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Abstract

■ Cognitive operations are thought to emerge from dynamic
interactions between spatially distinct brain areas. Synchronization
of oscillations has been proposed to regulate these interactions,
but we do not know whether this large-scale synchronization
can respond rapidly to changing cognitive demands. Here we
show that, as task demands change during a trial, multiple distinct
networks are dynamically formed and reformed via oscillatory
synchronization. Distinct frequency-coupled networks were
rapidly formed to process reward value, maintain information in

visual working memory, and deploy visual attention. Strong
single-trial correlations showed that networks formed even before
the presentation of imperative stimuli could predict the strength
of subsequent networks, as well as the speed and accuracy of
behavioral responses seconds later. These frequency-coupled
networks better predicted single-trial behavior than either local
oscillations or ERPs. Our findings demonstrate the rapid reorgani-
zation of networks formed by dynamic activity in response to
changing task demands within a trial. ■

INTRODUCTION

Goal-directed behavior arises from cognitive operations
carried out by networks of spatially distributed brain
areas, but the orchestration of different networks as a
complex task unfolds and cognitive demands change re-
mains a mystery. Oscillatory synchronization has been
proposed to dynamically establish large-scale networks
among brain areas (Canolty & Knight, 2010; Engel, Fries,
& Singer, 2001; Salinas & Sejnowski, 2001; Varela,
Lachaux, Rodriguez, & Martinerie, 2001; Friston, 1997).
However, the viability of these proposals depend on
whether these oscillatory networks can be rapidly formed
and dissolved and new networks can be formed as cogni-
tive demands rapidly change in our constantly changing
environments.
Our aim in this study was to determine whether cortical

synchronization coordinates the large-scale networks that
carry out critical cognitive operations across multiple
phases of a task, with the task placing different cognitive
demands on participants as each trial unfolds. Moreover,
we sought to characterize the temporal-spatial structure
and spectral properties of each identified network and
provide behavioral evidence for the functional signifi-
cance of each.
We had participants perform a task in which the infor-

mation that needed to be processed was different across
the different epochs of each trial. As shown in Figure 1A,

each trial began with a reward cue indicating the mone-
tary value of the current trial. Next, a target cue was pre-
sented briefly so that participants would have in memory
the appropriate representations allowing search for that
item in the final display. Finally, a complex scene was pre-
sented in which participants needed to determine if the
target was present among distractors. The three phases
of this experimental design required participants to pro-
cess the reward signal, instantiate a memory representa-
tion of the upcoming target, and then process the visual
scene by guiding visual attention to the target ending with
the behavioral response. We utilized cross-frequency
coupling analyses of the oscillations of participantsʼ EEG
and inverse source reconstruction modeling to examine
both the large-scale network interactions and their poten-
tial neuronal sources that support the processing of the
different types of information across the epochs of each
trial. We hypothesized that the oscillatory synchronization
of the human brain should coordinate different large-
scale, network-level mechanisms to perform these differ-
ent operations (Canolty & Knight, 2010; Engel et al., 2001;
Salinas & Sejnowski, 2001; Varela et al., 2001; Friston,
1997). That is, the network relevant to each cognitive
operation should form and dissolve through dynami-
cally regulating the strength of functional connectivity
between brain areas via oscillatory synchronization or
coupling (i.e., fast rhythmic temporal correlations of
neuronal activity). If we can identify such synchronizing
networks, then is it possible to use our cross-frequency
coupling measures of functional connectivity strength toVanderbilt University
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predict patterns of subsequent network activity and behav-
ior as participants search cluttered visual scenes for the
target objects?

METHODS

Participants and Stimuli

Thirty paid volunteers (18–32 years, normal or corrected
acuity and color vision) provided informed consent of
procedures approved by the Vanderbilt University Institu-
tional Review Board.

Stimuli were presented on a gray background (54.3 cd/m2)
at a viewing distance of 114 cm. A black fixation cross
(<0.01 cd/m2, 0.4° × 0.4° of visual angle) was visible
throughout each trial. Reward stimuli were outlined circles
(0.88° diameter, 0.13° thick) presented to the center of the
monitor. Low and high rewards were distinguished by
color (blue x = 0.146, y = 0.720, 6.41 cd/m2; yellow x =
0.408, y= 0.505, 54.1 cd/m2), with the assignment of color
to reward value counterbalanced across participants.

The elements in the cue and search arrays were Landolt-C
stimuli (0.88° diameter, 0.13° thick, 0.22° gap width) of
eight possible orientations (0°, 22.5°, 45°, 67.5°, 90°,
112.5°, 135°, 157.5°), one of which was green (x = 0.281,
y = 0.593, 45.3 cd/m2) and the other red (x = 0.612, y =
0.333, 15.1 cd/m2). The task-relevant color of the cue stim-
ulus was determined before the start of each experiment,
counterbalanced across participants. Each cue stimulus
was presented 2.2° to the left or right of the center of
the monitor. The search array contained 1 red, 1 green,
and 10 black distractor Landolt-C stimuli (<0.01 cd/m2)
arranged similar to the number locations on a clock
face (centered 4.4° from the middle of the monitor; see
Figure 1A). The target orientation could only appear in the
task-relevant color.

Task and Procedure

Each trial began with the presentation of the fixation
cross for 1200–1600 msec (randomly jittered using a

Figure 1. Task and the oscillations, source estimates, and interregional synchrony of reward encoding. (A) Participants fixate a central point for
the duration of the trial. A blue or yellow circle signaled whether the trial was low or high reward. The task-relevant object in the cue array (red
or green Landolt-C) signaled the shape of the target in the search array. Feedback was given at the end of each trial. Grand-averaged reward cue-locked
frontomedial (Fz) phase locking (B–C) and right frontolateral (F4) power (D–E) for low and high reward. Insets show ERPs. Current density
estimates are projected onto the cortical surface of 3-D reconstructions and MRI slices intersecting the location of greatest density of current flow (i.e.,
warmer colors/crosshair) for theta phase locking (3–6 Hz, B–C) and beta power (15–30 Hz, D–E), 100–1000 msec following low and high reward.
(F) Combined current density results show activations in orbitofrontal and dorsomedial prefrontal cortices. Significant high reward theta phase (without
triangle) beta amplitude (with triangle) coupling (red line, q = 0.01; black line, q = 0.05). Grand-averaged reward cue-locked frontomedial theta
rhythm (red) with overlaying phase angles (blue) and right frontolateral beta rhythm (green) with overlaying amplitude envelope (magenta) for low
(G) and high reward (H). (I) Normalized beta amplitudes sorted according to theta phase in π/30 intervals, for low reward (magenta), high reward (blue),
and a surrogate control (black). Insets show the absence of reward cue-locked interregional cross-frequency coupling using the frequency bands
and electrode locations critical for forming the working memory and attention networks (Figures 2–3).
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rectangular distribution). The reward-cue stimulus was
presented next for 200 msec, followed by a 1200-msec
interval. Next, the target-cue stimuli were presented for
100 msec, followed by a 1000-msec interval. We then pre-
sented the search array for 2000 msec. The final stimulus
event of each trial was feedback displaying the current
and total cents earned. On low-reward trials, participants
earned $0.01 for a correct response within 2000 msec and
no penalty for an incorrect or missed response, whereas
on high-reward trials, participants earned $0.05 for a cor-
rect response and were penalized $0.50 for an incorrect
response, comparable with the reward schedule used in
previous research (Della Libera & Chelazzi, 2006, 2009).
Participants were aware that bonus money earned for fast
and accurate performance added to their hourly compen-
sation ($10). Because error responses were infrequent
(8% of trials across participants), the penalty for incorrect,
high-reward trials rarely occurred. However, to verify that
the effects we observed were because of the reward pay-
offs and not the avoidance of losses, we ran half of the
participants (i.e., 15) through the same experiment except
that no penalties existed and only differential reward
occurred for low- versus high-reward trials (1 vs. 5 cents
gains for correct responses within the 2-sec window).
The behavioral results, ERPs, and patterns of oscillatory
activity did not significantly differ between these versions
of the experiment so their data were collapsed.
The target cue stimulus remained the same color, orien-

tation, and location throughout each run of seven trials.
The target presented during visual search matched the
orientation of the task-relevant cue on half the total num-
ber of trials. The cued target orientation and target pres-
ence (present or absent) were randomly selected on
each trial for all experiments. Target location was random-
ized on each trial. Seventy-five percent of all trials were
preceded by low-reward cues with the rest having high-
reward cues, consistent with the reward structure of
other studies examining reward effects on attention (e.g.,
Hickey, Chelazzi, & Theeuwes, 2010; Della Libera &
Chelazzi, 2006, 2009; Serences, 2008). To avoid any effects
because of trial number differences across the reward
manipulation, the number of trials was matched across trial
types by excluding randomly selected low-reward trials.
Participants were instructed to respond to the search array
by pressing one button on a handheld gamepad (Logitech
Precision) to indicate target presence and a different
button to indicate target absence, using the thumb of their
right hand, giving equal importance to speed and accuracy.
Each participant performed two blocks of 420 trials.
EEG was recorded (250 Hz sampling rate; 0.01–100 Hz

band pass filter) using an SA Instrumentation amplifier
and 21 electrodes (Electro-Cap International), including
three midline (Fz, Cz, Pz), seven lateral pairs (F3/F4,
C3/C4, P3/P4, PO3/PO4, T3/T4, T5/T6, O1/O2), and two
nonstandard sites: OL (midway between O1 and T5) and
OR (midway between O2 and T6), arrayed according to
the International 10–20 System. Signals were right mas-

toid referenced and re-referenced off-line to the average
of the left and the right mastoids (Luck, 2005). Horizontal
and vertical eye positions were monitored by recording
the electro-oculogram from bipolar electrodes located
at the outer canthus of each eye and above and below
the orbit of the left eye, respectively. We used a two-step
ocular artifact rejection method (Woodman & Luck,
2003) that resulted in the replacement of two partici-
pants because of eye movement artifacts on more than
25% of trials. Trials accompanied by incorrect behavioral
responses or ocular or myogenic artifacts were excluded
from the averages resulting in an average of 13.8% of
trials rejected per participant.

Data Analysis

Within electrode time–frequency analyses were per-
formed with a continuous Morlet wavelet transform using
FieldTrip software (Oostenveld, Fries, Maris, & Schoffelen,
2011). The Morlet wavelet has a Gaussian envelop that is
defined by a constant ratio σf ¼ f

7

� �
and a wavelet dura-

tion (4σt), where f is the center frequency and σt ¼ 1
2πσf

.
After obtaining complex time–frequency data for every
individual trial, these data were transformed into measures
of within-electrode cross-trial phase locking and total
power. We divided each complex data point by its cor-
respondingmagnitude, generating a new series of complex
data where the phase angles are preserved, but the magni-
tudes are transformed to one (i.e., unit normalized). These
magnitude-normalized complex values were then aver-
aged, yielding a measure of cross-trial phase locking for a
particular frequency, time point, and electrode. A value of
0 in this measure represents an absence of phase synchro-
nization across trials, whereas 1 indicates perfect phase
alignment across trials. Similarly, following single-trial
EEG spectral decomposition, the magnitude lengths of
the complex number vectors were extracted, squared,
and averaged, yielding a measure of cross-trial total power
for a given frequency, time point, and electrode. Phase
locking and power estimates were then computed from
−200 to 1000 msec centered on the triggering event in
4-msec bins and from 2 to 30 Hz in 1-Hz bins. Baseline
correction, centered 100–200 msec before stimulus onset,
involved dividing the values at each time point in the
epoch by the baseline value and then taking the log10 trans-
form of this quotient and multiplying it by 20, yielding
values expressed in units of decibels (dB; Delorme &
Makeig, 2004). Consistentwith previouswork (e.g., vanDijk,
Van der Werf, Mazaheri, Medendorp, & Jensen, 2010;
Mazaheri & Jensen, 2008), the visual working memory
and attention EEG responses were hemisphere specific as
expected given the lateral presentation of task-relevant
stimuli. As a result, activity from both left and right lateral
electrodes was averaged based on the hemifield of stimulus
presentation (i.e., contralateral vs. ipsilateral).

All methods for detecting coupled oscillations rely
on band pass filtering and the Hilbert transform (Penny,
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Duzel, Miller, & Ojemann, 2008). First, data from each
electrode site were filtered using a two-way, zero-phase
lag, finite impulse response filter to avoid phase dis-
tortion (i.e., eegfilt.m function in EEGLAB toolbox, see
Delorme & Makeig, 2004). The Hilbert transform was
then applied to each resulting time series, yielding a
complex time series,

hx½n� ¼ ax½n�expðiφx½n�Þ;

where ax[n] is the instantaneous amplitude and φx[n] is
the instantaneous phase. The phase time series φx con-
tains values from −π to π radians with a cosine phase
where 0 radians is the peak and π radians is the trough.
Given our interest in the dependence between cross-
frequency coupling changes and behavior, it was desir-
able to have a modulation index of phase–amplitude
cross-frequency coupling, which would enable us to
assess the magnitude of coupling, in addition to detect-
ing its existence. We implemented the method employed
by Lakatos et al. (2005), recommended by Canolty and
Knight (2010) and Tort, Komorowski, Eichenbaum, and
Kopell (2010) for these purposes. In brief, this approach
involves identifying all data points whose low-frequency
phases fall in 1 of the 60 phase intervals of π

30 width
between −π and π. Mean high-frequency amplitudes of
the respective data points were then assigned to each
low-frequency phase interval.

We calculated the time lag cross correlation across trials
using the squared amplitude envelopes between fre-
quency bands (i.e., amplitude–amplitude cross-frequency
coupling; Bruns, Eckhorn, Jokeit, & Ebner, 2000; Friston,
1997). The cross-correlation function for time series xn
and yn, n = 1, …, N, is defined as

cxyðτÞ ¼ 1
Nτ

XNτ

i¼1

xi−�x
σx

� �
yiþτ−�y
σy

� �
;

where �x denotes the mean, σx denotes the variance, and
τ denotes the time lag. The cross-correlation function is
essentially the inner product between two normalized
signals, which provides a measure of the linear synchroni-
zation between the two signals as a function of time lag.
Its absolute value ranges from 0 (no synchronization) to
1 (maximum synchronization), and it is symmetric (i.e.,
cxy(τ) = cyx(τ)). The cross correlation provides sensitive
information on the time coupling and waveform similarity
between the two signals (Quian Quiroga, 2009).

Inverse Source Modeling

Current density topographical analyses were performed in
CURRY 6 (Compumedics Neuroscan, Singen, Germany).
The interpolated boundary element method model
(Fuchs, Drenckhahn, Wischmann, & Wagner, 1998) was
derived from averaged MRI data from the Montreal Neuro-

logical Institute. It consisted of 9300 triangular meshes
overall or 4656 nodes, which describe the smoothed inner
skull (2286 nodes), the outer skull (1305 nodes), and the
outside of the skin (1065 nodes). The mean triangle edge
lengths (node distances) were 9mm (skin), 6.8 mm (skull),
and 5.1 mm (brain compartment). Standard conductivity
values for the three compartments were set as follows:
skin = 0.33 S/m, skull = 0.0042 S/m, and brain = 0.33 S/m.
The standardized low-resolution electromagnetic tomog-
raphy (sLORETA) weighted accurate minimum norm
method (SWARM) was estimated using sensor positions
based on the International 10–20 System and a cortical
surface obtained from a segmentation of the CURRY 6 indi-
vidual reference brain. SWARM uses the methods of
diagonally weighted minimum norm least squares (Dale
& Sereno, 1993) and sLORETA (Pascual-Marqui, 2002) to
compute a current density vector field (Wagner, Fuchs, &
Kastner, 2007), resulting in values scaled in amperes (Am)
for each 5.1 mm3 voxel in brain space. Although current
density reconstructions can often provide a reasonable
estimate of the actual pattern of activity generating the
surface potentials, inverse source modeling carries with
it several ambiguities, and source estimates are not
intended as strong claims about the location of neuronal
generation.
Using all scalp electrodes, the reward network current

density distributions were drawn from theta (3–7 Hz) and
beta (15–30 Hz) reward cue-related data, 100–1000 msec
poststimulus onset. Similarly, the visual working memory
current density distributions were drawn from theta (3–
7 Hz) and alpha (8–13 Hz) target cue-related data, 100–
1000 msec poststimulus onset. The visual attention current
density distributions were drawn from theta (3–7 Hz) and
alpha (8–13 Hz) search array-related data, 100–400 msec
postarray onset. Before our analyses, the lateralized visual
working memory and attention responses were collapsed
across left and right hemifield stimulus locations and
averaged using a procedure that preserved the electrode
location relative to the stimulus location. All contralateral
current density activity was projected onto the right hemi-
sphere of a 3-D reconstruction of the cortical surface, and
all ipsilateral activity was projected onto the left hemi-
sphere. That is, although current density activity is shown
in Figures 2 and 3 as right lateralized, this activity contains
trials in which both left and right visual field stimuli were
presented. This same procedure was applied for the pre-
sentation of coupling topographies shown in Figures 2
and 3. The SWARM procedure was performed separately
for imaginary and real time–frequency components and
figures show the grand-averaged SWARM results.

Statistical Analysis

Identifying Oscillations

An electrode was considered to exhibit significant phase
locking or power at a given frequency (i.e., theta, 3–7 Hz,
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alpha, 8–13 Hz, beta, 15–30 Hz) if the phase or power
peak values during the 100–1000msec poststimulus onset
deviated from an uncorrected preevent baseline (−100 to
−200 msec) using ANOVAs with p values adjusted
using Greenhouse–Geisser correction for nonsphericity
( Jennings & Wood, 1976).
We estimated the number of electrodes exhibiting

phase locking or power modulations separately for each
stimulus epoch (reward cue, target cue, search array) and
used a bootstrap method to gauge the Type I error in this
estimate. To estimate the Type I error at each frequency,
the phase or power of EEG activity within each trial was
randomly shuffled across sampled time points and reana-
lyzed 100 times by using the same parameters, producing
a distribution of the number of electrodes exhibiting
phase locking or power for each task epoch. For a given
frequency to obtain significance, the true number of elec-
trodes showing phase locking or power had to exceed
the 99th percentile of this distribution ( p < .01). The fol-
lowing significant oscillations were identified from each
task epoch: frontomedial (Fz) reward cue-related theta
phase locking (3–7 Hz), right frontolateral (F4) reward
cue-related beta power (15–30 Hz), frontolateral (F3/4)
target cue-related theta power (3–7 Hz), occipitotemporal
(OL/R) target cue-related alpha power (8–13 Hz), fronto-
lateral (F3/4) search array-related theta power (3–7 Hz),
and posterotemporal (T5/6) search array-related alpha
power (8–13 Hz).

Constructing Functional Networks

For coupling analysis, the identified EEG responses
were divided into discrete windows based on their tem-
poral profiles (i.e., 100–1000 msec postreward cue, 100–
1000 msec posttarget cue, 100–400 msec postsearch
array). We chose these window sizes to balance signal
stationarity and accurate assessment of the coupling mea-
sures. Moreover, these relatively long time windows
reduce the influence of artifactual coupling based on
random fluctuations of the signal, such as postevent non-
stationarities (Tort et al., 2010). Within each window, the
data were normalized from each electrode to have zero
mean and unit variance before coupling analysis. To
measure electrode associations between the time series
recorded at two electrodes, we use two measures of
linear coupling: the amplitude–amplitude cross-frequency
coupling via time lag cross correlation and phase–amplitude
cross-frequency coupling via phase-sorted amplitude
height, as described above. These measures of cross-
frequency coupling were applied to all epochs (i.e.,
reward cue, target cue, and search array), and maximal
cross-frequency coupling values were computed for all
electrode pairs. Significant coupling was determined
against a chance distribution derived from the analysis
of surrogate time series that share statistical properties
with the original data, consistent with established methods
(Tort et al., 2010; Canolty et al., 2006; Pereda, Quiroga, &

Bhattacharya, 2005; Quian Quiroga, Kreuz, & Grassberger,
2002).

A trial-shuffling procedure allowed us to infer the cou-
pling chance distribution (Tort et al., 2010). Specifically,
we created shuffled versions of the time series by asso-
ciating the phase (or amplitude) series of a randomly
chosen trial with the amplitude series of another randomly
chosen trial. We then generated 1000 surrogate coupling
values, from which we could infer the coupling chance dis-
tribution. As shown in Figures 1–3, the trial shuffling pro-
cedure breaks the appearance of cross-frequency coupling,
which is indicated by relatively low coupling values. To
minimize a possibility of the Type I error, false discovery
rate (FDR) correction was applied using a threshold set
to q = 0.01. Thus, 1% of the network connections were
expected to be falsely declared (Benjamini & Hochberg,
1995). We cross-validated this method for determining
the presence of significant coupling by computing another
null distribution, this time by shuffling the order of the
trial-wise phase (or amplitude) values with respect to the
amplitude values at the same time point and calculating
the coupling values 1000 times. We assessed whether
original coupling values were significantly higher than
the 99th percentile of the null distribution. Similar results
were obtained using both trial-shuffling procedures for
generating null distributions.

Volume conduction of signals coming from a common
neuronal source is known to lead to spuriously coupled
EEG signals. An effective strategy for minimizing the
confounding factor of electrical field spread is to remove
information from time series data that is more likely to
be explained by a common source (Stam, Nolte, &
Daffertshofer, 2007; Nunez et al., 1997). To address this
problem, we removed all significant coupling values in
which the maximum absolute value of the coupling mea-
sures occurred at zero time lag between the time series
being compared. This method effectively removes spuri-
ous coupling values because of volume conduction. How-
ever, this method also likely removes some real coupling
values. Post hoc analysis showed a high similarity be-
tween the average networks generated using coupling
measures in which values at zero time lag were included
and those networks generated from coupling measures in
which the same identified values were removed ( ps > .34).
This strategy therefore allows us to detect the presence of
frequency-coupled networks without the effects of vol-
ume conduction and with minimal impact on the overall
functional networks.

RESULTS

Behavior

Participants responded significantly faster following high-
reward cues (mean ± SEM, 734 ± 7 msec) compared
with low-reward cues (750 ± 6 msec; F(1, 29) = 5.18,
η2 = 0.19, p < .03) and performed the task at a similarly
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high level of accuracy across the high- and low-reward
trials (mean ± SEM, 96.25 ± 3.3%, p > .6). This pattern
of behavior is consistent with previous work examining
the influences of reward on attentional selection mea-
sured behaviorally (e.g., Hickey et al., 2010; Della Libera
& Chelazzi, 2006, 2009; Serences, 2008). These behav-
ioral effects provide us with leverage to reveal how the
high- versus low-reward cues at the beginning of the trial
influenced the subsequent network dynamics.

Reward-related Neural Data

Time–frequency analyses in the time window locked to
the onset of the reward cue revealed two robust oscilla-
tory responses over frontal cortex both beginning at
approximately 100 msec poststimulus. First, the phase-
locking analysis identified a sustained frontal midline
response in the theta band (3–7 Hz; Figure 1C). Second,
the total power analysis identified a right frontolateral
response in the beta band (15–30 Hz; Figure 1E) that
exhibited cyclical bursts of power. Both oscillations were
significantly stronger in high- relative to low-reward trials
in the 100–1000 msec time window following the onset
of the reward cue (theta phase locking F(1, 29)= 4.57, η2=
0.13, p < .04, beta power F(1, 29) = 5.71, η2 = 0.16, p <
.03). Moreover, theta phase locking, F(1, 29) = 5.70, η2 =
0.16, p < .03, and beta power, F(1, 29) = 6.58, η2 = 0.20,
p < .02, were significant following a high-reward cue, but
not a low-reward cue ( ps > .3). It is noteworthy that these
modulations were not clear in the ERPs time locked to the
reward cue, indicating a greater sensitivity of spectral
analysis in revealing the distributions of phase angle and
magnitude information in the time–frequency domain
(Figure 1B–E insets, see also below). These results demon-
strate that both frontal theta and beta activities rapidly
discriminated the meaning of the reward cue. This is strik-
ing given that the reward cues were simple colored circles
and the physical stimuli were counterbalanced across
participants.

To further examine the nature of these reward-related
theta and beta rhythms, we modeled their potential neural
generators. Figure 1B–E illustrates the spatial profile in
distributed current density for each frequency-specific
response and level of reward, with the center of mass of
activity (i.e., warmer colors and crosshair) representing a
plausible spatial location of neuronal generation. The
theta-band response exhibited a frontomedial distribution
over the frontal pole of the cortical surface, with a gravity
center located in dorsomedial pFC (95% explained var-
iance; Figure 1B–C). In contrast, beta-band activity revealed
a concentration of high-magnitude current densities in
ventrolateral pFC, constituting most of the orbital gyri
(94% explained variance; Figure 1D–E). These findings
suggest that the frontal theta and beta activities triggered
by a reward-predictive cue can be measured in areas
related to reward expectation (Vickery, Chun, & Lee,
2011; Kahnt, Heinzle, Park, & Haynes, 2010) with the high

temporal resolution provided by electrophysiological
recordings.
Next, we examined the dynamic temporal structure be-

tween theta and beta oscillations for all electrode pairs
between 100 and 1000 msec postreward cue. We used
cross-frequency coupling indices that directly measure
the presence and intensity of phase–amplitude (Lakatos
et al., 2005) and amplitude–amplitude (Bruns et al., 2000;
Friston, 1997) cross-frequency coupling. Only phase–
amplitude coupling was detected. Specifically, using a
stringent correction criterion (i.e., 1% FDR), one electrode
pair exhibited significant phase–amplitude cross-frequency
coupling relative to values generated from a surrogate
control distribution: frontomedial (Fz) and right fronto-
lateral (F3; Figure 1F, red line). We observed that right
frontolateral beta amplitude bursts occurred preferen-
tially during troughs of simultaneous frontomedial theta
waves following high-reward cues, but not low-reward cues
(Figure 1G–I). These phase–amplitude cross-frequency
coupling results were significantly different between high-
and low-reward trials, F(1, 29) = 7.97, η2 = 0.25, p < .01.
This effect of reward was unlikely because of differences
in the power of oscillatory responses because coupling
measures were normalized, and moreover, no significant
differences in the signal-to-noise ratios were observed
between high- and low-reward trials ( p > .21). A more
liberal thresholding criterion (i.e., 5% FDR) implicated
neighboring electrode pairs, but critically the midline theta
phase to right frontolateral beta amplitude network organi-
zation remained the same (Figure 1F, black lines). Analysis
of theta phase–beta amplitude coupling within the critical
electrode sites (i.e., Fz and F3) revealed no significant
results (i.e., mean coupling values did not exceed even
the 90th percentile of the null distribution), indicating that
the effect was not a strictly local phenomenon. Addition-
ally, outlier analysis showed that averaged cross-electrode
coupling values per participant did not exceed 2.5 SDs,
indicating that no particular individuals were driving these
effects. In summary, our results show that the potential for
high reward on a given trial triggers a specific oscillatory
network structure between theta and beta frequencies
over pFC.

Working Memory-related Neural Data

Our next analysis focused on the visual working memory
period directly following the reward prediction period
described above. The critical stimulus presented during
this epoch was a lateral target object, which instructed
participants to remember the shape of this target for
the subsequent visual search task. We found that the
time–frequency analyses during the time window locked
to the target object cue revealed two prominent lateral-
ized oscillatory responses in the power spectra over
frontoparietal areas. Specifically, arising approximately
150 msec posttarget cue, a sustained and stable posterior
alpha power reduction (8–13 Hz) contralateral to the
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remembered location of the target cue was evident
during the interval in which this target was held in mem-
ory in anticipation of the upcoming visual search array.
Similarly, beginning approximately 300 msec posttarget
cue, a sustained and stable frontal theta power enhance-
ment (3–7 Hz) contralateral to the remembered location
of the target appeared throughout the memory retention
interval.
The power of frontolateral theta (low F(1, 29) = 4.93,

η2 = 0.14, p < .04, high F(1, 29) = 6.61, η2 = 0.19, p <
.02; Figure 2A–B) and the power of lateral posteroparietal
alpha oscillations (low F(1, 29) = 4.69, η2 = 0.13, p< .04,

high F(1, 29) = 8.25, η2 = 0.21, p < .01; Figure 2C–D)
were significantly different from baseline and significantly
different between high- versus low-reward trials (theta
F(1, 29) = 4.23, η2 = 0.11, p < .05, alpha F(1, 29) =
14.90, η2 = 0.33, p < .01; for a discussion regarding the
behavioral relevance of these oscillations in comparison
with the target cue-locked ERPs shown in Figure 2A–D
insets, see below). Moreover, mapping both frequency-
specific power responses, as previously done for the
reward-related oscillations, revealed neuroanatomical loci
across key frontoparietal structures implicated in visual
working memory maintenance (Todd & Marois, 2004;

Figure 2. The oscillations,
source estimates, and
interregional synchrony of
visual working memory.
Grand-averaged target
cue-locked frontolateral
(F3/4, A-B) and lateral
posteroparietal power
(OL/R, C-D) contralateral to
the remembered location of
the target for low and high
reward. Insets show ERPs.
Current density estimates are
projected onto the cortical
surface of 3-D reconstructions
and MRI slices intersecting
the location of greatest
density of current flow (i.e.,
warmer colors/crosshair) for
frontolateral theta (4–6 Hz,
A–B) and lateral posteroparietal
alpha (8–12 Hz, C–D),
100–1000 msec posttarget
cue. (E) Significant theta
(without triangle) and alpha
(with triangle) coupling
(red line, q = 0.01; black line,
q = 0.05) for low and high
reward. Combined current
density results show activations
in lateral intraparietal and
dorsolateral prefrontal cortices.
Although both left and right
visual field trials are included
in all source models and
coupling topographies, for
visualization purposes all
contralateral activity is projected
onto right hemisphere.
(F) Normalized cross-correlation
estimates between frontolateral
theta and posterolateral alpha
power envelopes for low reward
(magenta), high reward (blue),
and control (black). Insets
show the absence of target
cue-locked interregional cross-
frequency coupling using the
frequency bands and electrode
locations forming the reward
and attention networks
(Figures 1 and 3).
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Sakai, Rowe, & Passingham, 2002; Rowe, Toni, Josephs,
Frackowiak, & Passingham, 2000). Specifically, theta-band
current densities exhibited a frontolateral distribution
with a focus identified in dorsolateral pFC (96% explained
variance; Figure 2A–B), whereas the alpha-band response
generated a posterolateral distribution of current densities
with a gravity center located in lateral intraparietal cortex
(96% explained variance; Figure 2C–D). In summary, after
structuring a network approximately 1 sec prior for the
processing of reward information, the brain enlisted a
new set of rhythms with a different temporal-spatial profile
and estimated anatomical loci to actively maintain task-
relevant information needed to process the upcoming
complex scene.

To assess large-scale network connections between
theta and alpha frequencies during working memory
maintenance, we computed phase–amplitude and
amplitude–amplitude cross-frequency coupling for every
electrode pair. Only amplitude–amplitude coupling was
present. Specifically, using a strict threshold criterion (i.e.,
1% FDR), multiple electrode pairs spanning frontolateral
(F3/4) to posterolateral areas (PO3/4, O1/2, OL/R) exhibited
significant cross correlations relative to surrogate control
estimates (Figure 2E, red lines). That is, we found for
both low and high reward that the decrease in posterior
alpha activity was linearly synchronized to the increase in
frontal theta activity during the memory retention interval
(100–1000 msec), contralateral to the cue location in the
visual field (Figure 2F). The mean theta–alpha cross-
frequency coupling values were significantly greater on
high relative to low reward, F(1, 29) = 7.21, η2 = 0.19,
p < .02. This was unlikely because of differences in the
power of oscillatory responses given the normalization
procedure for coupling and comparable signal-to-noise
ratios between high- and low-reward trials ( p > .370).
The time lag between frontoparietal oscillations was
approximately 200 msec for both high and low reward
with the frontal theta activity following the posterior
alpha activity. A more lenient correction criterion (i.e.,
5% FDR) increased the number of significant electrode
pairs over frontoparietal regions, revealing a similar large-
scale network direction and organization (Figure 2E, black
lines). Analysis of subject outliers (>2.5 SDs) showed that
no individualʼs data were driving these effects. Moreover,
analysis of theta–alpha coupling within frontoparietal
electrode sites yielded no significant results (i.e., mean
coupling values did not exceed the 86th percentile of the
null), indicating that the effect was not local but rather a
trial-by-trial interaction between independent neural
responses. Thus, oscillatory coupling revealed a long-range
neuronal exchange between theta and alpha rhythms
during visual working memory maintenance.

Attention-related Neural Data

The next epoch of each trial was the presentation of a
visual search array containing the target object as well

as task-irrelevant distractor objects. As participants main-
tained central fixation and performed visual search, we
found that two robust lateralized oscillations were evi-
dent in the power spectra over frontotemporal areas.
Beginning approximately 100 msec after the onset of
the search array, a sustained yet relatively short-lived
increase in theta power (3–7 Hz) appeared over frontal
areas contralateral to the location of the search target.
Also, arising approximately 150 msec following the search
array over posterotemporal areas, a sustained decrease
in alpha power (8–13 Hz) appeared contralateral to the
location of the search target.
The power of frontolateral theta (low F(1, 29) = 5.33,

η2 = 0.16, p < .03, high F(1, 29) = 8.03, η2 = 0.22, p <
.01; Figure 3A–B) and the power of lateral postero-
temporal alpha oscillations (low F(1, 29) = 4.63, η2 =
0.14, p < .05, high F(1, 29) = 10.02, η2 = 0.26, p <
.01; Figure 3C–D) were significantly different from base-
line and significantly different between high and low
reward (theta F(1, 29) = 4.23, η2 = 0.13, p < .05, alpha
F(1, 29) = 27.76, η2 = 0.46, p < .01). Insets show the
corresponding search array-locked ERPs (see below for
a discussion of the behavioral relevance between ERPs
and oscillations). Source modeling estimated the neuro-
anatomical regions giving rise to both attention-related
rhythms, 100–400 msec postsearch array. Note that this
measurement interval was approximately 350 msec before
the manual response of the participants, indicating that
these oscillations are related to the visual processing of
the array and are unlikely to reflect processing at the
response stage. The theta-band response exhibited a
frontolateral current density distribution with a potential
generator identified in dorsolateral pFC (93% explained
variance; Figure 3A–B). The alpha-band response exhib-
ited a lateral posterotemporal distribution with a neural
source estimated in the inferior temporal lobe (97% ex-
plained variance; Figure 3C–D). Thus, despite partial
overlap with one oscillation from the previous working
memory network, using attention to select an object from
a complex visual scene engaged a unique set of rhythms
with a distinct time course, spatial profile, and estimated
neural sources.
To assess the temporal relationship between the fron-

tal and posterotemporal rhythms elicited by searching for
the target in the scenes, we computed phase–amplitude
and amplitude–amplitude cross-frequency coupling for
every electrode pair. We found only significant amplitude–
amplitude coupling. Specifically, significant cross-correlation
estimates (using 1% FDR) were observed across the follow-
ing electrode pairs: frontolateral (F3/4) and lateral postero-
temporal (T3/4, T5/6; Figure 3E, red lines). That is, we
observed that the decrease in alpha activity along the
ventral visual pathway (i.e., electrode T3/4, T5/6) was
synchronized to an increase in theta activity over pFC (i.e.,
electrode F3/4) during the allocation of visual attention
(i.e., 100–400 msec), contralateral to search target loca-
tion in the visual field (Figure 3F). A more liberal threshold
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(i.e., 5% FDR) revealed additional significant electrode
pairs with the same general direction and pattern of ampli-
tude coupling (Figure 3E, black lines). No significant theta–
alpha coupling was observed within any of these elec-
trodes, suggesting that the effect was not local in nature.
Moreover, no outliers were found in the distribution of
participantsʼ averaged cross-correlation values. Because of
the extended time course of the posterotemporal alpha
power reduction, we also assessed functional connectivity
beyond the window of visual attention deployment (i.e.,
400–750 msec) but found no significant frontotemporal
coupling, suggesting a role for posterior alpha in further
downstream information processing.

Finally, we found that the reward cue that was pre-
sented at the beginning of the trial modulated the strength
of the theta–alpha attentional network almost 3 sec later.
We observed significant differences between high and
low reward, F(1, 29) = 8.20, η2 = 0.18, p < .01, with high
reward resulting in greater mean synchronization strength
between areas during visual search, despite similar signal-
to-noise ratios for these trial types ( p > .284) and the
normalization of our synchronization measures. The
time lag between these widely distributed oscillations
was approximately 50 msec for both high and low reward,
with the frontal theta activity leading the posterotemporal
alpha activity. In summary, the formation of a network

Figure 3. The oscillations,
source estimates, and
interregional synchrony of
attention. Grand-averaged
search array-locked frontolateral
(F3/4, A–B) and lateral
posterotemporal power
(T5/6, C–D) contralateral to
the remembered location of
the target in the search array
for low and high reward. Insets
show ERPs. Current density
estimates are projected onto
the cortical surface of 3-D
reconstructions and MRI slices
intersecting the location of
greatest density of current flow
(i.e., warmer colors/crosshair)
for frontolateral theta (4–7 Hz,
A–B) and lateral posterotemporal
alpha (8–13 Hz, C–D),
100–400 msec postsearch array.
(E) Significant theta (without
triangle) and alpha (with
triangle) coupling (red line,
q = 0.01; black line, q = 0.05)
for low and high reward.
Combined current density
results show activations in
inferior temporal and
dorsolateral prefrontal cortices.
Although both left and right
visual field electrodes are
included in all source models
and coupling topographies,
for visualization purposes all
contralateral activity is projected
onto right hemisphere. (F)
Normalized cross-correlation
estimates between theta and
alpha power envelopes for low
reward (magenta), high reward
(blue), and control (black).
Insets show the absence of
search array-locked interregional
cross-frequency coupling using
the frequency bands and
electrode locations critical for
forming the reward and
working memory networks
(Figures 1–2).
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controlling visual attention was revealed via oscillatory
synchrony between theta and alpha rhythms spanning
frontotemporal regions and modulated by monetary
incentive.

Network Relationships and Behavior

If interregional interactions regulated by oscillatory syn-
chrony serve a functional role, then such high-level net-
work activity should influence the ultimate behavior of
the participant. Given the robust effects of our reward
manipulation on participantsʼ speed of responding to
the target object in the complex scene, we first focused
on the relationship between reward-triggered behavioral

benefits (i.e., RT speeding) and the preceding inter-
regional interactions on high- compared with low-reward
trials. We found that those participants with the strongest
cross-frequency coupling exhibited the largest reward-
triggered RT improvements during reward encoding (r =
0.712, p < .01, ∼3 sec before response; Figure 4A), visual
working memory maintenance (r = 0.511, p < .01, ∼2 sec
before response; Figure 4B), and the deployment of
visual attention (r = 0.572, p < .01, ∼0.7 sec before
response; Figure 4C). Critically, strong trial-by-trial relation-
ships between RT and network coupling strength were
observed (Figure 4D–F, Fisherʼs z test, p < .05) for a
majority of individual participants (mean r ± SE, reward
−0.299 ± 0.031, 24 of 30 participants; memory −0.363

Figure 4. Interregional
synchrony and performance.
Individual subject correlations
between RT and interregional
cross-frequency coupling
following reward cue (A), target
cue (B), and search array (C)
in high minus low-reward
trials. Trial-by-trial correlations
between RT and interregional
cross-frequency coupling
following reward cue (D),
target cue (E), and search
array (F). Significant correlation
coefficients are shown in dark
bars. Dashed vertical lines
represent a correlation of zero.
Interregional cross-frequency
coupling following reward cue
(G), target cue (H), and search
array (I) for all error and correct
trials. The central red bar
indicates the median, and
the edges of boxes indicate
25th and 75th percentiles,
respectively. Individual
participant interregional cross-
frequency coupling correlations
between reward and working
memory networks ( J), reward
and attention networks (K),
and working memory and
attention networks (L) on
high- minus low-reward trials.
Trial-by-trial correlations
between the interregional
cross-frequency coupling of
the reward and working
memory networks (M), reward
and attention networks (N),
and working memory and
attention networks (O).
Conventions are as in D–F.
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± 0.033, 25 of 30 participants; attention −0.379 ± 0.030,
27 of 30 participants). However, relationships between
single-trial RT and the networks inactive during each epoch
was not significant for any participants, including after
reward cue onset (memory 0.023 ± 0.117; attention
−0.013 ± 0.118), during the memory retention interval
(reward 0.039 ± 0.133; attention 0.042 ± 0.140), and after
visual search array onset (reward 0.065 ± 0.106; memory
−0.025 ± 0.088), indicating that each network is unique
to each epoch of interest.
To determine the reliability of these single-trial rela-

tionships, we calculated the significance of the observed
correlations against a surrogate distribution of r values
based on 10,000 shuffles of trial and coupling values.
We found that the observed r values could not have been
derived from the surrogate distribution (zs > 3.1, ps <
.001). Interestingly, the few participants who did not
exhibit significant single-trial effects appeared to be
simply poor couplers in general, as they were the same
individuals with weak single-trial correlations across the
three epochs of the trials. These results reveal that network
synchronization strength can predict the reward-triggered
behavioral advantage and serve as a more general trial-
by-trial predictor of the speed of the behavioral responses.
To further investigate the hypothesis that network-

level neuronal interactions are instrumental to task perfor-
mance,we examined interregional cross-frequency coupling
on error versus correct trials of all participants (Figure 4G–I).
Correct trials were associated with increased coupling
across the reward,workingmemory, and attentionnetworks.
We found that the average coupling on correct trials (reward
0.80, working memory 0.70, attention 0.60) was approxi-
mately triple that observed on error trials (reward 0.18, work-
ing memory 0.20, attention 0.22). Across all participants and
trials, correct and error trials were distinguished by signifi-
cantly different coupling values in reward, working mem-
ory, and attention networks (η2s > 0.22, ps < .01), and
coupling values above a certain threshold (reward 0.40,
working memory 0.48, attention 0.45) were associated
exclusively with correct performance. In all, our results dem-
onstrate that stronger interregional cross-frequency coupling
leads to more successful task performance, and conversely,
when the coupling strength of these networks breaks
down, this is reflected in the subsequent behavioral output.
Next, we computed the relationships between networks.

Given that reward-triggered performance gains are pre-
dicted by the strength of various networks that form and
dissolve throughout the course of the task, as described
above, then how are the reward-triggered gains in network
activity strength related? We found significant subject-
wise, reward-triggered relationships between reward
and visual working memory networks (r = 0.696, p <
.01; Figure 4J), reward and visual attention networks (r =
0.615, p < .01; Figure 4K), and between visual working
memory and attention networks (r = 0.475, p < .01;
Figure 4L). Moreover, strong trial-by-trial correlations
between networks were observed (Figure 4M–O; Fisherʼs

z test, p < .05) for a majority of individual participants
(mean r ± SE, reward vs. working memory 0.326 ± 0.025,
26 of 30 participants, reward vs. attention 0.262 ± 0.025, 25
of 30 participants, working memory vs. attention 0.365 ±
0.025; 29 of 30 participants), again with overlapping,
nonsignificant results coming from the same individuals
who exhibited poor coupling in general. Using the same
method mentioned above for evaluating the reliability of
these single-trial correlations, we found that the prob-
ability that these observed r values were derived from
a surrogate distribution was <0.001. The above results
are based on networks measured during each epoch,
such as the theta phase–beta amplitude frequency
coupled network measured directly after reward cue
onset. However, we also examined the relationships
between the currently active network and networks
active during the other epochs of each trial. No partici-
pant showed significant trial-by-trial correlations be-
tween current-epoch network and other-epoch networks
during reward encoding (reward vs. memory −0.060 ±
0.107, reward vs. attention 0.007 ± 0.113), visual working
memory maintenance (memory vs. reward −0.020 ±
0.125, memory vs. attention −0.008 ± 0.125), or atten-
tional selection phases of the trials (attention vs. reward
0.015 ± 0.105, attention vs. memory −0.046 ± 0.095).
These results demonstrate the interplay between dynamic,
selectively activated networks and show that a network
formed even before the presentation of task-relevant
stimuli can predict the strength of subsequent networks
involved in processing the imperative stimuli.

Finally, we asked whether our measures of interregional
cross-frequency coupling were better at predicting the
upcoming behavior than more traditional electrophys-
iological measures. First, we examined the within-electrode
phase and power measures of frequency-band oscillations
of theta, alpha, and beta that we had identified specific to
reward, working memory, and attention. We found that
significant single-trial relationships between the basic
frequency-band signals (power and phase) and accuracy
were present in a dramatically smaller number of participants
(<7 of 30 per test, Fisherʼs z test, p < .05, mean r ± SE,
−0.183 ± 0.019), and that the variance in the RT data of
these same participants were better accounted for using
our measure of network connectivity strength (mean r ±
SE, −0.376 ± 0.026). Across all participants and trials,
correct and error trials were only significantly distinguished
by frontolateral theta, F(1, 29) = 4.56, η2 = 0.15, p < .04,
and posterolateral alpha power responses, F(1, 29) = 6.23,
η2 = 0.18, p < .02, during the visual working memory
maintenance stage of the task. However, these signals
were significantly less predictive than our measure of
working memory network coupling strength, F(1, 29) =
17.80, η2 = 0.35, p < .01.

Next, we performed the same RT and accuracy ana-
lyses on the amplitude of the visual attention and working
memory ERP components elicited in the task. The N2pc is
a negative-going ERP waveform observed over posterior
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cortex, contralateral to where in the visual field attention
is focused (Luck, Fan, & Hillyard, 1993; Luck & Hillyard,
1990). The contralateral delay activity (CDA) is an ERP
component characterized as a sustained posterior nega-
tivity, contralateral to the location where an object had
appeared, as it is actively maintained in visual working
memory (Woodman & Vogel, 2008; Vogel, McCollough,
& Machizawa, 2005; Vogel & Machizawa, 2004). We found
significant (Fisherʼs z test, p < .05) single-trial RT cor-
relations in only four participants using the N2pc (mean
r ± SE: −0.304 ± 0.021) and in only seven participants
using the CDA to predict response speed (−0.334 ±
0.037). Moreover, interregional coupling explained more
average variance in these participantsʼ RT data (four par-
ticipants mean r± SE:−0.427 ± 0.029; seven participants
mean r ± SE: −0.466 ± 0.034). Additionally, neither the
N2pc nor the CDA could distinguish between correct and
error trials across all participants and trials ( ps > .19).
Thus, our analyses of the raw frequency power and ERPs
demonstrate that network synchronization strength is a
superior predictor of the speed and success of partici-
pantsʼ behavioral responses.

DISCUSSION

We found that when a participant was given the opportu-
nity to earn a large reward, theta and beta oscillations
over prefrontal regions formed a distributed network
defined by the coupling of these distinct frequencies.
Next, we found that, as participants maintained a repre-
sentation of the target object in visual working memory,
theta and alpha oscillations across frontoparietal areas
formed a network distinct from that related to processing
the reward cue. This network had its own temporal code
allowing for interregional communication between the
areas maintaining the memory representation of the
task-relevant information in the brain. Then, as the partici-
pants searched for the target object in the complex visual
scenes, theta and alpha oscillations across frontotemporal
areas formed a third spatially distinct network related to
the deployment of visual attention and perceptual analysis
of the search array.1 Each of the observed networks was
absent during the formation of the others (see insets in
Figures 1I, 2F, and 3F) and only predictive of behavior
and other network activity when selectively activated
during the relevant stage of the task. The behavior of
these networks is consistent with the transient coding
hypothesis, which proposes that functional interactions
between neuronal populations are mediated by temporal-
spatial dynamics that endure over relatively brief time
periods (i.e., ∼100–1000 msec; Friston, 1997; Vaadia
et al., 1995).

Our study breaks new ground in demonstrating reward-
dependent interregional synchrony in the cortex and the
influence of this reward network on the synchronous
oscillations underlying visual working memory main-

tenance (see also Palva, Monto, Kulashekhar, & Palva,
2010; Sarnthein, Petsche, Rappelsberger, Shaw, &
von Stein, 1998) and attentional selection (Siegel, Donner,
Oostenveld, Fries, & Engel, 2008; Gross et al., 2004).
Specifically, our results show that medial prefrontal
theta and nested orbitofrontal beta form a relational code
supporting the processing of reward information in the
human brain. The phase locking of theta appears to tem-
porally align activity in the medial prefrontal area with the
beta oscillations in targeted orbitofrontal areas. This type of
coupling can enhance the impact of the observed activity
across regions. Animal studies report that the neural activ-
ity in the amygdala and medial pFC are synchronized by
theta oscillations during reward prediction or the delivery
of reward (e.g., Siapas, Lubenov, & Wilson, 2005). Also
consistent with our results, human frontal beta activity
has been associated with motivation and relative evaluation
of reward values (Marco-Pallares et al., 2008; Cohen, Elger,
& Ranganath, 2007). A similar sustained and phasic tem-
poral pattern of reward triggered frontal beta activity has
been observed within a single electrode in one other
human study (Kawasaki & Yamaguchi, 2013) and is charac-
teristic of midbrain dopaminergic responses and straital
activity within the brain circuit for reward (Fiorillo, Tobler,
& Schultz, 2003; McClure, Berns, & Montague, 2003). The
present findings suggest that it is possible to measure the
activity of this reward-related network noninvasively in
humans performing a variety of tasks.
Most surprisingly, the signal-to-noise ratios of these

coupling measures were high. As evidence of this, our
measures of network synchronization strength showed
high single-trial predictive power. Specifically, the activity
of the reward and working memory networks, formed
even before the presentation of task-relevant scene stim-
uli, could predict the strength of the subsequent network
active while the imperative stimuli were processed, as
well as behavioral success and response speed. More-
over, our network synchronization measures significantly
outperformed more conventional electrophysiological
measures of brain activity (i.e., individual oscillations
and ERPs) in the ability to predict the ultimate behavior
on each trial. By revealing the behavioral significance of
precise cross-frequency interactions organizing different
large-scale networks, our results join of growing body
of work (Siegel, Donner, & Engel, 2012), suggesting that
large-scale network activity is a critical intermediate level
of neural organization linking circuit-level computation to
higher-order experience and behavior.
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Note

1. We have replicated these primary findings showing sep-
arate frequency-coupled networks related to reward encoding,
visual working memory maintenance, and attentional selec-
tion in an independent sample of participants (n = 14) using
the same general task and analysis procedures. We again
found that the network strengths from each epoch signifi-
cantly correlated with single-trial RT (mean r ± SE, reward
−0.240 ± 0.027, 11 of 14 participants, memory −0.229 ±
0.026, 11 of 14 participants, attention −0.294 ± 0.032, 12 of
14 participants).
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