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SUMMARY
Human fMRI studies have documented extensively that the content of visual working memory (VWM) can be
reliably decoded from fMRI voxel response patterns during the delay period in both the occipito-temporal
cortex (OTC), including early visual areas (EVC), and the posterior parietal cortex (PPC).1–4 Further work
has revealed that VWM signal in OTC is largely sustained by feedback from associative areas such as pre-
frontal cortex (PFC) and PPC.4–9 It is unclear, however, if feedback during VWM simply restores sensory rep-
resentations initially formed in OTC or if it can reshape the representational content of OTC during VWM
delay. Taking advantage of a recent finding showing that object representational geometry differs between
OTC and PPC in perception,10 here we find that, during VWM delay, the object representational geometry in
OTCbecomesmore alignedwith that of PPC during perception thanwith itself during perception. This finding
supports the role of feedback in shaping the content of VWM in OTC, with the VWM content of OTC more
determined by information retained in PPC than by the sensory information initially encoded in OTC.
RESULTS

To understand the impact of feedback on VWM representation,

we need to directly compare the representational content across

different brain regions and different VWM processing stages.

This is not trivial, as different neuronal populations are involved

in different brain regions and, even within the same region, the

exact representational format may differ across VWM process-

ing stages. For example, neural responses from the same popu-

lation have been shown to rotate in the representational space or

transform into a simpler code in VWM.11–13 Such changes are

adaptive to meet the demand of attentional control, resist dis-

tractor interference, and provide efficient coding, but do not

necessarily change the informational content of VWM. To ac-

count for this, instead of directly comparing neural responses,

here we evaluated the content of neural representation by

applying representational similar analysis (RSA).14 RSA mea-

sures how similar objects are represented with respect to each

other through the computation of representational dissimilarity

matrix (RDM). It is unit-free and can thus support direct compar-

isons of VWM contents independent of the exact neural code

carrying them.

To examine how feedback may impact VWM representations

in OTC, we also need to find a situation in which perceptual rep-

resentation differs between OTC and associative areas such as

PPC and test if such difference is maintained during VWM. In a

recent human fMRI study with eight real-world basic-level object

categories, we find robust category decoding during visual

perception across areas in OTC and PPC10,15,16 (Figures 1A

and 1B). Critically, object RDMs during perception are distinct

between OTC and PPC and there exists an information-driven
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two-pathway separation of brain regions in how they represent

visual objects, with OTC regions arranging hierarchically along

one pathway and PPC regions arranging along a second

pathway10,17 (Figure 1A). This is likely due to how visual features

are coded in these different regions (see Vaziri-Pashkam and

Xu10 for a detailed discussion). This finding is replicated in ten in-

dependent datasets and across both natural and artificial basic-

level object categories. This result provides us with a unique op-

portunity to understand the role of feedback in VWM: if feedback

during VWM sustains the object representations formed during

perception in OTC, then object RDMs should remain distinct be-

tween OTC and PPC in VWM as they do in perception; however,

if feedback from associative areas such as PPC actively re-

shapes VWM representation in OTC, then OTC VWM represen-

tations may become more aligned with those of PPC during

perception than with those of OTC during perception.

To test these possibilities, in this fMRI study, we asked 12 hu-

man participants to retain two target objects from the same

basic-level category in each VWM trial (Figure 1C). After an

extended delay period, participants judged whether the probe

object shown at the end of the trial matched one of the target ob-

jects or was a new exemplar from the same category. As in our

previous studies,10,15,17 we used exemplars from eight basic-

level object categories, including bodies, cars, cats, chairs, ele-

phants, faces, houses and scissors, and with exemplars within a

category varying in identity, pose and viewing angles (Figure 1A;

see Figure S1A for the full set of images used). These basic-level

categories were chosen to cover the range of real-world basic-

level object categories in our visual environment and included

some of the typical categories used in previous studies of object

representations in OTC.18,19 Behavioral performance accuracies
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Figure 1. Experimental stimuli and VWM responses across OTC and PPC

(A) The eight real-world object categories used, and the information-driven two-pathway separation of brain regions as reported by Vaziri-Pashkam and Xu.10

(B) Example ROIs shown on the inflated cortical surfaces.

(C) An example trial showing the trial sequence with encoding, delay, and probe stages.

(D) Category decoding accuracy for all the ROIs during VWMencoding, delay, and probe stages. Asterisks above the bars mark decoding significance compared

with chance (.5)—one-tailed and corrected.

(legend continued on next page)
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were overall high, with above 90% accuracies for all the cate-

gories (Figure S1B). Responses from trials containing exemplars

from the same category were averaged together to generate re-

sponses at the category level. These category responses were

then examined in regions of interest (ROIs) in early visual areas

V1 to V4, object shape processing regions in lateral occipito-

temporal (LOT) and ventral occipito-temporal (VOT) cortex, and

topographic areas along the intra-parietal sulcus (IPS) including

V3a, V3b, and IPS0 to IPS4 (Figure 1B). fMRI responses were

analyzed directly on the inflated cortical surface (vertices) rather

than on the cortical volume (voxels) of each participant, as sur-

face-based analysis has been shown to exhibit more sensitivity

and better spatial selectivity20,21 (see Figure S1C for the average

number of vertices in each ROI).

From the averaged fMRI response time courses from each ROI

(Figure S1D), we defined encoding, delay, and probe periods

and averaged responses within each period for each ROI and

each category (see STAR Methods). As reported in Figure 1D,

all ROIs showed highly significant decoding during encoding

and probe for these basic-level categories (ts > 3.34, ps < .01;

one-tailed and corrected for multiple comparisons using the

Benjamini-Hochberg method22 for the three comparisons per-

formed in each ROI; this applies to all subsequently reported

stats of the same type; decoding for each time point is shown

in Figure S2A). During VWM delay, category decoding was

marginally above chance in V1 (t(11) = 1.68, p = .061), not above

chance in V4 (t(11) = 1.27, p = .12), but was significantly above

chance for all the other ROIs (ts > 1.94, ps < .039).

To understand how object representation may change across

the different stages of the task, we performed cross-decoding

across the different time points. Specifically, we trained a classi-

fier at each time point and asked it to decode the responses at all

time points. The results from all ROIs are shown in Figure S2B,

with some notable cross-decoding drops between encoding/

probe and delay periods across all the ROIs (a streamlined anal-

ysis of these results is reported later, see Figure 2C). A cross-de-

coding drop could be caused by a rotation in the representa-

tional space while preserving the representational structure, a

change in the actual representational structure without a rota-

tion, or both. To isolate andmeasure the change in the represen-

tation structure, we next performed RSA.

To evaluate the object representational geometry, from all the

pairwise object category decoding accuracies we constructed

an object-wise RDM separately for encoding, delay, and probe

for each ROI of each participant (Figure 1F). We vectorized the

off-diagonal elements of these RDMs and averaged them across

participants. We next performed pairwise correlations among

these averaged vectors from all the ROIs and all three stages

of VWM processing to form a region-processing-wise RDM. Us-

ing multidimensional scaling (MDS), we projected this RDM onto

a two-dimensional (2D) space, with the distances between brain
(E) Category decoding accuracy for LOT and VOT during early encoding, delay

Asterisks mark decoding significance as in (D).

(F) Example object-wise RDMs for two ROIs for each of the three VWM stages.

(G) MDS projection of the region-processing-wise RDM showing the similarity of t

stages. V* and L* denote VOT and LOT at early encoding and late probe stages,

Error bars indicate SE. yp < .10, *p < .05, ** .01 < p < .001, ***p < .001.

See also Figures S1 and S2.
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regions at particular processing stages denoting their similarities

in how they represent the eight object categories in the represen-

tational space (Figure 1G). Replicating our previous findings,10,17

we saw the two-pathway separation among the ROIs during en-

coding and probe, with OTC and PPC regions arranging hierar-

chically along these two pathways, respectively. We also saw

a high degree of overlap of the same ROI during encoding and

probe. This is not surprising as both involved perceptual pro-

cessing. We thus replicated our previous finding showing that,

during perception, OTC and PPC differed in how they represent

visual objects. Strikingly, however, this two-pathway separation

disappeared during VWM delay, with all VWM ROIs clustered

around higher perceptual PPC ROIs. Object representations

thus became more similar between OTC and PPC during VWM

delay than during perception, with OTC VWM representation

becoming more aligned with those of PPC during perception

than with those of OTC during perception.

Given the higher object category decoding accuracy obtained

in OTC during VWM encoding and probe than during delay, it

could be argued that fMRI decoding performance might have

been saturated and reached ceiling performance during encod-

ing and probe. For example, in the extreme case of ‘‘1’’ or ‘‘near

1’’ for each pair of category decoding, the intricate structure of

the representational space would be distorted or lost. This would

lead to distorted object-wise RDMs and distorted region-wise

MDS projections during perception. In other words, the two-

pathway structure we observed here could have been simply

driven by the overall decoding performance of an ROI, with

high-performing ROIs clustering around the ventral pathway

and low-performing ones around the dorsal pathway, rather

than the actual RDM differences between these ROIs. This is un-

likely, however, as when decoding accuracy was much lower in

OTC during perception in several cases in our previous study, we

still obtained the same two-pathway separation.10 To directly

verify this, we need to lower the decoding performance during

perception in OTC and see if a difference in RDM correlation be-

tween OTC and PPC still exists. To do so, instead of using peak

encoding and probe responses for pattern decoding in LOT and

VOT, we used instead the rising part of encoding and the falling

part of probe responses as lower decoding performance was

observed at these time points (see Figures S1D and S2A). Cate-

gory decoding accuracies during these off-peak encoding and

probe stages in LOT and VOT were both significant (ts > 4.42,

ps < .001; one-tailed and corrected) and similar to those during

delay in these regions and similar to those in the PPC regions

across all three VWM stages (Figure 1E). Critically, in the

region-processing-wise MDS projection plot, even with the

lowered category decoding during encoding and probe, these

off-peak LOT and VOT RDMs still landed right next to the corre-

sponding peak LOT and VOT RDMs during encoding and probe,

and away from these regions during delay (Figure 1G). The
, and late probe stages, with comparable decoding across the three stages.

he ROIs in how they represent the eight categories of objects at the three VWM
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Figure 2. Results of the four ROI sectors (averaged across the ROIs in each sector)

(A) Category decoding accuracy for the four sectors during the three VWM stages. Asterisks above the bars mark decoding significance compared with chance

(.5)—one-tailed and corrected.

(B) Object-wise RDMs for the four sectors for each of the three VWM stages.

(C) Within- and cross-decoding between perception (averaged between encoding and probe) and VWM (delay) for LOT/VOT and IPS1–IPS4. Colored asterisks

above the bars mark decoding significance compared with chance (.5)—one-tailed and corrected. Black asterisks above the bars mark the significance of the

cross-decoding drop—one-tailed and corrected. Black asterisks bridging between the sectors mark the significance of the difference in cross-decoding drop—

two-tailed.

LOT/VOT-P, peak perception responses from LOT/VOT; LOT/VOT-OP, off-peak perception responses from LOT/VOT.

Error bars indicate SE. yp < .10, *p < .05, ** .01 < p < .001, ***p < .001.

See also Figure S2.
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observed change in OTC RDM between perception and VWM

delay therefore could not be attributed to saturation in the fMRI

decoding performance.

To quantify the above observation and to streamline the anal-

ysis, based on the overall decoding performance and projections

in the representational space (Figures 1D and 1G), we averaged

responses from different ROIs to create four sectors: V1–V4,

LOT/VOT, V3a/V3b/IPS0, and IPS1–IPS4. Decoding perfor-

mance across all three VWM stages and all four sectors was

significantly above chance (ts > 1.88, ps < .044; one-tailed and

corrected; see Figures 2A and 2B for the decoding results and

the RDMs). Given that responses from encoding and probe

showed similar decoding performance and RDMs, we further

averaged results involving encoding and probe and labeled it

as perception. We focused our analyses on LOT/VOT and

IPS1–IPS4, as V1–V4 showed overall weak VWM decoding and

RDMs from all regions were clustered around higher IPS ROIs

during VWM delay.

Cross-decoding between perception and VWM for LOT/VOT

peak and off-peak responses and for IPS1–IPS4 revealed signif-

icant above-chance cross-decoding between perception and

VWM in both regions (ts > 4.87, ps < .001, one-tailed and

corrected; Figure 2C), but also a significant drop betweenwithin-
and cross-decoding (ts > 5.08, ps < .001, one-tailed and cor-

rected). In the LOT/VOT off-peak case, although the within-de-

coding performance was similar to that of IPS1–IPS4 (t(11) =

1.88, p = .088, two-tailed), the drop in cross-decoding was

significantly greater in LOT/VOT than in IPSI–PS4 (t(11) = 3.20,

p < .01, two-tailed). There were thus significant transformations

in object representation between perception and VWM in both

the ventral and dorsal regions, with the magnitude of the trans-

formation being greater in the ventral than dorsal regions.

To understand the nature of the representational transforma-

tion between perception and VWM, we next quantified the

RDM correlation results. Consistent with the region-process-

ing-wise MDS plot (Figure 1G), we found that RDM correlation

between LOT/VOT and IPS1–IPS4 was greater during VWM

delay than during perception for both peak and off-peak LOT/

VOT encoding and probe responses (t(11) = 2.22, p = .032,

and t(11) = 2.16, p = .036 for peak and off-peak responses,

respectively; one-tailed and corrected for a total of four compar-

isons made here, separately for peak and off-peak responses;

this applies to all subsequently reported stats of the same

type; Figure 3A). In fact, RDM correlation between perception

and VWM within a region was greater in IPS1–IPS4 than LOT/

VOT (t(11) = 3.15, p = .0092, and t(11) = 2.70, p = .021,
Current Biology 33, 4516–4523, October 23, 2023 4519
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Figure 3. RDM correlations
(A) RDM correlation between LOT/VOT and IPS1–IPS4 during perception vs. during VWM.

(B) RDM correlation between perception and VWM within LOT/VOT vs. within IPS1–IPS4.

(C) RDM correlation between perception and VWM within LOT/VOT vs. RDM correlation between LOT/VOT and IPS1–IPS4 during VWM.

(D) RDM correlation between perception and VWM within LOT/VOT vs. RDM correlation between LOT/VOT during VWM and IPS1–IPS4 during perception.

Across (A) to (D), Peak and Off-Peak are results from RDMs extracted from peak and off-peak encoding and probe responses from LOT/VOT, respectively. Gray

asterisks mark correlation significance compared with 0 and black asterisks mark pairwise correlation comparisons—one-tailed and corrected. Orange lines

indicate responses from individual participants.

(E) MDS projections of the object-wise RDM showing the representational similarity of the eight object categories for each of the three VWM stages in LOT/VOT

and IPS1–IPS4. These projections are manually rotated with faces always shown at the top left corner. They show a U-shaped object arrangement in LOT/VOT

during encoding and probe, but a T-shaped object arrangement in LOT/VOT during delay and in IPS1–IPS4 during all three VWM stages.

Error bars indicate SE. yp < .10, *p < .05, ** .01 < p < .001, ***p < .001.

See also Figure S3.
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respectively, for peak and off-peak responses; Figure 3B). Ob-

ject representations thus appear to undergo a greater amount

of change in OTC than in PPC between perception and VWM

delay. Further comparisons revealed that LOT/VOT RDM during
4520 Current Biology 33, 4516–4523, October 23, 2023
VWM delay was more correlated with that of IPS1–IPS4 during

both VWM and perception than with itself during percep-

tion (comparison with IPS1–IPS4 during VWM, t(11) = 4.57,

p = .016, and t(11) = 4.15, p = .0032, respectively, for peak and
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off-peak responses; comparison with IPS1–IPS4 during percep-

tion, t(11) = 1.58, p = .074, and t(11) = 1.89, p = .043, respectively,

for peak and off-peak responses; Figures 3C and 3D). Similar,

albeit slightly weaker, results were obtained when an earlier

delay period was examined (Figures S3A–S3D; see STAR

Methods for details). This was largely due to an increased

RDM correlation between perception and VWM in LOT/VOT in

the peak responses (likely resulting from the presence of

lingering encoding responses due to the hemodynamic

response lag), with all four correlation comparisons remaining

significant for LOT/VOT off-peak responses. The same results

were not obtained, however, when the cells in the RDMs were

randomly shuffled (Figures S3A–S3D), indicating that the corre-

lation results obtained reflected structure in the data and not

noise.

Overall, these results showed that not only did object repre-

sentations become more similar between OTC and PPC during

VWM delay than perception but also that those of OTC during

VWM delay became more aligned with the representations of

PPC during perception. This can be directly seen when we pro-

jected the object-wise RDMs of LOT/VOT and IPS1–IPS4 for

each VWM stage onto separate 2D spaces using MDS (Fig-

ure 3E). These projections show a U-shaped object arrangement

in LOT/VOT during encoding and probe, but a T-shaped object

arrangement in LOT/VOT during delay and in IPS1–IPS4 for all

three VWM stages.

DISCUSSION

Taking advantage of a recent finding showing that object repre-

sentational structure (i.e., RDM) during perception differs be-

tween OTC and PPC, here we report that this difference de-

creases during VWM, with OTC object representations during

VWM becoming more aligned with those of PPC during percep-

tion than with OTC itself during perception. Given the previously

documented role of feedback in driving VWM representation in

sensory regions,5–7 our results support the view that feedback

does not only sustain VWM signals in OTC but can also actively

shape the content of VWM there, more so than the initial sensory

input in OTC.

The present finding echoes a recent direct neurophysiological

study demonstrating that attentional feedback signals can influ-

ence sensory coding inmacaque visual cortex.23 Using fMRI and

the RSA approach, here we provide evidence supporting a role

of feedback in actively shaping the content of VWM in OTC in

the human brain. Previous research has reported that the neural

code for VWMmay rotate to provide better distractor resistance

or meet attentional selection priority11,12 and may be recoded

into an abstract and more efficient code.13 VWM and perception

may also engage different neuronal populations.7,9 Indeed, using

the cross-decoding approach (in which a decoder trained to

differentiate the neural responses of a pair of objects at one

VWM processing stage is asked to do so at another stage), we

also found a transformation in object representation between

perception and VWM in both the ventral and dorsal regions,

with the magnitude of the transformation being greater in the

ventral than dorsal regions. Such a cross-decoding drop be-

tween perception and VWM has also been noted by others in

both the ventral and dorsal regions.24,25 However, cross-
decoding drop alone cannot inform us of the nature of the trans-

formation: it could be caused by a rotation in the representational

space while preserving the representational structure, a change

in the actual representational structure without a rotation, or

both. By applying the RSA approach, here we are able to isolate

and measure the change in the representational structure (i.e.,

representational content) independent of the rotation in the

representational space and provide evidence supporting the

role of feedback in shaping the representational content of

OTC during VWM delay. This makes RSA a useful tool in unveil-

ing the content of VWM within and across brain regions, even

when the exact format of VWM representation may change.

Further research is needed to understand if PPC uniquely

shapes the VWM content of OTC, or if both regions may be influ-

enced by a third region, such as PFC. However, existing neuro-

physiological evidence as reviewed previously4 indicates that

VWM delay period signals in PPC are not triggered by feedback

originating fromPFC.For example,widespread, task-dependent,

and content-specific frontoparietal synchronization during VWM

delay period has been shown to exhibit an asymmetry, with infor-

mation transmission appearing to be governed more by influ-

ences arising in PPC than those from PFC.26 Similarly, stronger,

more reliable, and shorter latency VWM category signals during

the delay period are found in PPC than those in PFC,27 and that

neuronal activity correlating with behavioral VWM performance

appeared much earlier in PPC than in PFC.28 More neurophysi-

ology and lesion studies are needed to fully establish the casual

connection between the different brain regions in determining

the content of VWM representation.

Previous research has shown that object representations in

PPC are more task-driven than those in OTC.15,29–31 This sug-

gests that while OTC automatically encodes a large set of object

information during perception, given that only a subset of this in-

formation is relevant for a VWM task, information encoded into

PPC and retained in VWM would be more selective and task-

relevant. Consequently, although the RDMs of the OTC during

perception will be determined by a greater set of features auto-

matically extracted during perception, those of PPC during

perception and VWM and those of OTC during VWM will more

closely track the task-relevant feature encoded and retained.

This makes an interesting prediction that item interference in

VWM for these natural objects will be determined more by their

representational similarity in PPC than in OTC. It will be important

for future research to test this prediction and establish how feed-

back from associative regions in the brain may directly impact

behavioral performance, and how this may be further modulated

by whether real-world objects or simple visual features are

retained.

In the present study, basic-level object category can also be

decoded in EVC during perception and VWM. This may not be

surprising, as the seminal work by Rosch et al.32 showed that

exemplars of the same basic-level category share a common

set of visual features. Indeed, many basic-level categories can

be differentiated based on low-level features even with an exem-

plar identity and viewpoint change, such as curvature and the

presence of unique features like limbs. Rice et al.33 quantified

this and found that even for exemplars varying in identity and

viewpoint as in the present study, the low-level image similarity

between exemplars was still higher within the same categories
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than between different categories. Moreover, fMRI response

pattern correlation across the entire ventral visual cortex,

including EVC, tracked the low-level visual feature similarity

across the categories. Weaker but significant category effects

were also found in EVC in another study and were believed to

be driven by the presence of low-level visual similarities among

the exemplars of the same category.19 The shared low-level vi-

sual features among the exemplars within the same category

thus likely drove category decoding in EVC in the present study

and in our previous studies.10,15,16

In an effort to precisely control feature changes, previous

studies have predominantly investigated VWM for low-level vi-

sual features (e.g., orientation, color, motion, and spatial posi-

tion).24,34–37 In everyday life, however, we rarely hold on to

such stimuli in VWM; but rather, it is the complex real-world ob-

jects from our natural environment that we need to retain to guide

our thoughts and actions. Thus, it is important to study these ob-

jects directly if we want to ultimately understand the neural un-

derpinning of VWM supporting real-world visual cognition. The

present study not only contributes to such a research effort,

but also shows that the richness of real-world objects can afford

us with unique opportunities to ask and answer new questions.

Given the simplicity of low-level visual stimuli, similar representa-

tions are likely formed across brain regions, preventing us from

examining the role of feedback in determining the content of

VWM. With complex real-world objects and with PPC and OTC

showing differential representational geometry for these objects,

we are able to examine here how feedback may impact the con-

tent of VWM in OTC. Studying VWM of real-world objects thus

not only unveils the specific neural mechanisms involved in pro-

cessing such objects but can also enrich our understanding of

the general mechanisms supporting VWM in the human brain.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Processed fMRI data This paper https://osf.io/p7m6v/

Software and algorithms

MATLAB 2019B MathWorks, Inc. https://www.mathworks.com/

Analysis code This paper https://osf.io/p7m6v/

Experiment code This paper https://osf.io/p7m6v/

PsychToolBox PsychToolBox http://psychtoolbox.org/

FreeSurfer FreeSurfer http://surfer.nmr.mgh.harvard.edu

LibSVM Chang and Lin38 https://www.csie.ntu.edu.tw/�cjlin/libsvm/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Yaoda Xu (yaoda.xu@

yale.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d De-identified human data (behavior, processed fMRI results) have been deposited at OSF. They are publicly available as of the

date of publication. DOIs are listed in the key resources table.

d All original code has been deposited at OSF and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Twelve (seven females) healthy human participants with normal or corrected to normal visual acuity, all right-handed, and aged be-

tween 18 and 35 took part in the experiment. All participants gave their informed consent prior to the experiment and received pay-

ment for their participation. The experiment was approved by the Committee on the Use of Human Subjects at Yale University.

METHOD DETAILS

Main experiment
This experiment used the same eight real-world basic-level object category exemplar images as in a prior study.10 These categories

included bodies, cars, cats, chairs, elephants, faces, houses, and scissors, and were some of the typical basic-level categories used

in previous investigations of object representation in human OTC18,19 (Figure 1A). For each object category, there were ten exemplar

images that varied in identity, pose and viewing angle to minimize the low-level similarities among them (see Figure S1A for the com-

plete set of images used). All images were placed on a gray square (subtended 9.73 � 3 9.73 �) and shown on a larger background of

the same gray color. Each VWM trial contained a sequential central presentation of two target object images from the same category,

a prolonged blank delay, and a probe object (Figure 1C). The probe object was either an exact match of one of the target object im-

ages or a different exemplar from the same category. Each trial was 15 s long, with the timing of the different events as follows: fix-

ation (.5 s) – in the form of a looming red dot to alert the participants the imminent presentation of the target object images, first target

object image (.5 s), second target object image (.5 s), blank delay with a red fixation dot (11.5 s), and probe object image (2 s). There

were a total of 16 trials in each run, two for each category. Each run started and endedwith an 8-s blank periodwith a blue fixation dot.

Successive VWM trials were sandwiched by a blank period with a blue fixation dot. Of the 15 such inter-trial blank periods, 3 were 8-s
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long and 12were 2-s long, and they were randomly distributed. Fourteen runs of data were collected from each participant, with each

run lasting 5 min 4 s.

Behavioral performance accuracies for the VWM trials are reported in Figure S1B. Accuracies were overall high, with above 90%

accuracies for all the categories. Accuracies were higher for some than other categories (F(7,88) = 3.09, p = .0059), likely driven by

greater dissimilarity among the exemplars in some of the categories and/or due to category specific object coding for categories

such as faces. Note that accuracy was a result of decision making at the probe stage; the same information could be retained in

VWM and produced either a correct or incorrect response depending on the similarity between the target and probe items. Since

we averaged responses from trials of the same category and examined responses at the category level rather than at the individual

exemplar level, even if representations for the specific exemplars were poor, as long as some share category information was re-

tained in VWM, we should still be able to differentiate the different categories based on the averaged fMRI response patterns. We

have additionally z-normalized fMRI response patterns before further analysis to remove fMRI response amplitude differences across

the different categories and VWM processing stages (see later).

Localizer experiments
Topographic visual regions

These regions were mapped with flashing checkerboards using standard techniques39,40 with parameters optimized following

Swisher et al.40 to reveal maps in parietal cortex. Specifically, a polar angle wedge with an arc of 72� swept across the entire screen

(19.073 13.54� of visual angle). The wedge had a sweep period of 32 s, flashed at 4 Hz, and swept for 8 cycles in each run (for more

details, see Swisher et al.40). Participants completed 4 to 6 runs, each lasting 4 min 36 s. All participants were asked to detect a

dimming that could occur anywhere within the polar angle wedge, thereby ensuring attention to the whole wedge.

Lateral and ventral occipito-temporal regions (VOT and LOT)

To identify LOT and VOT ROIs, following Kourtzi and Kanwisher41 and as we have done previously,10,15,16,42,43 participants viewed

blocks of object and scrambled object (all subtended approximately 9.73 � 3 9.73 �). The images were photographs of gray-scaled

common objects (e.g., cars, tools, and chairs) and phase-scrambled versions of these objects. Participants monitored a slight spatial

jitter which occurred randomly once in every 10 images. Each run contained 4 blocks of each of objects, phase-scrambled objects,

and two other conditions that were used to define another brain region. Each block lasted 16s and contained 20 unique images, with

each appearing for 750 ms and followed by a 50 ms blank display. Besides the stimulus blocks, 8-s fixation blocks were included at

the beginning, middle, and end of each run. Each participant was tested with 2 runs, each lasting 4 min 40 s.

MRI method
Each participant completed an experimental session (1.5 h) and a localizer session (1.5 h) containing topographic mapping and func-

tional localizers. MRI data were collected using a Siemens Prisma 3T scanner, with a 32-channel receiver array head coil. Participants

lay on their backs inside the scanner and viewed the back-projected display through an angled mirror mounted inside the headcoil.

The display was projected using an LCD projector at a refresh rate of 60 Hz and a spatial resolution of 1280 3 1024. An Apple

Macbook Pro laptop was used to create the stimuli and collect motor responses. Stimuli were created using MATLAB and

Psychtoolbox.44

A high-resolution T1-weighted structural image (0.83 0.83 0.8mm)was obtained fromeach participant for surface reconstruction.

All blood-oxygen-level-dependent (BOLD) data were collected via a T2*- weighted echo-planar imaging pulse sequence that em-

ployedmultiband RF pulses and simultaneousmulti-slice (SMS) acquisition. For both themain experiment and the localizers, 72 axial

slices (2 mm isotropic), 0 skip, covering the entire brain were collected (TR = 800 ms, TE = 37 ms, flip angle = 52�, SMS factor = 8).

QUANTIFICATION AND STATISTICAL ANALYSIS

FMRI data were analyzed using FreeSurfer (http://surfer.nmr.mgh.harvard.edu), FsFast,45 and in-house MATLAB codes. LibSVM

software38 was used for the MVPA support vector machine (SVM) analysis. FMRI data preprocessing included 3Dmotion correction

and linear and quadratic trend removal. After reconstructing the inflated 3D cortical surface of each participant using the high-res-

olution anatomical data, we projected the fMRI data of that participant onto their native cortical surface. All fMRI responses were

analyzed directly on the inflated cortical surface (vertices) rather than on the cortical volume (voxels) of each participant, including

ROI definition and the main VWM analysis, as surface-based analysis has been shown to exhibit more sensitivity and better spatial

selectivity.20,21

ROI definitions
Following the detailed procedures described in Swisher et al.40 and as was done in our prior publications,10,15,16,35,46,47 by examining

phase reversals in the polar angle maps, we identified areas V1 to V4, V3a, V3b, and IPS0 to IPS4 in each participant (Figure 1B).

Following Kourtzi and Kanwisher41 and as was done in our prior studies,10,15,16,42,43 LOT and VOTwere defined as a cluster of contin-

uous voxels in the lateral and ventral occipital cortex, respectively, that responded more to the intact than to the scrambled object

images (Figure 1B). LOT and VOT loosely corresponded to the location of LO and pFs41,48,49 but extending further into the temporal

cortex in an effort to capture the continuous activations often seen extending into the ventral temporal cortex. The average number of

vertices for each ROI is reported in Figure S1C.
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VWM decoding analysis
With the length of our VWM trials being 15 s, for each surface vertex, we estimated the fMRI response amplitude at each TR from the

onset of the trial up to 24 s, totaling 30 TRs (with each TR being 800 ms). This was done separately for the trials in each object cate-

gory. To obtain these estimates, we first constructed 30 finite impulse response (FIR) functions corresponding to each TR of each

trial. As each category only appeared twice in a run and with adjacent trials overlapping with each other, to obtain accurate response

estimates, we combined three runs together, as detailed below, before applying GLM modeling to solve the beta weight for each of

the 240 FIR functions (30 TRs x 8 categories). Because the trial onset times were jittered with respect to TR onsets, trial onset times

were rounded to the nearest TR before GLMmodeling. To obtain independent training and testing data for pattern decoding, we split

the runs into odd and even halves, each containing 7 runs. For each half of the data, we applied an GLM to each 3-run combination

from the 7 runs of each half of the data. This resulted in 35 beta weight estimates for each FIR function in each half of the data for each

surface vertex. The beta weights of all the vertices in a given ROI formed our fMRI response pattern for that ROI. For each ROI, we

thus had 35 patterns for each TR and each category for each half of the data. Note that these 35 patterns were not all independent

from each other as some of them were estimated from shared runs; nonetheless, because some of the patterns were derived from

nonoverlapping runs, whenwe used all 35 patterns from each condition to train an SVMdecoder, we still had some protection against

data overfitting. As detailed later, pattern decoding training was done within the 35 patterns in one-half of the data and then tested on

the 35 patterns in the other half and vice versa. Training and testing were thus performed on independent data.

To generate a response amplitude time course from each ROI for each category, we averaged all the beta weights across all the

surface vertices within an ROI and from both halves of the data. The results are shown in Figure S1D. Based on the peak responses

from all the ROIs and categories, we defined an encoding period (from 4.8 to 8 s), a delay period (from 12 to 15.2 s) and a probe period

(from 17.6 to 20.8 s). We then averaged the four beta weights within each period to generate an averaged response for each of these

three VWM processing stages.

Note that to minimize signal contamination from the encoding period and given that encoding-related fMRI responses may still be

present 10–12 s post stimulus onset,50 in the present study the delay period was defined as the flat period from 12 to 15.2 s right

before the signal rose again with the presentation of the probe (see Figures S1D and S2A). It thus included the lowest and stable

time points of the BOLD responses and category decoding before the rise of both following probe presentation. Although this period

partially overlapped with probe presentation at 13 s, because neither response amplitude nor category decoding rose till a little over

2 s after the onset of the probe (see the responses from LOT and VOT in Figures S1D and S2A) and the same was also true during the

encoding period, it is reasonable to assume that the signals measured during this period largely came from delay period activity. If we

examine an earlier delay period with no overlap with probe presentation (from 11.2 to 12.8 s), very similar but slightly weaker results

were obtained (see later), consistent with potential signal contamination from encoding.

Prior to our decoding analysis, to remove amplitude differences across categories, ROIs and VWM processing stages, following

our previous studies,10,15,16,35 we z-normalized each fMRI response pattern. For a given ROI and a pair of conditions, we used SVM

for pattern decoding (LibSVM38). Specifically, during decoder training, using all the response patterns from one-half of the data, we

trained a linear discriminant function to discriminate the fMRI response patterns between the two stimulus conditions. The discrim-

inant function could be expressed as follows: g(x) = wixi + wo, where xi was the response amplitude of vertex i, wi was the weight of

that vertex, and wo was the overall bias. After training, all the response patterns from the other half of the data were used to test the

classification performance of the discriminant function, ensuring that training and testing were done on independent datasets. Based

on the output (either g(x) > 0 or g(x) < 0), the test data were assigned to one of the two stimulus conditions. We performed training and

testing across the two-halves of the data in both directions, with each half serving as the training data and the other half as the testing

data. Classification accuracies were averaged across the two training and testing directions.

Training and testing were performed separately for each pair of object categories and the decoding results were averaged across

all pairs to derive the average decoding performance. This was done separately in each ROI within each of the three VWM stages

(Figure 1D) as well as within each TR (see Figure S2A). To streamline the analysis, based on the similarity of the results obtained

and the anatomical location of the ROIs, we averaged the decoding results from multiple ROIs to form four sectors: V1–V4, LOT/

VOT, V3ab/IPS0, and IPS1–IPS4 (Figure 2A). Our main comparisons focused on the differences between LOT/VOT and IPS1–IPS4.

In an effort to obtain comparable decoding performance in LOT and VOT during the three VWM stages and then examine the re-

sulting object representational structure formed (see below), instead of examining peak encoding and probe responses in LOT and

VOT, we also examined the off-peak responses in these regions. By taking the rising part of the encoding responses (from 3.2 to 4.8 s)

and falling part of the probe responses (from 21.6 to 24 s), we were able to obtain in these ROIs comparable category decoding ac-

curacies during encoding, probe and delay and similar to those of IPS1–IPS4 during all three VWM stages (Figure 1E).

Following the same decoding procedure, we also performed cross-decoding across the different time points (in which a classifier

trained at one time point was asked to decode the responses across all times points, including the trained time point; Figure S2B).We

also performed cross-decoding across the three VWMstages and reported the averaged results for LOT/VOT (peak and offpeak) and

IPS1–IPS4 (Figure 2C).

It should be noted that using run combination and a split-half approach in the present pattern decoding analysis were necessary

due to the large number of conditions included in each run with very few repetitions of each condition and the significant overlap be-

tween adjacent trials due to hemodynamic response lag.With this approach, as reported in themain results, wewere able to replicate

our previously published results using block design and show the 2-pathway structure across OTC and PPC areas as well as show

the role of feedback in shaping VWM representation in OTC in the present study. This indicates the utility of such an approach as a
e3 Current Biology 33, 4516–4523.e1–e5, October 23, 2023
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viable analysis approach to analyze fMRI response patterns to overcome the challenges faced in the present data analysis. That be-

ing said, a more thorough and systematic documentation of this approach is needed by testing both simulated and real fMRI data to

help us understand how decoding performance may differ should response patterns from the individual runs were available and the

datawere analyzed using the standard leave-one-out cross-validation procedure. Doing sowould allow us tomore effectively use the

split-half method developed here in situations in which only a smaller amount of fMRI data could be collected due to either the nature

of the design (e.g., in a slow event-related design with large number of conditions and fewer trials as in the present study) or the

limited time available for data collection (e.g., in a patient or child study).

RDM analysis
As we did in a prior study,10 to directly visualize how the similarities between object categories were captured by a given brain region,

we performedMDS analysis51 on the object representational structures (i.e., RDMs). MDS takes as input either distancemeasures or

correlation measures. From the group average pairwise SVM category decoding accuracy, we constructed an 8 by 8 category-wise

RDM with the diagonal being 0.5 and the other values ranging from around 0.5 to 1 (Figure 1F). To turn these values into distance

measures that started from 0 in order to perform MDS, we subtracted 0.5 from all cell values and then multiplied all values by 2 to

obtain an RDM with the diagonal set to zero. To avoid negative values (as distance measures cannot be negative), we replaced

all values below zero with zero. We then projected the modified category-wise RDM for a given ROI or sector onto a 2D space

with the distance between the categories denoting their relative representational similarities to each other in that brain region or

sector. This was done separately for the three VWM processing stages for LOT/VOT and IPS1–IPS4 as shown in Figure 3E.

Note that instead of using pairwise SVM category decoding accuracies to construct the category-wise RDM, other measures such

as Pearson’s r, Euclidean distance, and Mahalanobis distance may also be used. We used SVM decoding performance here as it

provides a sensitive way to measure VWM representations during delay and has been used extensively in previous VWM

studies.24,34,35 The present study followed this established practice in the VWM literature so that results obtained here can be

compared with those reported previously. SVM decoding results have also been used to construct the RDMs as we did in our pre-

viously published studies and have generated robust, meaningful and replicable results.10,15–17

To determine the extent to which object category representations in one ROI were similar to those in another one and across the

three VWM processing stages, we performed pairwise correlation of the unmodified category-wise RDMs (i.e., without subtracting

0.5 from the diagonal or replacing the values below zero with zero) across ROIs and VWM stages to form a region-processing-wise

RDM. This was done by concatenating all the off-diagonal values of the unmodified category-wise RDM for a given ROI at a given

VWM stage to create an object category similarity vector for that ROI in that stage and then performing pairwise correlation of these

vectors across ROIs and VWM stages. To visualize the representational similarity of the different ROIs in the different VWM stages,

we projected the region-processing-wise RDM onto a 2D space using MDS, with the distance between the ROIs in particular VWM

stages denoting their relative similarities to each other (Figure 1G).

Given the higher object category decoding accuracy in OTC during VWMencoding and probe, it could be argued that fMRI decod-

ing performance might have been at ceiling, leading to distorted OTC RDMs and a distorted region-processing-wise MDS plot. To

examine this possibility, as described earlier, instead of examining peak encoding and probe responses in LOT and VOT, by taking

off-peak encoding and probe responses, we were able to obtain comparable category decoding performance during encoding,

probe and delay in these ROIs. These off-peak encoding and probe decoding accuracies were also similar to those of PPC ROIs.

We then derived the RDMs from these off-peak decoding accuracies and projected them in the same MDS projection plot with

the other ROIs (Figure 1G), allowing us to directly visualize the deviations of these off-peak RDMs from the original peak RDMs.

To provide a quantitative evaluation of the similarity between the RDMs across different regions and VWM processing stages, we

examined the RDM correlation between brain sectors and between the different VWM stages. We focused our analyses on LOT/VOT

and IPS1–IPS4, as V1–V4 showed overall weak VWM decoding and RDMs from all regions were clustered around higher IPS ROIs

during VWM delay. Given that responses from encoding and probe showed similar decoding performance and RDMs, we further

averaged RDM correlations involving encoding and probe and label it as perception. We performed four comparisons between

RDM correlations: RDM correlation between LOT/VOT and IPS1–IPS4 during perception vs. VWM delay; RDM correlation between

perception and VWMwithin LOT/VOT vs. within IPS1–IPS4; RDMcorrelation between VWMand perception within LOT/VOT vs. RDM

correlation between LOT/VOT VWM and IPS1–IPS4 VWM; and RDM correlation between VWM and perception within LOT/VOT vs.

RDM correlation between LOT/VOT VWM and IPS1–IPS4 perception (Figures 3A–3D). This allowed us to assess how RDM correla-

tion between these two regions would change between perception and VWM, how RDM correlation between perception and VWM

within a brain region would change between these two brain regions, and whether LOT/VOT VWM RDM was more similar to itself

during perception than to IPS1–IPS4 during VWM or perception. To evaluate the extent to which these correlations might have

been driven by noise correlation rather than the structure in the data, we randomly shuffled the cells in the RDMs and then performed

the same set of correlations (Figures S3A–S3D).

We also defined a slightly earlier delay period (from 11.2 to 12.8 s) that did not overlap with the probe presentation (at 13 s) and

examined the same set of correlations. Highly similar but slightly weaker results were obtained (Figures S3A–S3D). This was largely

due to an increased RDM correlation between perception and VWM in LOT/VOT in the peak responses, consistent with potential

signal contamination from encoding. The encoding and delay periods were temporally much closer in this case and the sluggishness

of the fMRI responses may contribute to their temporal correlation. It is worth noting that even with this earlier delay period, all four

correlation comparisons remained significant for LOT/VOT off-peak responses as in the main results.
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Statistical analyses
To evaluate if category decoding performancewas above chance for the three VWMprocessing stages as reported on Figures 1D, 1E

and 2A, we performed t tests (1-tailed, as only effects above chance weremeaningful) and corrected for multiple comparisons for the

three tests performed within each ROI or sector using the Benjamini-Hochberg method.22 For the within- and cross-decoding results

shown on Figure 2C, we performed 1-tailed t tests (as only effects above zero were meaningful) to quantify the overall decoding per-

formance and the drop in cross-decoding, and corrected for multiple comparisons for the three tests performance within each sector

using the Benjamini-Hochberg method.22 Two-tailed t tests were performed to quantify the difference in within-decoding and the

cross-decoding drop between LOT/VOT offpeak and IPS1–IPS4. For the four correlation comparisons within the peak and within

the off-peak conditions shown in Figures 3A–3D and S3A–S3D, we Fisher-transformed all correlation coefficients before we tested

if each transformed correlation coefficient was above zero using t tests (1-tailed, as only effects above zero were meaningful); since

there were a total of five unique correlations across the four comparisons, we corrected for the five tests performed using the

Benjamini-Hochberg method.22 Given that prior work has shown that feedback from associative areas like PPC and PFC can influ-

ence VWM responses in posterior sensory regions, and that the study test whether feedback during VWM simply sustains the object

representations formed during perception in OTC or actively reshapes VWM representation in OTC, the study was explicitly set out to

test the correlation effects between OTC and PPC in a specific direction. As such, to test whether OTC VWM representations be-

comes more aligned with those of PPC during VWM and perception than with itself during perception, we performed four correlation

comparisons (after Fisher-transforming all correlation coefficients) using 1-tailed t tests and corrected for the four comparisons

performed using the Benjamini-Hochberg method.22 Corrections were done separately within the peak and within the off-peak

correlations and comparisons.
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