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Highlights
Inhibitory control is a fundamental mech-
anism for adaptive behavior and cogni-
tion that features in theories across
psychology and cognitive science.

Although inhibitory control is thought to
regulate processes ranging from actions
to memories, most neuroscientific work
studies these domains of inhibition
separately.
Inhibitory control is a fundamental mechanism underlying flexible behavior and fea-
tures in theories across many areas of cognitive and psychological science. How-
ever, whereas many theories implicitly or explicitly assume that inhibitory control
is a domain-general process, the vast majority of neuroscientific work has hitherto
focused on individual domains, such as motor, mnemonic, or attentional inhibition.
Here, we attempt to close this gap by highlighting recent work that demonstrates
shared neuroanatomical and neurophysiological signatures of inhibitory control
across domains. We propose that the regulation of thalamocortical drive by a
fronto-subthalamic mechanism operating in the β band might be a domain-
general mechanism for inhibitory control in the human brain.
Recent crossdomain comparisons have
converged on the view that inhibitory
control arises from common, domain-
general neural mechanisms.

We propose that an input inhibition
mechanism, acting via fronto-
subthalamic inhibitory pathways may
contribute to domain-general inhibitory
control by suppressing thalamic drive of
cortical activity.

We argue that β-band activity in local cir-
cuits constitutes a potential domain-
general signature of inhibitory control.
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The gap between motor and cognitive inhibition
Enacting complex, goal-directed behavior requires the ability to flexibly adjust ongoing thoughts and
actions in response to changes in goals or circumstances. To achieve this, humans engage cognitive
control functions to override habitual behavior and to adjust their thoughts and actions according to
their goals. Inhibitory control (see Glossary) – the ability to suppress activated, but outdated or
otherwise inappropriate representations or processes – is one of these cognitive control functions.
Inhibitory control features in many cognitive theories as a process that controls diverse mental
operations. Indeed, several influential cognitive control frameworks posit that inhibition is one of
three ‘general purpose control mechanisms that regulate the dynamics of human cognition’ [1–3].

Consequently, inhibitory control is found in models across the entire spectrum of cognitive and
psychological science (Figure 1). Inhibitory control processes ostensibly underlie the ability to
stop inappropriate actions [4–7], the ability to suppress outdated or unwanted mnemonic
representations [8–13], and the ability to avoid distractions from an active focus of attention
[14–17]. Inhibitory control is also a key variable in many models of personality [18–20] and its
normal [21–24] and abnormal [25–27] development. Prominent models of language processing
also feature inhibitory control, for example during the suppression of semantic or phonological
competition or during language processing in bilinguals [28–33].

In line with this breadth of cognitive processes that ostensibly involve inhibitory control, its deficits
purportedly contribute to symptoms of many neuropsychiatric disorders. Prominent among them
are attention-deficit hyperactivity disorder (ADHD) [34], substance use disorders [35,36], post-
traumatic stress disorder [37,38], anxiety disorders [39,40], eating disorders [41], Parkinson’s
disease [42], and many others.

The importance of inhibitory control across such diverse mental contexts begs an obvious, but
neglected question: is inhibitory control truly a unitary, domain-general process? Does stopping
an action recruit the same mechanism(s) as, for example, suppressing an unwanted memory, an
inappropriately activated word, or an outdated attentional representation?
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Glossary
Cuedcognitive inhibition: Inhibition of
cognitive representations or processes
(e.g., a memory content) that occurs
because participants are explicitly
instructed to inhibit them by the
experimental task.
(Hemi)ballism: The pathological
presence of excessive, involuntary
movements after damage to the basal
ganglia, especially the subthalamic
nucleus.
Incidental cognitive inhibition:
Inhibition of cognitive representations or
processes (e.g., a memory content) that
occurs because of the incidental
activation of the inhibitory fronto-
subthalamic circuitry, typically by a
salient event.
Inhibitory control: The ability to
suppress activated, but outdated or
otherwise inappropriate representations
or processes.
Memory intrusions: A cue briefly elicits
recollection of its associated target
memory, which then has to be canceled
or purged.
Stop-signal reaction time (SSRT): A
latent variable derived from behavior in
stop-signal tasks that expresses the
speed of the compound stopping
process, which is otherwise not overtly
observable.
Subthalamic nucleus: A small,
diencephalic region that is functionally
part of the basal ganglia and crucial for
(motor) inhibition. It is the final nucleus
that is common to both inhibitory basal
ganglia pathways before they reach the
output nuclei of the basal ganglia.
Damage to the nucleus can result in
(hemi)ballism and modulation of its
activity is effective in treating movement
disorders such as Parkinson’s Disease.
Thalamocortical drive: Persisting
excitatory innervation by the thalamic
nuclei that sustains firing in their
projection targets, for example in cortex
or hippocampus.
Cognitive neuroscience provides a powerful approach to answer this question: identifying a neu-
ral circuit or signature for inhibitory control in one domain would allow testing whether this same
circuit underlies inhibitory control in other domains. Until recently, however, few studies have
compared inhibitory control mechanisms across domains. Instead, most cognitive neuroscience
work on inhibitory control has investigated this function within separate areas of behavior and
cognition. For example, the last three decades have witnessed the development of a large body
of research on how inhibitory control influences the motor system to stop overt physical actions
(for reviews, see [6,43–45]). Paralleling this, during a similar period, other cognitive and cognitive
neuroscience research has focused on inhibitory control of memory (for reviews, see [11,13,46])
and other domains such as affect and attention [47,48]. Such work has – until recently – rarely
demonstratedmechanistic connections between the inhibitory control processes in these separate
domains, leaving the existence of a domain-general inhibitory control mechanism unaddressed.

This disconnect is especially notable because the vast majority of neuroscientific work on inhibi-
tory motor control uses the stop-signal task (other tasks, such as the Go/NoGo or anticipated re-
sponse inhibition tasks are also used). The stop-signal task is popular partially because an
influential cognitive model (the ‘horse-race’ model, [4,49] allows a parameterization of the pro-
and antikinetic processes involved in action stopping, providing a helpful benchmark that may
be related to purported neural signatures of inhibitory control [50]. Notably, the seminal paper for-
mulating this horse-race model was titled ‘On the ability to inhibit thought and action: a theory of
an act of control’. This title highlights the longstanding aspiration that the processes simulated in
stop-signal tasksmay indeed be domain-general – that is, that the knowledge gained from study-
ing inhibitory motor control in the stop-signal task may ultimately generalize to the inhibitory con-
trol of mental operations more broadly.

However, whereas recent work has indeed shown a relationship between the cortical regions ac-
tivated during motor response inhibition and inhibitory dysfunction in complex real-life situations
[51], mechanistic neural models of how these activated cortical regions may inhibit both motor
and nonmotor activity have only recently been entertained [52–55]. Here, we aim to specify key
elements of a mechanistic account of how domain-general inhibitory control could be achieved.
In particular, we propose a broad mechanism that may contribute to how both motoric and
cognitive processes are canceled by suppressing driving thalamic input to those cortical
regions – activity essential to sustain and enact the targeted processes. This input inhibition
process differs from and complements another common conceptualization of the mechanisms
of inhibitory control in terms of target inhibition (Box 1).

First, we briefly introduce the neuroanatomy and neurophysiology of the inhibitory motor control
circuit. We focus on work using stop-signal tasks in humans, which provides the most compre-
hensive evidence for fronto-subthalamic involvement and associated β-band (~13–30 Hz) signa-
tures in the local field potential. We then outline how that same neuroanatomic motif – inhibitory
control of thalamocortical drive via fronto-subthalamic pathways, signified by neural β-band
dynamics –may contribute to cognitive inhibition. Finally, we present recent preliminary evidence
supporting the possibility of such shared mechanisms underlying motor and nonmotor inhibition.

Neuroanatomy of inhibitory motor control: fronto-subthalamic pathways
We begin with a brief review of the neural basis of inhibitory motor control in the human brain (for
more complete reviews of the topic, see [5,45,56,57]), because the fronto-subthalamic pathways
and β-band activity that are key to the current proposal have been examined most thoroughly in
this domain. We then propose that analogous neural mechanisms may contribute to inhibiting
nonmotor processes.
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Figure 1. The many facets of inhibitory control. Inhibitory control processes are purportedly involved in the regulation of many motor and cognitive processes. Images
licensed via shutterstock.
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At rest, persisting excitatory innervation by the ventral thalamic nuclei sustains firing in the motor
cortex as its default state [58–60], a process known as thalamocortical drive. This sustained
thalamocortical drive does not induce overt motor action because subcortical basal ganglia, in
turn, exert steady inhibition that prevents this from occurring [56]. In healthy individuals, initiating
a movement shifts this delicate balance of inhibition and excitation towards disinhibition, upregulat-
ing thalamocortical drive [61]. To refine these movements, three loop-like corticobasal ganglia–
thalamocortical circuits more precisely modulate the excitation–inhibition balance [56,62]: the
prokinetic, net-excitatory direct pathway and the antikinetic, net-inhibitory indirect, and hyperdirect
pathways [63–65]. All three pathways ultimately converge on the output nuclei of the basal ganglia:
the internal part of the globus pallidus (GPi), and the substantia nigra pars reticulata (SNr). These
output nuclei can inhibit the motor segments of the ventral thalamus [66] and in doing so, suppress
thalamocortical drive, shifting the balance back towards inhibition. Thus, whether a given pathway
activates the GPi/SNr or deactivates it at the end of the corticobasal ganglia chain determines
whether that pathway achieves net inhibition or net excitation: activating GPi/SNr net-inhibits the
drive from ventral thalamus to motor cortex and suppresses movement, deactivating GPi/SNr
net disinhibits thalamocortical drive and invigorates movement.

The three foregoing pathways crucially differ in the upstream structures that innervate the GPi/
SNr. In both inhibitory pathways, a small diencephalic structure known as the subthalamic
nucleus (STN) excites the GPi/SNr, net-inhibiting thalamocortical drive and, consequently,
movement. Damage to the STN produces disinhibitory (hemi)ballism [67], illustrating its key
causal role in motor inhibition. Beyond their effects on thalamocortical drive, the three pathways
126 Trends in Cognitive Sciences, February 2024, Vol. 28, No. 2
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Box 1. Target inhibition versus input inhibition

Research on inhibitory control often distinguishes between the source of top-down inhibitory control and the target repre-
sentation that is to be stopped. Control mechanisms can reduce the influence of a currently active target representation or
process on ongoing behavior and thought in many ways. A common mechanism widely hypothesized in research on the
inhibitory control of cognition is one in which the control source acts directly on the representation or process to be can-
celed, reducing its activation via an active process that renders the representation less accessible (Figure I, left). We term
this broad approach target inhibition, reflecting the action of control on the very representation whose activity requires reg-
ulation. For example, in resolving the meaning of the homograph ‘Bank’, an inhibitory process might suppress the contex-
tually inappropriate meaning (financial institution) in favor of the contextually appropriate one (river’s edge), by a process
that removes activation from the inappropriate meaning. Ample evidence establishes disruptive effects of inhibition on
to-be-rejected representations, which often show persisting deficits in accessibility on later trials or tests, taken to indicate
aftereffects of the subtractive process [11,13]. Neural evidence for persisting aftereffects of suppressing particular repre-
sentations also exists; for example, suppressing retrieval of a visual object, given a cue, renders that visual object harder to
see on a later perceptual test, an effect accompanied by a persisting reversal of adaptation effects in sensory cortex for the
suppressed content [188,189].

Another approach to inhibiting processes, however, instead involves preventing the accumulation of activity in the system
needed to produce the response by suppressing driving input into the units representing them (Figure I, right). In this input
inhibition approach, the control mechanism does not act directly on the representation or process to be stopped, but
rather acts upstream of it to prevent the propagation of vital input needed to sustain or enhance its activity. Consequently,
in an input inhibition approach, it need not follow that the to-be-stopped process or representation will show persistently
reduced accessibility on subsequent trials or tests, as no subtractive process acts directly on it, but instead operates by
suppressing input into it. Notably, however, input inhibition is not per se incommensurate with the presence of inhibitory
after-effects. For example, inhibiting thalamic inputs to the motor cortex, allows steady inhibitory input from the basal
ganglia to dominate activity in motor cortex, effectively inhibiting it (see upcoming section, ‘Neuroanatomy of inhibitory mo-
tor control: fronto-subthalamic pathways’) In the current proposal, we conceptualize the action of the fronto-subthalamic
inhibitory control pathway as acting via a process of thalamic input inhibition (by reducing thalamo-cortical drive), rather
than via target inhibition. It remains an open question, however, whether input inhibition and target inhibition are mediated
by different aspects of the proposed inhibitory control circuit, or whether other, distinct control pathways complement in-
put inhibition in the regulation of action and thought.

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure I. Target inhibition versus input inhibition.
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also differ according to whether these upstream structures include the striatum (which is true for
the direct and indirect pathways) or not (which is true for the hyperdirect pathway). Whether a
pathway includes the striatum, en route to the GPi/SNr, strongly influences how targeted and se-
lective the impact of that pathway is on thalamocortical motor activity. For example, individual
striatal neurons can target specific neurons in the basal ganglia output nuclei (GPi/SNr, [68],
Trends in Cognitive Sciences, February 2024, Vol. 28, No. 2 127
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thereby selectively influencing specific thalamocortical motor loops. In contrast, the STN contains
many neurons that broadly connect to those output nuclei [65]). Thus, without striatal fine-tuning
(i.e., in the hyperdirect pathway), subthalamic net-inhibition of thalamocortical motor activity oc-
curs rapidly, broadly and nonselectively; with striatal fine tuning (as would occur in the indirect
pathway), net inhibition occurs more slowly and selectively (Box 2).

Building on the preceding observations, one influential model of inhibitory motor control in the
human brain posits that when a person rapidly stops an action, the prefrontal cortex recruits
the hyperdirect pathway via monosynaptic projections from prefrontal cortex to the STN [43].
Other pathways may be involved, however, when more refined control is required. For example,
increasing evidence indicates that the indirect pathway also contributes to stopping action, likely
in a slower and more selective fashion [45,69,70].

Historically, however, discussion about the neural mechanisms of inhibitory motor control has
centered on the specific prefrontal cortical areas that invigorate antikinetic basal ganglia pathways
(though not every proposal holds that a given cortical region inhibits action via the basal ganglia;
many do not specify how cortical regions influence motor cortex). Early proposals suggested that
ventromedial prefrontal cortex implemented inhibitory control, based on extensive nonhuman
work showing that lesions of that region caused disinhibited, impulsive behaviors [71–73]. Later
work suggested that these findings arose because those lesions had severed white matter tracts
passing through this structure, connecting remote regions that actually implemented motor inhi-
bition [74,75]. By then, functional magnetic resonance imaging (fMRI) research during the 1990s
already revised this picture, with multiple studies demonstrating right-hemisphere dominant pre-
frontal activity outside of ventromedial PFC in humans performing a Go-NoGo task [76–79]. While
the Go-NoGo paradigm can be limited in its ability to reliably operationalize inhibitory motor con-
trol [80,81], an influential lesion study of action stopping confirmed right-lateralized (pre)frontal
cortical involvement using the stop-signal task and the horse-race model [82]. This study found
an association between elongated stop-signal reaction times (SSRT) and lesion volume in
Box 2. Selective versus nonselective inhibitory control

Inhibitory control of motor – and perhaps nonmotor – activity can be exerted selectively or nonselectively, with a trade-off
between the two. Nonselective inhibition often arises when actionsmust be stopped rapidly, reactively, and unpredictably.
Such nonselective inhibition yields a broad physiological suppression of motor excitability: successfully stopping an action;
for example, in the stop-signal task, suppresses corticospinal excitability even for task-unrelated muscles [54,190,191]
and increases β activity over task-unrelated aspects of the motor cortex [112,192]. Foreknowledge of an upcoming
stop-signal or of the exact effector to be stopped decreases this nonselective suppression, leading to more selective ef-
fects [193–195]. In the motor domain, this difference in selectivity maymap onto the hyper- and indirect pathways, with the
hyperdirect pathway implementing nonselective inhibition, and the indirect pathway implementing selective inhibition
[45,196]. Notably, hyperdirect pathways exist frommany regions of the prefrontal cortex to the STN, at least in nonhuman
primates [197] (see also [198] for evidence from human probabilistic tractography). The same is true in humans, at least for
two out of the three areas commonly implicated in inhibitory control: the rIFC [88] and the DLPFC [89].

Striking parallels between nonselective and selective motor inhibition exist in inhibitory control over memory. For example,
several reports demonstrate that actively suppressing retrieval broadly compromises hippocampal function, rather than
simply suppressing the individual to-be-avoided memory [199,200]. For example, suppressing retrieval of a response
word (e.g., roach), given the cue (e.g., ordeal) from a previously studiedword pair (e.g., ordeal roach), not only harmsmem-
ory for the response itself, but also entirely unrelated pictures encoded 5–10 s before or after the retrieval suppression at-
tempt [199]. This amnesic shadow effect has been linked to systemic hippocampal suppression that degrades encoding
and stabilization processes generally, perhaps paralleling the previously discussed nonselective effects of action stopping
on the motor cortex. In contrast, selectively retrieving a target memory inhibits competing memories (i.e., retrieval-induced
forgetting), impairing their retention, but does not disrupt memory for temporally adjacent items [199], not does it suppress
hippocampal activity [201]. Whether these instances of global and selective inhibition in memory and motor inhibition are
produced by similar frontothalamic mechanisms remains to be examined.

128 Trends in Cognitive Sciences, February 2024, Vol. 28, No. 2
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the right inferior frontal gyrus (rIFG) and the middle frontal gyrus in the dorsolateral prefrontal cor-
tex (DLPFC). Subsequent fMRI and magnetoencephalographic work confirmed that action-
stopping activates rIFG, DLPFC, and the pre-supplementary motor area (pre-SMA, [83,84]; see
[85] and [52] for recent meta-analyses). Ongoing discussions in this field focus on the exact
role of each of the cortical areas involved in this network [52,86,87] (Box 3), whether they trigger
stopping via hyperdirect or indirect connections to the STN [88,89], and whether one or multiple
inhibitory processes contribute to action stopping [45,70,90]. We point the reader to recent re-
views for an up-to-date picture of these issues (see preceding text).

Relative to research on the prefrontal cortex, less controversy surrounds the evidence that action
stopping recruits STN. Although imaging this nucleus via fMRI is difficult [91,92], direct recordings
of the intracranial local field potential in humans consistently show that successful action stopping
engages STN [88,93–100]. Two recent studies provide especially compelling evidence regarding
the STNs role in inhibitory motor control. First, electrical stimulation of the STN antidromically
propagated to rIFG at very short latencies (~2 ms), demonstrating a monosynaptic connection
between both nodes (Box 1). The latency of sequential activation of this fronto-subthalamic path-
way after a stop signal was directly related to SSRT [101]. Second, modulating the STN via deep
brain stimulation eliminated the typical physiological effects of action stopping on corticomotor
excitability, as assayed by transcranial magnetic stimulation of motor cortex [102] (Box 1).

In sum, whereas the exact functions of different prefrontal cortical areas remain to be established,
clear evidence supports the causal role of one (or more) fronto-subthalamic circuits in the imple-
mentation of inhibitory motor control (Figure 2).

Neurophysiology of inhibitory motor control: β activity as an inhibitory signature
Neural activity in the above-described fronto-subthalamic pathways for inhibitory motor control is
dominated by signatures in the β-band (Figure 2B).We here provide a short overview of these sig-
natures, while pointing the reader to comprehensive reviews for further detail [45,103–105].

Broadly speaking, initiating a movement involves reducing the inhibition of the motor system
that is present at baseline (see preceding text). Marking this motor system disinhibition, β-
band signals in motor cortex reduce during action initiation, relative to their dominance at
rest [106–108].
Box 3. Prefrontal cortical contributions to inhibitory control

Research on inhibitory control over actions and thoughts historically has adopted differing emphases about which prefron-
tal regions originate top-down control signals. Whereas research on retrieval stopping has emphasized the right DLPFC
[46,53,157], research on action stopping has emphasized right VLPFC [43]. Numerous studies demonstrate robust
rDLPFC activation during retrieval suppression and effective connectivity analyses indicate that this structure causally
modulates hippocampal activity [159,201–203]. However, a recent fMRI-based within-subjects comparison of action
and retrieval stopping revealed both right anterior DLPFC (BA 9/46/10) and rVLPFC involvement across both domains
(see Figure 5A in main text), with both regions showing: (i) correlations with both SSRT and suppression-induced forget-
ting; (ii) significant cross-task decoding; and (iii) dynamically varying effective connectivity with hippocampus or with motor
cortex, depending on the nature of the content to be suppressed. Dynamic causal modeling established that a model in-
cluding both structures strongly outperformed models featuring only either rDLPFC or rVLPFC as the source of inhibitory
control. A complementary conjunctive meta-analysis further demonstrated that domain-general inhibitory control activates
both anterior rDLPFC and rVLPFC. Consistent with the view, rDLPFC, like rVLPFC (i) originates hyperdirect projections to
STN that could support rapid stopping [89,197]; (ii) exhibits increased activity during action-stopping in intracranial record-
ing in humans [109,204] and nonhuman primates [205]; and (iii) when stimulated intracranially in nonhuman primates, can
induce animals to withhold their motor responses [205]. Hence, there is as yet no strong empirical basis for attributing
rDLPFC or rVLPFC as the primary origin of domain-general inhibitory control.
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Figure 2. The fronto-subthalamic
inhibitory control circuit during
action stopping. (A) Stop-signals
trigger activity in (pre)frontal cortex
(rIFG, DLPFC, and pre-SMA).
Pathways from these regions activate
STN, which excites the output nuclei of
the basal ganglia (GPi), thus inhibiting
thalamocortical drive of motor cortex.
(B) β-Band activity in the critical nodes
of the circuit during action-stopping.
Top: cortical β-band activity measured
by magnetoencephalography during
successful action-stopping shows
concentration around rIFG, pre-SMA,
and DLPFC (middle frontal gyrus) and
motor cortex. Adapted, with
permission, from [84]. Bottom: β-band
activity measured using intracranial
recordings from subcortex shows
increases in β during successful
stopping in STN and thalamus, and β
increases in primary motor cortex (M1)
immediately after STN β, with
permission, from [100]. *P < 0.05.
Abbreviations: DLPFC, dorsolateral
prefrontal cortex; GPi, globus pallidus;
pre-SMA, pre-supplementary motor
area; rIFG, right inferior frontal gyrus;
STN, subthalamic nucleus.
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Conversely, studies using many neurophysiological methods consistently show that when ac-
tions have to be stopped and the motor system has to be returned towards inhibition, β-band ac-
tivity in all regions of the fronto-subthalamic circuit rapidly increases. In intracranial recordings
[109] and in magnetoencephalography (MEG) [84], stop-related β power increases are found in
rIFG, DLPFC, and pre-SMA. Studies using scalp recordings have found that this stop-related
β-band activity over (pre)frontal cortex is rapidly followed by an upregulation of β over motor cor-
tex [110–112] along with a broad suppression of corticomotor excitability [113]. Lesions to rIFG
abolish these (pre)frontal β signals [87]. Based on our theoretical model, one might expect a sim-
ilar pattern arising from lesions to pre-SMA or DLPFC (Notably, some have argued that these (pre)
frontal β bursts cannot index inhibitory control, based on recordings made during eye-movement
stopping in monkeys [114]. While frontal β bursts were in fact increased when eye movements
were successfully stopped, they were not more prominent at shorter stop-signal delays. Accord-
ing to these authors, since stopping is more likely at shorter delays, there should be more β
130 Trends in Cognitive Sciences, February 2024, Vol. 28, No. 2
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bursts. However, in stop-signal tasks, higher stop success at shorter stop-signal delays is typi-
cally due to differences in the latency of the go process, not due to a stronger stop-process,
rendering this logic questionable).

Moreover, a subcortical cascade of increased β activity in the STN and the motor thalamus pre-
cedes the increased β in primary motor cortex at the end of this cascade, an outcome which pur-
portedly reflects successfully re-instatedmotor inhibition (Figure 2B) [45]. These neurophysiological
studies suggest a processing cascade according to which β activity first increases in prefrontal re-
gions of the fronto-subthalamic network, propagates to the basal ganglia, and ultimately inhibits
thalamocortical motor drive – returning the motor system to its default inhibited state. As such,
β-band activity is a useful index of inhibitory control across the fronto-subthalamic system.

Cognitive activity in thalamocortical circuits
The current Review proposes that the fronto-subthalamic inhibition of thalamocortical drive just
described for the motor system could be a domain-general mechanism for inhibitory control.
We base this proposition on the observation that thalamocortical drive also supports many
types of non-motor functions [115,116] – a proposal long-held by theoretical [117,118] and com-
putational models [119–122]. Indeed, recent studies in humans and nonhuman primates confirm
that the thalamus is not merely a ‘relay station’; instead, just like in the motor system, thalamic ac-
tivity drives both local neural activity and network-wide dynamics in nonmotor parts of the neo-
cortex and other areas of the brain (for reviews, see [123–125]. These thalamo-(sub)cortical
interactions underpin processes such as attentional engagement, working memory, and long-
term memory formation. We focus on these three processes in the following, because there is
preliminary support, both neuroanatomically and empirically, for the possibility that they undergo
inhibitory control via fronto-subthalamic circuitry. (Whether other processes are inhibited via the
same mechanism remains to be seen in future research.)

During sustained attention, the macaque pulvinar drives neural activity in the frontal eye fields and
lateral intraparietal cortices [126–129]. The pulvinar also projects directly to primary visual cortex
[130]. In line with these findings, human neuroimaging has found that several thalamic nuclei, in-
cluding the anterior pulvinar, broadly upregulate cortical excitation during perceptual decision
making [131,132] (Figure 3A). This upregulation also is reflected in increases of attention-
related occipital alpha oscillations in humans, which are driven by the pulvinar [133] (Figure 3A).
Similarly, mediodorsal thalamic nuclei interact with prefrontal cortex during decision making in
both primates [134] and humans [135], where mediodorsal thalamic activity adaptively partitions
cortical activation patterns (for a review, see [136]). The same mediodorsal nuclei have also been
found to drive prefrontal cortical activity during the updating of perceptual representations in
humans [137], as well as during memory retrieval [138] (Figure 3B). Finally, during long-term
memory formation, the anterior nuclei of the thalamus, which exhibit strong functional connectivity
to the hippocampus [139–142] show strong phase relationships with frontal cortical areas that
are highly indicative of functional connections [143,144]. Stimulating the anterior thalamus intra-
cranially increases gamma activity in the human hippocampus during the formation and retrieval
of memories, alongside a functional improvement in those abilities [145,146] (Figure 3C).

These studies represent converging evidence for the key role of thalamocortical drive in primate cog-
nition – similar to the thalamocortical dynamics underlying movement. Studies of this kind show that
the thalamus is not merely a relay, but that thalamocortical drive underlies nonmotor activity in many
scenarios, similar to the motor system (for reviews, see [123,136,147]). Here, we therefore propose
that inhibitory control may act via the same fronto-subthalamic circuitry that inhibits thalamocortical
motor drive to also inhibit nonmotor thalamocortical drive. If so, this circuit motif constitutes an
Trends in Cognitive Sciences, February 2024, Vol. 28, No. 2 131
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Figure 3. Examples of thalamocortical drive underpinning cognitive processes. (A) The pulvinar drives cortical areas during periods of attentional engagement. Left
panels: increased spike-local field potential phase coupling between mediodorsal pulvinar (mdPul) spikes and the local field potential of the frontal eye fields (FEF) and lateral
intraparietal cortex (LIP) in macaques during active attentional engagement. Adapted, with permission, from [126]. Right panel: human pulvinar BOLD activity predicts
attentional-related increases in occipital alpha activity. Adapted, with permission, from [133]. *P < 0.05, **P < 0.01. (B) Human mediodorsal thalamus granger-predicts
frontocentral EEG signals during correct retrieval from long-term memory. Adapted, with permission, from [138]. (C) Anterior thalamus stimulation in humans increases
hippocampal activity during memory retrieval, thereby improving mnemonic precision. Left: hippocampal recording sites during anterior thalamic stimulation experiment.
Center left: memory error decreases ON anterior thalamic stimulation compared to OFF. Center right: hippocampal gamma activity during retrieval increases ON anterior
thalamic stimulation. Right: stimulation-related increase in hippocampal gamma activity predicts the reduction of memory error across subjects. Adapted, with permission,
from [145]. *P < 0.05, ***P < 0.001.
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important mechanistic component of domain-general inhibitory control. We begin this argument in
the next section by outlining anatomical connections from the output nuclei of the basal ganglia
(GPi/SNr) to the aforementioned nonmotor nuclei of the thalamus. These connections parallel the
known inhibitory connections from the basal ganglia to the motor thalamus.

Basal-ganglia projections to nonmotor thalamus
The GPi and SNr send projections not only to ventral thalamic motor nuclei, but also to nonmotor
nuclei. Comprehensive mapping of the corticobasal ganglia–thalamic network in mice found that
SNr broadly projects to multiple thalamic nuclei, yielding at least six parallel networks that refine
multidomain cortical activity via the basal ganglia–thalamic route [148]. Indeed, evidence sug-
gests that all of the previously-mentioned thalamic nuclei that engage in thalamocortical drive
to maintain cognitive representations in the primate (pulvinar, mediodorsal and anterior groups,
see preceding text) also receive inputs from the GPi/SNr complex: The pulvinar receives inputs
from the SNr [149,150] and shows functional connectivity with that region in the human brain
[151]. The mediodorsal thalamus receives inputs from the GPi/SNr complex in both the rodent
[152] and primate brain [153]. Both the anterior thalamic nucleus group, as well as the nucleus
reuniens (another brain region densely connected to the hippocampus and important to memory
formation [154,155] receive similar projections from the SNr/GPi complex [152,156]).

These anatomical pathways could conceivably provide a neuroanatomical basis for the potential
fronto-subthalamic inhibition of non-motor thalamocortical activity (Figure 4). Whether these spe-
cific basal ganglia–thalamic projections fulfill the same function as in the motor system
(i.e., whether excitation of the output nuclei of the basal ganglia inhibits the corresponding down-
stream segments of the thalamus) is an important avenue for future neuroanatomic research.

Cognitive inhibition via the fronto-subthalamic circuit
We now describe recent studies that show preliminary evidence that fronto-subthalamic inhibi-
tory circuitry may affect nonmotor processes, and more generally, that motor and cognitive inhi-
bition may involve a domain-general neural mechanism operating in the β band. These studies
can be roughly classified into two categories (Figure 5). (i) Cued cognitive inhibition: in such
studies, participants are explicitly instructed to inhibit the cognitive representation (e.g., a memory
content) by the experimental task. (ii) Incidental cognitive inhibition: in such studies, the inhi-
bition of an active cognitive representation is caused by the incidental activation of the inhibitory
fronto-subthalamic circuitry, typically via a salient event.

Cued cognitive inhibition is typically studied using the Think-No-Think (TNT) (Figure 5A) and
directed-forgetting (DF) paradigms. Such tasks typically instruct participants to explicitly stop ac-
tive cognitive representations (typically memory items), either during – or, in the case of the TNT,
after they have been encoded. The TNT task in particular involves training cue-target associations
(e.g., between word or picture pairs), followed by a TNT phase in which some cues are paired
with an instruction to suppress retrieval of the corresponding associate (No-Think). Afterwards,
a final recall phase assesses how effectively participants suppressed the memory items (for re-
views, see [11,13,157]). In a typical DF task, a ‘forget’ cue follows the initial presentation of a spe-
cific memory item, and memory performance is subsequently assessed in comparison to items
that were paired with a ‘remember’ cue. A recent study [52] had participants perform both the
TNT task and a motoric stop-signal task (SST) to compare the neural mechanisms involved
using fMRI. Critically, stop signals in the SST and No-Think signals in the TNT task activated over-
lapping regions in the rDLPFC, rIFG, and pre-SMA (Figure 5A), regions robustly confirmed in a
companion meta-analytic conjunction of 40 independent stop signal and 16 TNT studies. They
found that both rDLPFC and rIFG showed dynamically varying connectivity with either motor
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Figure 4. A possible neural circuit for domain-general inhibition. Upper row: established route for inhibitory moto
control. Thalamocortical drive invigorates movement, which can be inhibited by the fronto-subthalamic circuit (driven by
activity in red regions) via inhibitory projections from the output nuclei of the basal ganglia to the motor thalamus. Lowe
row: expanding the circuit to include nonmotor activity. Mediodorsal thalamocortical drive to PFC has been shown to
modulate decision making and perceptual processes (and may modulate other functions of PFC), the pulvinar drives

(Figure legend continued at the bottom of the next page.
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cortex or hippocampus, depending on whether participants inhibited a movement (SST) or a
memory (TNT task). Finally, significant BOLD signal reductions occurred in either the hippocam-
pus or in the motor cortex, depending on whether the participant’s goal was to stop memory re-
trieval or to stop physical action.

Several additional lines of work support the possibility that mnemonic and motoric inhibition both
draw upon the fronto-subthalamic circuit posited here. For example, parallels in electrophysiolog-
ical markers of inhibition also arise across mnemonic and motoric domains. Stopping actions
(SST) and stopping memory retrieval (TNT task) both elicited right frontal β-band signals [158],
a key neurophysiological signature of the fronto-subthalamic circuit. Moreover, right DLPFC ex-
erts a top-down Granger-causal influence on hippocampus, via similar β oscillatory activity
[159]. Relatedly, a recent study [160] compared neural activity recorded during action stopping
and directed forgetting. Again, frontal β-band activity arose during both action stopping and
memory inhibition, as revealed by crosstask neural decoding. Action-stopping indices (SSRT)
correlated with behavioral markers of successful directed forgetting (Figure 5B). Finally, during
No-Think trials, STN activity increases [161] – especially when participants reportmemory intru-
sions (i.e., when a cue briefly elicits recollection of its associated target memory, that then has to
be canceled/purged) (see also [55] for meta-analytic evidence for overlapping engagement of
subcortical basal ganglia regions in stop signal and TNT tasks). Engagement of the STN during
the suppression of memory intrusions converges with a study of corticomotor excitability during
the TNT task, which found that memory intrusions are accompanied by a nonselective reduction
of corticospinal excitability at task-unrelated muscles [162] – the same signature that indicates
STN activity during action stopping [102]. This latter finding suggests that rapidly activating the
fronto-subthalamic circuit during inhibition in one domain (in this case, memory) also could trigger
inhibition incidentally in other domains (in this case, the motor system). Nevertheless, inhibitory
control can also be targeted in goal directed, selective fashion at specific domains: for instance,
action stopping suppressesmotor cortical responding to a greater extent than does retrieval sup-
pression, and retrieval stopping suppresses hippocampal activity more so than motor stopping
[52]. It is tempting to speculate that this domain-specific targeting parallels the different modes
of deployment of inhibitory motor control in the stop-signal task, which can be implemented
with varying selectivity, depending on how rapid and reactive it has to be (Box 2). Intrusions
may be an example of a situation in which mnemonic inhibition has to be rapidly deployed and
is hence less selective than usual. A global suppression of thalamocortical drive affecting the hip-
pocampus and other structures during intrusions could act in concert with memory-specific tar-
get inhibition mechanisms, such as hippocampal suppression via the nucleus reuniens of the
thalamus [45,163]. These questions need more explicit answers in future work.

Studies of incidental cognitive inhibition add additional evidence towards the proposal that fronto-
subthalamic circuitry contributes to inhibiting nonmotor processes. In these studies, salient stimuli –
rather than instructions to inhibit – are used to activate the fronto-subthalamic circuitry. Examples of
salient stimuli include unexpected perceptual events [164,165], action errors [166–168], and incon-
gruent stimuli that elicit response conflict [169,170]. Such salient stimuli are known to automatically
trigger inhibitory control, halting ongoing processing to purchase the cognitive system additional
time and resources to reassess ongoing behavior [54]. In the motor system, this salience-induced
inhibitory activity is readily apparent: salient stimuli slow responses that follow them, suppress
frontal eye fields and lateral intraparietal cortex during visual attention, and the anterior thalamus may drive the media
temporal lobe/hippocampal complex during memory retrieval. The representations supported by those loops may be
subject to inhibitory control via the same neural circuit as movement. Abbreviations: dlPFC, dorsolateral prefrontal cortex
PFC, prefrontal cortex; pre-SMA, pre-supplementary motor area; rIFG, right inferior frontal gyrus.
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Figure 5. Examples of studies showing overlap between motor and cognitive inhibition. (A) Cortical activity during action stopping (measured by the stop-
signal task) and the inhibition of memories (measured by the Think-No-Think task, depicted in top left) shows overlap in critical nodes of the fronto-subthalamic
network, including rDLPFC, rIFG, and pre-SMA (bottom left). Moreover, behavioral indices of action-stopping (stop-signal reaction time) and mnemonic
suppression were correlated (right), with that correlation being reflected in pre-SMA, rDLPFC, and rIFG BOLD activity (middle two panels). Reproduced, with
permission, from [52]. (B) β-Band activity over frontal cortex during both action stopping and directed forgetting of memory contents. Left: stop-signal reaction
times and magnitude of directed forgetting effect are correlated. Center: β-Band activity after stop signals in the stop-signal task. Right: correlation between a
latent variable expressing motor and nonmotor inhibition and neural activity also reveals β cluster. Reproduced, with permission, from [160]. (C) STN activity
mediates the effects of surprise on working memory. Left: task diagram; participants maintained a string of letters in working memory across a delay interval
which was, on some trials, disrupted by an unexpected sound. Left center: unexpected sounds led to lower working memory (WM) accuracy and incorrect WM
trials had sounds that carried higher surprise values. Right center: unexpected sounds were followed by increased STN activity. Right: increased STN activity after
unexpected sounds related to decreases in WM accuracy. Reproduced, with permission, from [171]. **P < 0.01. Abbreviations: rDLPFC, right dorsolateral
prefrontal cortex; pre-SMA, pre-supplementary motor area; rIFG, right inferior frontal gyrus; STN, subthalamic nucleus.
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corticospinal excitability, and activate both the cortical nodes of the fronto-subthalamic network and
the STN (for review, see [54]). Importantly, studies of incidental cognitive inhibition have recently
begun to reveal that salient events also suppress active cognitive processes via fronto-
subthalamic circuitry. The first study of this kind showed that surprising sounds during the delay be-
tween a working memory stimulus and probe reduced memory performance [171] (Figure 5C). A
trial-to-trial mediation model further established that STN activation may have contributed to this
decrement: greater surprise-related activity in the STN local field potential predicted worse working
memory performance. A second experiment used a stop-signal task as a functional localizer for
scalp-recorded electroencephalography (EEG) activity that distinguished successful from failed
stop trials. Independent components analysis then showed that the neural generator underlying
this inhibitory motor control signature also mediated surprise effects on working memory. These ex-
periments suggest that both cortical and subcortical aspects of the fronto-subthalamic inhibitory
control circuit contribute to how surprise affects working memory.

A subsequent study of attentional inhibition [172] used the latter approach as well. Scalp signa-
tures of inhibitory motor control were identified using the stop-signal task as a functional localizer
and then related to attentional inhibition. Specifically, as participants attended to visual stimulus
material, steady-state visual evoked potentials (SSVEP) were recorded to index their degree of at-
tention to the target material. Periodically, surprising sounds arose during the task, suppressing
the SSVEP. As in the previous work on working memory, activity of the scalp signature of inhib-
itory motor control (identified using the stop-signal task as a functional localizer) mediated the dis-
ruptive effect of surprise on the neural marker of attention (i.e., the SSVEP). This suggests that the
attentional shift away from the current locus towards the salient event is achieved by inhibiting the
current attentional representation, via the fronto-subthalamic circuitry itself.

Although the foregoing studies of incidental cognitive inhibition provide initial empirical evidence
for our proposal that fronto-subthalamic circuitry contributes to nonmotor inhibitory control,
they are purely correlational. Causal evidence remains exceedingly rare. One recent study, how-
ever, provides a first demonstration. The investigators studied the causal role of the subthalamic
nucleus by quantifying howmuch surprise suppressed the SSVEP in patients with implanted STN
deep-brain stimulators (DBSs). Modulating the STN via DBSs significantly reduced the suppres-
sive impact of surprising sounds on the SSVEP [173]. This finding shows that STN causally con-
tributes to suppressing the SSVEP during surprise – in line with the interpretation that the STN
mediates the inhibition of attentional representations.

β-Band activity as a universal index of the inhibition of local neural circuits?
Two recent research directions have additional important implications for the role of β-band
activity in domain-general inhibitory control. Although this work does not test the role of
fronto-subthalamic circuitry in inhibitory control, its main findings are commensurate with
the current theoretical model. This work suggests that β-frequency bursts constitute a uni-
versal signature of local circuit inhibition – inhibition specifically effected through changes in
thalamocortical drive.

First, abundant research shows that β bursts in primary somatosensory cortex impair tactile
stimulus detection [174,175]. This has been interpreted as a sign of somatosensory inhibition,
paralleling the relationship between β bursts in primary motor cortex and motor inhibition (see
preceding text) [110,112]. Detailed biophysical modeling of the currents giving rise to these so-
matosensory β bursts suggests that they originate from changes in long-distance signaling
from thalamus [174,176]. This further supports the idea that changes in thalamocortical drive,
reflected in β-band activity, may be a domain-general mechanism for inhibition.
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Outstanding questions
How does the proposed fronto-
subthalamic input inhibition mechanism
relate to target inhibition (Box 1)? Do
these inhibitory control mechanisms re-
cruit different circuits, and if so, how do
they interact to achieve successful
control?

What are the boundary conditions of
the input and output of the fronto-
subthalamic circuits? Which types of
stimuli, beyond salient events and
stop signals, activate the circuit?
Which types of processes can (not)
be inhibited via the circuit?

What are the specific roles (if any) of the
cortical areas (pre-SMA, DLPFC, and
rIFC) during inhibitory control? Do
they fulfill the same function in both
cognitive and motor inhibition?

At what prethalamic level do the
purported inhibitory circuits deviate?
Are there parallel tracks from specific
neurons in STN to specific neurons in
the basal ganglia output nuclei (SNr
and GPi)? From the SNr/GPi to the
thalamus? Or do all prethalamic paths
feature the same neurons?

Similar to the motor system, does
nonselective cognitive inhibition work
via the hyperdirect and selective
cognitive inhibition via the indirect
pathway?

Is nonselective inhibition only
nonselective within domain? Or, does
nonselective recruitment of inhibitory
motor control also inhibit cognition
(and vice versa) and if so, are within
and crossdomain inhibition of a similar
magnitude?

Do the neuroanatomic connections
from SNr/GPi to the nonmotor
thalamic nuclei subserve the same
function as their connections to motor
thalamus?

Are other thalamocortical circuits (and
cognitive processes) than the ones
outlined here susceptible to similar
inhibition?

If cortical β is a universal signature
of inhibition due to changes in
thalamocortical drive (e.g., of the motor
or somatosensory cortex), then why is
prefrontal β increased after stop signals?
Second, in line with this, β bursts may contribute to inhibiting workingmemory contents [177–180].
Specifically, PFC regions showing increased gamma and spiking activity during working memory
maintenance exhibited increased β bursting once those same items had to be removed fromwork-
ing memory. The authors concluded that ‘the interplay between oscillations and spiking observed
here seems congruent with an inhibitory role of beta’ [197].

These two findings raise the exciting possibility that cortical β bursts represent a universal signa-
ture of the local inhibition of any type of neural information in local cortical circuits. Here, we sug-
gest activation of the fronto-subthalamic circuit can rapidly implement this type of inhibition.

Implications
Inhibitory control has long been conceptualized as a unitary construct, relevant to controlling a
broad range of motor or non-motor representations or processes. As reviewed here, evidence in-
creasingly suggests that shared neural mechanisms underlie action stopping (motor inhibition)
and the inhibition of at least some nonmotor processes (such as those underlying mnemonic or
attentional processes). Although inhibitory control is often invoked intentionally (cued inhibition),
incidental factors such as surprise or saliency also can trigger inhibition (incidental inhibition),
and their effect on cognition may be explained through shared mechanisms. This work estab-
lishes a potential neuroscientific foundation for a presumption long held in cognitive theory: that
inhibitory control constitutes a crucial domain-general process that broadly regulates motoric
and nonmotoric domains, in diverse situations.

We further suggest a novel component mechanism of domain-general inhibitory control, that
complements proposals about the role of target inhibition (Box 1): input inhibition. According to
this proposal, stopping motoric or cognitive processes may be partly achieved by a domain-
general mechanism that interrupts driving input to cortical regions necessary to enact those pro-
cesses. We propose that this input inhibition arises through fronto-subthalamic inhibition of
thalamocortical drive. The characteristics of this circuit may allow inhibitory control over both
motor and nonmotor activity, in either a selective or a nonselective fashion, depending on circum-
stances. Although the exact processing cascade within this circuit remains up for debate, future
studies should test hypotheses implied by this mechanistic proposal, including how its operation
relates to targeted inhibition of interfering representations.

Beyond these exciting basic science implications, fronto-subthalamic involvement in motor and
nonmotor inhibition carries prominent clinical implications. In particular, it may explain long-
observed links between stop-signal performance and nonmotoric clinical symptoms, such as
substance use [51], impulsivity [18], or intrusive thoughts [181]. This hypothesis could explain
why prominent cognitive side effects often arise after treatments for hypokinetic symptoms of
movement disorders that inactivate the fronto-subthalamic inhibitory control circuit, such as DBS
or subthalamotomy. Indeed, some researchers have described such side effects as the reduced
ability to inhibit nonmotor activity, yielding pathologically increased impulsivity [182]. Indeed, if the
same circuit inhibits motor and nonmotor processes, therapeutically releasing the excess motor
system inhibition by DBS may accidentally and pathologically disinhibit cognitive function.

Concluding remarks
We here present recently emerging and converging evidence suggesting that inhibitory control
over motor and nonmotor representations builds on a common neural mechanism. In addition,
we propose an important component pathway that may contribute to domain-general inhibitory
control: a fronto-subthalamic circuit operating in the β band. Evidence suggests that the activity of
this circuit contributes to inhibiting movement, mnemonic representations, and attention.
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Whether this mechanism inhibits other representations as well is one of many remaining open
questions (see Outstanding questions).

Future studies should causally manipulate this hypothesized circuit by targeting its subcortical as-
pects via DBS or its cortical aspects via transcranial magnetic stimulation. Advances in recording
methods also offer promise. In healthy individuals, high-field fMRI may facilitate noninvasive map-
ping of subcortical circuits (including the STN [92], whereas in patients with implanted DBS de-
vices, novel hardware interfaces open the door for precise physiology via recordings of local
field potential from these regions [183]). Furthermore, innovations for isolating precise,
millisecond-resolved neural representations underlying cognition have emerged: SSVEP can
track attention [172], multi-variate pattern analysis can track sensory memory [184], and repre-
sentational similarity analysis can track active task rule representations [185,186] and individual
items in memory [187]. Combining these methods with the causal (in)activation of fronto-
subthalamic inhibitory control circuitry would allow more unequivocal inferences regarding the
role of this circuit in suppressing cognition more broadly. We hope that the theory presented
here yields novel and testable hypotheses to this effect.
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