively sample the

environment, the close coordination between motor and sen-

sory systems found here might compensate for the drastic sen-

sory changes associated with each saccade and prepare

the visual system for a new spatiotemporal pattern of input

with each new fixation; for reviews, see [30, 31, 41]. Consistent

with this idea, recent neurophysiological studies have demon-

strated saccade-related phase resets of ongoing oscillations

in the local field potential of temporal lobe regions during natu-

ral viewing [32–34] and, in particular, in theta frequencies

around 3–5 Hz [35, 36]. Here, we show that saccades reset

fluctuations in human perceptual processing consistent with a

dampened oscillation in the theta range (3–5 Hz). The alignment

of processing to new fixations, either by resetting ongoing os-

cillations or by creating a new fluctuation ex novo, influenced

processing for less than 1 s, possibly due to factors such as

the intentions to make further saccades or micro-saccades

(resetting the fluctuation) or neural oscillators moving out of

phase.

For both MEG and behavioral measures, integration perfor-

mance became more dominant in the second phase. Integration

supports the more extended processing of dynamic or complex

stimuli [42] and may ensure the consolidation and stability of

specific object representations over time and across saccades

[11, 12, 18, 30]. However, integration requires temporal buffering

of sensory input for extended processing, at the cost of temporal

precision and local details [37]. Thus, there is a natural trade-off

between the needs for integration and segregation.

One potential explanation for the overall pattern of results

found here is that perceptual outcome, in terms of whether two

stimuli are integrated or segregated, may depend on a single

oscillatory mechanism [16, 22, 43–45]. For example, studies of

trial-by-trial variability in seeing two flashes as either a single

event or two events [16, 45], as well as studies of integration

masking [22], have also shown that the ability to segregate two

stimuli depends on the timing of those events with respect to

the phase of oscillatory activity. This finding has been interpreted

as evidence for a ‘‘serial,’’ bottom-up mechanism in which

perception is determined by whether the two stimuli fall into

the same, or different, cycles [16]; see also [46]. Such studies,

which used variants of a temporal segregation task, rather than

both integration and segregation, suggest that cortical oscilla-

tions provide natural temporal frames for the grouping or chunk-

ing of neural activity [43, 44].

Alternatively, sensory systems might perform integration and

segregation, at least partially, in parallel, and the time course dif-

ferences found here might, then, result from an active, top-down

bias toward either state. Information initially used to segregate

the two displays (in the first phase) may be maintained in a tem-

poral buffer/window in order to also support temporal integration

in the second phase, followed by segregation again in the

third phase. Previous trans-cranial magnetic stimulation (TMS)



studies have demonstrated such long-lasting biasing signals for

feature integration in visual cortex [47]. In addition, evidence for

retention of information across multiple oscillatory cycles comes

from studies showing regularly recurring ‘‘perceptual echoes’’ at

10 Hz [48] and integration cycles at 5 Hz for repeated natural

images [49].

In conclusion, the present study provides converging evi-

dence for behavioral and neural oscillations in states of neural

susceptibility and suggests that these alternations may play a

role not just in the detection of sub-threshold stimuli [25] but

also, more generally, in the parsing of continuous sensory input.

Specifically, these findings link alternations in neural processing

and perception to phase reset/alignment based on input transi-

tions such as stimulus onsets or saccadic eyemovements. Over-

all, these findings suggest that the alignment of integration

windows to new sensory or oculomotor events may serve as

an organizing principle for the temporal processing of contin-

uous sensory input.

EXPERIMENTAL PROCEDURES

All procedures were approved by the ethics committee of the University of

Trento. Participants gave written, informed consent before each experimental

session. In all experiments, participants viewed the same sequence of two pat-

terns separated by a brief ISI but were instructed to locate either the missing

element (which requires temporal integration) or the odd element (segregation)

in separate blocks (Figure 1A). We used a blocked design based on pilot

studies, which showed that participants were worse at performing both tasks

simultaneously. In a random-trial design, participants typically chose the strat-

egy of prioritizing one task over the other, with poor performance in the

non-prioritized task. Thus, the blocked design with explicit task instructions

ensured equal performance and physically identical stimuli in the two tasks

(both targets were shown on each trial, but only one was task relevant in

each block). Psychophysical performance was matched between integration

and segregation tasks by selecting a critical ISI for each participant (see the

Psychophysics section in Results). In experiment 1, the two displays (10-ms

duration each + subject-specific ISI) were presented after a randomly jittered

pre-stimulus time period (1–2 s) and followed by a response screen after

500 ms. MEG was recorded continuously to contrast pre-stimulus oscillatory

activity, the stimulus-evoked fields, frequency-specific phase coherence,

and MVPA decoding between tasks. In experiment 2, we timed stimulus

presentation (10 ms for each display + 50-ms ISI) relative to eye fixation onset

and contrasted the fixation-aligned behavioral time courses (500 ms in Expt

2A, and 1,000 ms in Expt 2B) between tasks. A complete description of the

materials and methods can be found in the online Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, six tables, and Supplemental

Experimental Procedures and can be found with this article online at http://

dx.doi.org/10.1016/j.cub.2016.04.070.
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