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Remembering Complex Objects in Visual Working Memory:
Do Capacity Limits Restrict Objects or Features?

Kyle O. Hardman and Nelson Cowan
University of Missouri

Visual working memory stores stimuli from our environment as representations that can be accessed by
high-level control processes. This study addresses a longstanding debate in the literature about whether
storage limits in visual working memory include a limit to the complexity of discrete items. We examined
the issue with a number of change-detection experiments that used complex stimuli that possessed
multiple features per stimulus item. We manipulated the number of relevant features of the stimulus
objects in order to vary feature load. In all of our experiments, we found that increased feature load led
to a reduction in change-detection accuracy. However, we found that feature load alone could not account
for the results but that a consideration of the number of relevant objects was also required. This study
supports capacity limits for both feature and object storage in visual working memory.

Keywords: visual working memory, working memory capacity limits, objects in working memory,
features in working memory, attention limits

Working memory (WM) is a capacity-limited store for informa-
tion that is actively in use or which must be maintained over a
short interval (Baddeley, 2003; Cowan, 2001). One concern of
WM researchers has been to specify how the constituent features
of objects are integrated in visual WM into coherent internal
representations of the external objects (Fougnie, Asplund, & Ma-
rois, 2010; Luck & Vogel, 1997; Treisman, 1988; Wheeler &
Treisman, 2002). This study is primarily focused on the issue of
whether there is a cost to processing (encoding, storing, and/or
retrieving) stimuli for which there is a high feature load. In an
influential study, Luck and Vogel (1997) manipulated feature load
by varying the number of task-relevant features of the stimulus
objects. Their finding was that no loss in accuracy resulted from an
increase in feature load. We are following up on this result due to
a number of results in the literature that find an effect of feature
load on accuracy (Alvarez & Cavanagh, 2004; Cowan, Blume, &
Saults, 2013; Delvenne & Bruyer, 2004; Fougnie et al., 2010;
Oberauer & Eichenberger, 2013; Wheeler & Treisman, 2002).

In this study, we use the change-detection paradigm to measure our
participants’ memory abilities (Luck & Vogel, 1997; Wheeler &
Treisman, 2002). In the change-detection paradigm, participants are
presented with a sample array of visual objects that must be retained

in memory for a brief interval before a test array (or sometimes a
single test object) is presented. The participant is required to respond
to the test array by indicating whether anything has changed between
the sample array and the test array. We are primarily focused on a
particular experiment performed by Luck and Vogel (1997), in which
objects possessed four features: length, orientation, color, and the
presence or absence of a black “gap” in the middle of the object (this
experiment was republished as Experiment 14 in Vogel, Woodman,
& Luck, 2001, with additional methodological information; see Fig-
ure 1 for an example of the stimuli). In some conditions of their
experiment, participants were informed that only one of the features
could change between the sample and test arrays (which we term the
“single-feature” conditions in this study). For example, in the color
single-feature condition, only the color of the objects was allowed to
change. In the critical multifeature condition, participants knew that
any of the features of the objects could change. The difference
between the single- and multifeature conditions is strictly in terms of

feature load: the number of objects is held constant.
The striking result that Luck and Vogel (1997) found was that

there was no difference in accuracy between the multifeature
condition and any of the single-feature conditions. This finding
was important evidence for the argument that the features of an
object are effortlessly bound to the representation of that object
without any cost for additional features (Luck & Vogel, 1997;
Zhang & Luck, 2008). The model that came out of this finding is
often described as the slot model of WM, in which visual WM has
a limited number of slots, each of which can be filled with a single
object until there are no more slots available (Zhang & Luck,
2008). The results of Luck and Vogel have often been used as
evidence that coherent objects with strongly integrated features are
the sole limiting factor of storage in WM, with the implication that
the number and/or complexity of the features that make up an
object can be ignored when interpreting results because, although
it possesses multiple features, a multifeatured object still only
takes up one object slot in WM. Based on the results of Luck and
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Vogel, it seemed clear that objects were the sole limiting factor of
storage in WM and that feature capacity was very high—poten-
tially unlimited.

Although the results of Luck and Vogel (1997) are very striking,
they are not without controversy. Both Wheeler and Treisman
(2002) and Delvenne and Bruyer (2004) failed to replicate the
results of one of the feature-conjunction experiments of Luck and
Vogel, in which bicolored squares were used, with feature load
manipulated by requiring participants to attend to either one or
both of the colors of each object. Although Luck and Vogel found
no difference in accuracy whether participants were held respon-
sible for one or both of the colors of each square, Wheeler and
Treisman and Delvenne and Bruyer both found a deficit when both
colors of each square were needed. Thus, it seems that there is
support for a feature load effect in the case of objects possessing
two features from the same feature dimension.

The present study examines the somewhat different situation in
which the features of the objects are drawn from different dimen-
sions (e.g., objects have a color and an orientation). In this partic-
ular area, there have been a number of studies using different
methodologies that have found costs related to feature load (Al-
varez & Cavanagh, 2004; Cowan et al., 2013; Fougnie et al.,
2010). These results suggest that even if the results of Luck and
Vogel (1997) replicate, they may not generalize to other experi-
mental conditions that are theoretically equivalent.

Importantly, we know of no experiments that have attempted a
direct replication of a critical result of Luck and Vogel (1997), in
which objects possessing four features drawn from different fea-
ture dimensions resulted in equivalent accuracy regardless of the
number of the features that participants were required to remem-
ber. A recent addition to the literature explored tasks in which
participants were required to store multiple features per object,
including objects with four features (Oberauer & Eichenberger,
2013). In that study, the authors found that accuracy in a change-

detection task decreased as the number of relevant features of the
objects increased. This decrease in accuracy occurred even when
the number of relevant features increased from one to four fea-
tures. Although Oberauer and Eichenberger (2013) included in
their manipulations conditions very similar to those used by Luck
and Vogel, the visual stimuli and methodology differed in some
important ways between the experiments, preventing Oberauer and
Eichenberger from being considered a direct replication.

Given the recent focus on problems with replicability of results
in psychology (Pashler & Wagenmakers, 2012), another attempt to
replicate the results of Luck and Vogel (1997) seems warranted. If
the results of Luck and Vogel can be replicated, we could examine
what attributes of their methods allowed them to obtain such a
result while others could not with different methods. If the bound-
ary conditions in which Luck and Vogel were able to find their
results could be determined, that knowledge could inform some
theoretical aspects of WM.

We are interested in the question of whether visual WM is
limited solely by the number of objects that can be held, or if it is
also limited by the complexity of these objects (operationally
defined as the number of features of the object that must be known
in order to perform perfectly on the task). If fully integrated objects
are the sole limiting factor of storage in WM, it would be expected
that, as long as the number of objects in the array is the same,
participant accuracy would not vary with the number of features
they are required to remember, which was the result observed by
Luck and Vogel (1997). In that study, no differences in accuracy
were found between the single- and multifeature conditions or
between any of the single-feature conditions. If object complexity
(i.e., feature load) matters, it would be expected that accuracy
would decrease as feature load increases.

We tested these predictions by attempting a direct replication of
the four-feature experiment of Luck and Vogel (1997), which we
did in Experiment 1. As far as we could ascertain, this experiment
used the same change-detection task, stimuli, timings, and second-
ary verbal load task as the original experiment. Then, in Experi-
ments 2–6 we performed several confirmatory experiments using
the same stimuli in order to rule out effects of a variety of nuisance
variables that could have explained our results. Finally, in Exper-
iments 7 and 8 we attempted to extend our findings to somewhat
different stimuli by attempting to replicate the results of another
feature-conjunction experiment of Luck and Vogel.

Experiment 1

This experiment was our best attempt to perform a direct rep-
lication of the four-feature experiment performed by Luck and
Vogel (1997; see also Experiment 14 of Vogel et al., 2001, for
additional methodological detail). We made a serious effort to
perform an accurate replication and believe that the only method-
ological discrepancies are minor. One potentially important meth-
odological uncertainty, regarding the luminance of the back-
ground, was further investigated in Experiment 4. The
discrepancies of which we are aware are discussed.

Method

The experiments reported in this article involve a change-
detection procedure with a number of methodological features in

Figure 1. An example of a single trial in Experiment 1. Each trial began
with a two-digit number that participants were instructed to remember.
Then a sample array of visual objects was presented. The objects were
rectangular bars that possessed a color, orientation, length, and the pres-
ence or absence of a black gap in the middle of the bar. Following a brief
retention interval, participants were shown a test array of objects in which
one of the features of one of the objects may have changed from its value
in the sample array. In this example, one of the rectangles changed from
green to red, so the participant should say that there was a change. After
making their response to the test array, participants spoke the number they
were remembering from the beginning of the trial.
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common, for which reason some statements about general meth-
odological details are made in this section. Most of the experi-
ments hew closely to the method of this first experiment and
details specific to each experiment are described in that experi-
ment’s method section.

Participants. Participants were recruited from introductory
psychology courses at the University of Missouri—Columbia cam-
pus and received partial course credit for participation.

For all of the experiments in this study, participants were re-
moved from the sample if their accuracy fell below 55% on at least
one trial block. This criterion was designed to remove participants
who were performing near chance in at least some conditions. The
focus on individual blocks was decided on because while overall
accuracy on the tasks tended to be relatively high, there was a
distinct pattern of accuracy in many participants’ data that seemed
to indicate that those participants were not making an attempt to
perform the task to the best of their abilities in a consistent manner
(i.e., very good performance on some trial blocks while perfor-
mance on other trial blocks was very near chance level). This
pattern generally involved at least one trial block on which accu-
racy was very near chance, which informed our use of the 55%
cutoff.

For this experiment, two participants were removed for meeting
this low accuracy criterion. An additional participant was removed
for having a very high error rate on the secondary verbal load task
(37% of their responses were errors compared with a 6% overall
average error rate). This left 19 participants (12 female; mean age
19.3 years) who were used in the analysis.

Materials. The experiments were performed using E-Prime 2
experimental software (Psychology Software Tools, Pittsburgh,
PA) on PCs using CRT monitors set to a resolution of 1,024 � 768
pixels. For this experiment, the monitor used a refresh rate of 75
Hz. Given that the monitor’s refresh period was 13.3 ms, it was not
possible to use presentation times in increments of 100 ms as used
in the original experiment. The most important timing difference
was that the sample array was presented for only 93.3 ms. How-
ever, because each participant was presented with every combina-
tion of conditions, there is little potential for this presentation time
difference to affect the differences between conditions, although
overall accuracy may be slightly shifted. In all other experiments,
the refresh rate of the monitors varied between 60 Hz and 75 Hz.
Again, because each participant completed all conditions on a
single computer, there is no potential for the conditions to be
differentially affected by the variations in refresh rate. In the
procedure section, nominal presentation durations—as would have
been achieved by 60 Hz monitors—are given.

In each trial, participants were presented with a sample array of
two, four, or six visual objects about which they would be tested
later. The objects possessed four features: orientation (vertical or
horizontal), color (red or green), length (short or long), and the
presence or absence of a black “gap” in the middle of the rectangle.
The objects were rectangles with a length of 2.0° (long objects) or
1.0° (short objects) and a width of 0.15° of visual angle. The gaps
were the same width as each object and 0.25° long. Objects were
separated by at least 2.0° of visual angle center-to-center to reduce
the chance of objects touching. The objects were presented in an
area of the screen taking up 9.8° (horizontal) � 7.3° (vertical).

The colors of the objects will be reported as an ordered triple of the
red, green, and blue components of the colors, which were 8-bits per

component and so varied from 0 to 255 for each component, where a
higher number indicates a greater amount of that component. In all
experiments the background on which the objects were presented was
a shade of gray and the gaps in the objects were always the darkest
black that the monitors we used were able to display (RGB: 0, 0, 0).
For this experiment, the background was a light gray (214, 214, 214),
and the objects were either red (255, 21, 37) or green (66, 181, 70).
These values were identical to those used in Figure 1 of the digital
version of Luck and Vogel (1997). However, as reported in Vogel et
al. (2001), originally the background was a dark gray with luminosity
8.2 cd/m2. We had not noticed this difference until after this experi-
ment was performed. When measured on a representative monitor
used for experiments in our lab using a TSL2561 luminosity sensor
(Texas Advanced Optoelectronic Solutions, Plano, TX), the luminos-
ity of the background used in this experiment was 123 cd/m2, which
was much brighter than the value reported by Vogel et al. In Exper-
iments 4 and 5, we used a darker background and found no mean-
ingful effect of background luminosities on the results.

A sample array and a test array of visual objects were presented on
each trial (see Figure 1). The test array was identical to the sample
array on half of the trials. On the other half of the trials, a single feature
of a single object was changed to a different value. For some trial
blocks, only one of the four features was allowed to change
(single-feature blocks). In the critical multifeature block, any of
the features were allowed to change, but it was still the case that
only one feature of one object was allowed to change on any given
trial. Object location was held constant between sample array and
test array.

Procedure. Participants were tested in a sound-attenuated booth
under observation of an experimenter who read the instructions for the
task to the participant. Once participants had completed the first set of
practice trials, the experimenter left the booth and monitored the rest
of the session by way of a video camera and microphone in the booth.
The instructions fully informed the participants about the rules gov-
erning the presentation of stimuli in order to assist them to perform
optimally.

To begin each trial, participants fixated on a two-digit number
presented centrally for 500 ms before the screen was blanked for
1,000 ms. Then the sample array was presented for 100 ms before the
screen was again blanked for 900 ms. After this retention interval, the
test array was presented until participants made a same/different
response by pressing “S” or “D” on a standard U.S. keyboard. After
giving their response, participants were cued to say the number they
had seen at the beginning of the trial, with responses coded correct or
incorrect by the experimenter. This secondary verbal load task was
intended to prevent verbal recoding of visual stimuli. The effect of this
verbal load task is further examined in Experiment 2. The procedure
for a single trial is shown in Figure 1.

The presentation of the test array in this experiment was slightly
different than the presentation used by Luck and Vogel (1997). In
their experiments, the test array was removed after 2,000 ms, but the
participant was still required to make a response. In all of our exper-
iments, the test array was presented until a response was made. This
is very unlikely to have had any effect because in this experiment only
6% of response times were longer than 2,000 ms. This percentage was
similar across our experiments.

Participants performed four single-feature trial blocks and one
multifeature trial block, the order of which was counterbalanced
across participants using a Latin square. Each trial block began with
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a screen of instructions indicating which feature (for the single-feature
conditions) or features (for the multifeature condition) of the objects
should be attended in the coming trial block. Upon reading the
instructions and indicating their intent to continue, participants were
given six practice trials after which they were presented with an
indication that they had finished the practice trials and were starting
the main block. Within a trial block, the number of objects in the
arrays varied unpredictably from trial to trial, but there were always
the same number of trials at each array size. In this experiment, there
were 96 trials per trial block, 32 trials at each of the three array sizes.
For all experiments, each participant’s experimental session lasted no
more than 1 hr.

Results

In keeping with the data analysis procedure of Luck and Vogel
(1997), we removed trials on which the spoken number was incorrect,
which resulted in the removal of 6% of trials.

The data were analyzed in order to determine how accuracy
changed as a function of the number of features and objects that were
relevant to the task, where number of relevant features and objects
were treated as continuous independent variables rather than categor-
ical variables. Using linear regression gives us more information than
a standard analysis of variance (ANOVA), because in addition to
informing us about the existence of object and feature effects, linear
regression allows us to directly compare the magnitude of the object
and feature effects, whereas ANOVA would simply note the existence
of such effects. This analysis was performed using a Bayesian regres-
sion technique provided by the BayesFactor package (R. D. Morey &
Rouder, 2013) for R (R Core Team, 2013). In the analysis, proportion
correct was predicted based on object count and feature count fixed
effects, plus a random effect for participant. Treating participants as
random effects makes this a within-participant regression. For the
single-feature conditions, object count and feature count were both
equal to the array size. In the multifeature condition, object count was
the array size and feature count was four times the array size. Three
models were estimated: a full model with effects of both object count
and feature count and two reduced models, one with an object count
effect and the other with a feature count effect. The full model is

Âi � � � F�F � O�O � �i,

where Âi is the predicted accuracy for the ith participant, � is the
intercept, F is the number of features, �F is the feature effect, O is
the number of objects, �O is the object effect, and �i is the
participant effect for the ith participant. The reduced models lack
either the F�F term or the O�O term.

The full model was compared with both reduced models in order
to determine if there was sufficient evidence to support the full
model over each of the reduced models. This model comparison
allows us to determine if we can account for the data by only using
information about the number of relevant objects or features alone,
without incorporating both object count and feature count into the
model. The result of a model comparison is a Bayes factor (BF),
which provides an indication of which model is preferred. For
these comparisons, the full model was in the numerator of the
ratio, which means that a BF greater than 1 is evidence for the full
model. For this experiment, the full model was clearly preferred to
both the reduced model with only an object effect (BFFR � 3.86 �

106) and the reduced model with only a feature effect (BFFR �
1.25 � 105). The subscript FR indicates that the Bayes factor is for
the full model (F) over the reduced model (R).

Given that the full model is preferred, estimates for the change
in accuracy as a function of object and feature count are drawn
from the full model. These estimates were obtained by taking the
mean of 1,000,000 samples drawn from the posterior distributions
of the object and feature count parameters (using the “posterior”
function of the BayesFactor package), yielding an object effect
of �0.0287 (�O in the above equation) and a feature effect
of �0.0070 (�F in the above equation). These values can be
thought of as the slope of accuracy versus object count and feature
count: if one object is added, accuracy decreases by 2.87% and if
one feature is added, accuracy decreases by 0.70%. The estimates
for these effects are reported, along with the model comparison
BFs, for each experiment in Table 1. This table also includes a
brief summary of the defining characteristics of each experiment.

Implicit in the design of this statistical analysis is the fact that
the single-feature conditions are collapsed together because they
all share identical object and feature counts. Thus, the evidence

Table 1
Experiment Descriptions and Primary Results

Experiment Description
Object
BFFR

a
Feature
BFFR

b
Object

slope (%)c
Feature

slope (%)d

1 Direct replication of four-feature experiment of Luck and Vogel (1997) 3.86 � 106 1.25 � 105 �2.87 �0.70
2 Same as 1, except no verbal suppression task 4.91 � 1012 3.01 � 106 �3.14 �0.99
3 Same as 2, except 500-ms sample array presentation 3.02 � 108 6.06 � 102 �2.11 �0.78
4 Same as 2, except different stimulus and background colors 6.49 � 109 6.82 � 105 �2.76 �0.79
5 Same as 4, except only a single object was tested 4.80 � 1011 7.05 � 107 �2.92 �0.79
6 Similar to 5, but participants were cued to specific features of the objects 3.59 � 1011 2.31 � 103 e �3.09 �0.39e

7 Similar to 2, except that objects only had a color and orientation 1.75 � 100 5.88 � 104 �2.83 �0.62
8 Same as 7, except that color and orientation were matched in difficulty 6.02 � 103 3.57 � 1015 �3.40 �0.85

Note. The full model is Âi � � � F�F � O�O � �i; see the results section of Experiment 1 for explanation of all the parameters.
a Bayes factor (BF) of model with both feature and object effect over model with only a feature effect. The FR subscript indicates that the BF is for the
full model over the reduced model. b Same as a but over model with only an object effect. c Estimate of change in accuracy with the addition of one
object (in percentage; �O). d Same as c but change in accuracy with addition of one feature (�F). e For this experiment, the Feature BF and Feature slope
refer to the effect of relevant features at encoding, not including the effect of relevant features at test.
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that accuracy decreases with the addition of more relevant features
is equivalent to there being a difference in accuracy between the
average of the single-feature conditions and the multifeature con-
dition. Still, in order to clearly show the discrepancy from the
statistical result of Luck and Vogel (1997), for this experiment we
performed a five-way univariate within-participant ANOVA on
the attended feature conditions (i.e., an ANOVA on the four
single-feature and one multifeature trial blocks). This analysis
showed a main effect of attended feature condition, F(4, 72) �
21.94, MSE � 0.0169, p � .001, �p

2 � .55, which goes against the
failure to reject the null hypothesis reported by Luck and Vogel.

The data for this experiment are visually summarized in Figure
2. Because most of the experiments in this study are very similar
in design, Figure 2 shows the data from several experiments in a
standardized form. The data are presented in several ways. All
dependent measures are plotted as a function of array size and
grouped by some feature condition. For each experiment, propor-
tion correct, correct rejection rate, and hit rate are plotted for each
attended feature condition. Additionally, within the multifeature
condition, hits for trials on which there was a change are grouped
by which feature changed. Finally, a compound measure of the
difference in the ability to detect changes when accounting for
response bias is used to compare each single-feature condition and
the corresponding feature within the multifeature condition.

The compound measure was calculated in the following way: In
each single-feature condition, the hit rate minus the false alarm rate
was calculated, giving the single-feature change discrimination.
Then, within the multifeature condition, the hit rate for each single
feature minus the overall false alarm rate was calculated (note that
there are no false alarms for any given single feature because if no
change occurs, it is not possible to assign the response to that trial
to a specific feature). Finally, the difference between the single-
feature change discrimination and the multifeature change discrim-
ination was taken and plotted. This compound measure is labeled
“Discrimination difference” in the figure.

The logic behind examining the discrimination difference is as
follows. For full array change detection tasks, the trade-off be-
tween hits and false alarms (receiver operating characteristic
[ROC]) is known to be linear (Rouder et al., 2008). Consequently,
by taking the difference between the hit rate and the false alarm
rate, any difference in response criterion between attended feature
conditions is subtracted out, leaving only the participant’s change
discrimination ability. Taking the difference in discrimination be-
tween each single-feature condition and the corresponding feature
in the multifeature condition, it can be seen for each feature if there
was a deficit in discrimination for that feature in the multifeature
condition relative to the single-feature condition. If the discrimi-
nation difference is positive, it means that participants were better
able to discriminate between change and no change trials for that
feature in the single-feature condition than in the multifeature
condition.

In order to make it possible to find evidence for the null
hypothesis that the discrimination difference was zero, we used a
Bayesian t test (Rouder, Speckman, Sun, Morey, & Iverson, 2009)
for each feature collapsed across array sizes. For the Bayes factors
that are reported, the alternative hypothesis was in the numerator
for the model comparison, which means that Bayes factors greater
than one are support for the existence of a discrimination differ-

ence not equal to zero. In this experiment, there was evidence that
the discrimination difference was greater than zero for color
(1.94 � 104), gap (85.5), and length (5.75). There was a small
amount of evidence that the discrimination difference was zero
for orientation (0.67), although a BF this close to 1 is not very
strong evidence for either hypothesis. Results of the discrimi-
nation difference tests for all experiments are reported in Table
2. The discrimination difference results are not necessarily
reported in the results section of each experiment individually.
A summary of the discrimination difference results is provided
in the discussion of Experiment 8.

Discussion

The results of this experiment were clearly dissimilar from those
of Luck and Vogel (1997), who found no effect of feature load.
Using the same stimuli and methods as the original experiment, we
found a clear effect of feature load. We cannot attribute our failure
to replicate Luck and Vogel to our choice of statistical techniques
because when we performed the same statistical analysis on our
data as was performed by Luck and Vogel, we obtained a result
that was incompatible with theirs. This result contradicts the re-
sults of Luck and Vogel and contradicts the hypothesis that visual
WM always stores the same number of objects with all of the
features of those objects intact. At the same time, we also found
support for the importance of object load to performance. We do
not have any interest in arguing against the importance of objects,
just in showing evidence for the importance of features. In fact, our
estimated object load effect is larger than the feature load effect.

Because we used a linear regression approach with both object
and feature effects in the model, our analysis examined the effect
of object load while statistically controlling for feature load. Our
results showed that it does not seem to be possible to support the
idea that feature load by itself is able to fully account for accuracy
in our task. This is in contrast to the finding of Wheeler and
Treisman (2002) that object load does not affect accuracy if feature
load is equated. One plausible reason for the difference in findings
is that the experiment in which Wheeler and Treisman obtained
their result differed meaningfully from ours in that their objects
possessed two different colors. In our experiments, the features of
each object are drawn from different feature dimensions. By draw-
ing features from the same feature dimension, Wheeler and Tre-
isman may be examining a different effect than we are. What we
can say is that it may not be generally true that feature load can
wholly account for performance in WM tasks.

Our analysis leaves open the possibility that there is a separate
capacity limit for each type of feature. It is possible that in the
multifeature condition at array size two, participants are able to fill
all four feature-specific stores with a small amount of information
relative to the capacity of the stores. On the other hand, in the
single-feature conditions they may run out of storage for that
particular feature, resulting in poorer performance in the single-
feature conditions. This possibility could explain why we did not
find the same substantial result as Wheeler and Treisman (2002).
In their task, participants would have had to fill the same feature
store (color) in both the single- and multifeature conditions, which
could result in equivalent performance regardless of object load if
the color store was fully filled at the smallest array size.
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Figure 2. Plots of data from Experiments 1 to 5. Array size is plotted on the x-axis. Rows of panels, from top
to bottom, show overall proportion correct on the task, correct rejection rate, hit rate, hit rate for each feature
within the multifeature condition, and change discrimination difference for each feature (see the Results section
of Experiment 1 for more detail). Note that the scale of the y-axis varies. In a corner of each panel is an error
bar showing a 95% repeated-measures confidence interval (see Hollands & Jarmasz, 2010, for a summary of the
method) that applies to each data point in the panel. The legend applies to all panels in the figure.
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One visually striking result is the apparent equivalence in pro-
portion correct between the multifeature condition and the length
condition, which can be seen in the top row of Figure 2. If those
conditions are in fact equally difficult, one interpretation is that
performance in the multifeature condition is limited by the most
difficult single feature of the objects. One reason why we think the
weakest link interpretation is wrong is our change discrimination
difference analysis. We found reasonable evidence that the change
discrimination difference for length was not zero, which indicates
that there was a loss in the ability to detect length changes in the
multifeature condition relative to the length single-feature condi-
tion. This goes against the weakest link hypothesis, because per-
formance for the weakest link should not be able to go down in the
context of other features. Additionally, in Experiment 8 we found
that the multifeature condition was more difficult than either of the
single-feature conditions, which was caused by adjusting the rel-
ative difficulties of the individual features.

It is not clear to us why our results were discrepant from those
of Luck and Vogel (1997). We made every attempt to bring our
methods in line with those reported by Luck and Vogel, even
extracting additional methodological detail from Vogel et al.
(2001). Over the next several experiments, we attempt to replicate
our own result using a variety of minor (and major) changes to the
method in order to rule out the possibility that we obtained an
unusual sample in this experiment or that there was an error in our
methods that caused us to obtain results discrepant from the results
of Luck and Vogel.

Experiment 2

The purpose of this experiment was to determine if the verbal
load task has a meaningful effect on accuracy in this particular
task. Research by C. C. Morey and Cowan (2004) showed that
secondary verbal loads consisting of two digits do not have an
effect on accuracy in visual WM tasks similar to those used in this
study. However, C. C. Morey and Cowan did not investigate how
verbal load affected accuracy in a task that used visual objects with
multiple features. Multifeatured objects in visual WM may be
affected differently by secondary verbal loads than simple, single-
featured objects. If this is the case, the choice to use secondary
verbal loads and the nature of those loads must be carefully
considered for these confirmatory experiments. If not, the use of
such a task may be discontinued.

This experiment differed from Experiment 1 by the removal of
the verbal load task. Instead of fixating on a number, participants
in this experiment fixated on a small cross in the center of the
screen. The blank interval following fixation in Experiment 1 was
important as it allowed time for participants to begin passively
rehearsing the number. Because this experiment had no such
secondary task, this blank interval was removed in order to in-
crease trial density. As the results will show, this manipulation had
no meaningful effect on the pattern of results. Because no second-
ary task was used, there was no need for an experimenter to
monitor participants during their session, so the monitoring was
discontinued for this and all following experiments. In this exper-
iment, participants performed 120 trials per attended feature con-
dition for a total of 600 trials. In this experiment, data from 16 new
participants (10 female, mean age 18.6 years) drawn from the same
population of those in Experiment 1 were used.

The data from this experiment are plotted in Figure 2. As in
Experiment 1, the full model with both object and feature effect
was strongly supported over either reduced model (see Table 1 for
model comparison results and slopes). To test whether the slopes
of the object and feature effects were the same between this
experiment and Experiment 1, some between-experiment models
were compared. A between-experiments full model was created
that had the same object and feature effects as the standard full
model. In addition, the between-experiments full model also had a
categorical effect for experiment (with two conditions, one per
experiment) and interaction terms for experiment by object and
experiment by feature. This model was compared with two
between-experiments reduced models that lacked either the object
by experiment interaction term or feature by experiment interac-
tion term. If the slopes of the object or feature effects differ
between the experiments, then we would expect the corresponding
interaction term to substantially improve the fit of the model to the
data. In that case, the model with the interaction term should be
preferred to the model without the interaction term. The reduced
model without the object by experiment interaction term was
preferred over the full model (BFRF � 10.7), suggesting that there
was no meaningful difference in the object effect between exper-
iments. The reduced model without the feature by experiment
interaction term was marginally preferred to the full model
(BFRF � 1.79). This suggests that for the feature effect there was
no difference between experiments, although this result is nearly
equivocal about the existence or nonexistence of a difference. This
analysis suggests that if there are differences in slopes observed
between this experiment and Experiment 1, they are too small to be
easily detected, but the evidence is against a difference.

This result indicates that there is no clear reason to continue
using the verbal load task in its current form in this type of
experiment, as it does not seem to have an effect on the parameters
of interest. We have chosen to discontinue the use of such a task
for further experiments in this study. Although we had the option
of increasing the verbal load and examining the effects of such a
manipulation, we chose instead to neglect the contributions of
verbal memory for this set of experiments with the possibility of
continuing this line of research in the future. Due to the rapid
presentation of stimuli and short maintenance period, it is ques-
tionable if verbal recoding is generally an effective strategy at all.
It is even more questionable whether any advantage in accuracy

Table 2
Bayes Factors for Change-Discrimination Difference for Each
Feature Versus Null Model of No Difference

Experiment Color Gap Length Orientation

1 1.94 � 103 85.5 5.75 0.67
2 2.40 � 104 50.0 12.8 13.0
3 2.02 � 104 8.13 10.4 2.91
4 472 67.9 0.59 5.99
5 1.71 � 104 107 22.5 5.02

6 (FC � TC) 4.21 � 104 175 0.92 0.92
6 (TC � NC) 23.3 89.7 0.28 0.48

7 0.64 0.88
8 38.5 12.2

Note. FC � fixation cue; TC � test cue; NC � no cue.
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achieved through verbal recoding would be worth the cost of the
additional effort required in order to enact such a strategy.

Experiment 3

The purpose of this experiment was to determine what effect
sample array presentation time has on the pattern of results we
have observed so far. Although sample array presentation time was
previously ruled out by Luck and Vogel (1997) as an important
contributor to accuracy, because of the striking differences be-
tween our results and theirs we were interested to see what effect
it might have on the patterns of results we were obtaining.

The relationship between accuracy in the multifeature condition
and the most difficult single-feature condition (length) might be
explained by the results of Vogel, Woodman, and Luck (2006),
who found that there was a minimum amount of time needed to
consolidate a WM representation. If the amount of time it takes to
encode an object is limited by the most-difficult-to-encode feature,
it could be that when participants are attempting to encode all the
features of each object in the multifeature condition, their accuracy
is limited by the amount of time it takes to encode the lengths of
the objects, length being the most difficult single feature in our
experiments. If participants are given a much longer encoding
time, then encoding should no longer be a bottleneck and accuracy
in the multifeature condition would not be limited by the most
difficult single feature if encoding time is in fact a limiting factor
of accuracy.

This experiment differed from Experiment 2 by increasing the
sample array presentation time to 500 ms. The blank interval
between sample and test was maintained at 900 ms. Data from 15
participants (seven female, mean age 20.6 years) were used in this
experiment. Three additional participants’ data were removed for
failing to meet the single-block accuracy cutoff (less than 55%
correct).

As in the previous experiments, the full model with both object
and feature effects was strongly supported over either reduced
model (see Table 1 for results and Figure 2 for plots of the data).
The slopes of the object and feature effects were similar to those
found in Experiment 2. When this experiment was compared with
Experiment 2 using the same method that was used to compare
Experiments 1 and 2, the between-experiments reduced model
without an object by experiment interaction term was preferred to
the full between-experiments model (BFRF � 3.81), as was the
reduced model without a feature by experiment interaction term
(BFRF � 4.54). Thus, increasing the encoding time fivefold did not
meaningfully affect the feature or object effects. The encoding rate
suggested by Vogel et al. (2006) was about 50 ms per item, which
would mean that a 500 ms encoding interval should be sufficient
for encoding enough items to fill the WM of most participants. The
fact that we still observe a loss in accuracy with increasing feature
count suggests that our pattern of results is not caused by an
encoding time bottleneck.

Experiment 4

This experiment was performed in order to determine if the
background color on which the objects were presented affected
accuracy. As mentioned in the method for Experiment 1, the
background colors initially used by us differed from the values

reported by Vogel et al. (2001) because we based our color values
on a figure in Luck and Vogel (1997). Presumably, the figure was
modified for better visibility in a print format and did not reflect
the actual color values that were used. The most important differ-
ence was that the background color we used for Experiments 1–3
was far brighter than was reported in Vogel et al. (2001). We
performed this experiment to determine what effect changing the
brightness of the background would have. Of primary concern was
the ability to distinguish the black gap in objects from the back-
ground. With the lighter background colors used in the previous
experiments, the gap and background were clearly distinguishable.
In this experiment, as in the original experiments (Vogel et al.,
2001), it is possible that the gap might not be distinguishable from
the background, which might result in participants perceiving
objects with gaps as two separate objects. The color values for the
red and green objects were also changed somewhat in order to
maintain high contrast between the objects and the background.

The method of this experiment was identical to those in Exper-
iment 2 except for which stimulus color values were used. The
RGB values of the colors used in this experiment were as follows:
background (50, 50, 50), red (255, 0, 0), and green (0, 255, 0). Data
from 13 participants (12 female; mean age 18.4 years) who took
part in this experiment were used in the analysis. Three additional
participants failed to meet the accuracy criterion and their data
were removed from the analysis.

As Table 1 shows, the results of this experiment are similar to
previous experiments. The slopes of the object and feature effects
were similar to those found in Experiment 2. When compared with
that experiment, the between-experiments reduced model without
an object by experiment interaction term was preferred to the full
between-experiments model (BFRF � 10.6), as was the reduced
model without a feature by experiment interaction term (BFRF �
4.87). The result of this experiment indicates that our results are
not dependent on the specific lightness of the background that is
used. Of course there still exists the possibility that another color
combination would result in a different outcome, but this experi-
ment indicates that our results are not fully stimulus-bound. Mov-
ing forward, we do not continue to pursue the issue of background
color and instead focus on how the decision phase of the task
might affect our results.

Experiment 5

In this experiment we presented a single object from the sample
array as a probe, with a possible change in one feature, rather than
presenting the entire array again as a probe with a possible change
in a feature of one object. As Luck and Vogel (1997) pointed out,
this method limits to one the number of objects for which a
decision must be made. Of course, this method still requires
decisions about multiple features on a single trial in the multifea-
ture condition, an issue we will address in the following experi-
ment.

This experiment is identical to Experiment 4 (dark background)
except for the way in which participants were tested. In order to
present a single object to participants at test, all of the irrelevant
objects from the sample array were replaced with a placeholder in
that location. This was done by replacing all but one of the objects
in the test array with an unfilled white circle in the location of the
original objects that were presented in the sample array. The
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presentation of location information about the irrelevant objects
would allow participants to identify the target object in the context
of the array. This was important because features were allowed to
repeat within a given array, leaving location as the only unique
identifier of each object. The single object that was not replaced
with a placeholder was the critical object about which a change-
detection decision was required. On any given trial, there was a
50% probability that one feature of the critical object would
change. Of the 26 participants who participated in this experiment,
eight were removed for falling below the 55% single-block accu-
racy criterion, leaving 18 (10 female; mean age 18.9 years) to be
used in the analysis.

As shown in Table 1, the main results of this experiment are
very similar to previous experiments. When a between-
experiments comparison was performed with Experiment 4, the
reduced model without an object by experiment interaction term
was preferred to the full between-experiments model (BFRF �
12.0), as was the reduced model without a feature by experiment
interaction term (BFRF � 12.4).

Although in this experiment there was a constraint on the
number of decisions that had to be made, the pattern of accuracy
change with features and objects is very similar to all of the
preceding experiments. Examination of hits and correct rejections
shows that participants were more likely to respond that there had
been a change in this experiment when compared with our previ-
ous experiments (see Figure 2 for plots of hit and correct rejection
rates). This criterion shift can only be attributed to the use of a
single-item probe in this experiment (as this was the only change
from Experiment 4), so it is not of interest when considering
storage processes. Although this experiment reduced the number
of decisions participants were required to make, participants were
still required to make more decisions in the multifeature condition
relative to the single-feature conditions. As a result, this experi-
ment does not fully control for decision errors, and the issue will
be explored in more detail in Experiment 6.

Experiment 6

This experiment is intended to extend the results of the previous
experiments by presenting a cue to indicate which feature will be
tested (see Figure 3). The method is similar to that used by Cowan
et al. (2013) in which participants were cued at test to a specific
feature dimension in which a change may have occurred. In this
experiment we sometimes presented feature cues at test and some-
times before presentation of the sample array, which allowed for a
direct comparison of accuracy between conditions in which par-
ticipants were able to use information about the target feature at
encoding versus conditions in which participants were only made
aware of the target feature at test. This comparison is a direct test
of whether objects are the sole limiting factor of storage in visual
WM. If objects are the sole limiting factor of storage, there would
be no advantage for the condition in which participants are cued
before seeing the sample array, because the same number of
objects would be stored regardless of when the cue is given.
However, if objects are not the sole limiting factor of storage, and
there is also a limit to the amount of featural information that can
be stored, it is expected that selective attention to the target feature
at encoding would allow more information about that feature to be
stored, resulting in improved accuracy.

We chose to use a single-item probe, as it has the advantage of
limiting the number of decisions that a participant must make
when giving a response. Because both a feature and an item are
cued, only a single decision must be made at test. A benefit of this
design is that it allowed us to examine the possibility that the
limiting factor in the multifeature conditions was that participants
had to perform a feature-by-feature search of the test array. If
participants do not know what feature might have changed, they
may have needed to perform a serial search of the test array for a
difference from the representation they held, which would result in
reduced accuracy if the search was slow enough for the represen-
tation to lose fidelity before search terminated. If this were the
case, the difference between the single- and multifeature condi-
tions could have been due to memory search, not storage. In this
experiment, because participants were only required to make a
single decision about one feature of one object, the differences
between test conditions were eliminated. The comparison of con-
ditions that differed in terms of when participants were cued to the
target feature shows more clearly the effect of feature load in
memory, while controlling for test differences.

Method

Participants. Thirty participants (19 female; mean age 18.4
years) who participated in this experiment were used in the anal-
ysis. Two additional participants were removed for falling below
the accuracy criterion.

Materials. The stimulus objects in Experiment 6 possessed
the same four feature dimensions as in the previous experiments.

Figure 3. Example of the task used in Experiment 6. The three cuing
conditions are demonstrated by showing the combinations of cues shown at
fixation and at test for each condition. The postfixation blank, sample
array, and retention interval were the same for each condition.
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The colors of the stimuli were modified slightly in order to match
the colors on luminance. For the red objects, the RGB values were
(255, 0, 0) and for the green objects, the RGB values were (0, 246,
0). The L� value in the L�A�B� color space was 80 for both of
these colors. Like in Experiment 5, only a single object was
presented at test and all other objects were replaced with white
(255, 255, 255), unfilled circles (as in Experiment 5; see Figure 3).
The background was a medium-dark gray (60, 60, 60).

The placement of the stimulus objects in arrays were changed in
order to reduce collisions between objects, with a new distance of
2.25° between the centers of objects. Collisions were possible
using the previous settings because although the objects were at
most 2.0° long and center-to-center distance was held at 2.0°, the
long rectangles were greater than 2.0° long when measured from
diagonally opposite corners. This led to some occurrences of
slightly overlapping or touching objects in previous experiments
that will be impossible in this experiment with the increased
center-to-center distance.

Procedure. Once given instructions, participants performed a
short practice block of 18 trials with the experimenter observing.
The practice trials included two trials with each combination of
cued feature and cue presentation point (discussed further below)
with array size selected randomly. Participants then completed five
trials blocks with rest periods in between. Each trial block had
identical instructions and within each block there were trials of
each cue type at each array size.

The procedure for this experiment is presented graphically in
Figure 3. The sequence of a single trial in this experiment
differed from past experiments by the addition of textual cues
that indicated which feature was allowed to change on that trial.
The feature cues were a single word (e.g., “Color”). If the
participant was not cued to a specific feature at a given point,
they were shown a neutral cue, which was a series of dashes
(“– – – – – – – – – –”). Cues (including neutral cues) were
presented 4.65° below the center of the screen using an 18-point
font at both fixation and test on all trials. Participants were to
interpret the cue words as a fragment of the phrase “The [cue
word] of this object is ______” and to fill in the blank by
responding “the same” or “different” using the same keys as our
previous experiments.

As Figure 3 shows, on fixation-cue trials, participants were
presented with a feature-specific cue at fixation, which allowed
participants to have full knowledge of the feature that would later
be tested while they were encoding the test array. These trials were
similar to trials in the single-feature trial blocks of our previous
experiments in that participants had full knowledge of the target
feature throughout the trial. In order to ensure that the cue was not
forgotten during the trial, on fixation-cue trials the same cue word
that was presented at fixation was always presented again at test.
On the test-cue trials, participants were given a neutral cue at
fixation but a feature-specific cue at test. This condition, when
compared to the fixation-cue condition, allows us to determine if
knowledge about the target feature at encoding causes a change in
accuracy, a finding that would not be predicted if objects are the
sole limiting factor of storage. Finally, on no-cue trials, partici-
pants were given a neutral cue at fixation and another neutral cue
at test. This condition is similar to the trials in the multifeature
blocks in prior experiments, because the participant has no infor-
mation about which feature might change. Participants performed

540 total trials divided among five trial blocks of 108 trials each.
Each trial block contained an equivalent distribution of trials:
Within each trial block there were four trials of each trial type
(nine types) at each array size. The nine trial types were the no-cue
trials, test-cue trials for each of the four features, and fixation-cue
trials for each of the four features.

Results

In this experiment, we have the ability to separate out the effect of
relevant feature count at encoding (presumably meaningful in terms
of memory storage) and relevant feature count at test (presumably
related to errors in retrieval or decision making). Regardless of cuing
condition, the number of objects was simply the array size. The
number of relevant features at encoding was equal to the array size in
the fixation-cue condition, and it was equal to the array size times four
in the test-cue and no-cue conditions. The number of relevant features
at test was one for both the fixation-cue and test-cue conditions, and
it was four in the no-cue condition.

A full model with linear effects for object count, relevant
features at encoding, and relevant features at test plus a random
effect for participant was constructed. This full model was com-
pared with three reduced models, each of which lacked one of the
object or feature effects from the full model. The full model was
preferred to all of the reduced models, with a BFFR of 3.59 � 1011

over the model lacking an object count effect, a BFFR of 2.31 � 103

over the model lacking a relevant features at encoding effect, and
a BFFR of 1.71 � 104 versus the model lacking a relevant features
at test effect. The slope of the object count effect was similar to
previous experiments (�3.09%). The slopes for relevant features
at encoding and relevant features at test were �0.39%
and �1.87%, respectively. The slope that we are most interested in
is the slope of relevant features at encoding, which shows the
feature load effect in memory while controlling for feature load at
test.

One way to compare this slope with the overall feature effect
slopes from our previous experiments is by plotting the data with
relevant features on the x-axis, which we did in Figure 4. An can
be seen in Figure 4B, there is a clear decrease in accuracy between
the fixation-cue condition and the test-cue condition at each array
size. With this figure, it is possible to visually compare the features
at encoding slope obtained in this experiment with the average of
those obtained in our other experiments, which did not cue specific
features at test. Figure 4A shows the slopes obtained in our other
experiments, which are steeper than the slope of relevant features
at encoding shown with solid lines in Figure 4B. Clearly, the
magnitude of the effect of relevant features at encoding obtained in
this experiment is smaller than the overall feature effect from our
previous experiments. This seems reasonable because this exper-
iment controlled for the effect of relevant features at test, which
was not done in previous experiments. In this experiment, the
impact of increasing the number of relevant features at encoding is
small relative to the cost adding additional objects: The ratio of the
object count slope to the relevant features at encoding slope is
approximately 8. However, in spite of the magnitude difference
between these effects, there is still an effect of adding features to
the memory load that improves model fit meaningfully. Although
features have a smaller effect on accuracy than objects, feature
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load must be taken into effect in order to provide a complete
account of the data.

More standard representations of the data from this experiment,
with array size on the x-axis, are shown in Figure 5. Figure 5A
shows the same data plotted in Figure 4B but as a function of array
size and cuing condition, which provides a different perspective on
the data showing the clear accuracy differences between cuing
conditions. Figures 5B, 5C, and 5D present feature-specific results
from each of the three different cuing conditions. Examination of
these plots indicates that the relative difficulties of the individual
features in the fixation-cue and test-cue conditions were similar to
our previous experiments, with generally best performance for
color and worst performance for length. This indicates that cuing
specific features does not appear to change the relative difficulty of
the features.

For this experiment, change discrimination difference compar-
isons were made separately between the fixation-cue and test-cue
conditions and between the test-cue and no-cue conditions. Be-
tween the fixation-cue and test-cue conditions, there was good
evidence that the change discrimination difference the color and
gap features was nonzero, but the evidence was equivocal for the
length and orientation features. See Table 2 for the values of the
Bayes factors. Between the test-cue and no cue conditions, there
was again evidence that the color and gap features had a nonzero
change-discrimination difference. However, for the orientation and
length features, the evidence was weakly toward the null hypoth-
esis of no difference. The change discrimination differences are
plotted in Figures 5E and 5F.

It is possible to obtain estimates of the number of features of
different types that are in WM based on performance in different
conditions. In both the fixation-cue and test-cue conditions, par-
ticipants were cued to make a decision about a single feature of a

single object, which means that we can use a single-probe model
in order to get our capacity estimates (Cowan, 2001; Rouder et al.,
2008). The capacity estimates for each feature were only estimated
at array size 6 due to concerns about ceiling effects present at the
smaller array sizes (see the Appendix for more information about
the ceiling effect). In the fixation-cue condition at array size 6,
participants knew an average of 4.0 colors, 3.0 gaps, 1.7 lengths,
and 2.3 orientations. In the test-cue condition, participants knew an
average of 2.4 colors, 1.8 gaps, 1.4 lengths, and 2.0 orientations.
Unsurprisingly, participants knew more of the cued features in the
fixation-cue condition, which parallels the accuracy results. What
is more interesting is that in the test-cue condition, participants
knew an average of 7.5 total features (rounding error is responsible
for this value not matching the sum of the reported amounts
above), which is 1.5 more than the number of objects in the array.
To compare the amount of information known in different condi-
tions, we should consider the average amount of information that
is encoded in both conditions. For the fixation-cue condition, this
is simply an average of the number of known features. However,
for the test-cue condition, it is a sum of the number of known
features because on each trial the participant was required to
encode information about all of the features, so their performance
is based on the average amounts of each feature that were encoded.
A t test comparing the average number of features known in the
fixation-cue condition (2.8) to the sum of the number of features
known in the test-cue condition (7.5) gave strong evidence for a
difference, BFFR � 5.74 � 105, favoring the test-cue condition.
This shows that when participants are made responsible for all of
the features of the objects in the test-cue condition, they are able
to remember a greater total amount of relevant information than
in the fixation-cue condition. We cannot say that they are remem-
bering more information without the “relevant” qualifier, because

Figure 4. Plots of the data from all experiments, highlighting the effect of feature load. The y-axes show
proportion correct responses. Error bars represent standard error. Lines connect conditions matched in terms of
array size, where the topmost group is array size 2 and the bottommost is array size 6. Solid lines in B indicate
loss in accuracy as the number of stored features increases, whereas dashed lines in both panels indicate loss in
accuracy as both the number of stored features and tested features increases. A. Plot of data from Experiments
1–5, 7, and 8, where the x-axis is the number of relevant features at both encoding at test. Square symbols
indicate the single-feature conditions, upward pointing triangles indicate the multifeature conditions for exper-
iments with two features (Experiments 7 and 8), and downward pointing triangles indicate multifeature
conditions for experiments with four features (Experiments 1–5). B. Plot of data from Experiment 6, where the
x-axis is the number of relevant features at encoding.
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it may be that in the fixation-cue condition, participants remember
irrelevant features that they have not been cued to remember. This
result is interesting in part because worse performance in condi-
tions in which multiple features are relevant can lead to the
impression that participants are doing something badly in those
conditions. However, this result shows that they are doing very
well in terms of stored information, and their poor accuracy is
due to the high difficulty of the task relative to single-feature
conditions, and not due to the amount of information they are
remembering.

When only a single feature of the objects was relevant (fixation-
cue condition), the number of features known of different types
varied (BFFR � 7.14 � 106), as can be seen in Figure 5C. This
could be taken as evidence for the possibility of feature-specific
capacity limits. Certainly, a limit to the number of known objects
cannot account for the difference, because if WM was only limited
by object capacity, participants would remember the same number
of objects in each condition. However, an alternative explanation

to feature-specific capacity limits is that the magnitudes of the
changes may have differed from one feature to another. Perhaps
the addition or removal of a gap is of a different magnitude than a
change from red to green. If the magnitudes of the changes differ,
then it is possible that the same number of features from each
dimension are held with the same precision but that some changes
are harder to detect than others.

Discussion

The design used in this experiment allowed for a direct test of
the hypothesis that feature load has no effect on accuracy. By
comparing accuracy on fixation-cue and test-cue trials, it can be
determined if participants can improve their accuracy by using
information about the feature on which they will be tested. If
participants have unlimited feature storage capacity, it would not
matter whether they are cued before encoding or at test. However,
as the results clearly show, it does matter when participants are

Figure 5. Plots of data from Experiment 6. Results are collapsed across change and no-change trials in all
but D, which did not have no-change trials specific to each feature. A. Proportion of correct responses by
cuing condition collapsed across features. B. Proportion correct in the fixation-cue condition. C. Proportion
correct in the test-cue condition. D. Proportion of correct responses by changed feature within the no-cue
condition. E. Difference in change discrimination between the test-cue (TC) and no-cue (NC) conditions.
F. Difference in change discrimination between the fixation-cue (FC) and test-cue (TC) conditions. Error
bars for A, B, and C represent 95% repeated-measures confidence intervals (Hollands & Jarmasz, 2010);
others represent standard error, because the structure of data made it impossible calculate the repeated-
measures confidence intervals.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

12 HARDMAN AND COWAN



cued. In particular, accuracy was worse when, at the time of
encoding, participants did not know on which feature of the objects
they were to be tested (see Figure 5A). This result is predicted very
clearly if it is thought that feature storage is capacity-limited. If
participants do not know which feature they will be tested on at the
time of encoding, they have to be able to store information about
every feature in order to perform optimally. If they are unable to
store information about every feature, then performance will suf-
fer. Given that accuracy in the test-cue condition is reduced rela-
tive to the fixation-cue condition, it is reasonable to think that
feature storage is capacity-limited.

One possible explanation for the results of this experiment that
still allows for high- or unlimited-capacity feature storage is an
inherent inequality between the fixation-cue and test-cue condi-
tions. In the fixation-cue condition, the cue word presented at test
was always the same as the cue presented at fixation, so partici-
pants did not need to look at the cue word presented at test in order
to perform the task. However, in the test-cue condition, partici-
pants have to determine which feature they must make a decision
about at test. The additional time and/or cognitive load required in
the test-cue condition to comprehend the feature cue could reduce
accuracy for reasons unrelated to storage capacity. On the other
hand, accuracy in the test-cue condition was reliably better than
accuracy in the no-cue condition, showing that there was a distinct
benefit of having a cue in the test-cue condition. Still, it is possible
that accuracy in the test-cue condition was affected by processing
of the cue and that we are overestimating the advantage that the
fixation-cue condition has over the test-cue condition.

The finding that accuracy in the no-cue condition was worse
than that in the test-cue condition indicates the importance of
performing this experiment. The only difference between those
two conditions was that the number of features that participants
were tested on differed. This means that there is a factor which
affects accuracy when participants are required to make decisions
about multiple features of an object at once. One possibility is that
participants scan each feature in serial order when making a
decision, which would force some features to wait longer before
they are scanned. This would allow the quality of the stored
representation to degrade, causing errors on later features. Alter-
natively, there could be a component of decision error that results
from the difficulty of integrating information about multiple fea-
tures when making a decision. Whatever the factor that caused the
difference between the no-cue and test-cue conditions is, it was
likely also present in the multifeature conditions of our previous
experiments and may have led to an underestimate the ability of
WM to store multifeature objects in those experiments. This ex-
periment helps to control for this problem and allows for a more
clearly interpretable result than our previous experiments.

Experiment 7

One limitation of the stimuli used in the four-feature experi-
ments that we have performed so far is that each feature can only
take on two states (e.g., the orientation can be only vertical or
horizontal.) It is possible that this impoverishment of feature states
resulted in the use of storage strategies that would not generalize
to richer stimuli. To begin to address this possibility, we tried to
extend our results to a situation in which features were allowed to
take on more states. In this experiment, we used the same long

rectangular bars as in the four-feature experiments, but only the
color or orientation of the bars was allowed to change. In order to
increase featural richness, we allowed each of the feature dimen-
sions to take on any of four values (see Figure 6 for an example of
the stimuli). This experiment is based very closely on another
experiment from Luck and Vogel (1997; numbered Experiment 11
in Vogel et al., 2001).

Data from 21 participants (eight female, mean age 19.9 years)
were used. One additional participant was not included in the
analysis because they fell below the accuracy criterion. Three of
the participants in this experiment were recruited from the com-
munity and were paid $15 for their participation. The materials
used in this experiment differed from those of other experiments in
that each object could possess any of four colors and orientations.
The orientations were 0, 45, 90, and 135 degrees (because the bars
were rotated around a central point, 0 degrees is equal to 180
degrees, 45 degrees is equal to 225, etc.). The rectangles were the
same dimensions as the long rectangles used in the other experi-
ments and did not have a gap. The colors used in this experiment
were red (255,0,0), green (0,246,0), cyan (0, 254, 255), and ma-
genta (255, 0, 255) for the objects and background (60, 60, 60).
These were not the same colors used by Luck and Vogel (1997),
who used red, green, blue, and black. Our stimuli were still easily
discriminable, so we find it unlikely that the colors would have an
effect of the results. The increased center-to-center spacing of
objects of 2.25° introduced in Experiment 6 was used in this
experiment as well. There was no secondary verbal load task in
this experiment. See Figure 6 for a diagram of the method for this
experiment and examples of the stimuli. In this experiment, there
were two-single feature trial blocks (color and orientation) and one
multifeature trial block, each with 180 trials.

Figure 6. Diagram of the task used in Experiment 7. This figure shows
how the stimuli for this experiment can take on a greater range of feature
values than stimuli in the earlier experiments while also reducing the
feature load in terms of the number of feature dimensions per object.
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The data for this experiment are plotted in Figure 7. As shown
in Table 1, the main results of this experiment are similar to the
previous experiments that used four features with two possible
states per feature. When using two features with multiple possible
states per feature, we still find similar accuracy slopes as a function
of object and feature count. Unlike our other experiments, in this
experiment we did not find very strong evidence that including the
object effect in the model improved the fit of the model, suggesting
that feature load alone provided a very good account of the data.
The use of feature sets that included more than two possible
feature values helps to reduce the likelihood that our previous
results were solely caused by an artifact of using feature sets that
possessed only two of the many possible values.

When the difference in change discrimination between the
single- and multifeature conditions was examined, the evidence
did not provide clear support either for or against a difference.
With a BFFR of 0.64 for color and a BFFR of 0.88 for orientation,
the evidence pointed toward the null, albeit weakly. It is not clear
why the evidence points toward no change discrimination differ-
ence for both of the features in this experiment. In our other
experiments there were always at least two features for which there
was a nonzero change discrimination difference (see Table 2). It is
possible that this difference between experiments is due to the
differences in the stimuli, or it could be caused by the fact that the
multifeature condition accuracy is not very different from accuracy
in the single-feature conditions, which would result in small and
hard to detect change discrimination differences. Our inability to
find a change discrimination difference in this experiment is one of
the reasons why we performed Experiment 8, in which we con-
trolled the difficulty of the stimuli more than in this experiment.

In this experiment it still appears by visual examination of
Figure 7 that accuracy in the multifeature condition was equivalent
to that in the most difficult single-feature condition. This is notable
because in this experiment orientation was the most difficult single
feature, whereas length was the most difficult single feature in
previous experiments. It was previously hypothesized that there
was something about the length feature of the objects that was
limiting accuracy on the multifeature condition. However, we see
here that accuracy in the multifeature condition is generally limited
by the most difficult single feature in the set of salient features, not
by a specific feature dimension. In the next experiment, we focus
on this finding in an attempt to determine if it is possible to
eliminate the correspondence between the multifeature condition
and the most difficult single-feature condition.

Experiment 8

There seems to be a correspondence in proportion of correct
responses between the multifeature condition and the most diffi-
cult single-feature condition in our experiments. This finding
evokes a sense that perhaps the most difficult feature is the
weakest link and that it is what limits performance in the multi-
feature condition, which goes against our interpretation of a gen-
eral effect of feature load. We tested whether accuracy in the
multifeature condition was equivalent to the most difficult single-
feature condition with a Bayesian t test. In the first comparison, we
collapsed across Experiments 1 to 5 and found a BFRF of 5.32 in
favor of the hypothesis that there was no difference. Furthermore,
in Experiment 7, we found a BFRF of 2.96 in favor of the same

Figure 7. Plots of data from Experiments 7 and 8. Array size is plotted on
the x-axes, and the labels shown on the y-axes are the same as in Figure 2.
Note that the scale of the y-axis varies. In a corner of each panel is an error
bar showing a 95% repeated-measures confidence interval for the panel.
The legend applies to all panels in the figure.
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hypothesis. This shows that there is evidence that the visually
apparent correspondence is a real phenomenon. But does it mean
that the most difficult feature is the weakest link? In this experi-
ment, we will attempt an experimental manipulation to determine
if the weakest link hypothesis is tenable.

Given that Luck and Vogel (1997) found equivalent accuracy
for all single-feature conditions, it is possible that we have been
unable to find the same result that they did because for some
reason our stimuli are not equated in accuracy for the individual
features of the objects. If we equate the single-feature conditions
and, as we have been finding, accuracy in the multifeature condi-
tion is equal to the most difficult single feature, we might find the
exact result that Luck and Vogel found. To examine this possibil-
ity, we attempted to equate the difficultly of the color and orien-
tation features. In Experiment 7, accuracy for color was better than
accuracy for orientation, so in this experiment we changed the
colors to be less discriminable in order to decrease accuracy for
color.

In this experiment, data from 33 participants (25 female; mean
age 18.5 years) were used. One additional participant was removed
from the sample due to falling below the accuracy cutoff. The
colors of the stimuli used in this experiment were dark pink (235,
76, 90), pale violet red (210, 94, 140), medium purple (165, 108,
214), and light slate blue (120, 116, 253). The method was other-
wise identical to Experiment 7.

As can be seen in Table 1, the effects of object count and feature
count were similar to previous experiments. When a between-
experiments comparison was performed with Experiment 7, the
reduced model without an object by experiment interaction term
was preferred to the full between-experiments model (BFRF �
8.64), as was the reduced model without a feature by experiment
interaction term (BFRF � 9.64). This supports the claim that the
manipulation of stimulus colors had little meaningful effect on the
main results. The data for this experiment are summarized in
Figure 7.

We verified that the multifeature condition of this experiment
was as difficult as either single-feature condition by performing a
t test on proportion correct between the multifeature condition and
each single-feature condition. The BFFR was 116 for the compar-
ison with the orientation condition and 2.08 for the comparison
with the color condition, providing only a small amount of evi-
dence that the color and multifeature conditions showed different
levels of performance. There was weak evidence that the color and
orientation conditions were equated (BFFR � 0.61). These results
suggest that with this experiment we were able to separate accu-
racy in the multifeature condition from both single-feature condi-
tions. This shows that our previous finding that the multifeature
condition is as difficult as the most difficult single feature does not
hold in all cases. This provides evidence against the possibility that
accuracy in the multifeature condition could be explained by a
weakest link hypothesis.

The other way that we can examine the weakest link hypothesis
is through the change discrimination difference results. The change
discrimination difference measure, discussed in the results section
of Experiment 1, was able to extract information about change
discrimination (hits minus false alarms) for each feature separately
in the multifeature condition. This was compared with the same
hits minus false alarms measure from the corresponding single-
feature condition. If the change discrimination difference is zero,

then there is no loss for that feature. In this experiment, there was
evidence that change discrimination differences were greater than
zero (see Table 2 for the results). However, we can aggregate our
change discrimination difference results across experiments in
order to eliminate any experiment-specific effects and more clearly
see the overall trends in the change discrimination difference
results. For Experiments 1–5, the product of the Bayes factors
resulting from t tests on the change discrimination difference for
each individual feature were 7.61 � 1018 for color, 2.53 � 108 for
gap, 1.01 � 104 for length, and 7.66 � 102 for orientation (see Table
2). For Experiments 7 and 8, the product of the Bayes factors were
24.7 for color and 10.8 for orientation. This shows that although
there may be some variability in certain experiments in the
strength of evidence for the change discrimination difference being
greater than zero, that overall there is strong evidence that for all
features there is a loss in change discrimination when participants
are required to attend to all of the features of the objects. Because
there is a loss for every feature, including the most difficult
feature, it seems very implausible that the most difficult single
feature acts as a weakest link that defines the limit of multifeature
performance.

Based on the evidence from the proportion correct data from
Experiment 8 and from the change discrimination difference re-
sults across all of our experiments, we believe that the finding that
the multifeature and most difficult single-feature conditions were
equally difficult is a coincidence that does not reflect WM pro-
cesses.

General Discussion

The initial purpose of this series of experiments was to deter-
mine if a commonly cited result that showed that objects, but not
features of the objects, were related to visual WM performance
(Luck & Vogel, 1997) could be replicated under a variety of
conditions—including a direct replication. We consistently found
an effect of feature load in experiments using two or four features
per object, whereas Luck and Vogel (1997) found no such effect.
Our studies consist of eight experiments with a total of 165
participants. Given how consistently we have observed an effect of
feature load across a number of experimental manipulations and
different participant samples, we believe our results are reliable.
When our results are combined with the results of two recent
studies that used similar designs (Cowan et al., 2013; Oberauer &
Eichenberger, 2013), it becomes clear that there are a number of
studies that show an effect of feature load when objects possess
multiple features drawn from different feature dimensions. This
helps to show that prior studies that used objects with multiple
features from the same feature dimension (Delvenne & Bruyer,
2004; Wheeler & Treisman, 2002) were not investigating a special
case of feature load. Rather, it seems that feature load affects
performance regardless of whether the features are drawn from the
same dimension or different dimensions, although it is possible
that the magnitude of the effects is different.

We are also interested in whether the magnitude of our
feature load effect depends on the number of relevant features
in the multifeature condition. The visual comparison that can be
made between Figures 2 and 7 seems to suggest that there is a
large difference in feature effect size between the two- and
four-feature experiments. It even appears that we are approxi-
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mately replicating the effect size that Luck and Vogel (1997)
observed in their two-feature experiment that used the same
stimuli as we used in Experiment 7, suggesting that the only
reason they found no effect was due to insufficient statistical
power. Concerning the difference between the single-feature
and multifeature conditions, it should be noted that this differ-
ence would be expected to depend on the number of features
that are relevant in the multifeature condition and, naturally,
this value changes between our two- and four-feature experi-
ments. Thus, one would expect a larger difference for the
four-feature experiments than for the two-feature experiments.
The interesting question is whether the effect of each relevant
feature is different depending on whether two or four features
are relevant. Based on the feature slopes presented in Table 1
(Experiments 7 and 8 vs. previous experiments), the answer
appears to be that the per-feature load effect does not depend on
the number of relevant features. Thus, we would argue that the
visually small effect of feature load observed in Experiments 7
and 8 is in reality in line with the effect we found in our
four-feature experiments.

At the least, we can say that feature load affects accuracy in
procedures very similar to those used by Luck and Vogel (1997).
It is possible that there is an as-yet-unknown boundary condition
controlling feature storage that awaits discovery. Although our
results and the results of others who attempted direct replications
(Delvenne & Bruyer, 2004; Wheeler & Treisman, 2002) are in-
consistent with the feature-conjunction results of Luck and Vogel,
simply failing to replicate a result does not necessarily invalidate
a theory supported by that result. One must seek to eliminate
confounds in order to allow for unambiguous interpretation of
results with respect to a theory. In particular, the theoretical issue
we are interested in is storage in visual WM, so we should attempt
to remove confounds related to the encoding and retrieval of
stimuli in order to verify that our effects are due to visual WM
storage.

Experiment 3 controlled for the possibility that participants’
ability to perform the task was limited by an encoding time
bottleneck. Experiment 5 controlled for the number of objects
about which a decision must be made at test, suggesting that our
pattern of results observed in experiments with a full-array
probe are not due to accumulated decision error across multiple
objects. However, it is possible that accuracy in the multifeature
condition of Experiment 5 was limited by the fact that partic-
ipants were required to make four decisions, one for each
feature of the object. Experiment 6 extended the results of
Experiment 5 by further controlling the number of decisions
that participants were required to make. This showed that when
participants are only required to make a single decision at test,
there is an advantage if participants are able to selectively
encode information about the feature of interest, just as they
were able to do in the single-feature conditions of the other
experiments. This confirms that the results of Experiments 1–5
were not entirely due to decision error. We also verified that
precise stimulus characteristics do not much affect our results
by using different stimulus and background colors in Experi-
ments 4 and 5 than we used in Experiments 1–3. In Experiments
7 and 8, we further verified that we were able to find an effect
of feature load in experiments in which only two features were
allowed to vary between a greater number of feature values per

feature dimension than were used in the four-feature experi-
ments. When combined, these experiments clearly support the
argument that feature load has an effect on WM performance.

We do not currently have the evidence to say what causes the
effect of feature load. There are two obvious possibilities that
should be considered, although they are not exhaustive. One is
that WM can store some limited number of features in a
general-purpose feature store for which the dimensions from
which the features are drawn is irrelevant. The other is that each
feature dimension has its own feature-specific storage mecha-
nism and capacity limit. One of the results of Experiment 6 was
that people appear to remember about 7.5 features when they
are not cued to a specific feature at encoding but are cued to a
feature at test. When participants were cued to a feature at
encoding, they remembered on average 4.0 features for the
easiest feature (color). This suggests that there may not be a
general feature storage mechanism, because otherwise partici-
pants should have been able to remember all of the colors when
that feature was cued at encoding. However, it is also possible
that when only a single feature was cued, participants failed to
encode all of the colors because they hit an object limit before
filling a general feature store. Still, an object limit cannot be the
only explanation, because participants do not remember equal
numbers of all of the features even when they are only cued to
remember a single feature. For example, participants remem-
bered on average 4.0 colors but only 1.7 lengths when cued to
those features at encoding. This provides some evidence for
feature-specific capacity limits. More work on the subject of
feature capacity limits is necessary.

We do not argue that object load is unimportant, simply that
it is not the sole factor contributing to WM performance. In
seven out of eight experiments, we found strong evidence for an
effect of object load (see the “Object BFFR” column in Table 1).
Only in Experiment 7 did the Bayes factor for the object load
effect not provide strong evidence for such an effect. The
reason why the evidence was weak for the effect is not clear,
although it is possible that the experiment simply lacked enough
power to provide strong evidence for the effect (for which
strong evidence was found in the very similar Experiment 8). It
could be that the number of relevant features provided a very
good predictor for performance in Experiment 7 and that the
addition of an object effect did not improve the fit very much
given that a feature effect was already present. Wheeler and
Treisman (2002) reported a similar experiment in which the
number of relevant features fully accounted for their results,
without a need to use object load as a predictor. In contrast to
that result, based on the evidence from our experiments as a
whole it seems clear that we cannot ignore the importance of
object load.

A result that might appear to conflict with ours is that of Awh,
Barton, and Vogel (2007). They found that the reduction in accu-
racy that appears when complex stimuli are remembered could be
attributed to difficulty comparing insufficiently precise stimulus
representations to test stimuli, not to a reduction in the number of
stored representations. The stimuli they used possibly could be
characterized as possessing multiple features, much like our stim-
uli. If their stimuli are similar to ours in terms of possessing
multiple features, it is possible that what they say is an imprecise
object representation we might say is an object for which only
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some of the features are known. As such, we see no necessary
conflict between our results and those of Awh et al.

Analysis of High Performers

One difference between our data and the data of Luck and Vogel
(1997) was that our participants did not seem to perform as well as
the participants of Luck and Vogel. Averaging across feature
conditions at array size six, their participants achieved approxi-
mately 82% accuracy, whereas our participants in Experiment 1
only achieved 73% accuracy. It could be that many of the partic-
ipants used by Luck and Vogel were at ceiling performance and
that the pattern of results we observed only occurs when most
participants are not at ceiling performance. To investigate this
possibility, we chose to examine high performers from our three
most similar experiments: Experiments 1, 2, and 4. These exper-
iments were the same except for the use of a secondary verbal load
task in Experiment 1 and a different set of display colors in
Experiment 4. We collapsed across experiments in order to get a
sample of high performers large enough to allow for statistical
analysis.

We selected a group of participants (N � 7) with an average
accuracy of 81.6% at array size six to be our group of high
performers. In this group of participants, we observed a main
effect of attended feature block (i.e., which feature or features
participants were made responsible for), F(4, 24) � 23.61, MSE �
0.0067, p � .001, �p

2 � .80. The data used in this analysis are
plotted in Figure 8, in which it can be observed that the pattern of
relationships between conditions is very similar to our general
population. These results show that even when we select a sub-

sample of our participants who are matched in accuracy to the
participants of Luck and Vogel (1997), we find an effect where
Luck and Vogel did not. It appears that although the participants of
Luck and Vogel performed better than our participants, it is un-
likely that this is the reason that we did not find their result.

Potential Chunking Confound

It seems likely that participants were able to engage in a rela-
tively large amount of chunking in our experiments due to the type
of objects we used. In our four-feature experiments, features could
take on only one of two values, meaning that feature value repe-
titions in multiple adjacent objects could lead participants to en-
code those features as a chunk that may exist separately from the
underlying objects (Jiang, Chun, & Olson, 2004). For example, if
a few objects in a small cluster were all the same color, participants
might remember that spatial region as having that color. Since
there were only two values available for each feature, it was fairly
common that there were easily chunked sections of the array.
Perhaps the most clear evidence for this chunking is in Experiment
3 where the color and gap features seemed to suffer very little
performance decrement as array size increased. In fact, in a num-
ber of the four-feature experiments accuracy for color only de-
creased slightly as array size increased all the way to six. The
major difference between Experiment 3 and the other experiments
was that participants were given 500 ms to encode the sample
array in Experiment 3 versus 100 ms in the other experiments. It
is possible that participants were better able to chunk in Experi-
ment 3 than in the other experiments because they had more time
to actively form chunks while viewing the sample array.

If chunking is an active process that requires attention, and
participants were relying heavily on chunking, our finding that the
multifeature condition was more difficult than most single-feature
conditions could be an artifact of the stimuli we used. To explain:
In the multifeature condition, in order to chunk well enough to
“keep up” with the single-feature conditions, participants would
have had to form chunks that contained information about all four
features. They might have had to create separate chunks for each
feature dimension, which except in unusual circumstances would
be located in different spatial regions. This task is clearly much
more difficult than creating chunks for only one feature dimension
at once. That nearby objects would share most or all feature values
is quite unlikely compared to the probability that nearby objects
would share a feature value for just a single feature dimension,
making chunking objects that shared multiple features a strategy
that would only be effective on a small number of trials. It seems
plausible that if participants were using an attention-demanding
chunking strategy, they would be limited in their ability to form
chunks in the multifeature condition relative to the single-
feature conditions due to the added attentional demands of
attempting to chunk in multiple feature dimensions at once.
Given this, the differences we found between the single- and
multifeature conditions may be due to difficulty creating chunks
in the multifeature condition, and not directly due to difficulties
storing multifeature objects.

One piece of evidence that suggests that chunking may not be
the only explanation for our results comes from Experiments 7 and
8. In those experiments, each feature dimension was allowed to
take on any of four values, which should reduce the ability of

Figure 8. Plot of accuracy for the top performing participants in Exper-
iments 1, 2, and 4. The data are from the top seven participants whose
average accuracy at array size six is matched to the same for the partici-
pants of Luck and Vogel (1997). Error bars represent 95% repeated-
measures confidence intervals.
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participants to chunk objects together relative to the four feature
experiments. The reason for this is simply that when each feature
is allowed to take on more values, the probability that there are
multiple objects in the sample array with the same value goes
down. When fewer objects have a feature with the same value, it
is less effective to make a chunk out of those objects than if the
chunk could contain more objects. In spite of reduced chunking
potential in Experiments 7 and 8, we still found an effect of feature
load of similar magnitude to that of the four-feature experiments,
suggesting that chunking may not be entirely driving the effect.
Additionally, stronger evidence that chunking is not the only
explanation comes from the work of Oberauer and Eichenberger
(2013). Those authors found lower change detection accuracy with
increased feature load even when the values of the relevant fea-
tures were not allowed to repeat in a given display, which should
eliminate the ability to chunk. This shows that under conditions in
which chunking objects with identical feature states was pre-
vented, an effect of feature load was still found. Although it is
possible that chunking played a role in our experiments, it is
clearly not the only reason for our results.

Is It Possible for a Slot Model to Remain Viable?

We were curious if it was possible to find support in our data for
a slot model like the one proposed by Luck and Vogel (1997). In
that model, participants have a fixed number of slots, each of
which can hold one object. Originally, Luck and Vogel argued on
the basis of their results that each object slot always held all of the
features of the object held in that slot. Our finding of an effect of
feature load casts doubt on the idea that each object slot always
holds all of the features of the object. However, it is possible that
the capacity of WM is limited in part by the number of objects that
can be held, even if each stored object does not have full feature
information intact. We wanted to discover if there was a set of
plausible assumptions about how objects and features are stored in
WM that would allow a fixed-capacity slot model to remain viable
in spite of the importance of feature load. The question of whether
constant capacity holds for multifeature objects is important be-
cause in many of the experiments examining WM capacity, objects
with only a single feature were used (e.g., Rouder et al., 2008). In
experiments that only use a single relevant feature, the number of
objects and the number of features are always the same, confound-
ing object load and feature load. Our analysis, which we report in
the Appendix, describes some evidence for a constant object
capacity even when multiple features were relevant. Note, how-
ever, that the plausibility of the constant-slots model with an
additional feature limit depends on some assumptions that have not
yet been proven (as explained in the Appendix), providing a
compelling motivation for further work to assess such models and
their assumptions. At the very least, our analysis did not rule out
such a model. Thus, we believe that a slot model with a fixed
number of object slots remains viable even with our finding of an
effect of feature load.

Future Directions

Future work on this topic could focus further on separating the
effect of the number of relevant features at encoding from the
effect of the number of features at test. We used one method of

doing so in Experiment 6, but there is a possible issue of the
attention demands of cuing at encoding versus cuing at test (dis-
cussed in more detail in the discussion section of Experiment 6).

One important factor to investigate further is feature separability
(Fougnie & Alvarez, 2011). It is possible that the result of Luck
and Vogel (1997) could have been correct for the special case
when all of the features of an object are drawn from integral
feature dimensions (e.g., brightness and color). There is some
evidence that when the features of an object are from integral
dimensions, precision does not change with set size (demonstrated
for set sizes 1 and 2 by Bae & Flombaum, 2013). The features in
our experiment are likely to be more separable, as we explain in
the Appendix. With integral features, under the hypothesis of Luck
and Vogel, one would expect the fixation-cue and test-cue results
to produce equal K values with an assumed separability index of 0
(see the Appendix for more information).

Another important issue is how to quantify the number of stored
features of each type. Across our experiments, we found that
participants consistently performed better for some features than
for others, even when only one feature of the objects was relevant.
This suggests the possibility of separate capacity limits in WM for
features from different feature dimensions, suggesting a model like
that of Treisman (1988), in which features from different dimen-
sions are stored separately, possibly in feature stores that have
different capacity limits for different features. An alternative ex-
planation could be that the magnitudes of the changes for the
features we used differed from feature to feature. For example, a
change from red to green might be a larger change than a
change from vertical to horizontal. This explanation would
suggest that the differences between features are not indicative
of different storage mechanisms, but rather of a feature-general
change-magnitude effect. More work should be done to exam-
ine the possibility of the existence of different WM capacities
for different features.

Conclusions

Our results so far are strong evidence that storage in visual WM
is limited by the number of objects and by the number of relevant
features of those objects. We have consistently observed an effect
of feature load, which goes against the belief that the number of
objects that can be stored in visual WM is the sole determinant of
accuracy. It is clear that features affect performance, although the
mental mechanisms underlying the effect of feature load are not
yet clear. We believe that claiming that either objects or features
are the single facet of WM that mediates visual WM performance
in all cases is untenable in light of the available data. We suggest
that rather than attempting to specify the most important (or only)
factor which mediates visual WM performance, we would be
better served by improving our understanding of the contributions
of all of the factors that meaningfully impact visual WM perfor-
mance.
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Appendix

Estimation of Number of Objects in Working Memory Under Varying Feature Load

Given that our results showed a clear effect of feature load, we
were curious to see if it was possible for participants to be holding
the same number of objects in working memory (WM) regardless
of the number of relevant features. It is an important prediction of
an object-slot model of WM, such as that proposed by Luck and
Vogel (1997), that the number of object slots available to partic-
ipants does not depend on the featural content of the objects stored
in those slots. This implies that it is possible that participants will
be able to store the same number of objects in mind, regardless of
the number of relevant features of those objects. Cowan et al.
(2013) and Oberauer and Eichenberger (2013) found that such a
constant capacity model held despite incomplete feature sets re-
membered for each object but did not fully consider the conse-
quences of different assumptions about feature dependence, which
we will do here. There is evidence that knowledge of one feature
of an object is neither fully dependent nor independent of knowl-
edge of other features of the object (Bays, Wu, & Husain, 2011;
Fougnie & Alvarez, 2011; Fougnie, Cormiea, & Alvarez, 2013).

In order to test this equality of the number of objects held in
mind, we performed a further analysis of the data from Experiment
6. In Experiment 6, it is possible to get an estimate of the number
of objects in WM for which the cued feature was known in both
the fixation-cue and test-cue conditions by using Cowan’s K
(Cowan, 2001). In one stage of the analysis, we obtain an estimate
of the number of objects that participants hold in mind when only
one feature is relevant (fixation-cue condition). We will then
estimate the number of objects held in mind when all four features
of the objects were relevant (test-cue condition) and compare these
two estimates of objects held in mind. With this analysis applied to
Experiment 6, we find that it is indeed plausible (although not
proven) that a model may hold in which a constant number of
objects is held in WM. With this overview in mind, we continue
with fleshing out the details.

This analysis is appropriate for Experiment 6 because the use of
feature cues at test allows us to be confident about which feature
the participant was making a decision about. Knowing this, we are
able to infer that the participant made full use of their knowledge
about that particular feature, which allows us to feel confident that
the K estimates we get for the individual features are reliable.
While this reason makes this experiment appropriate for this
analysis, it also renders our other experiments ill-suited to the same
analysis. In the multifeature conditions of those experiments, we
cannot be sure what information about features was used by
participants in order to make their responses, so we cannot feel
confident that the K estimates are a good indication of the amount
of knowledge held about a specific feature.

Our model makes two assumptions about how stimuli are en-
coded into WM: (a) Information about stimulus objects is encoded
into WM on a feature-by-feature basis, and (b) the probability of

encoding information about a given feature of an object can
depend on whether any information about that object had already
been encoded. To expand on the first assumption, our model
assumes that the contents of WM are sequentially filled with
stimulus data from a sample array. One way of thinking about the
process would be to say that a participant begins by encoding a
single feature from some number of objects. For example, a
participant might begin by encoding the color of three objects. The
participant then moves on to the subsequent feature, perhaps
orientation, and encodes that feature from some other number of
objects, and so on until they have sampled from all of the available
stimulus dimensions. It is not necessary to assume that one feature
dimension is sampled from all objects before the next feature
dimension is sampled: The only requirement is that the probability
of encoding a given feature of an object is dependent on knowl-
edge of already known features of the object. We are treating the
features of the objects as important handles with which partici-
pants track object representations, so we assume that objects are
only stored if at least one of the features of that object has been
encoded.

To expand on the second main assumption, a key factor is how
knowledge of some features of an object leads to changes in the
conditional probability of encoding subsequent features. We can
estimate the unconditional probability of knowing a specific fea-
ture of an object based on task performance, but we are really
interested in the conditional probability of knowing a feature given
other knowledge about the object. We will assume that the prob-
ability of knowing a given feature of an object can be, but is not
necessarily, dependent on prior knowledge about that object. In
our color and orientation example, at the time the orientations are
sampled, the colors of some objects are already known, so the
probability of encoding the orientation of those objects is affected.
We base our index of conditional encoding on a prior study.
Fougnie and Alvarez (2011) used what they termed the separabil-
ity index (SI) as a measure of the dependence between two
features. The SI is 1 if the features are fully separable (which is the
same as full independence) and 0 if the features are inseparable. Using
a change-detection task, Fougnie and Alvarez found that the separa-
bility index was .80 for color and orientation and .28 for the width and
height of rectangles, where width and height were treated as two
features of the rectangles. We can use these observations of separa-
bility to inform our analysis of varying levels of independence. We
propose that in our model, when features after the first feature are
encoded, for SI less than 1, subsequent features are more likely to be
encoded for a given object if at least one other feature of that object
has already been encoded. The likelihood of encoding features after
the first to an object for which at least one feature is already known
depends in part on the SI.

(Appendix continues)

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

20 HARDMAN AND COWAN



The mathematical model takes as variables the K estimates for
each participant for each of the four features we used and an
assumed SI. The following process is performed for each partici-
pant individually so that each participant receives an estimate for
the number of objects held in mind when all of the features of the
objects were relevant. To begin, each participant’s K estimates are
sorted into descending order, which is required when the SI is
small. Then the proportion of the sample array for which the first
feature is not known is calculated with

p(U1) � 1 � K1 ⁄ N, (A1)

where p(U1) is the probability that the first feature is unknown for
any given object in the sample array (or equivalently the propor-
tion of the sample array for which the first feature is unknown), K1

is the number of objects for which the first feature is known, and
N is the number of objects in the sample array. Then, for each of
the subsequent features, some part of the unknown proportion of
the sample array is filled with feature knowledge by subtracting a
newly encoded area from the unknown proportion of the sample
array. For example, assume that a participant begins by encoding
the color of four objects out of a sample array of six objects.
Assuming an SI of 1 (full feature independence), if they then
encode the orientations of three objects, on average two of those
orientations will be sampled from objects for which color is
already known and one of those orientations will be sampled from
an object for which color is not known. This one object for which
orientation was encoded but color was not adds to the number of
known objects, filling the unknown part of the sample array with
partially known objects, taking away part of the unknown. Our
mathematical instantiation of this process is

p(Ui) � p(Ui�1) � ((SI * Ki ⁄ N) * p(Ui�1)), (A2)

where p(Un) is the proportion of the sample array for which none
of the 1 to n features is known and SI is the separability index. For
the second feature, p�Ui�1� is equal to p(U1) calculated in Equation
A1. The right-hand side of the equation is the currently unknown
proportion of the sample array (p(Ui�1)) minus the newly encoded
proportion of the sample array for which nothing else was known
((SI � Ki /N) � p(Ui�1)). Now that the broad stokes of the model
have been given, the details will be filled in.

A full understanding of Equation A2 requires an understanding
of the definition of SI, which we will give here. If one had enough
information to calculate the SI, this definition could be used to
perform that calculation. However, we do not have that informa-
tion and simply use a range of SI values, so this definition is
primarily of conceptual value. Fougnie and Alvarez (2011) define
SI as the ratio of the probability that Feature 2 of an object is
known given that Feature 1 of the object is unknown to the
probability that Feature 2 is known, unconditional of Feature 1.
We are making the simplifying assumption that knowledge of
Feature i is conditioned on prior knowledge of any feature of the
object, not a specific other feature. So for our purposes, SI is

defined as p(fi |Ui�1) /p(fi), where fi is the event that Feature i is
known for given object and Ui�1 is the event that all features from
1 to i � 1 are unknown for a given object. Given that Ki /N is equal
to p(fi), the expression SI � Ki /N reduces to p(fi |Ui�1), i.e., the
probability of knowing the ith feature for some object given that
nothing about that object was known. Now that we know that
SI � Ki /N reduces to p(fi |Ui�1), it becomes clear that the expres-
sion (SI � Ki /N) � p(Ui�1) becomes p(fi |Ui�1) � p(Ui�1), which by
basic results in probability is the intersection between the propor-
tion of the sample array for which the ith feature is known and the
proportion of the sample array for which none of the prior features
is known. In Equation A2, this intersection is then subtracted from
the unknown proportion of the sample array prior to the current
feature and the resulting proportion is equal to p(Ui).

The final step is the calculate the number of objects for which at
least one feature was known with

Ktest Any � (1 � p(U4)) * N, (A3)

where KtestAny is the number of objects in the test-cue condition for
which at least one feature was known and p(U4) is the proportion
of the sample array for which none of the four features was known.
Thus 1 � p(U4) is the proportion of the sample array for which at
least one feature was known, which, when multiplied by the array
size, N, gives the number of objects for which at least one feature
was known. We can perform the process in Equations A1, A2, and
A3 for different values of SI, giving us estimates for KtestAny for
each participant and each SI.

In order to test a constant object capacity hypothesis, we need to
compare KtestAny to a quantity representing the number of object slots
used by participants when only a single feature of the objects was
relevant. We took the K estimate from the feature in the fixation-cue
condition for which each participant performed the best, which we
call KfixationMax, and used it as our estimate of the number of object
slots used by that participant when only one feature was relevant.
Using the maximum of the fixation-cue K estimates as our estimate of
object slots raises the question of why participants would not use all
of their object slots for all of the features. One possibility is that, in
addition to an object limit, there are also feature-specific capacity
limits, which is supported by the fact that we consistently found better
performance for some features even in single-feature conditions.

We compared our estimates of KfixationMax and KtestAny in order
to test if our participants appeared to be using the same number of
object slots in both the fixation-cue and test-cue conditions of
Experiment 6. Array sizes two and four were not analyzed because
most participants seemed to be at ceiling performance on those
trials. To put numbers to it, at array size six, 20 out of the 30
participants had a KfixationMax greater than four, suggesting that
most of the participants were at ceiling at array size four. Presum-
ably even more would have been at ceiling at array size two. Given
these problems with ceiling effects, only data from array size six
is analyzed. At array size six, the mean value of KfixationMax was
4.46 (SEM � 0.20). The KtestAny estimates resulting from values of
SI from 0 to 1 are plotted in Figure A1. KfixationMax and KtestAny are

(Appendix continues)

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

21COMPLEX OBJECTS IN VISUAL WORKING MEMORY



nearest to each other when SI is 1 and the BFFR for this compar-
ison is 0.26, giving good support for the hypothesis that they are
the same. At the other extreme, an SI of 0 provides clear evidence
for a difference, with a BFFR of 1.43 � 104. At an SI of approxi-
mately .62, the BF is 1. Thus, there is a region of SI values above
.62 for which there is evidence for the hypothesis that KfixationMax

and KtestAny have the same value.
Based on the features we used and the results of Fougnie and

Alvarez (2011), it is plausible that the SI for our features falls into
the range of SI values for which there is evidence for constant
object capacity. The features we used were presumably all fairly
separable from one another as none of the pairs of features com-
bine together to form a specific percept. Indeed, in order for Luck

and Vogel (1997) to claim that objects are stored with features
strongly integrated, they needed to use separable features to avoid
the interpretation that only integral features are stored in a strongly
integrated way. Fougnie and Alvarez found that the SI for color
and orientation was 0.80 using a change-detection task. If we
assume that our features are all as separable as color and orienta-
tion, we can use the SI value Fougnie and Alvarez found for color
and orientation to estimate KtestAny. When we use an SI of 0.8, we
obtain a KtestAny of 4.24 (SEM � 0.21), which results in a BFFR of
0.37 in the comparison with KfixationMax, which suggests that
constant object capacity is 2.68 times as likely as variable object
capacity under our modeling assumptions. However, we do not
know for sure what the true SI is for our features, so it is possible

(Appendix continues)

Figure A1. Results of the comparison between KfixationMax and KtestAny. Left panel: Plot of KtestAny estimates
(angled solid line) as a function of Separability Index (SI), with a standard error line drawn above it (angled
dotted line). The horizontal solid line is KfixationMax, which does not depend on SI, with standard error drawn
below it (horizontal dotted line). The vertical dashed line represents the SI value for which the Bayes factor (BF)
of a t test comparing KtestAny to KfixationMax is equal to 1. To the right of the vertical line, the Bayes factor is less
than 1, giving evidence for there being no difference between KtestAny and KfixationMax. We think it is plausible
that the true SI for our features was near 0.8 (Fougnie & Alvarez, 2011). Right panel: Bar graph of K estimates
in analysis of Experiment 6 showing the distribution of feature information across objects when an SI of 1 is
assumed. Left bar: K estimate from the test-cue condition (KtestAny) broken down by the number of objects for
which each feature was the only feature known and the number of objects for which more than one feature was
known, which can be calculated if one assumes an SI of 1. Right bar: K estimate from the fixation-cue condition
(KfixationMax). Error bars represent standard error.
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that an SI of 0.8 is not correct. Even if an SI of 0.80 is only
approximately correct, there is a range of SI values around 0.80 for
which there is still evidence for a constant object capacity. Thus,
our conclusions are not fully dependent on a highly specific value
of SI.

A potentially problematic assumption is that KfixationMax may
not be an appropriate estimate of the number of slots that partic-
ipants have available to them. It is likely that KfixationMax is an
overestimate of the number of object slots available to participants
due to the fact that it is estimated based on the maximum of the
four K estimates from each of the features in the fixation-cue
condition. Using an estimator based on the maximum of a set of
values is guaranteed to be biased high. However, if KfixationMax

were lower, it could still be near the values of KtestAny that we
estimate, so even if KfixationMax is biased high, we could still easily
find support for a constant object capacity with an unbiased
estimate of object slots when only one feature is relevant. A
different potential problem is that it is possible that our estimates
of KfixationMax and KtestAny are underestimates of the number of
objects that can be encoded into WM due to the fact that our design
does not allow us to examine a number of possible ways in which
information might be lost or not used. For example, if features are
forgotten over the retention interval we used, then our K estimates,
which are based on performance at test, will not fully capture the
amount of information that was available to participants before
some of that information was lost.

Even though although our analysis rests on a number of assump-
tions about the process underlying feature storage in WM, we
believe that our results show that it is plausible that there is a
constant object capacity in WM. This is in spite of our findings
across experiments that there is an effect of feature load. Evidence

for a constant object capacity when multiple features were relevant
was also found by Cowan et al. (2013) in a design that used objects
that had a color and a shape. Also, Oberauer and Eichenberger
(2013) found evidence for a constant object capacity when using
stimuli that possessed multiple features. Thus, there is evidence
that there is a constant capacity for objects that does not decrease
as the number of relevant features increases. Our finding of a
constant capacity for objects agrees with many additional prior
studies (e.g., Cowan, 2001; Rouder et al., 2008; Zhang & Luck,
2011), although see Keshvari, van den Berg, and Ma (2013) for
contradictory results obtained in a paradigm that considers preci-
sion of representations. That we are still able to find a constant
object capacity even with multifeature stimuli gives support to
the idea of a fixed capacity limit, but it does not provide any
evidence against models which hypothesize that WM storage uses
flexible resources rather than object slots (e.g., Keshvari et al.,
2013). We believe that it is worthwhile to continue research in this
direction to better understand how features are stored in WM and
to pursue the questions of whether there is a constant object
capacity in WM that is independent of feature load.

In order to help validate the relationship between KfixationMax

and KtestAny, it would be valuable to examine the correlation
between the two K estimates. However, with our sample of only 30
participants with a small number of trials from which the K
estimates are calculated, we do not have sufficient power to feel
confident in the robustness of performing a correlational analysis
with our data.
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