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Although visual short-term memory (VSTM) performance has been hypothesized to rely on two distinct
mechanisms, capacity and filtering, the two have not been dissociated using network-level causality measures.
Here, we hypothesized that behavioral tasks challenging capacity or distraction filtering would both engage a
common network of areas, namely dorsolateral prefrontal cortex (dlPFC), superior parietal lobule (SPL), and
occipital cortex, but would do so according to dissociable patterns of effective connectivity. We tested this by
estimating directed connectivity between areas using conditional Granger causality (cGC). Consistent with our
prediction, the results indicated that increasing mnemonic load (capacity) increased the top-down drive from
dlPFC to SPL, and cGC in the alpha (8–14 Hz) frequency range was a predominant component of this effect.
The presence of distraction during encoding (filtering), in contrast, was associated with increased top-down
drive from dlPFC to occipital cortices directly and from SPL to occipital cortices directly, in both cases in the
beta (15–25 Hz) range. Thus, although a common anatomical network may serve VSTM in different contexts,
it does so via specific functions that are carried out within distinct, dynamically configured frequency channels.

© 2015 Elsevier Inc. All rights reserved.
Introduction

A growing body of evidence suggests that visual short-termmemory
(VSTM), and the related construct of working memory, may share
common neural bases with selective attention (e.g. Nobre and Stokes,
2011; D'Esposito and Postle, 2015). In the domain of spatial cognition,
for example, both engage a highly overlapping network of frontoparietal
regions (e.g., Ikkai and Curtis, 2011), from which information can be
“readout”, depending on context, to accomplish oculomotor, attentional,
or mnemonic goals (Jerde et al., 2012). Additionally, training on a visual
workingmemory task has comparable effects on event-related potential
(ERP) components associated with VSTM (the contralateral delay
activity; CDA) and with visual selective attention (the contralateral
search activity (CSA)) (Kundu et al., 2013), suggesting that there is
oencephalogram; VSTM, visual
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stimulation; dlPFC, dorsolateral
ditional Granger causality; TD,
, boundary-element model;
oregressive; ICA, independent
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a relationship between the underlying mechanisms supporting
VSTM and visual selective attention. The CDA is an ERP component
derived during a VSTM task, for which the amplitude scales mono-
tonically with the number of items being held in VSTM, and plateaus
at an individual's VSTM capacity (Vogel and Machizawa, 2004). The
CSA is an ERP component derived during visual search for which
the amplitude correlates with individual differences in VSTM capacity
(Emrich et al., 2010).

One influentialmodel of attentional control, operationalized through
the Attentional Network Task, is organized into three dissociable
components: alerting, orienting, and executive control (Fan et al.,
2002).Machizawa andDriver (2011) related this framework toworking
memory by applying a principal components analysis to a behavioral
dataset, and found that not only did putative measures of alerting,
orienting, and executive control load independently onto the first
three principle components, but so too did measures relating to three
constructs from VSTM: capacity, precision, and filtering, respectively.
In this paper we focus on the constructs of capacity and filtering. The
former, in particular, has been of interest due to its ability to predict
individual variation in cognitive measures such as search efficiency
(Emrich et al., 2010) and filtering efficiency (Vogel et al., 2005), as
well as higher-order measures such as educational achievement
(Cowan et al., 2005; c.f. Cusack et al., 2009). Although capacity and
filtering have both been related to the CDA (Vogel and Machizawa,
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Fig. 1. Schematic representation of tasks. (A) Location VSTM task. Example of a Load 4 trial.
Memory targets (“targets” in thefigure)were black, aswas the probe. (B) Target-distraction
(TD) task. Example of a Load 2d trial. In this task relevant stimuliwere presented inblack and
irrelevant stimuli in blue.
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2004; Vogel et al., 2005), the two have not, to our knowledge, been
dissociated at the network level. The goal of this study, therefore, was
to interrogate the dorsal frontoparietal network with a method capable
of detecting context-dependent differences in its EEG dynamics.

Specifically, we tested whether there is evidence of systematic
differences in effective connectivity within a network comprising
dorsolateral prefrontal cortex (dlPFC), superior parietal cortex (SPL),
and extrastriate cortex during the delay-period of a VSTM task that
emphasized either capacity or filtering. The rationale for choosing
these areas lies in the findings from Kundu et al. (2013) which showed
that working-memory training increases transcranial magnetic
stimulation (TMS)-based measures of effective connectivity between
dlPFC and SPL, as well as between SPL and extrastriate visual areas. It
also showed that connectivity between dlPFC and SPL increases with
VSTM load. Importantly, single pulse TMS provides ameasure of effective
connectivity such that we know exactly where and when stimulation
occurred and thus we can measure its downstream effects in time
through a data-drivenmanner (Casali et al., 2010). However, thismethod
is limited in that it can only address the relative differences in connection
strengths between the area stimulated and other distal areas. It cannot
probe a predetermined connection between any two regions. Thus, the
present study builds on the network model implicated by Kundu et al.
(2013), but tests the hypothesis that different task contexts will be
associated with systematic variation in the strength and direction
of connectivity within the network.

Thiswas accomplished using high-density (EEG) data and a recently
developed method (Cheung et al., 2010) to estimate the conditional
Granger causality (cGC) metric (Bressler and Seth, 2011) between
dlPFC, SPL, and occipital cortex. Thus this method measures effective
connectivity in its simplest sense, which is the change in electrical activity
at one location as a weighted sum of changes elsewhere (Friston, 1994;
and as explicated by us previously in Dentico et al. (2014) and Piantoni
et al. (2013)). We do note, however, that the term ‘effective connectivity’
has also been used to refer more specifically to causal interactions
measured in neurobiologically based models, such as dynamic causal
modeling (see Friston, 2011 for a review).

The cGCmetric of effective connectivity can address the precise chro-
nometry between networks that act as candidate sources of top-down
control (Miller and D'Esposito, 2005). We hypothesized that increases
inmemory load and increases in filtering demandswould produce differ-
ences in the strength and/or direction of effective connectivity between
dlPFC and SPL, as well as between these areas and extrastriate occipital
cortex, depending on context.

Methods

Participants

Data reported in the present studywere taken from the pre-training
session of a working memory training study (Kundu et al., 2013). 30
participants (16 female, mean age = 20.9 years, SD = 2.75 years) were
recruited for the study from the University of Wisconsin-Madison
community. The inclusion criteria selected healthy participants between
the ages of 18–35 years, with normal or corrected-to-normal visual acuity
and normal color vision, and who were not currently taking medication
for psychiatric conditions. All procedureswere approvedby theUniversity
of Wisconsin-Madison Institutional Review Board.

Overview of tasks

Two taskswere used to test short-termmemory (STM). The location
VSTM and Target-epoch distraction (TD) tasks were selected because
they operationalize two theoretical factors — capacity and filtering, —
hypothesized to account for individual differences in STM and selective
attention (Machizawa and Driver, 2011). Each subject performed the
location VSTM task and then the TD task.
Location VSTM task

The trial began with a cue indicating the visual hemifield that was
relevant for that trial. Then, either two (Load 2) or four (Load 4) black
squares (“target stimuli”) were presented serially in the cued hemifield,
along with a comparable, simultaneous sequence in the uncued
hemifield (“foil stimuli”). Load condition varied randomly (without
replacement) on a trial-by-trial basis, as did the location of each target
and foil, which was determined by using a random number generator
to generate coordinates within a predetermined area of the visual
field. Then there was a delay period of 3750 ms after which a probe
that either did or did not match (P = 0.5) the location of one of the
stimuli appeared (Fig. 1A). Subjects were instructed to maintain central
fixation throughout the delay. The subjects indicatedwhether the probe
matched the location of any one of thememory targets presented in the
cued hemifield via left/right button press at the end of the trial. Subjects
used both of their hands, right thumb for the right button and left
thumb for the left button. Left and right button assignments indicated
match and non-match responses respectively. These button assign-
ments were the same across subjects (i.e. button assignment was not
counterbalanced). Note, counterbalancing was not required because
the analyses were restricted to the delay period, when no responses
were being made, and when subjects could not predict what the
response would be. The probe always appeared in the cued hemifield.
Feedbackwas provided on a trial-by-trial basis, with theword “Incorrect”
appearing on the screen for 500 ms following an incorrect response. The
intertrial interval (ITI) was 550 ms. The task block consisted of 480 trials
presented in sub-blocks of 60 trials. Two transcranial magnetic stimula-
tion (TMS) pulses were delivered during the delay period of 50% of the
trials, selected at random. The data from the TMS-present trials will not
be discussed in this report. The participants received verbal instructions
and completed a block of trials prior to testing. The practice blocks were
repeated until a criterion of 75% accuracy was reached. No more than
three practice blocks were required for any subject. Memory targets
were presented within a 4.3° × 8.6° region in hemifield, centered ~3.3°
horizontally from fixation. Memory targets consisted of black squares
subtending ~1° of visual angle at a viewing distance of 70 cm and were
presented on a gray background. The probe consisted of a black square
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(~1° of visual angle). The probe for non-match trials was presented at a
randomly chosen location within the cued hemifield and at a minimum
of 2.5° (center-to-center distance) away from the nearest memory target
location.
Target-epoch distraction (TD) task

This task was a variant of the location VSTM task (Fig. 1B) and two
of three trial types, Load 2 and Load 4, were similar to those from the
location VSTM task. The third trial type, Load 2d, was a trial with two
relevant black squares and two blue distractor squares serially presented
in a randomorderwithin the cued hemifield. Subjectswere instructed to
retain the locations of the black squares and ignore the locations of the
blue squares. There were 120 trials per condition organized in 6
sub-blocks. The delay period of 2000 ms had no distraction. The
same button assignments were used for this task as the VSTM task.
Left and right button assignments indicated match and non-match
responses respectively. The button assignments for particular responses
were not counterbalanced across subjects in this task. Analyses from
this task are limited to Load 2 versus Load 2d for consistency with the
comparison between Load 2 versus Load 4 in the location VSTM task.
EEG recording

EEG was recorded for the location VSTM task and the TD task with a
60-channel TMS-compatible amplifier (Nexstim; Helenski, Finland).
Electrode impedance was b5 kΩ. The reference and ground electrodes
were placed on the forehead. Eye movements were recorded with two
additional electrodes placed near the eyes. The EEG signal was filtered
(0.1–500 Hz) and sampled at 1450 Hz with 16-bit resolution.
Data pre-processing

Data were processed offline using the EEGLab toolbox (Delorme and
Makeig, 2004) as well as the Signal Processing ToolBox in MATLAB
MATLAB and Statistics Toolbox Release, 2012). The data were
downsampled to 103 Hz, average-referenced, and demeaned. Indepen-
dent components analysis (ICA) was performed on usable channels to
identify and remove components reflecting residual muscle activity,
eyemovements, blink-related activity, and residual TMS-related artifacts.
High-pass filtering was applied at 2 Hz (Chebyshev Type II high pass fil-
ter, stopband frequency 1.5 Hz, passband frequency 3 Hz, stopband at-
tenuation 30 dB, passband ripple 1 dB). Subject data that was found to
have N70% of trials contaminated by noise, muscle artifact, or eyemove-
ment artifact during the task were excluded from the analyses.
A B

Fig. 2.MVARmodel. (A) Brain regions included in the model labeled on an MNI template brain
panel A. (C) Simplified model that is collapsed over hemispheres.
Network regions-of-interest (ROIs)

We hypothesized that differences in causal connectivity underlying
capacity versus filtering would be seen in a network comprising occipital,
posterior parietal, and prefrontal areas. Using the TMS-present trials from
the location VSTM task, Kundu et al. (2013) showed that load-specific
changes as well as training-related changes in TMS-based measures of
effective connectivity were seen primarily between Brodmann Area
(BA) 7 which is the SPL and BA 9 which is the dlPFC (see Table 2 of
Kundu et al., 2013). Thus the TMS experiment used a causal method to
define the network of areas that were 1) engaged by the task, and
2) whose connectivity was strengthened by training. If indeed the three
hypothesized factors underlying attentional control also underlie VSTM
performance then this network should be differently engaged by VSTM
tasks that put differential demands on these putative factors. Thus, the
present study included regions in the network implicated in Kundu
et al. (2013) and included bilateral BAs 9, 7, and 18 (Figs. 2A and B).

MVAR model

We employed a state-space MVAR model to derive measures of
cortical casual connectivity from scalp data. The state-space approach
has been shown to be more robust than conventional two-stage
connectivity estimation methods at the low signal-to-noise ratios
(SNRs) typical of EEG data (Cheung et al., 2010). Note that the
model-derived cGCmetric between two brain regions could, in principle,
capture the influence of both cortico-cortical and cortico-thalamic path-
ways.We did not attempt to dissociate these effects. The cortical patches
used to represent individual ROIs in the model were derived using the
following steps: 1) Subject-specific whole-brain T1-weighted anatomi-
cal MRIs were acquired with a GE MR750 3T MRI scanner prior to the
experiment (176 axial slices with a resolution of 1 mm); 2) individual
cortical meshes (5124 vertices) were created from the MRIs using the
Statistical Parametric Mapping software package (SPM8, freely available
at: http://www.fil.ion.ucl.ac.uk/spm/); 3) themesheswere co-registered
with the individual's EEG sensor positions collected using a frameless
stereotaxy system (part of the Navigated Brain Stimulation system
used to deliver TMS); 4) the Boundary Element Model (BEM) was used
to model the physics of measurement of cortical signals at the electrode
locations; 5) individual cortical surfaces were attributed to different BAs
using an automatic anatomical classificationmethod that maps the indi-
vidual cortical surface to the region of interest (ROI) masks provided by
the WFUPickAtlas tool (freely available at: http://ansir.wfubmc.edu);
and 6) following Cheung et al. (2010), the leadfield matrices of the
dipoles in each ROI were concatenated and the left singular vectors,
corresponding to the largest singular values, were used as spatial
bases representing the dominant activity from the ROI.
C

. (B) Full model connections. Black arrows indicate connections tested. Colors follow from
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Conventional approaches to source localization first attempt to solve
the inverse problem and estimate cortical signals from the scalp data.
Next they attempt to fit an MVAR model to the estimated cortical
signals. Such two-stage approaches require relatively high SNR to obtain
accurate estimates of cortical connectivity. The state-space approach
employed here directly estimates the model parameters in one step
using an expectation–maximization (EM) algorithm that jointly solves
the equations describing both the cortical MVAR model and the
measurement physics. The following equations describe the method
as applied to the data of the present study, see Cheung et al. (2010)
for formal mathematical definitions of the model's general form. The
state-space representation of the data is as follows.

xn; j ¼ Αzn−1; j þwn; j ð1Þ

yn; j ¼ CΛxn; j þ vn; j ð2Þ

Here xn,j is the state variable representing the cortical signals from
the six ROIs at time point n and epoch j. A is the 6 × 6P state-transition
matrix and describes the influence of the past n − 1 time points of x,
contained in zn − 1,j, on xn,j. P is the model order and is the number of
past time samples considered. wn,j is a 6 × 1 vector of error residuals
predicting the present cortical signal based on its past, and is modeled
as a series of identically distributed Gaussian vectors with zero mean
and covariance matrix Q (~N(0,Q)). yn,j is the EEG data observed at the
scalp for time n and epoch j over L number of channels based on the
number of significant ICA components retained. C is an L × 6K matrix
of the K left singular values from the singular value decomposition of
the leadfields. Λ is a 6K × 6 matrix that represents the unknown spatial
distribution of activitywithin the ROIs. The unknown entries inΛ are es-
timated as part of the EM algorithm (Cheung et al., 2010). Finally, vn,j is
the observed noise and is assumed to be a series of independent, identi-
cally distributed Gaussian random vectors with mean 0 and unknown
covariance matrix R (~N(0,R)). Thus, Eq. 1 is a “hidden” state equation
describing the MVAR model between cortical regions. Eq. 2 describes
how the cortical signals are projected to the scalp based on the known
variables of the leadfields and observed noise, the unknown variables
of the cortical signals, as well as their spatial distribution within an ROI.

Instead of solving the observation equation first and then fitting the
model, this method uses the EM algorithm to do these steps
simultaneously.We used amodel order P=16 because it yielded stable
measures of connectivity in the data of 3 subjects. A relatively small num-
ber of singular vectors have been shown to capture the activity in rela-
tively large cortical regions (Limpiti et al., 2006), so in the present
study K=3. This choice has been effective in other studies using similar
sized ROIs (Malekpour et al., 2012; Piantoni et al., 2013). Thus the known
parameters are yn,j andC. The unknownparameters areA, xn,j,Λ,Q, andR.
The EM algorithm is guaranteed to converge to a local maximum of the
likelihood. We ran the algorithm multiple times using different initial
conditions and selected the run with the maximum value of likelihood
as our estimate. We initialized the model with 19 different sets of initial
conditions.

cGC

cGC, described byGeweke (1984), is ameasure of casual connectivity,
or the degree to which one brain area can causally influence another
(Friston, 1994). For ROI time series an, bn, and cn along with each series'
past values (an −, bn −, and cn −) the cGC from a to b conditioned on c
is as follows,

Fa→bjc ¼ log
Σ1j j
Σ2j j ð3Þ

where Σ1 is the error covariance when predicting bn from its own past
bn −, and the past of cn. Σ2 is the error covariance of predicting bn from
an −, bn −, and cn −. Fa → b|c is guaranteed to be positive through the
use of the partitioned matrix method (Chen et al., 2006). We considered
6 time series from the 6 ROIs within the model. cGC was calculated by
collapsing over the left and right hemispheres such that the joint cGC
between bilateral pairs of hemispheres was considered (Fig. 2C).

Calculation of cGC in the frequency domain was done according to
Chen et al. (2006). (Equations 22 onward in the Methods section of Chen
et al. (2006) indicate a formulationof howcGC is computed in the frequen-
cy domain.) The method allows calculation of the portion of the total
power of signal bn at frequency ω that is contributed by an given cn. In
the context of the final model, shown in Fig. 2C, signals an, bn, and cn are
vectors containing signals from both hemispheres. For example, cGC tells
us how well the past of the left and right hemisphere signals from BA 9
predict the present of the left and right hemisphere signals in BA 7 given
the past of the left and right hemisphere signals from both BAs 7 and 18.
Cognitively relevant frequency bands included theta (4–7 Hz), alpha (8–
14 Hz), beta (15–25 Hz), and gamma (N25 Hz) bands. We identified
peaks within these bands for each individual, based on their cGC within
the band (individual peak, IP). Theta was chosen as IP ± 2 for IP within
4–7.9 Hz, alpha IP ± 2 for IP within 8–14.9 Hz, beta IP ± 5 for IP with-
in 15–24.9 Hz, and gamma IP ± 5 for IP within 25–50Hz. Note that the
same model was used for both time and frequency domain analyses.
The results were qualitatively the same whether individually defined
bands or the full, traditionally defined bandwidths were used.

Statistical analysis

A parametric analysis of variance (ANOVA) with Task (2 levels,
Location task and TD task) and Trial type (Load 2 and Load 4 for Location
task and Load 2 and Load 2d for TD task; levels nested in Task) as factors
and subjects as observations was used to analyze the behavioral
performance (the dependent variable). An omnibus ANOVA with
Greenhouse–Geisser correction was used to analyze the time-domain
cGC data. Here, within-subjects factors were Task (Location task and
TD task), Trial type (Load 2 and Load 4 for Location task and Load 2
and Load 2d for TD task; levels nested in Task), and Connections
(6 levels, shown in Fig. 2C). Subjects were used as observations. Post
hoc comparisons were used to interpret the factors driving any
significant interactions found. All pairwise comparisons were made
using Wilcoxon Signed Rank tests. Approximated z values are reported
along with p values. Cohen's d is reported for parametric statistics and
effect size (r) is reported for signed rank tests.

To compare cGC-based effective connectivitywithin-task conditions,
we planned to test the differences in time domain-derived cGC between
Load 4 and Load 2 andbetween Load 2d and Load 2 for all six connections
in the model (H = 6; Fig. 2C). Because these planned comparisons
represent just a few out of many possible comparisons, after reporting
the results with correction for multiple comparisons, we also report
the results of these a priori defined comparisons without correction
for multiple comparisons. Note that six tests were done for each task.
z values are reported along with uncorrected p values. Furthermore, if
significant trial-type related differences in the time-domain cGC at
particular connections were found, we planned to follow up with post
hoc analyses in the frequency domain, to assess whether different
patterns of connectivitymay be preferentially implemented via discrete
frequency channels (Bastos et al., 2012). To do this, we compared the
difference in frequency-domain cGC between trial types within each
task for each frequency band (4 bands) only for significant connections
found in the time-domain analysis.

Results

Behavioral analysis

A complete set of behavioral datawas acquired from 26 participants.
Performance on Load 2 trials was better than on Load 4 trials (Table 1;



Table 1
Performance on tasks.

Task Condition Mean (SD) F value (df,df) Cohen's d (95% CI) p value

Location VSTM task
ACC Load 2 0.79 (0.07) 26.48 (1,36) 2.36 (1.12, 3.53) b0.001

Load 4 0.67 (0.07)
RT Load 2 795.16 (157) 0.65 (1,36) 0.37 (−0.5, 1.27) 0.42

Load 4 835.80 (153)

TD task
ACC Load 2 0.82 (0.07) 20.29 (2,75) 2.06 (1.25, 2.87) b0.001

Load 4 0.68 (0.07)
Load 2d 0.78 (0.07)

RT Load 2 780.52 (118) 1.28 (2,75) −0.37 (−1.0, 0.29) 0.28
Load 4 818.54 (122)
Load 2d 765.84 (114)

ACC: Accuracy.
RT: Reaction Time.
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p b 0.001) for the location VSTM task. In the TD task, there was a main
effect of Load (Table 1; p b 0.001) such that performance on Load 2d
trials was better than on Load 4 trials (t(18) = −5.05, p b 0.001), but
performance on Load 2d trials was worse than the Load 2 (t(18) =
4.53, p b 0.001).

Connectivity analysis

Electrophysiological data was acquired from 19 subjects for the
Location task and 18 subjects for the TD task. Analysis of network
dynamics indicated that, overall, performance of both of the tasks
produced robust patterns of bidirectional Granger causal interactions
between each of the nodes in the network. Evidence that these patterns
differed across tasks was revealed in the omnibus ANOVA. This analysis
showed a main effect of Task (F1,17 = 5.71, p=0.03), no main effect of
Trial(Task) (F2,34= 3.12, p=0.06), amain effect of Connection (F5,85=
5.84, p=0.0001), a significant Task ∗ Connections interaction (F5,255 =
2.73, p = 0.02), and no significant Trial(Task) ∗ Connection interaction
(F10,255 = 0.43, p = 0.93). Visual inspection, followed by pairwise
comparisons, suggested that the connection from BA 18 to BA 9
(z = −2.90, uncorrected p = 0.003, corrected p = 0.018, r = 0.67)
was driving the interaction between Task and Connections such that
the bottom-up connection was stronger for the task emphasizing the
effects of load as compared to the task emphasizing the effects of
7:18 9:1818:7 9:7 7:9
0

0.02

0.04

0.06

0.08

0.1

0.12

Load Task

Distraction Task

cG
C

18:9

From Region X : To Region Y

*

Fig. 3. cGC for Location task versus Distraction task, Task × Connection interaction. cGC
during the delay-period in the time domain for the Location task; bar represents mean
cCG collapsed over trial type (Load 2 and Load 4; white) and the Distraction (TD) task,
bar represents mean cCG collapsed over trial type (Load 2 and Load 2d; gray).
distraction (Fig. 3). From here we conducted pairwise comparisons be-
tween the trial types for connectionswithin each Task. All cGCmeasures
are first reported for the data in the time domain, then with follow-up
analyses in the frequency domain.

Location VSTM task

Planned analyses (N=19 subjects) showed that cGC fromBAs 9 to 7
was stronger for Load 4 versus Load 2 (z=−2.52, uncorrected p=0.01,
corrected p=0.06, r=0.58; Figs. 4A and B). Following up on the time-
domain finding, analyses in the frequency domain indicated that the
load effect in the time domain was mirrored in the alpha band-specific
cGC from BAs 9 to 7, for which the cGC for Load 4 was greater than for
Load 2 (z = −2.05, uncorrected p = 0.04, corrected p = 0.96, r =
0.47, Figs. 4C and D). There was no significant correlation between
change in accuracy (Load 4–Load 2) and the change in alpha band-
specific cGC from BA 9 to BA 7 (Load 4–Load 2). This was also true for
the correlation using RT data.

TD task

Planned analyses (N = 18 subjects, one subject excluded because
cGC values were N3 SD above the mean) showed that cGC was larger
for Load 2d versus Load 2 for both the BA 9 to 18 connection (z =
2.23, uncorrected p = 0.02, corrected p = 0.12, r = 0.53; Figs. 5A and
B) and the BA 7 to 18 connection (z = 2.24, uncorrected p = 0.02,
corrected p = 0.12, r = 0.53; Figs. 5A and B). These effects were
mirrored in the beta band-specific cGC from BAs 9 to 18 (Load
2d N Load 2, z = 2.24, uncorrected p = 0.02, corrected p = 0.48, r =
0.53) and from BAs 7 to 18 (Load 2d N Load 2, z = 2.37, uncorrected
p = 0.02, corrected p = 0.48, r = 0.53; Figs. 5D, E and F).

Additionally, cGC fromBAs 7 to 9was larger for Load2dversus Load 2
in the time domain (z = 2.26, uncorrected p = 0.008, corrected p =
0.048, r = 0.53; Figs. 5A and B). These effects were mirrored post hoc
in both the alpha band-specific cGC from BAs 7 to 9 (Load 2d N Load 2,
z = 2.54, uncorrected p = 0.01, corrected p = 0.24, r = 0.60, Figs. 5C
and F) and theta band-specific cGC from BAs 7 to 9 (Load 2d N Load 2,
z = 2.50, uncorrected p = 0.01, corrected p = 0.24, r = 0.59, Figs. 5C
and F).

There was no significant correlation between change in accuracy
(Load 2d–Load 2) and the change in beta band-specific cGC from BAs 7
to 18 (Load 2d–Load 2). This was also true for the beta band-specific
cGC from BAs 9 to 18, the theta band-specific cGC from BAs 7 to 9, and
the alpha band-specific cGC from BAs 7 to 9. Analogous correlation
between RT and cGC for the connections listed above was not significant.

Discussion

Behavioral evidence suggests that there exist dissociable processes
underlying VSTM that relate to processes underlying visual selective
attention (Machizawa andDriver, 2011). Here,we tested the hypothesis
that two of these behaviorally dissociable constructs of VSTM— capacity
and filtering— are supported by different network dynamics within the
frontoparietal system, and between these regions and extrastriate
occipital cortex. To address this question, we measured the casual
connectivity patterns present within a set of network connections that
are engaged during the delay-period of two STM tasks operationalizing
these two cognitive constructs. Our results support the broad prediction
that themechanisms underlying capacity and filtering are implemented,
in part, via different dynamically configured functional networks
supported by a common anatomical substrate.

At the level of task, collapsing across within-task manipulations, the
load task engaged stronger bottom up connectivity (specifically, from
BA 18 to BA 9) compared to the distraction filtering task (Fig. 3). Our
findings within the load task suggest that VSTM capacity (which may
be isomorphic with alerting in attention) is supported by a pattern of
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increased drive from dlPFC on SPL during maintenance of larger
mnemonic loads (Fig. 4). This finding adds a layer of specificity to our
previous finding, with TMS–EEG, that these regions exhibit strengthened
casual connectivity during Load 4 vs. Load 2 trials. The present results also
suggest that this dlPFC-to-SPL influence may be carried preferentially in
the alpha frequency band. A different pattern was observed for filtering
(which may be isomorphic with executive control of attention), as
operationalized in the distraction task. For each significant connection in
the network there was greater connectivity for trials with distraction
compared to trials with equivalent mnemonic load, but no distraction.
The results broke out into anterior-to-posterior and posterior-to-
anterior connections (Fig. 5). Greater top-down influence was seen
from dlPFC to extrastriate cortex and from SPL to extrastriate cortex, in
both cases with a prominent component in the beta frequency band.
Additionally, distraction was associated with greater influence of SPL on
dlPFC, an effect that was prominent in the theta and alpha frequency
bands. Univariate analyses did not reveal significant associations between
measures of behavioral performance and measures of connectivity for
either task, though it is possible that multivariate approaches maybe be
more revealing. Such analyses are beyond the scope of this study. One
caveat of this work is that no conclusions can be drawn regarding any
possible hemispheric specificity of these results.

Our findings are consistent with a considerable body of evidence
that prefrontal and parietal areas regulate earlier visual areas during
VSTM and visual selective attention (Gazzaley and Nobre, 2012),
including causal demonstrations effected by altering prefrontal or
parietal activity using low frequency (1 Hz; Zanto et al., 2011) or
theta burst (Lee and D'Esposito, 2012) repetitive TMS. Furthermore,
cortical cooling methods have been used to demonstrate reciprocal
regulation between parietal and prefrontal areas during performance
of an oculomotor delayed-response task (Chafee and Goldman-Rakic,
2000). However, these functional lesion studies do not provide informa-
tion about patterns of directed causal influence between brain areas, in
part a consequence of the fact that most neural systems feature a large
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number of feedback loops and compensatory mechanisms that help
maintain stable function. A demonstration of this fact is seen in Lee
and D'Esposito (2012), in which theta burst rTMS applied to one hemi-
sphere of dlPFC during an STM task disrupted performance, but the pre-
served performance was associated with increased activity in the
homologous region of the contralateral hemisphere (Lee and
D'Esposito, 2012). For insight about the dynamics of interareal regula-
tion, one must turn to data from functional studies. A model that is
emerging from electrophysiological investigations is that top-down con-
trol may be implemented through different “frequency channels”
that, much like a radio, can selectively modulate the frequency
band engaged, depending on the cognitive context (Palva et al.,
2010; Miller and Buschman, 2013). The present results are consis-
tent with this model, and offer a greater level of specificity for the
case of VSTM. Additionally, our results provide a link between the
functional-lesion and electrophysiology literatures, suggesting that
interareal controlmay be accomplished via context-specific, dynamical-
ly configured patterns of connectivity.

Distractors presented during the encoding period created a
perceptually identical, but cognitively different, delay-period compared
to the location VSTM task. In this context, we found engagement of the
same brain areas, but via a different network configuration compared
to that of the capacity condition (Fig. 5). This observation invites a
comparison with findings using the contralateral delay activity (CDA),
an event-related potential derived from the EEG that indexes individual
differences in VSTM capacity (Vogel andMachizawa, 2004). The CDA has
also been shown to vary with distraction presented during encoding, in
the following way: for low capacity subjects, the CDA associated with
the Load 2d condition is similar to that of the Load 4 condition, whereas,
for high VSTM capacity subjects, the CDA for Load 2d is the same as that
of the Load 2 condition (Vogel et al., 2005). The authors suggest that
VSTM capacity limitations may depend on filtering efficiency, and not
just on how much “space” is available for VSTM maintenance. Although
it is possible that there is a common mechanism by which information
is selected for encoding such that a bottleneck affects both filtering
efficiency and VSTM capacity, the uni-dimensional nature of the CDA
prevents it from being able to discern whether one or multiple mecha-
nisms contribute to the theoretically dissociable constructs of capacity
and filtering. By employing our measures of network connectivity, we
have been able to demonstrate that a broadly distributed anatomical net-
work takes on distinct dynamic configurations during tasks that empha-
size capacity versus filtering.

Interestingly, the top-down filtering effects that we observed were
prominent in the beta frequency band. The beta-band has been
implicated in top-down control of attention and aspects of STM
(Engel and Fries, 2010; Miller and Buschman, 2013; Bressler and
Richter, 2015). Higher beta-band coherence is found between dlPFC
and parietal areas during conjunction search using selective attention,
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a cognitively top-down process, versus pop-out search, a cognitively
bottom-up process (Buschman and Miller, 2007). Our results are also
in line with the findings of Zanto and Gazzaley (2009) who reported
increased beta-band desynchronization during the delay-period
in parietal areas that was related to the inability to filter out
distraction.

In summary, our results suggest that a commonanatomical substrate–
dlPFC, parietal cortex, and extrastriate occipital cortex – may support
different control operations in a context-dependent manner by dynamic
reconfiguration of patterns of frequency-specific connectivity.
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