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A central goal of cognitive neuroscience has been to 
understand the neural underpinnings of working memory 
(WM), an on-line memory system that is thought to be 
critical for virtually all forms of intelligent behavior. Sig-
nificant progress has been made by focusing on stimulus-
specific neural activity that tracks the features of the items 
stored in WM. In both animal and human subjects, WM 
storage has been shown to elicit sustained activity in 
neural units or brain regions that are selective for the 
particular items held in mind (e.g., D’Esposito & Postle, 
2015; Funahashi et al., 1989; Fuster & Jervey, 1981; Goldman- 
Rakic, 1995; Harrison & Tong, 2009; Rademaker et al., 
2019; Serences et al., 2009). The motivation for these 
studies is clear, as they have the potential to elucidate 
the memory engrams (Poo et al., 2016) that allow people 
to hold specific ideas in mind.

Nevertheless, a distinct category of studies has focused 
instead on neural signals that track the number of  
items stored in WM, rather than the content of those 

representations (e.g., Adam et al., 2020; Todd & Marois, 
2004; Vogel & Machizawa, 2004; Xu & Chun, 2006). For 
example, Vogel and Machizawa (2004) used scalp elec-
troencephalogram (EEG) recordings to observe a sus-
tained negative slow wave in posterior electrodes 
contralateral to the items stored in WM. This contralat-
eral delay activity persists throughout the delay period, 
reaches a plateau when behavioral estimates of memory 
capacity are exceeded, and is a robust predictor of 
individual differences in the capacity of visual WM 
(Luria et al., 2016). This kind of load-sensitive neural 
measure has provided insight into how observers con-
trol access to this limited on-line workspace (McNab & 
Klingberg, 2008; Vogel et al., 2005), the role of WM in 
complex tasks such as multiple-object tracking (Drew 
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Abstract
Past work has shown that storage in working memory elicits stimulus-specific neural activity that tracks the stored 
content. Here, we present evidence for a distinct class of load-sensitive neural activity that indexes items without 
representing their contents per se. We recorded electroencephalogram (EEG) activity while adult human subjects stored 
varying numbers of items in visual working memory. Multivariate analysis of the scalp topography of EEG voltage 
enabled precise tracking of the number of individuated items stored and robustly predicted individual differences in 
working memory capacity. Critically, this signature of working memory load generalized across variations in both 
the type and number of visual features stored about each item, suggesting that it tracked the number of individuated 
memory representations and not the content of those memories. We hypothesize that these findings reflect the 
operation of a capacity-limited pointer system that supports on-line storage and attentive tracking.
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& Vogel, 2008) and visual search (Carlisle & Woodman, 
2011; Gunseli et al., 2014), and the relationship between 
WM capacity and other cognitive abilities (Unsworth 
et al., 2014, 2015).

Although it is clear that load-sensitive neural signals 
have been potent tools for studying WM, important ques-
tions remain regarding the computational role of this 
class of neural activity. Given past evidence for sustained 
stimulus-specific neural activity during WM storage, one 
possibility is that load-sensitive signals index the feature-
selective neural activity required for storage. Here, how-
ever, we present evidence for neural activity that indexes 
a qualitatively different cognitive operation from the 
representation of content per se. There has been long-
standing interest in the cognitive operations that support 
object individuation—the segmentation of objects from 
the background and from other objects—and the binding 
of an item’s features into an integrated percept that can 
be tracked in a dynamic visual scene. Kahneman et al. 
(1992) proposed the “object file” as a mechanism for 
registering specific tokens in the visual field to support 
the continuous tracking of those items through time and 
space. Likewise, Pylyshyn (2009) described “fingers of 
instantiation” as a mechanism for indexing visual tokens, 
thereby enabling perception to unfold over time despite 
changes in appearance or spatial position. Thus, both 
theories describe a kind of spatiotemporal pointer  
system that supports the apprehension and tracking of 
individuated items while the stored content about each 
item in memory is maintained via parallel but distinct 
mechanisms that support the maintenance of each item’s 
attended features.

Our hypothesis is that load-sensitive neural signals 
reflect the deployment of these spatiotemporal pointers. 
Although the pointer construct was developed in the 
context of attentional tracking tasks, WM storage can 
also be construed as the sustained deployment of atten-
tion toward internal representations (Awh & Jonides, 
2001; Chun et  al., 2011). Indeed, multiple models of 
visual WM have embraced the idea of separable neural 
processes for the storage of content on the one hand 
and the individuation and binding of those representa-
tions on the other (e.g., Balaban et al., 2019; Bouchacourt 
& Buschman, 2019; Oberauer, 2019; Swan & Wyble, 
2014; Xu & Chun, 2009). For example, Swan and Wyble 
(2014) postulated a neural “binding pool” that serves 
to link together the multiple features of stored items, 
supporting their representation as individuated tokens. 
Likewise, Xu and Chun (2009) argued that object  
individuation and object identification are realized  
in independent stages of processing, with distinct corti-
cal regions supporting each function (Xu & Chun, 
2009). Thus, there is clear motivation to postulate the 
existence of load-sensitive neural signals that index a 

content-independent aspect of WM. Our primary con-
clusion is that EEG activity measured during WM stor-
age provides evidence of precisely this kind of neural 
operation.

We used a recently developed multivariate approach 
that uses the scalp topography of EEG activity to decode 
the number of individuated items held in visual WM 
(Adam et  al., 2020). Although past work has found 
univariate signals that index the number of items stored 
in WM, there are several reasons why multivariate load 
detection (mvLoad) provides a more powerful test bed 
for characterizing the properties of load-sensitive neural 
activity. First, mvLoad is far more sensitive, enabling 
above-chance tracking of the number of items stored 
even with single trials of EEG activity. Second, mvLoad 
analyses reveal a multivariate signature of WM storage 
that generalizes from the trained data set to novel 
human observers and across significant variations in 
task design (e.g., lateralized versus whole-field memory 
displays); thus, the method is able to isolate load- 
sensitive activity more decisively than prior approaches. 
Finally, mvLoad accuracy robustly predicts individual 
differences in WM capacity, showing that it taps into 
an integral aspect of this on-line memory system.

We focused on three clear predictions for the proper-
ties of load-sensitive neural activity that is separable 
from the maintenance of specific visual details. First, 
the activity should precisely track the number of indi-
viduated representations that are encoded into memory, 
independent of variations in stimulus-driven activity. 
Second, the activity should generate a load signature 

Statement of Relevance

Working memory is an on-line memory system that 
is essential for almost all intelligent behaviors. Here, 
we examined patterns in brain activity that track 
the number of things that a person is holding in 
working memory in a given moment. The key 
insight from this work is that this neural “load 
signal” is unaffected by changes in both the type 
of information that is maintained in working 
memory, as well as the total quantity of information 
that is contained within each stored item. These 
findings show that one key limiting factor for 
storage in working memory is based entirely on the 
number of items that are maintained in this on-line 
memory system rather than on the specific details 
that are stored about those things. Our hypothesis 
is that the number of items matters because of a 
limit in the number of distinct entities that can be 
simultaneously tracked through time and space.
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that generalizes across the storage of distinct classes of 
visual information. Third, that signature should general-
ize across strong variations in the amount of informa-
tion stored about each item, establishing that it tracks 
the number of individuated representations rather than 
the total amount of information stored. To anticipate the 
results, we found that three experiments using the 
mvLoad analytic approach confirmed all of these pre-
dictions, thereby providing critical new evidence for 
theories of WM capacity that distinguish between the 
storage of featural details and the indexing of individu-
ated items within visual WM. We proposed that this 
content-independent signature of WM load indexes the 
deployment of spatiotemporal pointers (e.g., Kahneman 
et al., 1992; Pylyshyn, 2009) that enable the individua-
tion, binding, and monitoring of attended objects.

Method

Subjects

Experiments 1, 2, and 3 included 95 separate data- 
collection sessions (42 in Experiment 1, 33 in Experiment 
2, and 21 in Experiment 3), with 50 unique volunteers 
participating for monetary compensation ($15 per hr). 
A total of 20 volunteers participated in all three experi-
ments, allowing us to implement cross-training analyses 
across experiments. For subjects who completed mul-
tiple experiments, each experiment was done in a sepa-
rate EEG session. Subjects were between 18 and 35 years 
old, reported normal or corrected-to-normal visual acu-
ity, and provided informed consent according to proce-
dures approved by The University of Chicago Institutional 
Review Board. Subjects were recruited via online adver-
tisements and fliers posted on the university campus.

Experiment 1. Our target sample in Experiment 1 was 
30 subjects. Forty-two volunteers participated in Experi-
ment 1 (25 female; mean age = 23.8 years, SD = 4.5). Nine 
subjects were excluded from the final sample for the fol-
lowing reasons: We were unable to prepare the subject 
for EEG (n = 2); the subject did not complete enough 
blocks of the task (n = 5); the subject’s data were unin-
tentionally overwritten (n = 1); or too many trials were 
rejected because of eye movements (see Eye Movement 
section, n = 1). The final sample size was 33 (20 female; 
mean age = 24.33 years, SD = 4.76). We overshot our 
target sample size by three because we needed enough 
subjects to complete all three experiments, and some 
could not return.

Experiment 2. Our target sample in Experiment 2 was 
30 subjects. Thirty-three volunteers participated in Experi-
ment 2 (18 female; mean age = 25.39 years, SD = 4.30). 

Two subjects were excluded from the final sample because 
the subject did not complete enough blocks of the task. 
The final sample size was 31 (18 female; mean age = 25.32 
years, SD = 4.07). We overshot our target sample size by 
one because we needed enough subjects to complete all 
three experiments, and some could not return.

Experiment 3. Our target sample in Experiment 3 was 
20 subjects. Twenty volunteers participated in Experi-
ment 3 (13 female; mean age = 25.45 years, SD = 4.07). 
No subjects were excluded from the final sample.

Apparatus

We tested the subjects in a dimly lit, electrically shielded 
chamber. Stimuli were generated using PsychoPy (Peirce 
et al., 2019). Subjects viewed the stimuli on a gamma-
corrected 24-in. LCD monitor (refresh rate = 120 Hz, 
resolution = 1,080 × 1,920 pixels) with their chins on a 
padded chin rest at a viewing distance of 75 cm.

Luminance-balanced displays

Stimuli were presented against a mid-gray background 
(~61 cd/m2). Memory arrays included one to four to-be-
remembered items. Ignored placeholder items also 
appeared in the memory array, so each array had a total 
of five items. The placeholder items were shown in a 
shade of gray (red, green, blue [RGB] value = 166, 166, 
166) that matched the average luminance of all possible 
colors in the color set.

Task procedures

All three experiments used a whole-field change- 
detection task. On each trial, a memory array appeared 
containing five total items. There were one to four 
colored items to be remembered, and the remainder of 
the items were gray placeholder items to balance area 
and luminance across set-size conditions (see the previ-
ous section for more detail). Memory and placeholder 
items were positioned with one item per quadrant plus 
the fifth item, which was placed in a randomly selected 
quadrant. Two memory items never appeared in one 
quadrant together, and all items were placed at least 4° 
apart. Subjects viewed a memory array (250 ms), 
remembered the items across a delay (1,000 ms), were 
probed on one item, and reported whether the probed 
item was the same as or different from the remembered 
item (unspeeded). Subjects completed 14 blocks of 120 
trials each, for a total of 1,680 trials per session (420 
per set size). Two subjects completed only 1,348 and 
1,440 trials each. EEG acquisition duration was between 
73 and 132 min with an average of 105 min.
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Experiment 1: color. In Experiment 1, the memory items 
were colored squares (width = 2°; see Fig. 1a). The colors 
were randomly sampled without replacement from a set of 
seven colors (RGB values: red = 255, 0, 0; green = 0, 255, 
0; blue = 0, 0, 255; yellow = 255, 255, 0; purple = 255, 0, 
255; teal = 0, 255, 255; orange = 255, 128, 0). Circular gray 
placeholders (radius = 1.13°) of the same area as the mem-
ory items also appeared during the memory array so that 
each display contained five total objects. One potential 
concern is that the spatial frequency of displays covaried 
with load because the colored squares had a higher spatial 
frequency than the circular placeholders. Although this 
raises a possible alternative explanation of load decoding 
in the color condition, there was no similar concern with 
the displays used in Experiments 2 and 3.

Experiment 2: orientation. In Experiment 2, the mem-
ory items were circles (radius = 1.3°) with oriented bars cut 
out of the middle (height = 2.6°, width = 0.5°) so that they 

were the same area as the items in Experiment 1 (Fig. 1b). 
The possible orientations were 0°, 90°, 180°, and 270°, and 
they were sampled without replacement for each trial. The 
placeholder items were the same shape. In each block, 
either orange or green was indicated as the target color for 
that block. Subjects were instructed to remember the orien-
tation of the stimuli presented in the target color and to 
ignore the stimuli presented in the other color. Both the 
orange and green were luminance matched to the average 
luminance of the color set in Experiment 1 (RGB values: 
orange = 255, 155, 55; green = 75, 208, 75). Thus, lumi-
nance was perfectly balanced across set-size conditions. 
For example, a trial that contained one orange and four 
green items would be a Set Size 1 trial in a “target orange” 
block but a Set Size 4 trial in a “target green” block.

Experiment 3: conjunction. In Experiment 3, each 
memory item included both an orientation and a color 
and was the same shape and size as items in Experiment 

Experiment 1: Color

+ ++ +

Experiment 3: Conjunction

+ +

Stimulus Array Retention Test Array

+ +

+ ++

Experiment 2: Orientation

+

250 ms 1,000 ms Until Response
ITI

600−1,000 ms

+

+

+

a

b

c

Fig. 1. Task schematics for an example Set Size 3 trial in the whole-field change-detection 
task used in all three experiments. In Experiment 1 (a), subjects remembered the colored 
squares while ignoring the gray placeholders. In Experiment 2 (b), at the start of each block, 
a color cue informed subjects to attend to and remember either the orange or the green 
orientations while ignoring the uncued color. In Experiment 3 (c), subjects remembered 
both the color and the orientation of each item. During change trials, one of the features 
(randomly selected) in the test item would change. ITI = intertrial interval.
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2. Both features were independently sampled without 
replacement from the same color and orientation values 
used in Experiments 1 and 2 (Fig. 1c). The placeholders 
were the luminance-matched gray from Experiment 1. In 
change trials, only one attribute (color or orientation) 
changed, with color and orientation changes occurring 
equally often.

EEG acquisition

We recorded EEG activity from 30 active Ag/AgCl elec-
trodes mounted in an elastic cap (Brain Products acti-
CHamp, Munich, Germany). We recorded from 
international 10-20 sites Fp1, Fp2, F7, F3, Fz, F4, F8, 
FT9, FC5, FC1, FC2, FC6, FT10, T7, C3, Cz, C4, T8, CP5, 
CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz, and O2. Two 
additional electrodes were affixed with stickers to the 
left and right mastoids, and a ground electrode was 
placed in the elastic cap at position Fpz. All sites were 
recorded with a right-mastoid reference and were re-
referenced off-line to the algebraic average of the left 
and right mastoids. We recorded electrooculogram 
(EOG) data using passive electrodes, with a ground 
electrode placed on the left cheek. Horizontal EOG data 
were recorded from a bipolar pair of electrodes placed 
~1 cm from the external canthus of each eye. Vertical 
EOG data were recorded from a bipolar pair of elec-
trodes placed above and below the right eye. Data were 
filtered on-line (low cut-off = 0.01 Hz, high cut-off = 
80 Hz, slope from low to high cut-off = 12 dB/octave) 
and were digitized at 500 Hz using BrainVision Recorder 
(Brain Products, Munich, Germany) running on a PC. 
Impedance values were brought below 10 kΩ at the 
beginning of the session.

Eye tracking

We monitored gaze position using a desk-mounted  
EyeLink 1000 Plus infrared eye-tracking camera (SR 
Research, Ontario, Canada). Gaze position was sampled 
at 1000 Hz. According to the manufacturer, this system 
provides spatial resolution of .01° of visual angle and 
average accuracy of 0.25 to 0.50° of visual angle. We 
calibrated the eye tracker every one to two blocks of 
the task and between trials during the blocks if neces-
sary. We drift-corrected the eye-tracking data for each 
trial by subtracting the mean gaze position measured 
during a 200-ms window immediately before the onset 
of the memory array.

Artifact rejection

We segmented the EEG data into epochs time-locked 
to the onset of the memory array (200 ms before until 
1,000 ms after stimulus onset). We baseline-corrected 

the EEG data by subtracting mean voltage during the 
200-ms window immediately prior to stimulus onset. 
Eye movements, blinks, blocking, drift, and muscle arti-
facts were first detected by applying automatic criteria. 
After automatic detection, we visually inspected the 
segmented EEG data for artifacts (amplifier saturation, 
excessive muscle noise, and skin potentials) and the 
eye-tracking data for ocular artifacts (blinks, eye move-
ments, and deviations in eye position from fixation), 
and we discarded any epochs contaminated by artifacts. 
In all three experiments, all subjects included in the 
final sample had at least 200 trials of each set-size con-
dition (800 trials total).

Eye movements

For eye-tracking data, we rejected trials that contained 
eye movements beyond a certain threshold (thresh-
old = 1° of visual angle). For some subjects, eye-tracking 
data were not available (Experiment 1, n = 2; Experi-
ment 2, n = 3). In these cases, EOG data were used. 
We rejected trials that contained horizontal or vertical 
EOG values beyond a threshold of 50 µV.

Blinks

In addition to the threshold detection, blinks were 
detected by flagging trials with flatline data (no position 
data were recorded when the eye was closed). Addi-
tionally, we visually inspected the eye-tracking data for 
trial segments with missing data points.

Drift, muscle artifacts, and blocking

We checked for drift (e.g., skin potentials) with the 
pop_rejtrend function in ERPLAB. We excluded trials in 
which a line fitted to the EEG data had a slope greater 
than a certain threshold (slope = 10, minimal r² = .3). 
We checked for muscle artifacts with the pop_artm-
wppth function in ERPLAB (Lopez-Calderon & Luck, 
2014). We excluded trials with peak-to-peak activity 
greater than 100 µV within a 200-ms window with 100-
ms steps. We also excluded trials with any value beyond 
a threshold of 80 µV.

mvLoad procedure

Binned trial classification (within subjects and 
within experiments). The mvLoad analysis is within-
subjects classification of WM load on baselined EEG. 
Although our approach allowed robust above-chance 
performance with single trials, we used randomly chosen 
groups of 20 trials within each set size to increase signal-
to-noise ratio. We divided each trial into 50-ms windows 
with 25-ms steps and calculated the average voltage for 
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each electrode in the window. Classification was performed 
using an ordinal logistic regression model (Pedregosa-
Izquierdo, 2015). The classifier was trained to discrimi-
nate between Load Conditions 1, 2, 3, and 4, giving a 
chance-level classification of 25%. Classification was 
tested on a held-out set of data using the StratifiedShuf-
fleSplit function from Scikit-Learn (Pedregosa et al., 
2011). This cross-validation procedure splits the data in 
80% training and 20% testing sets while preserving the 
percentage of samples for each load condition. This split 
was repeated 1,000 times, and results for each subject 
and time point were averaged across these repetitions. 
Training data were standardized at each time point using 
the StandardScaler Scikit-Learn function, and test data 
were standardized using the mean and standard devia-
tion of the training set.

Binned trial classification (within subjects and 
across experiments). Cross-training classification was 
used to test for generalization between the color (Experi-
ment 1) and orientation (Experiment 2) conditions and 
between the single-feature (Experiments 1 and 2) and 
conjunction (Experiment 3) conditions. These analyses 
followed the same procedures as the within-experiment 
classification except that the testing was done on EEG 
data from a different experiment. For the single-feature 
generalizability analysis, the classifier was trained on data 
from Experiment 1 and tested on data from Experiment 2 
and vice versa. For the single-feature-to-conjunction gen-
eralizability analysis, the classifiers were trained on a mix-
ture of data from Experiments 1 and 2 and tested on data 

from Experiment 3. All of these analyses were done within 
subjects, using the subset of subjects who completed all 
of the experiments involved in the analysis (Experiments 
1 and 2: n = 24; Experiments 1, 2, and 3: n = 20).

Significance testing

In all classification analyses, we tested whether classifica-
tion accuracy was significantly above chance at each time 
point using a paired-samples, one-tailed t test. Classifica-
tion accuracy was compared with empirical chance accu-
racy, defined by testing the trained model on randomly 
shuffled trial labels (for more details, see Kappenman 
et al., 2021). Because we tested for significance at each 
time point (48 time bins between 0 ms and 1,250 ms), 
we used the Benjamini-Hochberg procedure to control 
the false-discovery rate (FDR) at .05.

Results

Behavioral

Across all experiments and conditions, subjects per-
formed the change-detection task with above-chance 
accuracy (see Fig. 2; range of condition accuracies = 
.72-.97). In each experiment, a one-way analysis of 
variance (ANOVA) revealed a significant main effect  
of set size, indicating that accuracy declined as set  
size increased—Experiment 1: F(3, 128) = 90.19, p < 
.001; Experiment 2: F(3, 120) = 32.93, p < .001; Experi-
ment 3: F(3, 76) = 60.27, p < .001. To examine whether 
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Fig. 2. Change-detection accuracy for each set size in each of the three experiments. Black dots indicate individual data, white dots 
indicate means, and shaded regions indicate the density of the data. See Figure S2 in the Supplemental Material for K estimates.



1686 Thyer et al.

behavioral performance varied across the three experi-
ments, we carried out a within-subjects analysis using 
only the 20 observers who completed all three experi-
ments. We combined data from Experiments 1 and 2 
(single-feature items) to compare with Experiment 3 
(conjunction items). In a two-way repeated measures 
ANOVA on accuracy, there was no significant main 
effect of feature, F(1, 19) = 4.09, p = .057, but there was 
a significant main effect of set size, F(3, 57) = 213.30,  
p < .001, and a significant interaction of feature and set 
size, F(3, 57) = 17.69, p < .001. To characterize the 
significant interaction, we conducted four paired-sam-
ples t tests between the single-feature and conjunction 
conditions at each set size (corrected p, FDR = .05, with 
Benjamini-Hochberg procedure). Set Size 1 single- 
feature accuracy (M = .94, SD = .03) was significantly 
lower than conjunction (M = .97, SD = .02), t(19) = -5.23, 
p < .001, d = 0.955; Set Size 2 single-feature accuracy 
(M = .90, SD = .04) was not significantly different from 
conjunction (M = .90, SD = .05), t(19) = 0.001, p = .993,  
d = 0.050; Set Size 3 single-feature accuracy (M = .84, 
SD = .06) was significantly higher than conjunction (M = 
.80, SD = .08), t(19) = 3.18, p = .007, d = 0.514; and Set 
Size 4 single-feature accuracy (M = .76, SD = .08) was 
significantly higher than conjunction (M = .72, SD = 
.07), t(19) = 3.81, p = .002, d = 0.651. Despite revealing 
reliably worse performance in the conjunction experi-
ment, this still provides evidence for object-based ben-
efits for storage in visual WM (Olson & Jiang, 2002). 
That is, a larger number of feature values were stored 
in the conjunction condition than in the single-feature 
condition.

Precise classification of load while 
controlling for stimulus energy

The first key result was that the mvLoad analysis pre-
cisely classified WM load, despite the use of stimulus 
displays that controlled for stimulus energy across all 
load conditions. For each experiment (Experiment 1: n = 
33; Experiment 2: n = 31; Experiment 3: n = 20), we 
used an ordinal logistic regression classifier on raw EEG 
amplitudes (see Fig. S3 in the Supplemental Material 
available online for event-related potentials) from 
binned trials within subjects (20 trials per bin) at each 
time bin (50-ms window). We could classify WM load 
(Set Size 1 vs. Set Size 2 vs. Set Size 3 vs. Set Size 4) 
during the stimulus presentation and throughout the 
delay period (Figs. 3a–3c; red squares indicate corrected 
p < .05, FDR-controlled at .05 with Benjamini-Hochberg 
procedure with 48 time bins tested). Above-chance clas-
sification was observed starting in early time bins in 
each experiment (Experiment 1: 64-ms to 88-ms time 
bin; Experiment 2: 160-ms to 208-ms time bin; Experi-
ment 3: 64-ms to 88-ms time bin). Classification was 
sustained throughout the entire delay period for all three 
experiments. Mean classification accuracy (with chance 
at .25) during the delay period for Experiment 1 was 
.42 (SD = .03), for Experiment 2 was .43 (SD = .04), and 
for Experiment 3 was .41 (SD = .04). We also confirmed 
that the classifier was sensitive to single-item increments 
in the number of stored items. Figure 4 shows classifica-
tion accuracy for Set Size 1 versus Set Size 2, Set Size 2 
versus Set Size 3, and Set Size 3 versus Set Size 4. For 
Set Size 1 versus Set Size 2 and Set Size 2 versus Set 
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Fig. 3. Classification accuracy over time for (a) Experiment 1, (b) Experiment 2, and (c) Experiment 3. Classification accuracy is indicated 
with a red line. The shaded area around the red line indicates the standard error of the mean. Red squares indicate time points in which 
classification accuracy was significantly above chance (corrected p < .05, false-discovery rate = .05 with Benjamini-Hochberg procedure). 
The gray line indicates chance classification accuracy. The vertical gray rectangle indicates the time period during which the memory array 
was displayed. The shuffle condition reveals empirical chance accuracy, obtained by training the model on nonpermuted data then testing 
on data with permuted trial labels.
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Size 3, accuracy was sustained above chance throughout 
the entire delay period (corrected p < .05, FDR = .05 
with the Benjamini-Hochberg procedure). Using behav-
ioral (Set Size 4) and EEG data from each unique subject 
across the three experiments (N = 40), we replicated  
the finding from Adam et al. (2020) and Feldmann-
Wüstefeld (2021) that classification accuracy was  
positively correlated with individual differences in WM 
capacity (r² = .24, p = .001; Fig. 5). Further analysis 
showed that this relationship was consistent across 
nearly all time points in the delay period (see Fig. S4 in 
the Supplemental Material). This correlation may be 
caused by the greater reliability with which higher-
capacity individuals achieve the storage of all relevant 
items (e.g., Adam et al., 2015), which would in turn yield 
more discriminable patterns of activity for each set size. 
This finding reinforced the earlier evidence that the 
mvLoad analysis taps into a neural operation that is 
relevant for understanding capacity limits in visual WM.

A load signature that generalizes 
across distinct feature values

The second key analysis examined whether the load 
signatures revealed by mvLoad generalized across dis-
tinct feature values (i.e., color and orientation). Using 
data from subjects who had participated in both Experi-
ments 1 and 2 (n = 24), we trained the classifier using 

the color trials from Experiment 1 and tested it on the 
orientation trials from Experiment 2. We also trained on 
orientation trials and tested on color trials. In both direc-
tions of training and testing, robust classification was 
sustained throughout the entire delay period (Fig. 6). 
Mean classification accuracy during the delay period for 
color to orientation was .33 (SD = .03) and for orienta-
tion to color was .34 (SD = .03). Thus, the same multi-
variate pattern classified load precisely for memoranda 
with distinct relevant features, revealing a load-sensitive 
signal that is separable from the specific content stored 
in WM. These decoding accuracies are lower than those 
we saw with within-experiment analyses (see Figs. S5a 
and S5b in the Supplemental Material). Although this 
could reflect nongeneralizable aspects of the load sig-
nal, it could also reflect methodological noise across 
sessions, such as small differences in electrode place-
ment or impedance. Thus, even if precisely the same 
load pattern were present in each EEG session, some 
drop in decoding accuracy would be expected for 
across-session relative to within-session training.

A signature of load that is independent 
of total amount of information stored

The third key analysis examined whether the load-
sensitive activity revealed by the mvLoad analysis was 
independent of the total amount of feature information 
maintained about each item stored in WM. To this end, 
we trained the classifier on the combined data from 
Experiments 1 and 2, in which each item contained one 
relevant feature to be stored (i.e., either color or 
orientation), and we tested this model using data from 
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Experiment 3 in which the number of relevant features 
per item was doubled (i.e., both color and orientation; 
Fig. 7). This analysis included a group of 20 subjects 
who had participated in all three experiments. Classi-
fication accuracy was robustly above chance throughout 
the entire delay period with a mean delay-period accuracy 
of .36 (SD = .03). Again, the across-experiment decod-
ing accuracy was lower than in the within-experiment 
analyses (see Fig. S5c in the Supplemental Material). 
Nevertheless, the same signature of load identified with 
single-feature stimuli was observed with conjunction 
stimuli that contained twice as many relevant features 
per item, in line with a load-sensitive cognitive opera-
tion that is separable from the maintenance of specific 
features.

Although robust cross-training between the single-
feature and conjunction conditions suggests that they 
evoked a common load signature, further analyses pro-
vided more incisive evidence for the content-independent 
character of this load-sensitive neural activity. First, 
recall from Experiments 1 and 2 that the mvLoad analy-
sis robustly detected the difference between one and 
two single-feature items (Fig. 3) and between two and 
three single-feature items, showing that the analysis is 
sensitive to the addition of a single item with one rel-
evant feature. Thus, if load decoding with single-feature 
items was based on the number of color or orientation 
values stored, then one conjunction item should be 

classified as the same load as two single-feature items. 
Alternatively, if load decoding was based on the num-
ber of feature-independent pointers stored, then one 
conjunction item should be classified as the same load 
as one single-feature item. To test this prediction, we 
trained the mvLoad classifier with single-feature stimuli 
and examined performance across three key conditions: 
(a) Set Size 1 single feature, (b) Set Size 2 single feature, 
and (c) Set Size 1 conjunction. The divergent predic-
tions of the feature-load and pointer explanations are 
illustrated in Figures 8a and 8b, along with the observed 
data in 8c.

Visual inspection reveals that our findings fell directly 
in line with the pointer hypothesis in that a one- 
conjunction item was equivalent to one single-feature 
item. We tested the reliability of this pattern with two 
planned comparisons. First, we found a reliable differ-
ence between the predicted load for a single conjunc-
tion item and two single-feature items. A Bayesian 
paired-samples t test revealed strong evidence for a 
difference between these conditions, t(19) = -9.01, p < 
.001, d = 3.09, Bayes factor favoring the alternative over 
the null hypothesis (BF10) > 100, showing that a single 
conjunction item had a higher probability of being clas-
sified as Load 1 (M = .65, SD = .12) than Set Size 2 
single-feature items (M = .35, SD = .07). Second, we 
examined the prediction that one conjunction item 
should have the same load as one single-feature item 
(M = .65, SD = .06), using a Bayesian paired-samples t 
test. This revealed substantial evidence for the null 
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hypothesis, suggesting that both had the same probabil-
ity of being classified as Load 1, t(19) = 0.00, p = .999, 
d = 0.00, BF10 = 0.232). An analogous analysis of Set Size 
2 and 4 trials revealed precisely the same empirical pat-
tern, showing that two conjunction items (M = .68 clas-
sified as Load 2, SD = .15) were predicted as a lower 
load than four single-feature items (M = .34, SD = .08), 
t(19) = -8.06, p < .001, d = 2.76, BF10 > 100, and that two 

conjunction items were predicted as the same load as 
two single-feature items (M = .66, SD = .08), t(19) = 
-0.652, p = .522, d = 0.185, BF10 = 0.281 (see Fig. S6 in 
the Supplemental Material). Thus, our findings strongly 
suggest that there is a common load signature for single-
feature and conjunction stimuli that is determined by the 
number of individuated items stored, rather than by the 
number of feature values stored.
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Ruling out the size of the attended 
region as the driver of load-sensitive 
neural activity

Although the results of the mvLoad analysis pointed to 
load-sensitive neural activity that is separable from the 
quantity and type of content stored about each item, 
we noted that the spatial extent of the attended region 
in the display was confounded with the number of 
stored items. Thus, we examined whether the classifier 
was indexing the area of the attended regions on the 
screen, rather than the number of individuated items 
per se. To this end, we reanalyzed data from an EEG 
study of perceptual grouping by Diaz et al. (2021) in 
which subjects stored the orientation of two or four 
notched discs in visual WM. In the grouped condition, 
the discs were arranged so that collinearity between 
the notches in pairs of discs elicited the percept of a 
single illusory rectangle (Fig. 9). Thus, in the Set Size 
4 grouped condition, perceptual grouping encouraged 
the perception of two individuated orientation values, 
whereas in the Set Size 4 ungrouped condition observ-
ers perceived four individuated orientation values. Criti-
cally, the number of relevant elements and their spatial 
extent were matched between the grouped and 
ungrouped displays. Diaz et al. (2021) reinforced this 
point by showing that the power of alpha oscillations 
in occipitoparietal electrodes, a neural signal that has 
been shown to track the number of attended locations 
(Fukuda et al., 2015), tracked the number of elements 
on the screen but was unaffected by the grouping 
manipulation. Thus, the key question for the present 
study was whether the mvLoad classifier would register 
the difference between the grouped and ungrouped 
displays. If load classification is based on the spatial 
extent of the attended locations, then it should return 
the same load value for the grouped and ungrouped 

conditions, in line with the posterior alpha power signal 
examined by Diaz et al. (2021). By contrast, if load 
classification is based on the number of individuated 
items stored, then a lower load should be detected in 
the grouped relative to the ungrouped condition.

Figure 10 illustrates the output over time of a clas-
sifier that was trained exclusively on ungrouped dis-
plays (Set Size 2 or 4) and then tested on both the 
ungrouped and grouped displays. The output here is 
from the classifier’s decision_function method, which 
returns the confidence score of the sample. This score 
is proportional to the signed distance of that sample to 
the hyperplane. In Figure 10, stronger evidence for Set 
Size 4 is plotted in the positive direction, whereas stron-
ger evidence for Set Size 2 is plotted in the negative 
direction. When trained and tested on the ungrouped 
trials, the classifier exhibited sustained above-chance 
performance throughout the delay period (i.e., sus-
tained positive values for Set Size 4 and sustained nega-
tive values for Set Size 2). However, when the same 
classifier was tested with Set Size 4 grouped trials, clas-
sification evolved over time. Set Size 4 grouped trials 
were initially classified the same as Set Size 4 ungrouped. 
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Fig. 9. Examples of Set Size 4 grouped and ungrouped memory 
arrays. In the grouped condition, collinearity between the notches 
yields the percept of a single oriented rectangle for each grouped 
pair.
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However, by the 512-ms to 536-ms time bin, Set Size 4 
grouped diverged from Set Size 4 ungrouped and was 
reliably closer to the hyperplane. Set Size 4 grouped 
was also reliably different from Set Size 2 ungrouped 
at the start of the trial. However, by the 848-ms to 872-
ms time bin, Set Size 4 grouped had crossed the hyper-
plane and was no longer reliably different from Set Size 
2 ungrouped. Thus, although perceptual grouping did 
not affect the spatial extent of the attended region (Diaz 
et  al., 2021), the mvLoad classifier indexed a lower 
number of stored items in the grouped condition, show-
ing that the classifier indexes the number of individu-
ated items stored in memory, not the spatial extent of 
covert attention.

Discussion

Given that WM serves as a cornerstone for intelligent 
behaviors, there is strong motivation to build a taxon-
omy of the neural operations that support on-line mem-
ory storage. The dominant strain of this work has 
focused on stimulus-specific neural activity that repre-
sents the stored content (e.g., D’Esposito & Postle, 2015; 
Funahashi et al., 1989; Fuster & Jervey, 1981; Goldman-
Rakic, 1995; Rademaker et  al., 2019; Serences et  al., 
2009), and great progress has been made in understand-
ing the format and anatomical locus of this class of 
neural activity. By contrast, we highlight evidence for 
a qualitatively different neural operation that is integral 
to WM function but separable from the maintenance of 
stored content. Specifically, we refer to a spatiotemporal 
pointer operation that supports the segmentation of 
visual scenes into individuated representations that can 
be tracked through time and space (Kahneman et al., 
1992; Pylyshyn, 2009). Using a multivariate analytic 
approach (Adam et al., 2020), we found that the scalp 
topography of EEG voltage precisely tracks the number 
of individuated representations stored in visual WM, 
while generalizing across variations in both the type 
and number of relevant features per item. Thus, 
although this neural operation is hypothesized to track 
the spatiotemporal coordinates of stored objects, it 
operates in a fashion that is insensitive to the contents 
of the tracked memory representations. Moreover, the 
fidelity of this load-sensitive neural activity is a predic-
tor of individual differences in WM capacity, emphasiz-
ing its importance for understanding why WM capacity 
is limited.

The present findings provide a critical complement 
to past work that has sought to determine the compu-
tational role of load-sensitive neural activity. For 
instance, multiple studies have reported EEG and blood 
oxygen level dependent (BOLD) activity patterns that 
rise with each additional item stored and reach an 

apparent plateau at set sizes that exceed behavioral 
estimates of capacity in visual WM (e.g., Todd & Marois, 
2004; Vogel & Machizawa, 2004; Xu & Chun, 2006). But 
although this empirical pattern is consistent with a neu-
ral operation that tracks number per se, it can also be 
modeled using a biophysically plausible saturation 
model in which stimulus-specific neural activity follows 
an exponential function (Bays, 2018). There have also 
been reports of neural activity that rises with the num-
ber of items but is not affected by the complexity of 
the memoranda (Woodman & Vogel, 2008; Xu & Chun, 
2006). This empirical pattern suggests a neural opera-
tion that indexes the number of individuated represen-
tations stored in WM rather than the total amount of 
visual information. That said, these conclusions are 
based on an intriguing null result: the absence of a 
difference in mean activity levels across distinct types 
of stimuli. By contrast, our findings provide positive 
evidence for a common neural index of the number of 
stored items when the type and number of visual fea-
tures per item is varied: a multivariate signature of load 
that robustly generalizes across three distinct types of 
memoranda, demonstrating a content-independent 
aspect of storage-related neural activity. Moreover, our 
findings were supported by 84 separate EEG sessions 
across 40 unique observers that yielded above-chance 
decoding in every session for every observer tested. 
Thus, our findings provide compelling positive evi-
dence for an item-based, content-independent aspect 
of storage in visual WM. These positive features not-
withstanding, two limitations of our work include the 
use of a relatively limited set of visual stimuli, and a 
subject population that was dominated by people in 
and around our university community. It will be valu-
able for future work to examine how and whether our 
conclusions generalize to different stimuli and subject 
populations.

Our working hypothesis is that this load-sensitive 
neural activity reflects the deployment of spatiotem-
poral pointers or indexes that support object  
individuation—the segmentation of objects from the 
background and from other objects—and the continu-
ous tracking of items through time and space (e.g., 
Kahneman et  al., 1992; Pylyshyn, 2009; Xu & Chun, 
2009). To study this cognitive process, Pylyshyn and 
Storm (1988) introduced multiple-object tracking, a task 
that requires the observer to keep track of varying num-
bers of targets that move randomly among a group  
of identical distractors. Their behavioral data indicated 
a relatively sharp capacity limit that they attributed to  
a limit on the number of pointers that could be  
concurrently deployed. Interestingly, Drew and Vogel 
(2008) used a lateralized version of the multiple- 
object-tracking task to show that contralateral delay 
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activity rises with the number of targets that are tracked, 
predicts individual differences in tracking ability, and 
reaches an apparent plateau after three targets are 
selected. Thus, it may be that both the contralateral 
delay activity and mvLoad classifiers are picking up on 
a content-independent indexing operation that is 
required during tracking and visual WM tasks (Balaban 
et al., 2019; Hakim et al., 2019; Tsubomi et al., 2013).

In combination with stimulus-selective neural activity 
that supports the maintenance of precise memories 
(e.g., D’Esposito and Postle, 2015), evidence for a con-
tent-independent pointer operation falls in line with 
various proposals for a separation between the precise 
maintenance of content and the number of representa-
tions maintained in WM. For example, if WM storage 
is limited by the deployment of content-independent 
pointers, this could explain why the maximum number 
of items an individual can store is uncorrelated with 
the precision of those representations (Awh et al., 2007) 
and why number exhibits a strong correlation with fluid 
intelligence whereas precision does not (Fukuda et al., 
2010). Likewise, this separation may explain why dif-
ferent regions of visual cortex appear to track the num-
ber and complexity of the memoranda stored in WM 
(e.g., Xu & Chun, 2006). In addition, if storage in visual 
WM is contingent on the assignment of a pointer, this 
could explain why many studies have documented an 
object-based benefit in which a larger number of fea-
tures can be maintained within multifeature objects 
compared with single-feature objects (e.g., Luck & 
Vogel, 1997; Olson & Jiang, 2002). Specifically, if each 
individuated object stored requires one of a limited 
number of pointers, then single-feature items would  
be the least efficient way to store the largest number 
of features.

In conclusion, multivariate analysis of the topogra-
phy of EEG voltage reveals a load-sensitive neural 
operation that tracks the number of individuated items 
stored in WM while generalizing across variations in 
the type and number of visual features. This empirical 
pattern provides critical new evidence for a distinction 
between the maintenance of visual features and the 
discrete indexing of the items that contain those fea-
tures. These findings help to clarify the taxonomy of 
neural operations that support storage in this on-line 
mental workspace.
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