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Discussion Paper

Repetition priming and repetition suppression: A case for
enhanced efficiency through neural synchronization

Stephen J. Gotts1, Carson C. Chow2, and Alex Martin1

1Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental
Health (NIMH), National Institutes of Health, Bethesda, MD, USA
2Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases
(NIDDK), National Institutes of Health, Bethesda, MD, USA

Stimulus repetition in identification tasks leads to improved behavioral performance (“repetition priming”) but
attenuated neural responses (“repetition suppression”) throughout task-engaged cortical regions. While it is clear
that this pervasive brain–behavior relationship reflects some form of improved processing efficiency, the exact form
that it takes remains elusive. In this Discussion Paper, we review four different theoretical proposals that have the
potential to link repetition suppression and priming, with a particular focus on a proposal that stimulus repetition
affects improved efficiency through enhanced neural synchronization. We argue that despite exciting recent work on
the role of neural synchronization in cognitive processes such as attention and perception, similar studies in the
domain of learning and memory ––and priming, in particular––have been lacking. We emphasize the need for new
studies with adequate spatiotemporal resolution, formulate several novel predictions, and discuss our ongoing
efforts to disentangle the current proposals.

Keywords: Repetition priming; Repetition suppression; Synchrony; Prediction; Expectation.

When we repeatedly encounter an object in the envir-
onment, we become faster and more accurate at identi-
fying it, a phenomenon referred to as “repetition
priming” (see Schacter & Buckner, 1998; Tulving &
Schacter, 1990, for review). Repetition priming is
stimulus-specific, builds up over several stimulus repe-
titions (e.g., Logan, 1990; Ostergaard, 1998; Wiggs,
Martin, & Sunderland, 1997), and while it attenuates
over short delays (e.g., McKone, 1995, 1998), it can be
extremely long-lasting with significant residual effects
lasting days, months, and even years (e.g., Cave, 1997;
Mitchell, 2006; van Turennout, Ellmore, & Martin,
2000). It is also relatively automatic in the sense that

it often occurs without subjects’ awareness (e.g., Cave
& Squire, 1992) and is robust to attentional manipula-
tions (e.g., Kellogg, Newcombe, Kammer, & Schmitt,
1996; Szymanski & MacLeod, 1996) and modest
alterations of stimulus form (e.g., Biederman &
Cooper, 1991, 1992; Cave, Bost, & Cobb, 1996;
Srinivas, 1996). Historically, repetition priming has
played an important role in our understanding of the
organization of human memory due to its neuropsy-
chological dissociation from more explicit forms of
memory in amnesic patients (e.g., Graf, Squire, &
Mandler, 1984; Warrington & Weiskrantz, 1974).
Amnesic patients with damage to the medial temporal
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lobes, including the hippocampus, can exhibit pro-
found impairments in recall and recognition of recent
events while at the same time demonstrating normal or
nearly normal repetition priming effects (see Squire,
1992, for review). While caution is warranted in attri-
buting priming entirely to implicit as opposed to expli-
cit memory processes (both would typically
be expected to contribute in normal individuals––
e.g., Henson & Gagnepain, 2010; Voss & Paller,
2008), the basic dissociation has led researchers to
focus primarily on the role of neocortical plasticity
mechanisms, with priming potentially serving as a
window into the formation of long-term knowledge
representations that reside primarily in the neocortex
(e.g., McClelland, McNaughton, & O’Reilly, 1995;
Stark &McClelland, 2000). Indeed, stimulus repetition
paradigms in neuroimaging studies (e.g., functional
magnetic resonance imaging, or fMRI) are routinely
used as a tool to infer the nature of neocortical repre-
sentations in a variety of cognitive domains
(e.g., Andresen, Vinberg, & Grill-Spector, 2009;
Bedny, McGill, & Thompson-Schill, 2008; Cant,
Large, McCall, & Goodale, 2008; Fairhall, Anzellotti,
Pajtas, & Caramazza, 2011; Gold, Balota, Kirchhoff, &
Buckner, 2005; Gotts, Milleville, Bellgowan, &
Martin, 2011; Konen & Kastner, 2008; Mahon et al.,
2007; Piazza, Izard, Pinel, Le Bihan, & Dehaene,
2004). Recent work has identified separate contribu-
tions of perceptual, conceptual, and decision/response-
related processing to both task performance and prim-
ing effects (e.g., Dobbins, Schnyer, Verfaellie, &
Schacter, 2004; Horner & Henson, 2008, 2012; Wig,
Buckner, & Schacter, 2009; Race, Badre, & Wagner,
2010; Race, Shanker, & Wagner, 2009 Wig, Grafton,
Demos, & Kelley, 2005).

While behavioral performance improves with stimu-
lus repetition, neural activity in humans (BOLD fMRI)
andmonkeys (single-cell firing rates) tends to decrease, a
phenomenon often referred to as “repetition suppres-
sion” (see Desimone, 1996; Henson, 2003; Grill-
Spector, Henson, & Martin, 2006, for reviews). Like
priming, repetition suppression is stimulus-specific,
builds up over several repetitions (e.g., Jiang, Haxby,
Martin, Ungerleider, & Parasuraman, 2000; Miller,
Gochin, & Gross, 1991), and has both short-lived and
long-lasting components (e.g., Grill-Spector & Malach,
2001; Li, Miller, & Desimone, 1993; van Turennout,
Bielamowicz, &Martin, 2003). It occurs relatively auto-
matically (e.g., under anesthesia: Miller et al., 1991) and
in a wide range of neocortical brain regions. Indeed, the
agreement of the empirical properties of repetition prim-
ing and repetition suppression was initially met with
enthusiasm that the relationship between the two would
clarify the mechanisms underlying priming

(e.g., Schacter & Buckner, 1998; Wiggs & Martin,
1998). Given the automatic nature and generality of the
two phenomena throughout different cognitive domains,
tasks, and brain regions, the promise of understanding
this link is that it could pay large dividends in under-
standing the basic relationships between brain andmind.

However, the relationship between repetition prim-
ing and repetition suppression also presents a major
puzzle: How is it that reductions in neural activity can
mediate better behavioral performance? After all, the
propagation of neural activity from sensory areas
through to decision- and response-related brain regions
(ultimately in motor cortex) is what is thought to med-
iate performance in an identification task. In studies of
repetition priming using common objects and other
familiar stimuli, there is little evidence of repetition-
related increases in neural activity (see Henson, 2003,
for review). So where does the behavioral facilitation
come from? Just to highlight how puzzling this basic
situation is, it is worth remembering that the major
“activation-based” theories of priming that existed
prior to the first neuroimaging studies of priming in
the mid-1990s (e.g., spreading activation, connection-
ist models) posited repetition-related accumulation or
increases in activity in the nodes or units that repre-
sented a given stimulus (e.g., Anderson, 1983; Becker,
Moscovitch, Behrmann, & Joordens, 1997; Collins &
Loftus, 1975; McClelland & Rumelhart, 1985). This
issue would also appear to cut across the distinction
between implicit versus explicit memory, since both
sets of processes are likely to be reflected in some
mixture in neural and behavioral repetition effects.
One must still explain how less neural activity some-
how produces a more effective behavioral response. It
is worth noting that in a variety of cognitive domains
that do not intrinsically involve stimulus repetition
(e.g., attention, visual search, working memory, motion
discrimination) better behavioral performance is
generally associated with increased rather than
decreased activity in cells that prefer a stimulus, loca-
tion, or response (e.g., Luck, Chelazzi, Hillyard, &
Desimone, 1997; Newsome, Britten, & Movshon,
1989; Rainer, Asaad, & Miller, 1998; Schall & Hanes,
1993). Indeed, the basic logic used in mapping visual
receptive fields in single-unit studies, in evaluating the
results of functional localizers in neuroimaging studies,
or in quantitatively comparing neural responses to dif-
ferent experimental conditions, implicitly relies on the
assumption that greater activity corresponds to greater
involvement in processing. The disconnect with this
logic that is represented by the joint observation of
repetition priming and repetition suppression makes
these phenomena even more important and fundamental
to understand. Joint repetition priming/suppression
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appears to reflect some kind of improved efficiency
mechanism or set of mechanisms that apply over a
wide range of repetition lags. While the exact form of
these mechanisms is unclear, the need for such mechan-
isms is clear, given the high energy cost of neural
signaling (see Raichle & Mintun, 2006, for review). It
is likely that processes of natural selection discovered
solutions that optimize both performance and energy
use simultaneously (e.g., Aiello & Wheeler, 1995;
Allman, 1990). Below, we review four of the main
theoretical proposals about what form these solutions
might take (see also Grill-Spector et al., 2006).

THEORETICAL MODELS OF
REPETITION SUPPRESSION

AND PRIMING

Facilitation

The “Facilitation” model (Henson, 2003; James &
Gauthier, 2006; James, Humphrey, Gati, Menon, &
Goodale, 2000) is perhaps the most straightforward
resolution, positing that with repetition, neural activity
is advanced in time with a more rapid overall time

course (see Figure 1A). In BOLD fMRI experiments,
rapid timing differences such as this would be lost due
to the slow time course of the BOLD response. This
view has received some support in fMRI experiments
that either slowed down the time course of a trial by
gradually unmasking the stimuli (e.g., James et al.,
2000; but see Eger, Henson, Driver, & Dolan, 2007)
or attempted to measure BOLD latency differences
directly (e.g., Gagnepain et al., 2008; Henson, Price,
Rugg, Turner, & Friston, 2002). However, direct
electrical recordings of single-cell activity in a
variety of brain regions in monkeys (e.g., Anderson,
Mruczek, Kawasaki, & Sheinberg, 2008; Freedman,
Riesenhuber, Poggio, & Miller, 2006; Li et al., 1993;
McMahon & Olson, 2007; Rainer & Miller, 2000;
Verhoef, Kayaert, Franko, Vangeneugden, & Vogels,
2008) and in human patients undergoing neurosurgery
(e.g., Pedreira et al., 2010) have presented strong
counter evidence to this idea under typical stimulus
presentation conditions. Firing-rate curves to repeated
stimuli show no evidence of advancing in time and
are subsumed under the firing-rate curves to novel
stimuli. A more sophisticated version of this hypoth-
esis (Bayesian networks and “explaining away”) are
discussed below.

Facilitation 
(James & Gauthier, 2006; James et al., 2000)

Sharpening 
(Desimone, 1996; Wiggs & Martin, 1998)
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Figure 1. Theories that explain repetition priming in the face of repetition suppression. Graphical depictions of the theories discussed in the text
are shown for (A) facilitation, (B) sharpening, (C) synchrony, and (D) Bayesian “explaining away.”Hypothetical novel and repeated conditions are
shown with black and red curves, respectively. In panel D, suppressive feedback from higher levels to lower levels in the network structure is
highlighted by thick black lines, and the earlier separation of novel and repeated conditions in higher levels relative to lower levels is indicated with
vertical dashed lines in the activity plots to the right.
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Sharpening

A second idea, often referred to as “sharpening”
(Desimone, 1996; Wiggs & Martin, 1998), holds that
while neural activity is decreasing on the average, the
decreases are carried mainly by the cells that are poorly
tuned and/or weakly responsive to the repeated stimuli
with the “best” cells (i.e., most selective/responsive)
instead retaining their activity levels (Figure 1B). If the
poorly responsive cells are dropping out while the best-
responsive cells keep their responses, the distribution
of cell responses over the population is actually more
informative about the identity of the stimulus even
though the firing rates have decreased overall. In mon-
keys, there is certainly some evidence consistent with
sharpening in single-cell recordings, particularly after
lengthy periods of training with the same set of stimuli
(e.g., several months: Baker, Behrmann, & Olson,
2002; Freedman et al., 2006; Rainer & Miller, 2000).
However, stimulus repetitions that occur solely within
a single experimental session have tended to elicit
changes in firing-rate that are more consistent with
proportional “scaling”, in which the “best” responses
exhibit the largest decreases (e.g., Li et al., 1993;
McMahon & Olson, 2007; Miller, Li, & Desimone,
1993). It is particularly challenging to understand
how priming can occur under these circumstances
because the cells that are most responsible for driving
downstream responses are the ones that are decreasing
the most. fMRI studies in humans that have attempted
to evaluate sharpening of visual object representations
with experience have similarly generated mixed
results. Jiang et al. (2007) trained subjects to discrimi-
nate between morphed pictures of cars that were
assigned to distinct categories. Using an fMRI-
adaptation paradigm (see Grill-Spector & Malach,
2001), they found greater release from adaptation
with small changes in visual stimulus form in the right
lateral occipital cortex after training relative to pre-
training, consistent with “sharper,” less-overlapping
visual form representations. However, another recent
fMRI-adaptation study by Weiner, Sayres, Vinberg,
and Grill-Spector (2010), using short- and longer-lag
repetitions to measure changes in category selectivity,
found proportional changes for preferred and non-
preferred categories throughout the lateral aspects of
ventral occipitotemporal cortex, consistent with pro-
portional “scaling” (i.e., multiplying by a value
between 0 and 1) rather than sharpening. Only the
more medial aspects of ventral temporal cortex showed
larger repetition suppression effects for non-preferred
relative to preferred categories, and only for longer-lag
repetitions. Similar attempts to use rapid adaptation

paradigms to measure tuning changes in single-cell
firing rates in monkeys have failed to yield support
for sharpening (e.g., De Baene & Vogels, 2010). Even
if sharpening were shown to occur robustly in the
experimental contexts in which repetition priming is
observed, additional assumptions would need to be
articulated in order for sharpening to explain priming.
For example, when neural representations are
distributed over many cells in a “population code”
(e.g., Georgopoulos, Schwartz, & Kettner, 1986),
each individual cell–– even ones that fire at lower
rates––could potentially contribute to activating cells
in downstream regions that prefer the current stimulus.
What is to guarantee that a large loss of firing rate in the
poorly responsive cells will not result in weaker or
slower onset of firing in the preferred cells down-
stream? This point highlights another elusive aspect
of the sharpening idea. In order for sharpening of firing
rate responses to go through as an explanation of prim-
ing, there still seems to be a need for an increase in
firing rate at earlier latencies in the cells that most
prefer the repeated stimulus somewhere in the brain
(akin to the facilitation model). Perhaps this would not
occur until the ultimate or penultimate stage of proces-
sing in executing a response, but it would still appear to
be necessary. Indeed, most neural network models that
exhibit sharpening through the application of a super-
vised learning algorithm predict a mixture of repetition
suppression and enhancement effects (e.g., McClelland
& Rumelhart, 1985; Norman & O’Reilly, 2003). To
date, we still have little or no evidence of such an
enhancement occurring, even in lateral prefrontal
sites that may play a more central role in decision/
response selection (e.g., Rainer & Miller, 2000).

Enhanced neural synchronization

A very different proposal that may help to resolve this
puzzle is that as cells are firing at lower overall
rates, they are firing more synchronously with one
another, leading to more efficient neural processing
(Gilbert, Gotts, Carver, & Martin, 2010; Gotts, 2003)
(Figure 1C). Neurons are not only sensitive to the
average firing rates of their inputs––they are also
sensitive to the relative timing of their input spikes
due to the passive membrane property of “capacitance”
(e.g., Koester & Siegelbaum, 2000). Input spikes only
transiently depolarize a receiving cell, after which the
membrane voltage decays back toward the resting
potential at a rate dictated by the membrane time con-
stant. Small depolarizations that occur simultaneously
(i.e., synchronously) in a receiving cell will be much
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more likely to sum above the voltage threshold needed
to evoke an action potential. Biophysical models and
in vitro physiology experiments on cortical cells have
substantiated this relationship, demonstrating separate
contributions of input firing rate and synchrony to a
receiving cell’s responses (e.g., Reyes, 2003; Salinas &
Sejnowski, 2000, 2001). In the extreme, volleys of
single spikes could travel along reliably through a
processing pathway from sensory to motor, perhaps
only requiring a few spikes to generate an appropriate
response. Note that this mechanism would also not
require elevated firing rates in downstream areas
for priming to occur, potentially allowing for decreases
in firing rate throughout the entire system. In this view,
what increases is the likelihood of generating a single
post-synaptic spike when a pre-synaptic spike occurs.
It predicts that stimulus repetition should be accompa-
nied by larger fluctuations in local measures of neural
population activity (e.g., local field voltages and
magnetic field measurements, multi-neuron firing
rate binned over short time windows, etc.; e.g., Gilbert
et al., 2010), as well as greater phase-locking/coherence
between task-engaged cortical sites (e.g., Ghuman, Bar,
Dobbins, & Schnyer, 2008).

In a simplified neocortical circuit model that incor-
porated biologically proportionate numbers of excita-
tory and inhibitory cells and short-term plasticity
mechanisms, Gotts (2003) showed that it was possible
to simultaneously address short-lag repetition suppres-
sion and priming effects through enhanced synchroni-
zation. The model included synaptic depression, an
attenuation of transmitter release following spiking
activity (e.g., Abbott, Varela, Sen, & Nelson, 1997;
Tsodyks & Markram, 1997), and spike-frequency
adaptation, the spike-dependent activation of K+

currents that hyperpolarize the membrane post-
synaptically and decrease the membrane resistance
(e.g., Constanti & Sim, 1987; Madison & Nicoll,
1984), both parameterized to independent in vitro
and in vivo physiological recordings of neocortical
cells (e.g., Ahmed, Allison, Douglas, Martin, &
Whitteridge, 1998; Varela, Song, Turrigiano, &
Nelson, 1999). The model was able to address short-
term (i.e., a few seconds) repetition suppression effects
quantitatively as well as qualitatively in a variety of
monkey single-cell recording and human fMRI experi-
ments (e.g., Grill-Spector & Malach, 2001; Jiang
et al., 2000; Miller et al., 1991; Miller et al., 1993),
and it naturally produced “scaling” of the firing-rate
distributions as observed in several experiments
(e.g., MacMahon & Olson, 2007; Miller et al., 1993;
Weiner et al., 2010). Importantly, as the model’s firing
rates decreased with repetition, the synchronization
of the spike times simultaneously increased. This

enhanced synchronization could be propagated
between separate simulated regions in the model, and
it was robust to expected synaptic delays and a modest
amount of variability in the firing-rate distribution.
Simulating reaction time as the amount of time
required for a single receiving output cell to reach
a threshold number of spikes, the model also
produced repetition priming effects as synchronization
increased. Repetition priming that occurs through
enhanced synchronization––and in the face of firing-
rate decreases––constitutes a particular form of neural
efficiency mechanism. A model quite similar to the
Gotts (2003) model has also been applied to account
for repetition-related decreases in firing rate and
enhanced spike synchronization in the insect antennal
lobe (olfaction) with good success (Bazhenov, Stopfer,
Sejnowski, & Laurent, 2005). While the cellular
mechanisms in these models would not enhance
synchronization over the much longer repetition lags
discussed above, good candidates would include
longer-term synaptic plasticity mechanisms such
as spike-timing-dependent, long-term potentiation
and depression (LTP/LTD) (e.g., Bi & Poo, 1998;
Markram, Lubke, Frotscher, & Sakmann, 1997;
Sjöstrom, Turrigiano, & Nelson, 2001). With repeti-
tion, spike-timing-dependent LTP/LTD mechanisms
have the potential to improve and coordinate the timing
of spikes across cells, permitting enhanced local and
long-range synchronization among task-engaged brain
regions.

Despite the promise that the synchrony model holds
for resolving the puzzle of repetition priming and repe-
tition suppression, there are relatively few studies that
have evaluated it empirically. A burgeoning literature
on neural synchronization has developed over the last
10–15 years in domains such as attention and percep-
tual binding (see Engel, Fries, & Singer, 2001; Fries,
2005; Gregoriou, Gotts, Zhou, &Desimone, 2009b, for
reviews). However, only a handful of studies involving
stimulus repetition in the neocortex have used multi-
electrode recording techniques that are capable of mea-
suring spike synchronization directly. For example,
von Stein, Chiang, and Konig (2000) recorded simul-
taneously from areas 17 and 7 in cat visual cortex while
the cats performed a go/no-go task. When they com-
pared trained to novel stimuli, they found greater
phase-locking between the two visual areas in the
alpha frequency range (8–12 Hz) for trained stimuli.
Two recent recording studies by Dragoi and colleagues
in monkeys, one in V1, using multi-contact, cross-
laminar electrodes (Hansen & Dragoi, 2011), and
another in V4, using multiple single electrodes
(Wang, Iliescu, Ma, Josić, & Dragoi, 2011), examined
local changes in synchronization after brief visual
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adaptation (duration ¼ 300 ms) to oriented sine-wave
gratings. In both studies, firing rates were reduced to a
test grating presented 100 ms after the adaptor. Spikes
elicited by the test grating were simultaneously more
synchronized with the local field potential (LFP)
(spike-LFP coherence) in the gamma frequency range
(30–80 Hz) relative to a control condition in which the
adapting grating was replaced with a random dot patch
of matched luminance. The increases in gamma syn-
chronization in both studies were associated with
improvement in neuronal orientation discrimination
performance of the test gratings. For the study in V1,
for which laminar information was available, the
improvement in neuronal orientation discrimination
performance was only associated with increases in
gamma synchronization within the superficial cortical
layers that serve as output to subsequent visual areas. In
models, it is not clear whether synchronization effects
should have a different impact at higher versus lower
frequencies, since similar benefits can be observed
over a range of frequencies (e.g., Salinas &
Sejnowski, 2000, 2001). However, given that the
brain’s activity dynamics are generally weighted
toward lower frequencies (e.g., He, Zempel, Snyder,
& Raichle, 2010), one might expect changes in lower
frequencies to have a larger impact relative to higher
frequencies that have weaker overall amplitudes (such
as gamma).

A few additional studies using single electrodes
have provided relevant data for evaluating the syn-
chrony model. Anderson et al. (2008) exposed mon-
keys to novel and familiar images during passive
viewing while recording both multi-unit spiking activ-
ity and LFPs in inferior temporal cortex. In addition to
observing repetition suppression effects in firing rate to
the familiar images, they simultaneously observed lar-
ger low-frequency fluctuations in the LFPs (,5–10
Hz) that were phase-locked to the stimulus onset (i.e.,
larger evoked responses). In a related study, Peissig,
Singer, Kawasaki, and Sheinberg (2007) observed a
similar pattern in LFPs that they recorded with tran-
scranial electrodes implanted over occipitotemporal
sites. They first trained monkeys to classify a set of
bird and object pictures. During testing, the monkeys
performed the same classifications on both previously
trained and novel pictures. Behaviorally, they observed
repetition priming effects for trained relative to novel
pictures (faster reaction time and improved accuracy),
while they observed larger low-frequency fluctuations
in the LFPs that were particularly prominent at 170 ms
after stimulus onset. In a different study aimed at eval-
uating changes in stimulus selectivity to familiar pic-
tures, Freedman et al. (2006) analyzed the firing-rate
responses of a large number of single cells (,300) in

inferior temporal cortex (area TE) to familiar and novel
stimuli during passive viewing. They observed
increases in stimulus selectivity to familiar pictures
(consistent with the sharpening model), while also
observing a hint of periodicity in the firing rate curves
to familiar stimuli, with fluctuations at approximately
5–10 Hz (see their Figure 8). Closer inspection of the
firing rate curves reported for the three monkeys in
Anderson et al. (2008, their Figure 4) also reveals a
similar tendency for periodicity. Taken together, these
studies all provide evidence that supports the basic
premise of the synchrony model, namely that cells
should fire in a more synchronous and temporally
coordinated manner following stimulus repetition,
both locally and in inter-areal interactions among
task-engaged cortical sites. It is important to note that
such evidence is not limited to monkeys and other
mammals. Striking similarities also exist in electrode
recordings in insects during stimulus repetition. For
example, Stopfer and Laurent (1999) repeatedly pre-
sented odor puffs to the antennae of locusts and
recorded spikes and LFP responses in the antennal
lobe (i.e., the insect equivalent of the olfactory bulb
in mammals). Across a series of repetitions presented at
a rate of one stimulus per 10 s, they found repetition
suppression in firing rates, as well as increased syn-
chrony between the spikes and the LFPs in the 20–
30-Hz frequency range. In a separate conditioning
experiment in honeybees, Stopfer, Bhagavan, Smith,
and Laurent (1997) were able to pharmacologically
block odor-selective synchronous firing while leaving
odor-selective firing rates intact. Under these condi-
tions, the bees’ odor discrimination was impaired,
demonstrating a causal role of synchrony in their
behavior.

Having just reviewed many of the microelectrode
recording studies in animals that are relevant to the
evaluation of the synchrony model, what relevant data
exist for humans and in repetition priming tasks? In most
human studies, measurements of neural activity are
restricted to noninvasive neuroimaging methods such
as fMRI, magnetoencephalography (MEG), and electro-
encephalography/event-related potentials (EEG/ERP).
The most extensive literature in humans that employs a
method with the appropriate temporal resolution is the
EEG/ERP literature on repetition priming (e.g., Bentin &
Peled, 1990; Henson et al., 2003; Henson, Rylands,
Ross, Vuilleumier, & Rugg, 2004; Kiefer, 2005;
Olichney et al., 2000; Paller & Gross, 1998; Rugg,
Brovedani, & Doyle, 1992; Rugg, Mark, Gilchrist, &
Roberts, 1997; Swick, 1998). While scalp EEG/ERP
studies have occasionally found evidence consistent
with larger evoked responses to repeated stimuli for
select electrode sites (e.g., Schendan & Kutas, 2003;
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Scott, Tanaka, Sheinberg, & Curran, 2006), most studies
have failed to find such evidence or have even reported
attenuated ERPs with repetition (e.g., Fiebach, Gruber,
& Supp, 2005; Gruber & Muller, 2005; Race et al.,
2010). The discrepancy with the results reviewed
above for electrode-recording studies with animals
could occur for several reasons: (1) there is a species
difference with humans, and larger ERPs with repetition
are simply not occurring (i.e., the synchrony model is
wrong); (2) the timing of fluctuations in the ERPs, such
as those in the alpha to gamma frequency range (,8–80
Hz), are somewhat idiosyncratic from subject to subject
and group-averaging across subjects (or low-pass filter-
ing the voltage signals below 20 Hz) washes these dif-
ferences away; or (3) the spatial resolution of scalp EEG
signals is too coarse and requires source estimation to see
spatially localized effects, particularly for those in deeper
sources that may carry the largest effects (e.g., the fusi-
form gyrus). Two recent source-localized MEG studies
of repetition priming in humans suggest that the answer
may be one of the last two reasons (Ghuman et al., 2008;
Gilbert et al., 2010). Gilbert et al. (2010) asked subjects
to covertly name pictures of common objects by pressing
a response button when they knew the correct name,
with randomly intermixed novel and repeated trials.
They measured evoked power (i.e., phase-locked to the
stimulus onset) in source-estimated data by an event-
related beamformer approach, that is, event-related syn-
thetic aperture magnetometry (“ER-SAM”) (Cheyne,
Bostan, Gaetz, & Pang, 2007), focusing the analyses
on brain regions known to exhibit repetition suppression
in fMRI studies (e.g., extrastriate visual cortex, the fusi-
form gyrus, and the lateral prefrontal cortex). In order to
retain phase information in the MEG signals, source-
estimated responses in different frequency bands
(5–15 Hz: theta/alpha; 15–35 Hz: beta; 35–60 Hz:
gamma) were first averaged in the time domain across
trials, either novel or repeated. Evoked power estimates
were calculated in 100-ms bins around the stimulus
onset. Gilbert et al. (2010) observed increases in low-
frequency evoked power (5–15 Hz) for repeated stimuli
in the right fusiform gyrus and right lateral prefrontal
cortex, with the earliest effects occurring between 100
and 200 ms post-stimulus onset in the fusiform gyrus.
Similar results were observed in striate/extrastriate visual
cortex, albeit in a slightly higher frequency range (beta:
15–35 Hz). Ghuman et al. (2008) measured changes in
phase-locking between distant cortical sites in lateral
prefrontal and occipitotemporal cortex while subjects
made size judgments about novel and repeated objects.
They found increases in fronto-temporal phase-locking
between 10 and 15 Hz for repeated relative to novel
objects. Importantly, the latency of the phase-locking
increase predicted the magnitude of repetition priming

for individual subjects. Taken together, these studies
suggest that stimulus repetition in humans indeed leads
to similar changes to those observed in electrode record-
ing studies in animals. Repetition leads to larger local
fluctuations in neural activity, as well as increased cou-
pling between distant task-engaged sites, providing sup-
port for the synchrony model.

Bayesian networks and “explaining
away”

The final proposal that we will consider is a more
sophisticated variant of the facilitation model proposed
by Friston and Henson (Friston, 2005; Henson, 2003;
see Grill-Spector et al., 2006, for further discussion). In
this proposal, the cortex is cast as a form of hierarchical
generative Bayesian statistical model (see also Dayan,
Hinton, Neal, & Zemel, 1995; Lee & Mumford, 2003;
Lewicki & Sejnowski, 1996; Mumford, 1992; Rao &
Ballard, 1999). Perceptual inference occurs as a pro-
gressive interaction between bottom-up sensory input
(“evidence”) and top-down expectations (“prediction”)
throughout the cortical hierarchy. A critical aspect of
this view is that top-down predictions serve to inhibit
or suppress the bottom-up sensory evidence, with resi-
dual activity in the lower levels of the cortical hierarchy
serving as “prediction error” that is, in turn, relayed
back toward the higher levels. The learning mechanism
(expectationmaximization––EM––algorithm) improves
the top-down predictions in the service of reducing
prediction error, leading to reductions in neural activity
in lower levels with stimulus repetition (i.e., repetition
suppression) (see Figure 1D). This process is commonly
referred to in the literature on Bayesian networks
as “explaining away” (e.g., Pearl, 1988), since as the
appropriate causes of the sensory evidence are learned,
the incorrect causes (i.e., prediction error) are reduced
and explained away. The proposal bears similarity to the
simple facilitationmodel in that stimulus repetition leads
to progressively earlier termination of activity, poten-
tially supporting earlier and improved behavioral identi-
fication/discrimination.

The Bayesian “explaining away” model makes a
number of novel predictions in stimulus repetition
paradigms. Given that repetition suppression in a cer-
tain brain region results from top-down input and that
this input can be further propagated to progressively
lower levels, the model predicts the following: (1)
repetition suppression effects should tend to occur ear-
lier in higher-level regions than in lower-level regions,
(2) repetition should lead to stronger top-down causal
interactions as assessed by methods such as Grainger
causality and dynamic causal modeling (DCM)
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(Friston, Harrison, & Penny, 2003), and (3) the nature
of those stronger top-down causal interactions should
be suppressive/inhibitory (i.e., negative coupling). One
relatively novel feature of the Bayesian view is that
higher levels of the processing hierarchy can track the
likelihood of encountering particular objects, as well as
more abstract variables such as the likelihood of object
repetition in a stream of stimuli. This feature leads to a
fourth prediction: a high likelihood of stimulus repeti-
tion in an experimental session (or block of trials)
should produce a stronger top-down expectation/pre-
diction from brain regions representing this more
abstract contextual information (possibly in prefrontal
regions). Hence, larger repetition suppression effects
should be observed in brain regions receiving this kind
of input (perhaps in object or category selective cortex
in the temporal lobes). This last prediction has been
evaluated in several recent experiments. Summerfield,
Trittschuh, Monti, Mesulam, and Enger (2008)
embedded short-term repetitions of face pictures in
blocks of trials in which repetitions were either fre-
quent (60% of trials) or infrequent (20% of trials). They
found that repetition-suppression effects in the fusi-
form face area (FFA) were stronger when repetitions
were expected, with similar recent results reported in
EEG/ERP (Summerfield,Wyart, Johnen, & deGardelle,
2011) and MEG (Todorovic, van Ede, Maris, & de
Lange, 2011). In contrast, a study of repetition suppres-
sion in monkey TE by Kaliukhovich and Vogels (2011)
failed to find evidence of this kind of contextual sensi-
tivity in single-cell firing rates or in LFP gamma band
power. Another recent fMRI study in humans, while
able to replicate the effect of repetition expectation on
repetition-suppressionmagnitude, found that this expec-
tation effect disappeared when subjects had their atten-
tion diverted away from the stimuli (Larsson & Smith,
2012). This would appear to rule out the extreme ver-
sion of the “explaining away” view in which all
repetition-suppression effects are explained by rela-
tively high-level repetition expectation. However, it is
important to keep in mind that this extreme version
probably had few adherents to start with, since earlier,
more perceptual levels in the Bayesian hierarchy would
not be expected to be influenced directly by more
abstract variables such as the frequency of stimulus
repetition. Taken together, these results provide partial
support for a role of high-level expectation in modulat-
ing short-term repetition suppression effects, at least at
particular points along the cortical processing hierarchy.
The first three predictions listed above have been eval-
uated less thoroughly. However, one recent study by
Ewbank et al. (2011) has provided some support for
the prediction that top-down causal interactions should
be stronger following stimulus repetition. They used

DCM in fMRI to investigate changes in causal interac-
tions between the fusiform body area (FBA) and the
extrastriate body area (EBA) while subjects viewed
pictures of human bodies. Pictures were either repeti-
tions of the same body identity or different identities,
shown in blocked conditions. They also evaluated the
effect of varying picture size and viewpoint on repetition
suppression and causal interactions. They found repeti-
tion suppression in both EBA and FBA to all viewing
conditions (the same identity evoked less activity than
different identities). Simultaneously, the DCM analyses
revealed increased top-down causal interactions from
FBA to EBA for same-identity relative to different-
identity blocks in all conditions, with the same size/
same view condition also showing greater causal
interactions in the bottom-up direction. The fact that
repetition suppression and greater top-down causal
interactions occurred in the same experimental circum-
stances is consistent with prediction no. 2 listed above.
However, these authors did not evaluate the more direct
association between the strength of top-down coupling
from FBA to EBA and the magnitude of repetition
suppression in EBA, nor did they focus discussion on
the apparently positive sign of the top-down coupling
(relevant to prediction no. 3 listed above; for another
study evaluating positive versus negative causal inter-
actions with DCM, see a recent paper by Cardin,
Friston, & Zeki, 2011). Positive coupling suggests an
excitatory rather than inhibitory top-down influence
on the lower-level activity, inconsistent with the
“explaining away” account of repetition suppression
but potentially consistent with the synchrony model
(e.g., Ghuman et al., 2008). The use of a blocked design
also brings with it issues of interpretation, due to poten-
tial differences in attentional state and processing strat-
egy (see below for further discussion). Nevertheless,
these preliminary results provide some partial support
for the Bayesian “explaining away” proposal. Future
experiments will need to focus on how proposals such
as the synchrony model and “explaining away” might
be further teased apart.

GOING FORWARD

Having reviewed four basic proposals as to how repeti-
tion suppression might afford repetition priming, the
only view that we consider definitively ruled out by
current data is the facilitation model, at least in its
existing form. Firing-rate recordings in a variety of
areas in monkeys and even in humans (e.g., Pedreira
et al., 2010) have shown that the onset of neural
responses in typical stimulus viewing conditions is
not temporally advanced. In many experimental
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circumstances used to measure priming, particularly
those in which stimulus repetitions occur within a
single experimental session, tests of the sharpening
model have also yielded a surprising lack of support.
At present, we view the synchrony model as the most
promising. Recent experiments in a variety of cogni-
tive domains in animals and humans have provided
converging support for the role of neural synchroniza-
tion in behavior. However, the Bayesian “explaining
away” model has received experimental support, as
well, and neither the synchrony nor “explaining away”
model has been run through a full gauntlet of experi-
mental tests. Below we lay out three basic experimental
methods, that, if applied, should help to bring about
more clarity to the relationship between repetition sup-
pression and priming.

Spike-LFP recordings in animals and
human patients

The most direct way to evaluate the synchrony model
would be to measure single-unit and/or multi-unit spik-
ing responses, along with LFPs, in several task
engaged cortical regions. For example, monkeys
could be trained to perform a discrimination task on
visual stimuli with responses indicated through eye
movements, taking behavioral measures of response
time and accuracy (as in McMahon & Olson, 2007).
Responses could then be recorded simultaneously in
object/form-selective temporal regions such as the TE
and areas involved in the execution of eye movements
such as the frontal eye fields (FEF). The synchrony
model would predict that spike-LFP coherence, possi-
bly in lower frequencies such as alpha (8–12 Hz) or
beta (13–30 Hz), should be greater for repeated
stimuli within areas as well as across areas (for an
example of this type of experiment in visual attention,
see Gregoriou, Gotts, Zhou, & Desimone, 2009a).
Furthermore, this increased coherence should predict
the magnitude of repetition priming. Interestingly, the
Bayesian “explaining away” model would also predict
increased coherence between spikes in higher-level
areas, such as FEF, and LFPs in lower-level areas
(e.g., TE, in this case, due to suppression by top-
down predictions). Both models would expect similar
results in other paired locations within the ventral
visual pathway that are involved in object form proces-
sing (e.g., V1, V2, V4, and TEO). The “explaining
away” model would posit a further relationship
between coherence increases and the magnitude of
repetition suppression in the more bottom-up region
of a pair of recording sites (with larger repetition sup-
pression expected for larger coherence). Taking

measures of causality in LFP-LFP recordings between
two connected regions (e.g., Grainger causality, DCM,
etc.), the “explaining away”model clearly predicts that
the directionality of the interactions should flow more
in the top-down direction for repeated stimuli com-
pared to novel stimuli. Repetition-suppression effects
should also occur earlier in top-down regions than in
bottom-up regions. The quantitative relationship
between repetition suppression and increased synchro-
nization, as well as the direction of information flow
following repetition, is less constrained in the syn-
chrony model, potentially allowing for somewhat inde-
pendent effects and symmetrical top-down/bottom-up
causal interactions (see discussion below). However,
the synchrony and “explaining away” proposals differ
critically in which cells should show the increased
coupling. The synchrony model posits that task-
engaged cells that carry information critical for task
performance are the ones that are synchronizing, acti-
vating each other more reliably and effectively with
single spikes. The prediction that follows is that cells
that prefer a repeated stimulus are the ones that should
synchronize (relative to those that are weakly tuned or
weakly responsive). In contrast, the Bayesian “explain-
ing away” proposal holds that there are two separate
subpopulations of cells, cells that encode the condi-
tional expectation of perceptual causes ( fi) and those
encoding prediction error ( ξi) (see Figure 1D and
Friston, 2005, p. 826, for discussion). After learning,
the “error” cells are the ones that are suppressed by top-
down predictions, and it is the firing of these cells that
should carry the effects of the more strongly negative
top-down coupling (perhaps exhibiting hyperpolarized
voltages following spiking in higher-level areas repre-
senting predictions). Occasionally, experiments of this
type (i.e., recording spikes and LFPs with microelec-
trodes) can be conducted in human patients undergoing
brain surgery (e.g., Kraskov, Quiroga, Reddy, Fried, &
Koch, 2007), and the same sorts of predictions would
be expected to hold in these contexts.

Intracranial EEG in humans

While we view recent source-estimated MEG experi-
ments in humans as supporting the synchrony model
(and potentially the Bayesian “explaining away”
model), source-estimation procedures are forced to
make many assumptions in order to provide an inverse
solution, and the algorithms are complex. Direct elec-
trical recordings with good spatial resolution
(<1–2 cm) would be useful for verifying the basic
pattern of results observed in these MEG experiments,
as well as for testing further predictions of the two
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models. Such measures are currently available in intra-
cranial EEG studies in human patients who are under-
going surgery for intractable epilepsy; this is referred to
as electrocorticography (EcoG) (e.g., Canolty et al.,
2006; Puce, Allison, & McCarthy, 1999). While the
subdural electrodes used in these studies typically do
not allow the recordings of spikes, they permit record-
ings of field voltages directly from the cortical surface
and often provide coverage over a large extent of one
cerebral hemisphere, recording signals from up to 100
electrodes simultaneously per patient. We have
reported preliminary results of one such study utilizing
an object-naming task in two patients with coverage of
the lateral surface of the left frontal and temporal lobes
(Gotts, Crone, & Martin, 2010, Society for
Neuroscience Abstracts, Program 94.11). We found
that stimulus repetition led to repetition priming in
both patients and increases in low-frequency evoked
power (1–15 Hz) for virtually all task-engaged electro-
des (i.e., those that exhibited significant evoked
responses), replicating the basic pattern of Gilbert
et al. (2010). Like Ghuman et al. (2008), we also
observed increases in phase-locking (LFP-LFP coher-
ence) between task-engaged frontal and temporal elec-
trodes in the alpha (8–12 Hz) and low beta (12–18 Hz)
frequency ranges. With additional patients, we should
have the ability to test several of the predictions dis-
cussed above for the spike-LFP experiments, such as
the timing and directionality of changes in the top-
down and bottom-up directions, as well as the associa-
tion between coherence changes and the magnitude of
repetition priming. While the inability to record spikes
in single cells will necessarily create some ambiguity in
interpretation with respect to the exact form that
changes in synchronization take (e.g., spike synchrony
versus rapid co-modulation of firing rates), the advan-
tage of this method over the spike-LFP recordings is
the nearly whole-hemisphere coverage that it provides.
To our knowledge, only one other ECoG study to date
in humans has examined the effect of stimulus repeti-
tion on local field activity (Puce et al., 1999). However,
this study examined only short-term repetitions in ven-
tral temporal cortex during passive viewing (as in
Miller et al., 1991), and no measures of repetition
priming were taken.

Connectivity methods in fMRI

One large downside in using source-estimated MEG or
ECoG to assess changes in neural synchronization is
that the analog of repetition suppression in these meth-
ods is unclear. Fluctuations in field activity, either
magnetic or electrical, may eventually be found to

have a reliable correlate in terms of overall neural
activity level, but this relationship is currently
unknown. The two types of measures could theoreti-
cally be unrelated in the same manner that the mean
and variance of a random variable can be independent
and separate quantities. For example, a firing rate that
is uniformly distributed in time may have no detectable
effect on field fluctuations, resulting in a blindness to
certain sorts of changes in activity level when taking
field measurements. In order to relate repetition sup-
pression, repetition priming, and changes in synchrony,
it would be best to measure these phenomena in the
same experiments. While this should be possible for
the spike-LFP recording methods in animals, it might
also be possible in coarser methods that are available to
more researchers, such as fMRI in humans. First
emphasized by Friston and colleagues (Friston et al.,
1997, 2003), fMRI studies that measure patterns of
temporal covariation in the BOLD response across
pairs or collections of brain regions have become com-
monplace following the advent of resting-state func-
tional connectivity methods (see Fox & Raichle, 2007,
for review). If cells in two brain regions are engaging in
more synchronous interactions with increased coupling
while processing repeated compared to novel stimuli,
one might expect the magnitudes of the corresponding
BOLD responses to co-vary at higher levels, as well.
This idea suggests a relatively straightforward fMRI
experiment in which it should be possible to evaluate
the separate effects of stimulus repetition on the mean
BOLD response versus on the magnitude of BOLD
covariation between pairs of task-engaged voxels/
regions. However, there is at least one main stumbling
block to carrying out this experiment. When novel and
repeated stimuli are randomly intermixed in a typical
rapid event-related design, standard analysis methods
do a good job at estimating the mean BOLD response
to each condition, even with a great deal of overlap of
the slow responses to individual stimuli as long as
baseline periods are appropriately interleaved.
However, the same is not true of estimating the varia-
tion around the mean to each individual stimulus. This
is what would be necessary in order to measure a
condition-specific change in correlation/coupling
cleanly, with correlation/coupling between two brain
regions being calculated over the set of individual
stimulus responses in each experimental condition
(e.g., novel versus repeated). One solution would be
to use a blocked design with no temporal overlap of the
novel and repeated conditions, although that has well-
known downsides, creating problems of interpretation
with respect to strategic effects and differences in
attentional state (e.g., D’Esposito, Zarahn, & Aguirre,
1999; Hamburger & Slowiaczek, 1998). A better
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solution would be to space individual stimuli far enough
apart such that the peaks of the BOLD responses are no
longer overlapping (,8–10 s, closer to a “slow” event-
related design; e.g., Bandettini & Cox, 2000), still
permitting randomly interleaved conditions. In an
experiment such as this (currently underway in our
laboratory), the synchrony model predicts that while
the mean BOLD response is decreased to repeated
stimuli (repetition suppression), correlations of the
responsemagnitudes to individual repeated stimuli across
task-engaged voxels should increase. Furthermore, beta
weights or causal model parameters (e.g., DCM) that
assess the strength of inter-regional coupling should be
more positive and facilitatory for repeated compared to
novel stimuli. The Bayesian “explaining away” model
makes at least two novel predictions in this experiment:
(1) methods of assessing causality (e.g., Grainger,
DCM) should reveal a greater top-down flow of infor-
mation (see discussion of Ewbank et al., 2011, above),
and (2) beta weights or DCM model parameters
between two connected brain regions should be nega-
tive, rather than positive as in the synchrony model,
between top-down and bottom-up areas for repeated
stimuli. The magnitude of this negative coupling
should be associated with the magnitude of repetition
suppression in the bottom-up areas.

A FINAL NOTE ON REPETITION
SUPPRESSION AND THE SYNCHRONY

MODEL

The synchrony model posits that stimulus repetition
should lead to enhanced local and long-range syn-
chronization among task-engaged cortical regions,
and this, in turn, should lead to improved accuracy
and more rapid response times. What does this

model have to say about repetition suppression? In
the Gotts (2003) neural network model, short-term
repetitions produced repetition suppression and syn-
chronization in a more or less unitary fashion,
through short-term plasticity mechanisms of synap-
tic depression and spike-frequency adaptation.
However, these mechanisms recover over tens of
seconds and do not apply at the longer lags used
to study repetition suppression in many experi-
ments. At longer lags, long-term plasticity mechan-
isms, such as LTP/LTD, are likely to be responsible
for any observed changes in synchronization, per-
haps through spike-timing-dependent plasticity
(e.g., Bi & Poo, 1998; Markram et al., 1997;
Sjöstrom et al., 2001), which improves the timing
relations among cells that prefer the repeated stimu-
lus. It is further possible that LTD dominates the
changes such that activities will be reduced overall,
producing repetition suppression, but how this
would relate to changes in synchrony is quite
unclear. We would tentatively suggest that the
mechanisms producing changes in synchronization
and those resulting in overall activity decreases may
be at least partially independent, possibly explain-
ing the lack of relationship between repetition sup-
pression and repetition priming that has
occasionally been observed (e.g., McMahon &
Olson, 2007; Race et al., 2009; Xu, Turk-Browne,
& Chun, 2007). Partial independence would require
at least two mechanisms that would tend to be
engaged when stimuli are repeatedly encountered
in the service of improving neural processing effi-
ciency. With more data in spike-LFP and slow
event-related fMRI experiments, the relative impor-
tance of repetition suppression and synchronization
in explaining priming may be put to the appropriate
tests.
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Commentaries

Predictive coding, precision and
synchrony

Karl Friston
The Wellcome Trust Centre for Neuroimaging,
University College London, London, UK
E-mail: k.friston@fil.ion.ucl.ac.uk

http://dx.doi.org/10.1080/17588928.2012.691277

Abstract: Gotts, Chow and Martin provide a very nice
review of repetition priming and suppression that reaches
a compelling conclusion—we need to look more closely at
synchronization in learning and priming. Indeed, current
modeling work focuses on this issue—namely, the
dynamic causal modeling of electrophysiological
responses to address the role of synchrony in Bayesian
explaining away. This commentary revisits the nature and
relationships among the four theories in Gotts et al. and
nuances some of their empirical predictions. In particular,
I emphasize precision or uncertainty in predictive coding as
a unifying consideration.

I think that we are closer to understanding the com-
putational anatomy of repetition and priming than
might be thought. This optimism rests upon casting
the theories reviewed in Gotts et al. as complemen-
tary perspectives on the same problem: Facilitation
and sharpening are phenomena that are fully consis-
tent with Bayesian explaining away, which is
mediated by synchronization. In other words,
explaining away is a theory about what the brain is
doing and synchronization is a proposal about how
the brain does it. In one sense, the Bayesian brain
hypothesis is almost certainly correct—in the sense
that our capacity for near-optimal perceptual infer-
ence means that we must be performing some form of
approximate Bayesian (probabilistic) inference. The
real question is how this approximate inference is
implemented neuronally. At present, the most popu-
lar implementation is predictive coding that involves
reciprocal message-passing between hierarchically
deployed cortical areas (Mumford, 1992; Rao &

Ballard, 1999). There is a vast amount of neurobio-
logical evidence in support of this scheme, which
can be derived—in a fairly straightforward way—
from (approximate) Bayesian optimality principles
(Friston, 2008). So, can predictive coding explain
the phenomena of facilitation and sharpening; and
does it admit a role for synchrony?

Predictive coding

Predictive coding relies upon the optimization of top-
down predictions—thought to originate in deep pyra-
midal cells—that try to suppress or explain away pre-
diction errors, encoded by superficial pyramidal cells
in lower hierarchical levels (Mumford, 1992; Friston,
2008). Prediction errors are then broadcast over for-
ward connections to adjust predictions at higher levels.
Crucially, top-down predictions are not just about the
content of lower-level representations but also about
our confidence in those representations. This confi-
dence may be mediated by modulating the post-
synaptic gain of superficial pyramidal cells encoding
prediction error—to boost their influence on higher
levels. Mathematically, this gain corresponds to the
precision (inverse variance) of prediction errors and
provides a nice metaphor for attention (Feldman &
Friston, 2010).

It is fairly straightforward to explain facilitation and
sharpening within this framework: Facilitation
involves a speeding of evoked neuronal responses,
which—in the context of predictive coding—speaks
to an increase in synaptic rate constants that is formally
identical to increases in synaptic gain (encoding preci-
sion or confidence). This boosts prediction errors that
inform the best hypothesis about the cause of sensory
input (Gregory, 1980), while suppressing alternative
hypotheses; namely it sharpens neuronal representa-
tions. On exposure to repeated stimuli, plastic changes
in forward (and backward) connections enable a more
efficient facilitation and sharpening (see Henson et al.,
2012). In short, this scheme accounts for repetition
priming and suppression and the phenomena of
facilitation and sharpening. So where does synchrony
come in?
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Synchronous gain and predictive coding

An obvious candidate for controlling post-synaptic
gain is synchronization of pre-synaptic inputs—a phe-
nomena referred to as synchronous gain (Chawla,
Lumer, & Friston, 1999). This means that the selection
of prediction errors—that drive higher-level represen-
tations—almost certainly involves synchronization.
Indeed, there is current interest in the possibility that
bottom-up messages—from superficial pyramidal cells
—are mediated by fast (gamma) frequencies, while
top-down messages from deep pyramidal cells may
be mediated by slower (beta) frequencies (Buffalo,
Fries, Landman, Buschman, & Desimone, 2011). It is
this hypothesis that current collaborations with Pascal
Fries and colleagues hope to test—using dynamic cau-
sal modeling (Bastos et al., 2012).

Empirical predictions

Finally, I will reiterate the importance of formal the-
ories and modeling—as emphasized by Gotts et al.—
by commenting on the empirical predictions made by
predictive coding. First, repetition suppression rests on
optimizing connection strengths that mediate predic-
tions. Crucially, these change (anti-symmetrically) the
efficacy of both forward and backward connections
(Friston, 2008). Second, because predictive coding
minimizes prediction error, it is based upon feedback
dynamics. This means that either forward or backward
connections must be (effectively) inhibitory. The fact
that both forward and backward connections are exci-
tatory (Glutamatergic) has exercised us a little. Current
thinking is that explaining away is mediated by local
inhibitory interneurons (Bastos et al., 2012). Finally,
repetition suppression is expressed throughout the hier-
archy (in high and low areas) at the same time. This is
because message-passing is recurrent and suppression
of prediction error emerges concurrently at all levels.
Repetition suppression to high-level attributes will
clearly occur later but it will be expressed at lower
levels. This phenomenon has been studied extensively
in the context of the simplest repetition suppression—
namely the mismatch negativity (Garrido, Kilner,
Stephan, & Friston, 2009).

In conclusion, I think Gotts et al. raise a number of
fascinating questions that may herald some important
advances in our understanding of computational archi-
tectures in the brain, over the next few years.

* * *

Explaining away repetition
effects via predictive coding

Michael P. Ewbank and Richard N. Henson
MRC Cognition and Brain Sciences Unit,
Cambridge, UK
E-mail: michael.ewbank@mrc-cbu.cam.ac.uk

http://dx.doi.org/10.1080/17588928.2012.689960

Abstract: Gotts, Chow and Martin summarize Predictive
Coding models in which repetition-related decreases in
neural activity reflect an “Explaining Away” of stimulus-
driven neural activity. Here we elaborate the subtleties of
testing such models, particularly with fMRI.

The “Explaining Away” model described by Gotts
et al. is really the application of a more general doctrine
in neuroscience—that of “predictive coding” (Friston,
2012)—to the case of repetition effects. The key idea is
that neurons receive predictions from higher layers of a
hierarchical network, with any difference between
those predictions and the input from lower layers pro-
ducing a prediction error in that layer. Synaptic change
serves to reduce future prediction error (i.e., improve
predictions), resulting in reduced activity in those neu-
rons coding the prediction error when a stimulus is
repeated.

In the specific instantiation of predictive coding
discussed by Gotts et al., each layer contains three
types of neurons: Not just those coding prediction
error, but also those coding predictions (from higher
layers) and input (prediction errors from lower layers).
Yet the relative contribution of these different types of
neurons to a hemodynamic measure like BOLD is
uncertain (see Egner, Monti, & Summerfield, 2010),
making such models difficult to test with fMRI. Testing
may be easier with EEG/MEG though, given that
Friston (2008) makes a specific claim that the cortical
neurons coding prediction error are the large, supra-
granular pyramidal neurons, thought to make the domi-
nant contribution to the EEG/MEG signal.

Regarding experimental paradigms to test predic-
tive coding, it is important to note that the recent debate
about whether expectation of repetition does, on the
basis of human fMRI and EEG (e.g., Summerfield,
Wyart, Johnen, & de Gardelle, 2011), or does not, on

This work was supported by the UK Medical Research Council
(MC_A060_5PR10) and (MC_A060_5PQ50).

© 2012 Medical Research Council
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the basis of monkey single-cell recording
(Kaliukhovich & Vogels, 2011), modulate repetition
suppression is actually somewhat parenthetical to pre-
dictive coding. This is because the “predictions”
manipulated in the Summerfield et al. paradigm are
likely to be conscious/strategic (and so may be less
prevalent in monkeys). Yet the “predictions” in predic-
tive coding theory are automatic, intrinsic properties of
the brain networks that do not necessarily depend on
conscious expectation. Thus while the effects of
higher-order expectancy are clearly interesting and
important (and probably generated by prefrontal regions
that act on the ventral stream), the lack of such expec-
tancy effects in other paradigms (Kaliukhovich &
Vogels, 2011; Larsson & Smith, 2012) should not be
used to reject predictive-coding models.

Another approach used to support predictive coding
models of repetition suppression is to examine changes
in connectivity between brain regions. Our own work,
for example, has used Dynamic Causal Modelling
(DCM) of fMRI data to show that repetition of bodies
(Ewbank et al., 2011) or faces (Ewbank, Henson,
Rowe, Stoyanova, & Calder, in press), at least across
different images, modulates backward connections
from “higher” regions in fusiform cortex to “lower”
regions in extrastriate occipital cortex. Gotts et al. won-
dered why this modulation by repetition reflected a
more positive coupling parameter in the DCM, when
according to predictive coding, one might expect a
more negative coupling associated with the suppres-
sion of prediction error in lower regions by higher
regions. Again, however, the precise interpretation is
more subtle because we do not know which types of
excitatory/inhibitory neurons contribute to the BOLD
signal. Moreover, due to high interdependency
between parameters in such recurrent DCMs, inference
is often more appropriate at the level of model selection
rather than model parameters (Rowe, Hughes, Barker,
& Owen, 2010). Thus, although we discussed our
results in terms of predictive coding, the main conclu-
sion of the Ewbank et al. papers (which were based on
model selection) is that repetition suppression is not
purely a local phenomenon (such as sharpening or even
neuronal fatigue; Grill-Spector, Henson, & Martin,
2006), but also entails interactions between brain
regions. This claim is consistent with both predictive
coding and synchrony theories.

A further reason why DCM for fMRI may be lim-
ited in its ability to distinguish theories like predictive
coding and synchrony is that the modulatory inputs

(repetition in this case) need to be sustained over sev-
eral seconds in order to have an appreciable impact on
the network dynamics (Henson, Wakeman, Phillips, &
Rowe, 2012). This is why we used a blocked design in
the Ewbank et al. studies, where the modulation was
assumed to operate throughout blocks. As Gotts et al.
observe, such designs are undesirable from a beha-
vioral perspective (e.g., encouraging use of conscious
expectancies like those discussed above). Randomized
designs (e.g., Henson, 2012) are clearly preferable, but
in order to test for changes in effective connectivity as
defined by dynamic models like DCM, data with
higher temporal resolution are needed (e.g., Garrido,
Kilner, Stephan, & Friston, 2009). Thus we agree with
Gotts et al. that an exciting future direction is to exam-
ine connectivity, perhaps via synchrony, between
regions using methods like EEG/MEG.

* * *

Repetition accelerates neural
dynamics: In defense of
facilitation models

Richard N. Henson
MRC Cognition and Brain Sciences Unit,
Cambridge, UK
E-mail: rik.henson@mrc-cbu.cam.ac.uk

http://dx.doi.org/10.1080/17588928.2012.689962

Abstract: Gotts, Chow and Martin give an excellent
contemporary summary of the neural mechanisms that have
been proposed to underlie the effects of stimulus repetition on
brain and behavior. Here I comment on their Facilitation
mechanism, and provide EEG evidence that repetition can
accelerate neural processing.

Gotts et al. (2012) review four types of neural mechan-
ism that might underlie the reduced brain response
associated with repetition of a stimulus: Facilitation,
Sharpening, Synchrony and Explaining Away. In par-
ticular, they make a case for mechanisms based on

This work was supported by the UK Medical Research Council
(MC_US_A060_0046).

© 2012 Medical Research Council
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Synchrony, while questioning the cases for Facilitation
and Sharpening. However, it is important to note that
these mechanisms are not mutually exclusive. For
example, it is possible that predictive coding is a gen-
eral property of the brain (Friston, 2012; Ewbank &
Henson, 2012), and that the associated explaining
away of stimulus-driven activity is achieved by syn-
chronous activity between hierarchical brain regions,
such that repetition causes sharper (sparser) spatial
patterns of activity, and a facilitation (acceleration) of
the dynamics of that activity. So below, I caution
against the premature dismissal of Facilitation.

From a dynamical perspective, the brain’s response
to an external perturbation (stimulus) is likely to entail
a period of higher energy (activity) that lasts several
hundred milliseconds until a new, stable state of lower
energy is reached (an attractor). As in many recurrent
neural network models, this state-change is likely to
trigger synaptic change, so as to widen/deepen the
basin of attraction. When that stimulus is repeated
therefore, there will be a faster settling (stabilization)
of the network dynamics, i.e., a shorter duration of
above-baseline neural activity (possibly despite negli-
gible change in the onset of that activity). A shorter
duration of neural activity will reduce the magnitude of
response recorded by hemodynamic methods like
fMRI that integrate over seconds of activity (i.e.,
cause repetition suppression; Henson, 2003).

The tension that Gotts et al. observe between faster
behavioral responses (repetition priming) and reduced
neural activity does not apply to Facilitation models,
because both are the consequence of accelerated neural
processing. However Facilitation is not really a mechan-
ism, but rather a description of what happens at the
neural level (to produce a reduced response at
the hemodynamic level). Nonetheless, it remains
distinct from the other mechanisms considered, in that
Facilitation could occur with, or without, any
concomitant change in Sharpness, Synchrony or
Explaining Away.

Gotts et al. dismiss Facilitation models because of a
lack of direct electrophysiological evidence. However,
such evidence may be abundant in human EEG/MEG
studies; just rarely conceptualized as such. Figure 1, for
example, shows that the ERP to the repeatedpresentation
of a face can be parsimoniously described as an acceler-
ated version of the ERP to its initial presentation. Though
such extracranial ERPs could originate from multiple
neural sources (as Gotts et al. warn), it is unclear how
this multiple determinacy would produce such a simple

temporal scaling. Since EEG/MEGdata relate directly to
LFPs from a population of neurons, the puzzle, as Gotts
et al. observe, is why this apparent acceleration has not
been observed at the level of spiking rates.

Looking forward, I fully support Gotts et al.’s pro-
posals for future research, which can be divided into
better data and better modeling. In addition to concur-
rent recording of local field and action potentials, to
address the puzzle above, better data will come from
recording from neurons in different layers of cortex, to
relate to specific predictive coding models
(e.g., Friston, 2008), and to establish which of these
neurons contribute to M/EEG and fMRI signals. Data
with high temporal resolution (such as M/EEG) is
critical to test for dynamical changes over the few
hundred milliseconds post-stimulus onset, for exam-
ple, in terms of within- and/or across-frequency
changes in power and/or phase of oscillations. In
terms of better models, computational instantiations
of some the above ideas are vital (e.g., the important
work of Gotts, 2003), to relate both spatial
(e.g., sharpness) and temporal (e.g., synchrony) dimen-
sions of data, and to relate single-neuron data to popu-
lation responses like fMRI; particularly, as noted
above, if those ideas are not mutually exclusive and
all turn out to reflect aspects of reality.

* * *

Figure 1. EEG data recorded from 70 electrodes (Henson,
Wakeman, LItvak, & Friston, 2011) show that the ERP to the
immediate (after ~3 seconds) yet unpredictable repetition of a face
(magenta) is accelerated relative to that for its initial presentation
(cyan). The topography (left; nose upward) and timecourse (right) are
the first, dominant spatial and temporal components of a singular-
value decomposition (SVD) of the (temporally-concatenated) trial-
averaged ERPs, averaged over 18 participants. The scaling (zoom) of
the time-axis for the temporal component of the initial presentation
was systematically varied to minimize the RMSE between it and
that for the repeat presentation. The mean acceleration factor was
92%, which was significantly less than 100% across participants,
t(17) ¼ 3.18, p < .01 (two-tailed).
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Learning-induced sharpening of
neuronal tuning and adaptation:
Not “mixed”

Maximilian Riesenhuber
Laboratory for Computational Cognitive
Neuroscience, Department of Neuroscience,
Georgetown University Medical Center,
Washington, USA
E-mail: mr287@georgetown.edu

http://dx.doi.org/10.1080/17588928.2012.689970

Abstract: Gotts et al. present an attractive model of how
priming can arise from neuronal adaptation effects. Their
very satisfying account helps to demystify adaptation effects.
In fact, adaptation effects are even less mysterious than
portrayed: While Gotts et al. state that “fMRI studies in
humans that have attempted to evaluate sharpening of visual
object representations with experience have . . . generated
mixed results”, referring to fMRI adaptation (fMRI-A)
studies by our group and others, the results described in the
cited papers are in fact entirely compatible, further establishing
the usefulness of fMRI-A to probe neuronal tuning in humans.

To review, Weiner, Sayres, Vinberg and Grill-Spector
(2010) investigated fMRI adaptation effects across the
brain for different object classes, with subjects viewing
images belonging to categories such as flowers, cars, or
guitars. For short lag adaptation paradigms (where
prime and target immediately follow each other, with
no intervening images), they report that adaptation
consisted of a scaling of fMRI responses, i.e., a
response reduction that was proportional to the initial
response, in line with neurophysiological results in
non-human primates (De Baene & Vogels, 2010;
McMahon & Olson, 2007). This response scaling
effect of adaptation is what is exploited by studies
using fMRI rapid adaptation techniques (fMRI-RA)
to estimate neuronal tuning specificity: In fMRI-RA,
the response to a pair of stimuli presented in rapid
succession is measured for pairs similar or different in
a specific perceptual aspect (e.g., viewpoint or shape),
and the difference between the two response ampli-
tudes is interpreted as an index of stimulus representa-
tional dissimilarity at the neuronal level. For instance,
we previously used fMRI-RA to test our model of face

neurons in the fusiform face area, the FFA (Jiang et al.,
2006). Specifically, the model predicted that viewing a
particular face should be associated with a sparse acti-
vation pattern over face neurons sharply tuned to faces
similar to the currently viewed face, with little activa-
tion of neurons sharply tuned to dissimilar faces. Thus,
in an fMRI-RA paradigm that varies the similarity
between two face images shown successively in a
single trial, the BOLD-contrast signal in the FFA for
increasing within-pair face dissimilarity should pro-
gressively increase as the two faces activate increas-
ingly disjoint subpopulations of neurons (causing
increasingly lower amounts of neuronal adaptation),
up to where the two images activate different subpo-
pulations of neurons, at which point the response level
should asymptote and not increase for further increases
in face dissimilarity. Correspondingly, at the behavioral
level, this model predicts that the ability to discriminate
specific faces is directly related to the dissimilarity of
the neuronal activation patterns associated with these
faces in the FFA and thus the response level in the
adaptation paradigm. These predictions were con-
firmed experimentally (Jiang et al., 2006).

This ability to probe neuronal selectivity with
fMRI-RA opens the door to using adaptation effects
to measure how perceptual and task learning change
neuronal selectivity. A common prediction (with ample
support from animal studies, as pointed out by Gotts
et al.) of computational models is that perceptual learn-
ing involves sharpening of neuronal stimulus representa-
tions. The goal of Jiang et al. (2007)was to use fMRI-RA
to test the core prediction that perceptual learning also
sharpens neuronal stimulus representations in humans.
To this end, we trained subjects to categorize morphed
car shapes (Jiang et al., 2007), and probed the selectivity
of car-selective stimulus representations using fMRI-RA
before and after training. We reasoned that if categoriza-
tion training leads to sharpened neuronal selectivity to
car images, then the overlap of neuronal activations
caused by two sequentially presented car images differ-
ing by a fixed amount of shape change would decrease
following training, resulting in an increase of BOLD-
contrast response in brain regions selective for the car
shapes (independently identified in lateral occipital cor-
tex, the LOC). Indeed, we found that categorization
training induced a significant release from adaptation
for small shape changes in LOC irrespective of category
membership, compatible with the sharpening of a repre-
sentation coding for physical appearance (while an area
in lateral prefrontal cortex showed sensitivity post-
training to explicit changes in category membership, as
predicted by a computational model).

Supported by NSF grants 0749986 and 1026934 and NIH grant
HD067884.
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When applying fMRI-RA in this way, i.e., to probe
changes in neuronal selectivity induced by intervening
task training, it would be highly problematic if probing
the stimulus representation with fMRI-RA itself
affected the selectivity of the underlying representation
(e.g., by sharpening of neuronal tuning), which would
raise the question of whether the changes observed in
the adaptation paradigm were due to training or were
due to probing with fMRI-RA. However, in the same
study (Jiang et al., 2007), we conducted a control
experiment that established that repeated fMRI-RA
without intervening training did not cause a change in
release from adaptation. Similarly, a recent monkey
electrophysiology study showed that stimulus repeti-
tion did not affect neuronal shape selectivity (De Baene
& Vogels, 2010). Nevertheless, special care needs to be
taken when designing fMRI-A paradigms to control
factors such as differences in attention or task difficulty
for particular stimuli or trials that might cause modula-
tions of stimulus responses independent of adaptation
effects and could thus complicate the interpretation
of the experimental results (see also Krekelberg,
Boynton, & van Wezel, 2006).

Thus, in summary, (Weiner et al., 2010) and (Jiang
et al., 2007) did not produce mixed results but rather
paint a consistent picture, that adaptation techniques,
when used carefully, can be used as a powerful tool to
finely probe the selectivity of neuronal tuning with fMRI
.

* * *

Synchrony upon repetition: One
or multiple neural mechanisms?

Kevin S. Weiner1 and Kalanit Grill-Spector1,2
1Department of Psychology, Stanford University,
Stanford, USA
2Neuroscience Institute, Stanford University,
Stanford, USA
E-mail: kweiner@stanford.edu

http://dx.doi.org/10.1080/17588928.2012.689973

Abstract: A central goal of cognitive neuroscience is to
understand the relationship between repetition suppression
(RS) and priming. Gotts and colleagues propose a new model

examining this relationship where stimulus repetition produces
increased neural synchronization, thus increasing the efficiency
of neural responses and potentially explaining the characterizing
features of both RS and priming. While synchrony is an
appealing new model, we suggest that further constraints are
necessary to account for qualitatively different types of RS and
priming yet to be considered by the present implementation.

Gotts et al. propose a new model to explain a puzzling
enigma in cognitive neuroscience: How does stimulus
repetition generate reduced neural responses (repetition
suppression; RS) as well as faster and more accurate
behavioral responses (priming)? The authors suggest
that along with the commonly reported RS, stimulus
repetition also increases neural synchronization locally
within neurons of a brain region, as well as globally
among regions in a task-engaged cortical network. In
turn, this increased synchrony leads to increased preci-
sion of neural responses by shortening the time it takes
downstream neurons to reach firing threshold, which
then expedites behavioral responses. Two new ideas
are appealing about the synchrony model. First, it sug-
gests an unconsidered direction where joint coupling of
neural responses may be the key link between RS and
priming. Second, synchrony predicts that in order to
understand the neural mechanisms of RS and priming,
researchers need to consider not only the firing rate or
overall responses of a neural population, but also the
coherence among neural firing patterns.

Though both priming and RS are widespread phe-
nomena, there are qualitatively different types of each
yet to be considered by the present implementation of
the synchrony model. Researchers have identified dis-
sociable forms of priming linked with RS in specific
regions either cortically distant from one another
(e.g., in frontal and temporal cortex; Schacter,
Dobbins, & Schnyer, 2004; Race, Shanker, &
Wagner, 2009) or cortically proximate (e.g., within
left lateral frontal cortex; Race et al., 2009). Further,
though the authors use evidence of RS from striate and
extrastriate regions across species in support of the
synchrony model, RS dynamics are not cortically uni-
form, but are region-specific and time scale dependent.
For instance, different types of RS matriculate in early
and high-level visual regions: RS occurs after a single
presentation of a stimulus and is sustained across many
intervening stimuli in high-level ventral temporal cor-
tex (VTC), but not in primary visual cortex (V1; Sayres
and Grill-Spector, 2006). Indeed, in order to induce RS
in V1, one needs continual stimulus repetitions for anThis work was supported by NSF BCS grant 0920865.
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extended time period and to “top-it-up” with later
repetitions in order to extend its effects even over a
handful of intervening stimuli (Boynton and Finney,
2003; Fang, Murray, Kersten, & He, 2005).
Additionally, even within VTC, medial and lateral
aspects display differential RS effects across time
scales: RS in lateral VTC manifests as scaling of neural
responses across immediate and long-lagged repeti-
tions, whereas RS in medial VTC exhibits scaling for
immediate repetitions and sharpening for long-lagged
repetitions (Weiner et al., 2010). We give examples
from the visual system, but these concerns of regional
specificity and time scale dependency are general con-
cerns of RS across cortical systems and species (van
Turennout, Ellmore, & Martin, 2000; Schacter et al.,
2004; Verhoef, Kayaert, Franko, Vangeneugden, &
Vogels, 2008; Race et al., 2009). As timing parameters
within and across task-engaged regions are central to
the authors’ idea of synchronization, it is essential to
consider at least two alternatives that may account for
the regional specificity of RS. One possibility is that
synchrony can generate many types of RS for different
ranges and combinations of model parameters
(e.g., synaptic depression and spike-frequency adapta-
tion). Alternatively, differential neural mechanisms
underlie differential RS effects across regions and
time scales where synchrony alone cannot explain a
multitude of RS effects. Simulating interactions among
model parameters will be a useful stepping-stone for
testing the feasibility of these alternative hypotheses.

Gotts et al. further propose that increased synchrony
of neural responses with repetition occurs both locally
within a region and globally across regions. However,
local and inter-areal synchrony are fundamentally dif-
ferent and are associated with different types of neural
signatures. Long-range coupling is associated with
local field potential (LFP) power in lower frequencies
(alpha range, 8–20 Hz), whereas local spiking activity
is associated with LFP power in higher frequencies
(high gamma range, > 60Hz). As decreased local firing
is the defining feature of RS, intuitively then, high
gamma power tends to decrease with repetition (De
Baene and Vogels, 2010). On the other hand, additional
findings show increases in alpha power with repetition
(Ghuman, Bar, Dobbins, & Schnyer, 2008; Gilbert,
Gotts, Carver, & Martin, 2010), suggesting increased
inter-areal synchrony of neural responses. These data
suggest an anticorrelated relationship between local and
inter-areal synchrony as a function of repetition, which
is at odds with the present description of the model.

Thus, we suggest that a productive future direction will
be to make explicit predictions about what aspects of the
model relate to local synchrony vs. inter-areal syn-
chrony, and to test these hypotheses empirically by
examining coherence in spiking activity and LFPs.

In sum, the synchronymodel suggests important new
directions for understanding RS, priming, and their rela-
tionship. Future consideration of computational factors
accounting for the multitude of RS and priming effects,
as well as their effects on local and inter-areal syn-
chrony, will determine either the ubiquity or specificity
of the synchrony model of repetition.

* * *

All in the timing: Priming,
repetition suppression, and
synchrony

David B. T. McMahon
Section on Cognitive Neurophysiology and
Imaging, Laboratory of Neuropsychology, National
Institute of Mental Health, National Institutes of
Health, Bethesda, USA

E-mail: mcmahond@mail.nih.gov

http://dx.doi.org/10.1080/17588928.2012.689969

Abstract: The terms “priming” and “repetition suppression”
are commonly used to refer to phenomena occurring on time
scales that can differ by several orders of magnitude, ranging
from seconds to days or even years. The models discussed by
Gotts et al. provide a thought-provoking theoretical
framework for relating neuronal and behavioral plasticity. I
argue that whereas both the sharpening and the Bayesian
models may mediate the gradual acquisition of perceptual
expertise, they are unlikely to account for more rapid
behavioral changes. The synchrony model, however, could
potentially operate within the timing constraints imposed by
the fastest forms of repetition priming.

The author is supported by the NIMH Intramural Research
Program.

This work was authored as part of the Contributor's official duties
as an Employee of the United States Government and is therefore a
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With regard to the sharpening hypothesis, it is note-
worthy that the evidence for enhanced selectivity in
monkey inferotemporal (IT) cortex comes from pro-
longed training periods across many days, if not weeks
(Baker, Behrmann, & Olson, 2002; Freedman,
Riesenhuber, Poggio, & Miller, 2006; De Baene, Ons,
Wagemans, & Vogels, 2008). By contrast, studies of
visual response plasticity that were expressed over time
scales relevant to the fastest priming effects found the
opposite of sharpening, namely scaling reductions of
firing rates (Li, Miller, & Desimone, 1993; McMahon
and Olson, 2007; De Baene and Vogels, 2010). These
findings support the idea that gradually acquired per-
ceptual expertise could be mediated by sharpening, but
some other mechanism is needed to explain more
rapidly induced behavioral changes such as priming.

According to the Bayesian model, perceptual learn-
ing is mediated by priors represented in high-level
cortical areas that become more efficient at predicting
representations in lower-level sensory areas.
Consistent with this notion, recent physiological evi-
dence shows that IT visual responses are reduced when
the appearance of a stimulus is reliably predicted by an
antecedent stimulus, but this effect is only evident after
many days of training (Meyer and Olson, 2011). A
similar effect is not observed when prior expectation
is based on experience with predictable stimulus pair-
ings during a single block within a recording session
(Kaliukhovich and Vogels, 2011). These two studies
together provide an upper and lower bound on the time
scale over with a mechanism of Bayesian “explaining
away” could be instantiated in the brain.

An appeal of the synchrony model is that it could
operate on a fast enough time scale to account for prim-
ing. In monkeys trained to report a perceptual decision
with eye movements (McMahon and Olson, 2007), the
observed distribution of saccadic reaction times fell
between 220 and 490ms (Figure 2A, inset). In the
same study, repetition suppression was evident in visual
responses of neurons in IT cortex at a latency of 150ms
(Figure 2A). These results constrain the time range
within which synchrony (or any neural mechanism of
priming) would need to operate: Certainly some time
after the visual response, perhaps after the repetition
suppression, but before the behavioral responses.

How do these timing constraints compare with the
candidate mechanisms proposed for the synchrony
model? Gotts et al. focus on examples of reduced
spiking responses that were accompanied by low-
frequency (4–8 Hz) oscillations (Freedman,

Riesenhuber, Poggio, & Miller, 2006, Anderson,
Mruczek, Kawasaki, & Sheinberg, 2008), a schematic
of which is shown in Figure 2B.

Strong rhythmic activity in this range is prevalent in
IT cortex (Rollenhagen and Olson, 2005; Mirpour and
Esteky, 2009). A recent study further showed that, in
monkeys performing a delayed match to sample task,
low-frequency oscillations recorded simultaneously
in V4 and prefrontal cortex became more coherent
during the delay period (Liebe, Hoerzer, Logothetis,
& Rainer, 2012). This result lends plausibility to the
proposal by Gotts et al. that modulation of low-
frequency oscillations could act as a mechanism for
enhanced long-range coupling between cortical areas.
The relative time scales of behavioral priming, repeti-
tion suppression, and rhythmic spiking illustrated here
suggest a behavioral approach for testing of the syn-
chrony model: If enhanced neuronal synchrony leads
to faster reaction times, then it should be possible to
manipulate behavioral responses using stimuli that
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Figure 2. Timing constraints on neural mechanisms of priming. A,
Spiking responses to primed and unprimed visual stimuli recorded
from single units in IT cortex. Inset, distribution of saccadic reaction
times irrespective of priming (2.5%— 97.5% percentile range, based
on McMahon and Olson, 2007). B. Schematic of oscillatory spiking
response evoked from IT neurons (based on Rollenhagen and Olson,
2005; Mirpour and Esteky, 2009).
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match (or interfere with) the resonance frequency of
the oscillation in the spiking responses.

* * *

Focusing on the frontal cortex

Aidan J. Horner1,2
1 UCL Institute of Cognitive Neuroscience, London,
UK
2 UCL Institute of Neurology, London, UK
E-mail: a.horner@ucl.ac.uk

http://dx.doi.org/10.1080/17588928.2012.689959

Abstract: Gotts et al. provide a timely review of the major
neural models of repetition suppression (RS) and priming.
They justifiably call on researchers to focus their attention on
the extent to which these phenomena can be explained by
changes in synchrony between cortical regions. They are
relatively agnostic as to which regions may be critical to RS
and priming. Here I argue we should devote more attention to
the role of frontal regions, and suggest that there is a need to
engage with more cognitive accounts of priming in order to
develop a comprehensive neurocognitive account of priming
and RS.

Gotts et al. present four neuralmodels designed to capture
the complex relationship between repetition suppression
(RS) and behavioral priming (henceforth referred to as
priming). They support the idea that synchrony, tempo-
rally correlated neural firing that allows for increased
efficiency of communication between spatially distinct
cortical regions, underlies this relationship. I strongly
support Gotts et al.’s call for more research focusing
on the interaction between cortical regions following
stimulus repetition. Their discussion, however, was
relatively agnostic concerning the cortical regions
we should focus on in order to understand such inter-
actions. I would argue that the prefrontal cortex, more
specifically the inferior frontal gyrus (IFG), and its
interactions with more posterior perceptual regions,
should be the focus of our attention.

Firstly, the IFG has been perhaps the only region
that has consistently demonstrated RS across multiple
stimulus types including visual objects (e.g., Koutstaal
et al., 2001), faces (e.g., Henson et al., 2003), and
written (e.g., Barton, Fox, Sekunova, & Iaria, 2010)

and spoken (e.g., Gagnepain et al., 2008) words.
Secondly, the IFG has consistently been shown to
correlate with priming (e.g., Dobbins, Schnyer,
Verfaellie, & Schacter, 2004). Thirdly, transcranial
magnetic stimulation to the IFG has been shown to
disrupt priming and RS (Wig, Grafton, Demos, &
Kelley, 2005). Finally, using magnetoencephalogra-
phy, visual object repetition has been shown to increase
synchrony between frontal and occipitotemporal
regions (Ghuman, Bar, Dobbins, & Schnyer, 2008).

It seems the IFG plays a critical and causal role in the
production of priming and is therefore a key region on
which to focus our attention. Two questions emerge from
this discussion: (1) Why has the IFG been relatively
overlooked despite this evidence and (2) What role does
the IFG play in priming and RS? With regard to the
former question, the first possible reason is due to the
legacy of particular cognitive accounts of priming, which
were largely adopted by the neuroimaging community,
that suggest priming relates to the modification of per-
ceptual (and conceptual) representations (Henson, 2003).
The second reason is that RS, as measured by fMRI, is
often maximal in occipitotemporal perceptual regions.
Thus, regions known to be involved in perceptual proces-
sing, such as lateral occipital and fusiform regions in the
case of object recognition, were (and still are) the pre-
dominant cortical regions of focus.

What role does the IFG play in priming and RS? In
recent years, there has been a resurgence of interest in
the idea that bindings between a stimulus (e.g., a visual
object) and a response (e.g., a “yes” decision) can facil-
itate response selection processes (Logan, 1990). Such
stimulus-response (S-R) contributions have now been
shown to drive RS in frontal regions (Horner & Henson,
2012). Furthermore, S-R learning has been shown to
explain a large proportion of priming variance during
long-lag visual classification studies (Horner & Henson,
2009). As such, it seems the IFG may play an important
role in the selection of task-appropriate responses,
possibly integrating information from multiple cortical
sources including, though not limited to, posterior
perceptual regions. Importantly, given the localization
of S-R contributions to frontal regions and the dominant
role it plays in priming, it would seem appropriate to
focus our efforts on understanding RS in frontal regions,
and how this region communicates with more posterior
perceptual regions.

Finally, the above discussion serves to highlight the
need to embed cognitive theories of priming and RS
(e.g., episodic vs. abstractionist accounts) within
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models of the neural mechanisms that underlie such
effects (e.g., sharpening vs. synchrony). For example,
not only do we need to state how RS results in priming
but also what information is being learned (i.e., what
representations are being encoded/modified) in order
for such phenomena to manifest. Each level of account
should serve to shape and constrain the other, allowing
for a fuller understanding of the neurocognitive
mechanisms that give rise to RS and priming.

* * *

Repetition suppression and
repetition priming are processing
outcomes

Gagan S. Wig
Department of Neurology, Washington University
School of Medicine, St Louis, USA
E-mail: gwig@npg.wustl.edu

http://dx.doi.org/10.1080/17588928.2012.689964

Abstract: There is considerable evidence that repetition
suppression (RS) is a cortical signature of previous
exposure to the environment. In many instances RS in
specific brain regions is accompanied by improvements in
specific behavioral measures; both observations are
outcomes of repeated processing. In understanding the
mechanism by which brain changes give rise to behavioral
changes, it is important to consider what aspect of the
environment a given brain area or set of areas processes,
and how this might be expressed behaviorally.

Different structures of the brain engage in different
forms of information processing. One way of defining
the function of a specific brain structure is to examine
its methods of computation in service of learning
(e.g., Doya, 1999). There is considerable anatomical,
neurophysiological, and theoretical evidence to sug-
gest that the cerebral cortex engages in unsupervised
learning to reflect the statistics of the environment by
forming efficient cortical representations of the organ-
ism’s experiences. Moreover, different areas of the
cerebral cortex learn the statistics of distinct features
of the environment, and RS may be a neural signature
of this statistical learning. Identifying a mechanism by

which RS produces the behavioral changes that typi-
cally accompany repeated processing (i.e., repetition
priming) necessitates careful consideration of how RS
reflects the processing outcomes of a specific area or
set of areas, and what the appropriate behavioral metric
for this processing outcome may be.

Drawing from empirical and theoretical sources,
Gotts and colleagues describe four potentialmechanisms
for howRSmay result in repetition priming. The authors
provide clear and testable predictions for evaluating how
thesemechanismsmay link RS to behavioral facilitation.
Their article will be a key source of reference in moving
forward with this important endeavor.

In studying the mechanism by which RS may result
in repetition priming, it is imperative to remember that
both RS and repetition priming are independent mea-
surements of the processing outcomes of repeated
experience. It is not necessary that observations of RS
in a collection of areas be clearly linked to changes in
the observed behavior, or any clear or measureable
behavioral measures for that matter. If RS is a neural
signature of cortical learning, it is likely that RS
observed in different areas is a consequence of different
processing outcomes. As such, different areas may
reveal that they’ve learned the statistics of the environ-
ment via distinct behavioral measures.

As an example, speeded response times following
repeated semantic classification of visually responsive
objects is typically accompanied by RS within numer-
ous brain areas including regions of the inferior frontal
gyrus, inferior temporal lobes, and occipital cortex.
While the behavioral improvements may be a product
of increased synchrony between a subset of regions
that are involved in decision processes (e.g., between
areas within the frontal and temporal cortex; see
Ghuman, Bar, Dobbins, & Schnyer, 2008), other
regions exhibiting RS need not be directly linked to
the measured classification-time improvements.

RS can be eliminated or diminished in certain regions
using transient disruption (i.e., TMS; Wig, Grafton,
Demos, & Kelley, 2005) or changes in stimulus-to-
decision mapping (e.g., Dobbins, Schnyer, Verfaellie,
& Schacter, 2004; Horner & Henson, 2008; Wig,
Buckner, & Schacter, 2009). The disruption of RS is
also accompanied by reductions in the observed beha-
vioral improvements (e.g., response time during seman-
tic classification). However, despite these region-
specific reductions in RS, RS is still prominent in other
regions that are likely involved in task performance
(e.g., regions of the visual cortex—see Figure 4 of Wig
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et al., 2005). Does this mean that the neural changes in
the visual cortex are “epiphenomenal”, unrelated to any
form of learning, or mediated by a distinct mechanism?
Not necessarily: An alternate explanation is that the
visual cortex has learned some statistics related to the
experimental paradigm and that this has resulted in
neural changes reflecting this learning (i.e., RS), but
that an appropriate behavioral marker of the statistical
learning in these regions has not been sufficiently
measured.

In understanding how RS may lead to behavioral
facilitation, and evaluating one mechanism for this
relationship over the other, we need to carefully iden-
tify the appropriate behavioral metrics that may signify
cortical learning for the specific area or set of areas that
are the focus of investigation. Investigations of repeti-
tion priming have a long and rich history and have
described a variety of behavioral changes that reveal
past exposure to the environment (e.g., Roediger,
1990; Schacter, 1987). RS may be a consequence of
the mechanism by which the brain indexes past expo-
sure, and it will be essential to identify appropriate
measures to quantify the ways in which the brain and
its substructures might retain and express information
related to previous experience.

* * *

Task, time and context as
potential mediators of repetition
priming effects

Benjamin J. Dyson1 and Claude Alain2

1 Department of Psychology, Ryerson University,
Toronto, Canada
2 Rotman Research Institute, Toronto, Canada
E-mail: ben.dyson@psych.ryerson.ca

http://dx.doi.org/10.1080/17588928.2012.689961

Abstract: In apparent conflict with the synchronicity model,
we consider three types of evidence from the auditory
literature (negative priming, perceptual learning, sensory
gating) that reveal stimulus repetition can be associated
with decreased rather than increased early evoked
responses. The difficulty with consolidating a wide range of
tasks in adjudicating between theories of repetition priming

might be because the potentially critical roles of task, time
and context are neglected.

Gotts, Chow and Martin provide a stimulating review
regarding one of cognitive neuroscience’s most perva-
sive double-takes: Processing facilitation at a behavioral
level expressed as activation suppression at a neural
level. Attempting to consolidate studies on perception,
attention and memory across a number of different
species inevitably leads to spatially and temporally dif-
fuse patterns of activation, which threaten to cloud the
evaluation of some already relatively complex hypoth-
eses regarding repetition priming. Limiting our discus-
sion to the interpretation of event-related potentials,
Gotts et al. appeal to the observation of repeated stimuli
with “larger low-frequency fluctuations in the LFPs (~
5–10 Hz) that were phase-locked to the stimulus onset
(i.e., larger evoked responses)” in support of the syn-
chronicity model, citing novel versus familiar (or
trained) image exposure paradigms in monkeys. We
will discuss additional evidence from the human audi-
tory evoked response literature and consider the poten-
tially critical roles of task, time and context.

The negative priming paradigm provides one exam-
ple of how stimulus repetition interacts with task
demands. Typically, the requirement for participants
to respond to a target stimulus that was designated as
a distractor stimulus on the previous trial leads to less
efficient responding. When evoked potentials asso-
ciated with auditory negative priming are considered,
negative priming trials were associated with reduced
N1 amplitude, a negative deflection at about 100ms
post-stimulus, relative to standard control trials in
which neither the target nor distractor on the previous
trials was repeated (Mayr, Niedeggen, Buchner, &
Pietrowks, 2003). Similar reductions in N1 amplitude
were also observed in repetition control trials, where
the target on the previous trial became the distractor on
the current trial. In this case, reduced N1 amplitude to
repeated stimuli appear to counter the claims of the
synchronicity model and suggest that task and/or
response demands may be critical in determining the
direction of the repetition priming effect.

Studies into the neural correlates of perceptual
learning also offer insights into how the brain responds
to stimulus repetition over longer periods of time. For
instance, learning to identify different speech tokens
has been associated with reductions in early auditory
evoked responses that take place within the first hour of
training (N1 and P2, a positive deflection at about
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180ms post-stimulus; Alain, Campeanu, & Tremblay,
2009; Ben-David, Campeanu, Tremblay, & Alain,
2011). These amplitude reductions were apparent
within the same block of trials as well as between
blocks of trials within the recording session. These
studies raise the concern that stimulus spacing may
also modulate the direction of the repetition priming
effect (see Gotts et al. discussion of achieving uncon-
taminated BOLD response). The concern that longer
temporal intervals may decrease the likelihood of facil-
itation with respect to repeated stimuli is supported by
the data on inhibition of return (IOR). IOR is a tem-
poral constraint of repetition priming in that the beha-
vioral processing facilitation observed at short intervals
reverses to inhibition at longer intervals (“longer” in
the context of auditory processing can be as short as
750ms; Mondor, Breau, & Milliken, 1998).

A final example of reduced evoked responses to
stimulus repetition is provided by the sensory gating
literature. Here, the amplitude of a positive-going
deflection 50ms after sound onset (labeled P1 or P50)

is typically reduced for the second presentation of an
identical sound (e.g., Kisley, Noecker, & Guinther,
2004). Importantly, the presence and absence of P1
attenuation is used to adjudicate between non-
schizophrenic and schizophrenic samples, respec-
tively, and so the interpretation of neural activity at
these early stages has clear clinical implications.
What is critical to note though is in sensory gating
paradigms, participants tend to be exposed to sounds
under passive listening conditions. Therefore, the fre-
quency of repetition and change in the environment
may be a third influence on the direction of the repeti-
tion priming effect (see current discussion of
Summerfield et al., 2008, 2011) even in the absence
of task. We argue that a consideration of the percep-
tual and cognitive demands within repetition priming
paradigms is required to disambiguate the currently
disparate literatures.

* * *
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Reply to Commentaries

Repetition priming and repetition suppression: Multiple
mechanisms in need of testing

Stephen J. Gotts1, Carson C. Chow2, and Alex Martin1

1Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental
Health (NIMH), National Institutes of Health, Bethesda, MD 20892, USA
2Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases
(NIDDK), National Institutes of Health, Bethesda, MD 20892, USA

In our Discussion Paper, we reviewed four theoretical proposals that have the potential to link the neural and
behavioral phenomena of Repetition Suppression and Repetition Priming. We argued that among these proposals,
the Synchrony and Bayesian Explaining Away models appear to be the most promising in addressing existing data,
and we articulated a series of predictions to distinguish between them. The commentaries have helped to clarify
some of these predictions, have highlighted additional evidence supporting the Facilitation and Sharpening models,
and have emphasized dissociations by repetition lag and brain location. Our reply addresses these issues in turn, and
we argue that progress will require the testing of Repetition Suppression, changes in neural tuning, and changes in
synchronization throughout the brain and over a variety of lags and task contexts.

Keywords: Repetition priming; Repetition suppression; Synchrony; Prediction; Bayesian.

BAYESIAN EXPLAINING AWAY MODEL

Both Friston’s and Henson’s commentaries make the
point that the Facilitation, Sharpening, Synchrony, and
Bayesian Explaining Away models are not mutually
exclusive. This is a point that we failed to clarify and
that we fully endorse. The ideas are certainly mechanis-
tically distinct, but theycould all coexistwithone another
simultaneously, perhaps making separate contributions
in explaining repetition priming. Efforts should be
focused on assessing the contribution of any/all (none?)
of these in a given experimental situation.

Friston’s commentary clarifies his positions on the
experimental predictions that we articulated. He re--
emphasizes his commitment to anti-symmetrical
bottom-up and top-down interactions, while he is less
enthusiastic about the relative timing predictions.
Between-region anti-symmetry is the central claim of
this model. It predicts that top-down causal interactions
should be more negative after stimulus repetition and
that repetition suppression in lower-level areas should
be due to feedback from higher-level areas. Friston also
stresses the presence of repetition-dependent changes
in the feed-forward direction with stimulus repetition,
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although with an inverse valence to the feedback
effects (implementing a negative feedback loop). We
view these clarifications as quite reasonable but differ
with Friston on other aspects of his argument. Friston
claims that near-optimal perceptual inference lends
support to a Bayesian brain hypothesis in which top-
down/bottom-up interactions are anti-symmetrical. We
believe that it is difficult in principle and practice to
distinguish between near-optimal and satisfactory
inference given a set of stimuli to be identified and
tasks to be performed. Many neural network models
demonstrate good performance over a range of learning
problems. For example, the Boltzmann machine
(e.g., Ackley, Hinton, & Sejnowski, 1985) utilizes a
“contrastive” Hebbian algorithm to modify synaptic
strengths as the model is exposed to a set of patterns
to be associated. The learning algorithm, often her-
alded for its “biologically plausibility” (e.g., O’Reilly,
1998), leads this model to improve gradually with
experience, develop similarity-based internal represen-
tations, and perform “linearly inseparable” mappings
such as the XOR problem (e.g., Minsky & Papert,
1969). It does all of this while developing symmetrical
weights between units in higher- and lower-level pools
of units. Influential models such as Adaptive
Resonance Theory (e.g., Grossberg, 1976), the
Interactive Activation Model (McClelland &
Rumelhart, 1981), and the Biased Competition Model
(Desimone & Duncan, 1995) all predict a symmetrical
coding scheme. These models exploit the flexible
advantages of top-down, selective excitation in
domains ranging from perception to working memory,
visual attention/search, and imagery. It will be interest-
ing to see if the Bayesian brain hypothesis can be
extended into these domains using a more anti-
symmetrical scheme. We would also note that attempts
to test the anti-symmetrical property of Mumford’s
(1992) Bayesian theory in single-cell recordings with
monkeys have found support for feedback excitation
rather than feedback inhibition (e.g., Lee & Mumford,
2003). This is not necessarily problematic for Friston’s
proposal, because the cells encoding the conditional
expectation of perceptual causes are distinct from those
encoding prediction error. Nevertheless, we do not
believe that it is self-evident that the brain behaves in
its details as a Bayesian neural network model, at least
one that relies on anti-symmetrical coupling in the
feed-forward versus feedback directions.

Ewbank and Henson appear to take issue with our
use of the label “Explaining Away” when referring to
Friston’s Bayesian model, preferring instead “Predictive
Coding”. Our rationale was simply to use a label that
better distinguished the anti-symmetrical property in
this model from the variety of models that utilize

“prediction” in very different ways (e.g., Elman nets,
Temporal Difference learning, forward models, etc.).
Ewbank and Henson emphasize the difficulty in testing
subtle predictions about brain connectivity using fMRI
methods when the separate contributions of different
cell types to the BOLD signal are unknown. We cer-
tainly agree that local estimates of the BOLD response
in a given voxel will reflect an unknown mixture of
various influences (a small fraction of which are neural).
However, given the importance of the anti-symmetrical
property to the Bayesian model articulated above, we
think that it would be unwise to dispatch with this
prediction prematurely. Causal modeling approaches
that are capable of assessing directional influences
between anatomically connected cortical regions
(e.g., DCM, Grainger, etc.) should detect net inhibitory
coupling in the feedback direction—even when local
activity represents an average over different cell types
that are present in unknown proportions. If the feedback
is net excitatory, what would serve as the basis of
repetition suppression? If the problem is the ability of
causal modeling approaches to infer directional influ-
ences appropriately among interrelated variables, then
this problem will apply in a similar manner to the
analyses of experiments using alternative methods
such as EEG/MEG (e.g., Kiebel, Garrido, Moran, &
Friston, 2008). However, we agree that EEG/MEG stu-
dies of inter-areal interactions constitute a promising
direction for future research.

FACILITATION AND SHARPENING
MODELS: THE SHORTAND LONG OF IT

In his separate commentary, Henson makes the case
that it is too soon to dismiss the Facilitation model.
While he admits that supporting evidence from single-
cell recordings has been lacking, he raises the possibi-
lity that accelerated neural responses may be common-
place in EEG/MEG. We concur with him about the
basic puzzle: How is it that electrical/magnetic field
data can become decoupled from spike data? This
decoupling extends even to the basic latency of
stimulus-evoked responses in microelectrode record-
ings from occipital areas in animals (firing-rate laten-
cies ranging from 30–50ms, whereas field
measurements often show onsets closer to 70–
100ms). Our best guess for a resolution is that it
involves some form of field cancellation of the earliest
responses. In any case, accelerated responses at the
single-cell level should be obtainable if the
Facilitation model is to hold. Having said that, a very
recent study (since the submission of our paper) has
provided some more direct support for the Facilitation
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model, as well as the Sharpening model, in recordings
from monkey inferior temporal cortex (Woloszyn &
Sheinberg, 2012). This study involved an extensive
training period of several months (like other studies
providing support for Sharpening), but it still suggests
that Facilitation may apply in some cases. We are
therefore happy to concede the point to Henson that it
is too early to dismiss the Facilitation model.

The Riesenhuber, Weiner and Grill-Spector, and
McMahon commentaries all mention the issue of how
repetition lag (short versus long) relates to the observa-
tion of proportional scaling versus Sharpening.
Riesenhuber makes the case that evidence on long-lag
repetitions and Sharpening is not mixed but paints a
consistent picture, with proportional scaling effects lim-
ited to lags typically involved in fMRI rapid adaptation
paradigms (repetitions separated by a few seconds). We
agree that results from experiments employing very
long lags (and/or practice durations) versus very short
lags have been reliably associated with Sharpening and
scaling, respectively (see also McMahon’s commen-
tary). However, results for lags of an intermediate
range (minutes or longer within a single testing session)
do not fit cleanly into this picture. For example, Li et al.
(1993) showed independent effects of short- and long-
lag repetitions on single-cell firing rates in monkey
inferior temporal cortex, with proportional scaling
observed for long-lag repetitions (, tens of minutes).
As noted by Weiner and Grill-Spector, Weiner et al.
(2010) found results in human fMRI for long lags that
were consistent with proportional scaling in all but one
of the regions that they examined (medial ventral tem-
poral cortex). Given that these more intermediate lags
are the ones involved in most repetition priming studies,
the evidence supporting the involvement of Sharpening
in repetition priming does indeed appear to be mixed.
Even if we were to grant a larger role to Sharpening at
these lags, additional assumptions would still be
required to explain Repetition Priming. We concur
with McMahon that the Synchrony model is well situ-
ated to explain priming at the shorter lags that tend to
produce scaling, and it may participate at longer lags
(and/or practice durations) as well.

DIFFERENT LOCATIONS DO NOT
NECESSARILY IMPLY DIFFERENT

MECHANISMS

The Weiner and Grill-Spector, Horner, and Wig com-
mentaries all highlight the fact that studies of
Repetition Suppression often report findings that vary
by brain location. Weiner and Grill-Spector note the
challenges facing the Synchrony model in explaining

the region- and lag-dependent nature of Repetition
Suppression in occipital and temporal brain regions.
While no model can currently explain this range of
data, we agree that this should be the goal. We would
note that while synchrony is a mechanism at one level
of description, it is also an emergent phenomenon with
multiple possible underlying mechanisms that can
apply differentially at different lags and potentially in
different brain regions (e.g., spike-frequency adapta-
tion and synaptic depression, electrical synapses
between interneurons, spike-timing-dependent plasti-
city, etc.). Our current experimental focus is simply to
detect whether synchronization is occurring in the
appropriate experimental contexts and whether it is
quantitatively related to the magnitude of repetition
priming. In his commentary, Horner rightly makes the
point that Repetition Suppression is most strongly
related to priming in the prefrontal cortex and that
this central issue should not be lost in the discussion.
Wig counters, appropriately in our view, that just
because occipital Repetition Suppression is more
weakly related to repetition priming in certain tasks
does not imply that it is irrelevant to priming magni-
tudes in all tasks. Would a task that emphasizes infor-
mation represented in occipital areas (e.g., fine shape
discriminations) yield a stronger association between
occipital Repetition Suppression and priming (see also
Martin & Gotts, 2005)? More generally, we would
argue that Repetition Suppression effects that are dis-
sociable by brain region or task do not necessarily
imply qualitatively distinct lower-level mechanisms.
Future experiments will need to clarify the region-
and lag-dependence of Repetition Suppression,
changes in neural tuning properties, as well as changes
in Synchrony. One issue raised by Weiner and Grill-
Spector that we would dispute is the exclusive role of
high versus low frequency oscillations in local versus
long-distance cortical interactions, respectively.
Modulations of local synchrony can be in lower fre-
quencies (theta, alpha, beta: E.g., Anderson et al.,
2008; Gilbert et al., 2010; Gregoriou, Gotts, &
Desimone, 2012) and modulations of long-distance
synchrony can be in higher frequencies (gamma: E.g.,
Buschman & Miller, 2007; Gregoriou et al., 2009a).

NEGATIVE PRIMING AND OTHER
PARADIGMS

In the final commentary, Dyson and Alain argue that
our proposal has failed to consider the influences of
task, time, and context on repetition priming. They cite
evidence from EEG/ERP studies in the auditory mod-
ality, noting conflicting evidence from negative
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priming, perceptual learning of speech tokens, and
sensory gating. Some of the differences with our
literature review may involve genuine differences
between visual and auditory modalities. However,
we would reiterate the difficulty of using scalp EEG/
ERP measurements to rule out a proposal cast at the
level of underlying neural sources. Too many ambi-
guities are present. Results from paradigms such as
negative priming that involve multiple simultaneous
stimuli and additional processes (selective attention)

may also not be directly comparable to simple identi-
fication paradigms with sequentially presented single
stimuli.

The Commentaries offered in response to our
Discussion Paper highlight the importance and interest
in uncovering the mechanism(s) linking Repetition
Suppression to one of nature’s most powerful learning
phenomena, Priming. We again thank our colleagues
for their thoughtful and thought-provoking comments
on our proposal.
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